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Introduction

Extremal graph theory, and more generally extremal combinatorics,
is a large field with lots of intriguing connections and important appli-
cations in many distinct areas of mathematics, physics, and computer
science (cf. [3]). Typical and deceptively innocent sounding problems
include: What is the minimum number of edges in a graph on n vertices
guaranteeing existence of a triangle? How many triangles are there in
a graph whose number of edges is above that threshold? One can eas-
ily imagine more of that sort based on other similar graph properties.
Actually, there are plenty of challenges and open problems stimulating
extensive research in the area for the several decades.

In many areas in computer science one studies properties of very
large graphs – graph models of technological networks. For example
the graphs of computers and physical links between them, the graph of
so-called Autonomous Systems such as Internet Service Providers, the
graph of webpages with hyperlinks, graphs of social networks: acquain-
tances, co-publications, the spreading of certain diseases, etc. These
networks are formed by random processes, but their properties are quite
different from the traditional Erdős-Rényi random graphs. They tend
to be clustered, the neighborhoods of their nodes are denser than the
average edge density, etc. Several models of those so called “scale-free”
random graphs have been proposed and studied. For rigorous work,
see [13, 14] for undirected models, [53] for “copying models”, [10]
for a directed model, [9] for the spread of viruses on these networks,
and [11] for a survey of rigorous work with more complete references.
For an extensive introduction to large networks, problems appearing
there, and the connections with graph limits which are considered in
this thesis, we strongly recommend the recent monograph by Lovász
[54].

One of the very active areas of research related with large networks
is graph property testing. In its most restricted form, it studies prop-
erties of very large graphs that can be tested by studying a randomly
chosen induced subgraph of bounded size. For example we may ask
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2 INTRODUCTION

what is the typical degree of a node, is the graph planar, does it con-
tain a triangle, is it 3-colorable, etc. In general we have an enormously
large amount of input data, so it is not possible to process with an
exact answer, but we can provide an estimate based on a small sample.
This is usually enough in the real world applications. For a precise
definition of property testing and early work see [34], [1], and [4]. It is
important that we can treat property testing in terms of the theory of
graph limits [16, 57, 58]. In the space of graphons (limits of graphs)
many problems and constructions have a simpler and clearer formu-
lation (see [18] for a survey). This leads to a new characterization of
testable properties by Lovász and Szegedy [59]. The theory can be also
applied for testing permutations [45, 49]. A very similar issue is pa-
rameter testing, where we want to approximate some graph parameter
of a very large graph by looking only at small samples. We say that a
graph parameter P is testable if there exists a randomized algorithm
that estimates the parameter P within the additive error ε based on
a sample of size f(ε) with probability ≥ 1 − ε. This area has a very
natural treatment in the framework of graph limits [15, 16], since P
is testable if and only if P is continuous on the graphon space.

Another source of motivation for studying extremal problems lies in
possible consequences for some famous challenges in other disciplines.
For instance, a seemingly slight extension of the celebrated result of
Razborov [66] (giving a superpolynomial lower bound for monotone
circuit complexity of the clique function) would imply that P 6= NP.
It is not surprising therefore that in recent years we are facing a rapid
development of this area resulting in a variety of deep results, as well
as new sophisticated methods, often based on tools from other areas of
mathematics.

The aim of this thesis is to present new method based on algebraic
and analytic tools – the celebrated method of flag algebras invented by
Razborov [67]. This method provides a uniform framework for stan-
dard counting techniques used in extremal combinatorics. It is inspired
by the theory of dense graph limits, on which we focus in Chapter 4.
Despite the fact that the method is quite new, it has been successfully
applied to various problems in extremal combinatorics, giving solutions
to many long open-standing problems. In particular in Turán-type
problems in graphs [23, 35, 39, 41, 61, 63, 64, 70, 74, 76], 3-graphs
[7, 27, 28, 32, 62, 69], and hypercubes [5, 8], Caccetta-Häggkvist con-
jecture [42, 71], extremal problems in a colored setting [6, 22, 38, 50],
and in geometry [51]. More details on these applications can be found
in a recent survey of Razborov [68].
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In Chapter 1 we give a tame introduction to this method illustrat-
ing basic ideas on the simplest example of the problem of triangles in
graphs. Razborov introduced the method for an arbitrary universal
first-order logic theory without constants or function symbols. For a
better understanding, and in order to get an intuition, we restrict our
attention to graphs.

In Chapter 2 we present an application of the method of flag alge-
bras on graphs, solving the following problem of Erdős [26]. He con-
jectured that any triangle-free graph on n vertices has at most (n/5)5

pentagons. We proved this conjecture in [35] using flag algebras sup-
ported by a semidefinite method (the proof is included in Chapter 2).
The same result has been obtained independently in [39] by a slightly
different, more elaborate approach.

In order to that the method can be utilized in a wider context,
in Chapter 3 we apply flag algebras to specially defined combinato-
rial structures. We consider Seymour second neighborhood conjecture,
which states that in every oriented graph there is a vertex with second
neighborhood at least as big as the first neighborhood. In the class
of Eulerian graphs we prove a statement, which implies the conjecture
with an additive error.

The last part of the thesis concerns closely related field of graph-
ons (limits of graphs) and permutons (limits of permutations). As
described by Razborov [73], graph limits and flag algebras provide se-
mantical and syntactical approaches (respectively) to the same class of
objects (limits of sequences of combinatorial structures). The matter of
interest are analytic properties of limits associated with convergent se-
quences of combinatorial structures. This line of research was initiated
by the theory of limits of dense graphs [15, 16, 17, 57], followed by
limits of sparse graphs [12, 24, 25], permutations [33, 43, 44], partial
orders [46], etc. As mentioned earlier, it is strongly related with large
networks, property testing, parameter testing, and many other areas
of computer science. A recent monograph of Lovász [54] contains an
excellent exposition of this exciting topic.

In Chapter 4 we focus on a question when the limit analytic object
is uniquely determined by finitely many densities of substructures. This
phenomenon is known as finite forcibility. Such graphons are related to
uniqueness of extremal configurations in extremal graph theory as well
as to other problems. A systematic study of finitely forcible graphons
and permutons, which was started by Lovász and Szegedy in [56] and
continued in [30, 31, 33], was motivated by a possibility of a bet-
ter understanding of extremal configurations for problems in extremal
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graph theory. Trivially, for every finitely forcible graphon, there ex-
ists an extremal graph theory problem, for which this graphon is its
unique solution. Lovász and Szegedy conjectured that this statement
can be reversed – every extremal problem has a finitely forcible opti-
mal solution. If an extremal problem has a unique solution then clearly
the graphon corresponding to the solution is finitely forcible. However,
the conjecture for general problems in extremal graph theory remains
open. In Chapter 4, based on [30], we give some sufficient conditions
for finite forcibility of permutons. We also show that all permutons
that can be expressed as a finite combination of monotone permutons
and quasirandom permutons are finitely forcible, which is the permuton
counterpart of the result of Lovász and Sós [55] for graphons. Last but
not least, we demonstrate that, somewhat surprisingly, finite forcibility
of permutons is not preserved by the associated graphons (determined
by the related permutation graphs). In particular, we find permutons
that are finitely forcible but the associated graphons are not.



CHAPTER 1

Flag algebras

One of the earliest results in extremal graph theory is Mantel’s the-
orem from 1907 [60] stating that a triangle-free graph on n vertices
has at most n2/4 edges. However, a similar question posed by Turán
in 1941 [77] remains open: what is the maximum number of edges in
a 3-uniform hypergraph with no tetrahedron? Here, we concentrate
on questions with a similar flavor – what is the maximal number of
some subgraphs (e.g., edges, pentagons) assuming there are no other
fixed subgraphs (e.g., triangles). Usually, we are not interested in the
exact number, but in the asymptotical behavior. Flag algebras drasti-
cally improve our ability to solve or to get approximate results to such
problems.

In this chapter we we provide a brief introduction to the method
of flag algebras. Our working example will be a classical theorem of
Mantel. In subsequent sections we give several proofs of this result to
explain the basic idea of the technique and only necessary formalism.

1.1. Basic definitions

We follow the standard graph theory notation. A graph is a pair
G = (V (G), E(G)), where V (G) is the set of vertices and E(G) is a
family of 2-element subsets of V (G), called edges. We define the edge
density of a graph G to be

d(G) =
|E(G)|(

n
2

) ,

where n is the size of V (G).
Given a family F of graphs we say that a graph G is F-free if G

does not contain a subgraph isomorphic to any member of F . For any
integer n ≥ 1 we define the Turán number of F to be

ex(n,F) = max{|E(G)| : G is F -free, |V (G)| = n}.
5
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The Turán density of F is defined to be the following limit (it always
exists)

π(F) = lim
n→∞

ex(n,F)(
n
2

) .

We can generalize these definitions as follows. Let A be a given
graph on k vertices (k ≥ 2). We define a set CA(G) consisting of all
k-element subsets of V (G) inducing a subgraph isomorphic to A. Now,
we can define a generalized density of a graph G as

d(A,G) =
|CA(G)|(

n
k

) ,

which is just the probability that a random |V (A)|-element set of ver-
tices from G induces a graph isomorphic to A. If A is just a single
edge, then we just get the typical definition of edge density. When A
is a triangle, we get so-called triangle density.

We also generalize the definition of the Turán number of F to be

exA(n,F) = max{|CA(G)| : G is F -free,|V (G)| = n}.
Then, the Turán density of F becomes

πA(F) = lim
n→∞

exA(n,F)(
n
k

) .

This limit always exists because the sequence in the definition forms a
decreasing sequence of real numbers in [0, 1]. Determining the Turán
density is equivalent to obtaining an asymptotic result exA(n,F) ≈
πA(F)

(
n
k

)
, provided that we are in the so-called ’non-degenerate’ case

when πA(F) > 0.

1.2. Intuitions

Flag algebras give us a systematic approach to finding counting
arguments. They will be rigorously defined in the following sections,
for the moment we wish to focus on presenting intuitions. We will focus
on Turán density associated to some fixed graph A. Let F be a family
of forbidden graphs whose Turán density we wish to compute (or at
least approximate).

Let us fix some really large graph G and some small l ≥ 2. Instead
of counting appearances of A in graph G, we can count them in each
possible graphH on l vertices (l ≥ |V (A)|), and then, count the number
of appearances of H in G. Thus we can write

d(A,G) =
∑

|V (H)|=l

d(H,G)d(A,H).
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Now, let let F0
l be a family of all F -free graphs on l vertices up to

isomorphism (the reason why we place 0 here will be revealed later).
If G is F -free, then d(H,G) = 0 for H not in F0

l , so

(1.1) d(A,G) =
∑
H∈F0

l

d(H,G)d(A,H).

In particular we have an upper bound

d(A,G) ≤ max
H∈F0

l

d(A,H).

If l is sufficiently small we can explicitly determine d(A,H) for all
H ∈ F0

l by computer search. However, unfortunately this bound on
d(A,G) in general is rather poor. The idea of the method is to gener-
ate further inequalities on the probabilities d(H,G) that improve this
bound. If we have a linear inequality∑

H∈F0
l

cHd(H,G) ≥ 0,

then

d(A,G) ≤
∑
H∈F0

l

d(H,G)(d(A,H) + cH) ≤ max
H∈F0

l

(d(A,H) + cH),

which may actually be an improvement if some coefficients cH are neg-
ative. Moreover, the inequalities we need can be of the form

(1.2)
∑
H∈F0

l

cHd(H,G) + o(1) ≥ 0,

where o(1) is taken with respect to |V (G)|. By using such an inequality
we get

d(A,G) ≤ max
H∈F0

l

(d(A,H) + cH) + o(1).

Thus

πA(F) ≤ max
H∈F0

l

(d(A,H) + cH).

Let us consider an easy example. We will prove Mantel’s theorem
stating that triangle-free graph on n vertices has at most n2/4 edges. It
is easy to see that it is enough to show that d(G) ≤ 1/2+o(1) for every
triangle-free graph G, where o(1) is taken with respect to n = |V (G)|.
We will consider l = 3. There are only 3 triangle-free graphs on 3
vertices – , and . For every G on at least 3 vertices, from (1.1)
we get

d(G) = d( )d( , G) + d( )d( , G) + d( )d( , G),
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and so

d(G) =
1

3
d( , G) +

2

3
d( , G).

If we manage to prove the inequality

(1.3)
1

2
d( , G)− 1

6
d( , G)− 1

6
d( , G) + o(1) ≥ 0,

then adding it to the previous equation, we will get

d(G) ≤ 1

2
d( , G) +

1

6
d( , G) +

1

2
d( , G) + o(1) ≤ 1

2
+ o(1).

This is exactly the inequality we would like to prove. So, the only
thing we need when we are using this technique, is to know how to get
inequalities like (1.3).

Let us focus on one particular vertex in graph G (on pictures we
will denote it by unfilled circle). We can define the density of a graph
with one vertex fixed in a similar way as before – as the probability
of finding an induced copy of this graph with one vertex already fixed.
Let G◦ be a graph G with some vertex fixed. For example, from this
definition density d( , G◦) is equal to number of vertices connected to
fixed vertex divided by n− 1.

We can write the inequality

(d( , G◦)− d( , G◦))2 ≥ 0

and so

d( , G◦)d( , G◦)− 2d( , G◦)d( , G◦) + d( , G◦)d( , G◦) ≥ 0.

The product d( , G◦)d( , G◦) is the probability that two vertices cho-
sen at random (we may also choose two times one vertex) are not con-
nected to the fixed vertex. On the other hand, the sum d( , G◦) +
d( , G◦) represents the same probability, but we assume that we will
not choose the same vertex two times. Probability of this event is going
to 0 as the size of graph G increases. Hence, we can write

d( , G◦)d( , G◦) = d( , G◦) + d( , G◦) + o(1).

In a similar way, we can prove

d( , G◦)d( , G◦) =
1

2
(d( , G◦) + d( , G◦)) + o(1),

d( , G◦)d( , G◦) = d( , G◦) + o(1).

Using these relations, we get

d( , G◦) + d( , G◦)− d( , G◦)− d( , G◦) + d( , G◦) + o(1) ≥ 0.
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Now, we can average over all possible choices of the fixed vertex. For
example, averaging d( , G◦) we will asymptotically get 1

3
d( , G), be-

cause only in one case out of three possibilities of choosing a vertex in
graph we will get graph . Thus, we can write

d( , G) +
1

3
d( , G)− 2

3
d( , G)− 2

3
d( , G) +

1

3
d( , G) + o(1) ≥ 0

and so

d( , G)− 1

3
d( , G)− 1

3
d( , G) + o(1) ≥ 0.

Dividing this equality by 2, we get (1.3), which is what we wanted to
prove.

Summarizing, we started with some non-negative quadratic inequal-
ity on densities with some vertices fixed (in this example – inequality
(1.2) with one vertex fixed). Then we changed multiplication of densi-
ties into densities of bigger graphs, averaged over all possible choices of
fixed vertices, and we obtained wanted inequality of the form (1.2). The
question is, how to get the starting non-negative quadratic inequality
containing unknown coefficients and multiplications of densities. Such
inequality can be considered as non-negativity of the product of un-
known matrix of coefficients by vector of densities (from both sides). If
we assume that the unknown matrix is positive semidefinite we will get
non-negativity. Thus, we can consider the semidefinite programming
problem – minimization of the upper bound with condition that matrix
of variables is positive semidefinite. Of course, we can use more than
one such inequality.

Flag algebras gives us a language to quickly do manipulations (like
multiplication or averaging) on densities, like we did in the above ex-
ample. The idea of the method is clear – we assume non-negativity of
some inequalities on densities with some unknown variables and then
we use semidefinite programming to find the best coefficients. These
inequalities can be of any form – for example a quadratic one, like
in the above example (this will be fully described in the Section 1.3),
taken from Cauchy-Schwarz inequality, or from differentiating. More
examples will be presented in the Section 1.4.

1.3. Semidefinite method

In this section we present one of the systematic approaches to Turán
problems, but it can be used in many other types of extremal problems
as well. It give us a computer algorithm to count or approximate
densities of subgraphs.
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We define a type σ to be an F -free graph on s vertices (s ≥ 0)
together with a bijective labeling function θ : [s] = {1, 2, . . . , s} −→
V (σ). Then we define a σ-flag F to be an F -free graph containing an
induced copy of σ labeled by θ. We define the order of the flag |F | to
be |V (F )|. In other words, if we have are given a family F and a type
σ (a graph with all vertices labeled by consecutive numbers from 1 to
s) a σ-flag of order m is just an F -free graph on m vertices, which has
s labeled vertices inducing σ.

Given a graph G, let us fix a type σ on s vertices, and integers
l > s, and m ≤ (l + s)/2. This bound on m ensures that a graph
on l vertices can contain two subgraphs on m vertices overlapping in
exactly s vertices. Let Fσm be the set of all σ-flags of order m, up
to isomorphism. Let Θ be the set of all injections from [s] to V (G).
Given F ∈ Fσm and θ ∈ Θ, we define induced density of a flag d(F,G; θ)
to be the probability that an m-element set V ′ chosen uniformly at
random from V (G) with im(θ) ⊆ V ′, induces a σ-flag that is isomorphic
to F . When s = 0, that is, if θ is the empty mapping and F is a
usual graph, definition of d(F,G; θ) coincides with original definition
of density d(F,G).

If Fa, Fb ∈ Fσm and θ ∈ Θ, we can define d(Fa, Fb, G; θ) to be the
probability that if we choose a random m-element set Va ⊂ V (G)
with im(θ) ⊂ Va (so we are choosing only m − s elements), and then
we choose a random m-element set Vb ⊂ V (G) such that im(θ) =
Va ∩ Vb, then induced σ-flags are isomorphic to Fa and Fb, respec-
tively. There is a difference between d(Fa, Fb, G; θ) and the product
d(Fa, G; θ)d(Fb, G; θ), because we assume that we cannot choose the
same vertices during the second choice. But, when G is large, this
probability is negligible, as the following lemma tells us.

Lemma 1.1 (Razborov [67]). For any Fa, Fb ∈ Fσm and θ ∈ Θ,

d(Fa, G; θ)d(Fb, G; θ) = d(Fa, Fb, G; θ) + o(1),

where the o(1) term tends to 0 as |V (G)| tends to infinity.

Let us consider σ-flags Fi ∈ Fσm. Assign some real coefficients ai to
these flags, and for fixed θ : [s] −→ V (G) consider the inequality ∑

Fi∈Fσm

aid(Fi, G; θ)

2

≥ 0.

Expanding the square we have∑
Fi,Fj∈Fσm

aiajd(Fi, G; θ)d(Fj, G; θ) ≥ 0.



1.3. SEMIDEFINITE METHOD 11

We can also consider coefficients qij instead of products aiaj. If we
assume that the matrix Q = (qij)Fi,Fj∈Fσm is positive semidefinite, then
we will get the inequality∑

Fi,Fj∈Fσm

qijd(Fi, G; θ)d(Fj, G; θ) ≥ 0.

Using the above lemma we obtain∑
Fi,Fj∈Fσm

qijd(Fi, Fj, G; θ) + o(1) ≥ 0.

Now, we average over a uniformly random choice of θ ∈ Θ, and using
the linearity of expectation we get∑

Fi,Fj∈Fσm

qijEθ∈Θ[d(Fi, Fj, G; θ)] + o(1) ≥ 0.

This expectation can be computed by averaging over all l-vertex sub-
graphs of G. Let us denote ΘH as the set of all injective mappings
θ : [s] −→ V (H) and recall that F0

l is the family of all F -free graphs
on l vertices, up to isomorphism. Thus, we have

Eθ∈Θ[d(Fa, Fb, G; θ)] =
∑
H∈F0

l

Eθ∈ΘH [d(Fa, Fb, H; θ)]d(H,G).

Hence ∑
H∈F0

l

∑
Fi,Fj∈Fσm

qijEθ∈ΘH [d(Fa, Fb, H; θ)]d(H,G) + o(1) ≥ 0.

Defining cH(σ,m,Q) =
∑

Fi,Fj∈Fσm
qijEθ∈ΘH [d(Fa, Fb, H; θ)], we get∑

H∈F0
l

cH(σ,m,Q)d(H,G) + o(1) ≥ 0,

which is exactly inequality of the form (1.2), which can be used to get
better upper bound for Turán density.

Furthermore, we can consider t choices of (σi,mi, Qi), where each σi
is a type, each mi ≤ (l+ |σi|)/2 is an integer, and each Qi is a positive
semidefinite matrix of dimension |Fσimi | × |F

σi
mi
|. For H ∈ F0

l define

cH =
t∑
i=1

cH(σi,mi, Qi).

Since each Qi is positive semidefinite matrix, we will get∑
H∈F0

l

cHd(H,G) + o(1) ≥ 0.
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If we combine this with

d(A,G) =
∑
H∈F0

l

d(A,H)d(H,G),

then we will get

d(A,G) ≤
∑
H∈F0

l

(d(A,H) + cH)d(H,G) + o(1).

Hence

(1.4) πA(F) ≤ max
H∈F0

l

(d(A,H) + cH).

Since some of the cH may be negative, for an appropriate choice
of the (σi,mi, Qi), this bound may be significantly better than the
averaging bound given before. Note that we now have a semidefinite
programming problem: given any particular choice of the (σi,mi) find
positive semidefinite matrices Qi which minimize the bound for πA(F)
given by (1.4).

Summarizing, the method amounts to the following algorithm.
If we want to bound πA(F), we should:

• pick some (not very large) l;
• determine F0

l – a set of all F -free graphs on l vertices;
• for each H ∈ F0

l compute d(A,H);
• pick some σ (a graph with labeled vertices);
• pick some integer m ≤ (l + |σ|)/2;
• determine Fσm – a set of all F -free σ-flags Fi (graphs containing

labeled σ, other vertices are not labeled) on m vertices;
• compute Eθ∈ΘH [d(Fi, Fj, H; θ)] for each H ∈ F0

l ;
• determine functions cH =

∑
Fi,Fj∈Fσm

qijEθ∈ΘH [d(Fi, Fj, H; θ)]

over variables qij forming a matrix Q of dimension |Fσm|×|Fσm|;
• minimize maxH∈F0

l
(d(A,H) + cH) using semidefinite program-

ming assuming that Q is a positive semidefinite matrix.

This minimum is the bound for πA(F). To get a better bound we
can take many triples (σi,mi, Qi), and for the functions cH take the
sums of the functions cH(σi,mi, Qi).

As an example, we can consider once more Mantel’s theorem. We
take l = 3. There are three triangle-free graphs on 3 vertices – , ,
and . Edge densities of them are equal to 0, 1/3, and 2/3, respec-
tively. We will take type σ consisting of one vertex labeled by 1 and
m = 2. There are two σ-flags of size 2 – and (unfilled vertex is
labeled by 1). Required expectations are in the following table.
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, 1 1/3 0
, 0 2/3 2/3
, 0 0 1/3

For an example of this calculation we will calculate the middle
column. In graph we can place the label in three possible ways.
There are only 2 vertices left, so when we are choosing at random two
different vertices, we will just pick these two. And so, in one of the
possibilities of placing the label, we will have pair of two isomorphic
flags . In the remaining two possibilities, we will get pair and .
There is no possibility to get pair of two graphs , so there is 0 in the
bottom row.

Now, we take variables q11, q12, q22 forming symmetric matrix Q.
We need to minimize the expression

max

(
q11,

1

3
+

1

3
q11 +

2

3
q12,

2

3
+

2

3
q12 +

1

3
q22

)
,

where Q is positive semidefinite. It can be easily seen that it is mini-
mized when

Q =

(
1/2 −1/2
−1/2 1/2

)
and the minimum is exactly 1/2, what we wanted to prove.

The same reasoning was used in [7] for some hypergraph Turán
problem, and in [35] to prove that the maximum number of C5’s in a
triangle-free graph on n vertices is equal to (n/5)5, which was conjec-
tured by Erdős. This method was also used in many other papers, but
with some modifications – it will be more explained in the next section.

1.4. The algebra

In this section, we will present formal definitions of flag algebra,
operations in the algebra, and also give some useful methods using flag
algebras.

In the previous section we defined and used only a type and a flag
associated with F -free graphs for some forbidden family F . Similar
definitions can be made in many other cases, for example for directed
graphs or for arbitrary hypergraphs. In general, it can be defined in any
universal theory in a first-order language without constants or function
symbols. For more model theoretical approach see [71]. Here, we will
present this theory for graphs only (for simplicity), but it is worth
stressing that everything can be generalized. In the Chapter 3 we will
present an application of this method for other structures.
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The aim when applying flag algebras to extremal problems is to gen-
erate useful inequalities of the form

∑
Fi∈Fσl

bid(Fi, G) +o(1) ≥ 0, valid

for every graph G ∈ Fσ (in particular, when s = 0, we have inequali-
ties for graphs). We can consider

∑
bid(Fi, G) in a little bit different

way. Let us take these coefficients bi and consider formal sum
∑
biFi

in RFσ, which is the space of all formal finite linear combinations of
σ-flags. We can think of any graph G ∈ Fσ as acting on RFσ via the
mapping

∑
biFi −→

∑
bid(Fi, G). So, let us identify such a mapping

with G. We can think of every F -free graph as an appropriate mapping
on RFσ. Notice that, by equality d(F̃ , G) =

∑
F∈Fσl

d(F̃ , F )d(F,G),

the linear combination F̃ −
∑

F∈Fσl
d(F̃ , F )F is mapped to zero by G.

So, we should factor it out. Let Kσ be a linear subspace of RFσ gen-
erated by all elements of the form

(1.5) F̃ −
∑
F∈Fσl

d(F̃ , F )F,

where F̃ ∈ Fσ
l̃

and s ≤ l̃ ≤ l. Let Aσ = RFσ/Kσ be the quotient
space. The only remaining task to create an algebra is to define a
multiplication operation. For any F1 ∈ Fσl1 and F2 ∈ Fσl2 we choose
arbitrary l ≥ l1 + l2 − s, set

F1 · F2 =
∑
F∈Fσl

d(F1, F2, F )F,

and expand it by linearity. It can be proved (see [67]) that it is well-
defined in Aσ (not in RFσ), it doesn’t depend on the choice of l and
gives the structure of a commutative algebra in Aσ. We know that
d(F1, F2, G) = d(F1, G)d(F2, G) + o(1), so when |V (G)| is large the
mapping G is ‘approximate homomorphism’ from Aσ to R.

To get better understanding of these definitions, we present some
self-explaining examples (as usual, unfilled circle represent the labeled
vertex):

=
1

3
+

2

3
+ ,

· = + ,

· =
1

2
+

1

2
.

When we are proving something, we are often showing that some
inequality holds for particular vertices (for example vertices connected
by an edge). And then we are averaging over all possible choices of
vertices to get inequality valid for densities, not dependent on any par-
ticular vertices. In flag algebras formalism this operation is described
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as linear operator from Aσ to A0, which are unlabeled graphs. We
define averaging operator of some F ∈ Fσ to be

[[F ]] = qσ(F ) · F ′,
where F ′ is an unlabeled version of F , and qσ(F ) is the probability that
an injective mapping θ : [s] −→ V (F ′) (chosen uniformly at random)
defines an induced embedding of σ in F ′, with the resulting σ-flag
isomorphic to F . Next, we extend the operator [[·]] from Fσ to Aσ by
linearity. Some self-explaining examples are displayed below:[[ ]]

= ,
[[ ]]

=
1

3
.

Another example – let D be a path P3 on 3 edges with first vertex
labeled by 1 and adjacent vertex labeled by 2. Then [[D]] = 1

6
P3,

because we can choose an ordered pair of vertices in 12 ways and only
2 of them give a flag isomorphic to D.

Now, the crucial point of the flag algebras theory goes as follows.
With a given σ-flag G we identify the mapping RFσ −→ R defined
before. We can also identify this mapping with infinite vector of den-
sities (d(F,G))F∈Fσ ∈ [0, 1]F

σ
; and vice versa. The space [0, 1]F

σ
is

compact in the product topology, so any sequence contains a con-
vergent subsequence. Let Hom+(Aσ,R) be the set of all homomor-
phisms φ from Aσ to R such that φ(F ) ≥ 0 for every F ∈ Fσ. As
we noticed, any σ-flag can be identified with such positive homomor-
phism. It can be proved (see [67]) that for any convergent sequence
of σ-flags in Fσ the limit is in Hom+(Aσ,R); conversely, any element
of Hom+(Aσ,R) is the limit of some sequence of σ-flags. This re-
sult gives us a correspondence between the final world inequalities∑

Fi∈Fσl
bid(Fi, G) + o(1) ≥ 0 for σ-flags G (in particular unlabeled

graphs) and inequalities φ(
∑

Fi∈Fσl
biFi) ≥ 0 for φ ∈ Hom+(Aσ,R).

In particular, the Turán density πA(F) = lim supG∈F0 d(A,G) can
be rewritten as πA(F) = maxφ∈Hom+(A0,R) φ(A). From compactness,
this maximum is achieved by some extremal homomorphism. In other
words, positive homomorphisms are precisely those corresponding to
the limits of convergent graph sequences. We will write F ≥ 0 for
σ-flag F ∈ Aσ if φ(F ) ≥ 0 for any positive homomorphism φ. One
can think of the value of φ([[F ]]) as the expected value of φ(F ), thus, if
φ(F ) ≥ 0 with probability one, then φ([[F ]]) ≥ 0.

Let us see how it works on an example. We will prove Mantel’s
theorem exactly in the same way as in the Section 1.2, but in the
language of flag algebras. We start from the relation(

−
)2 ≥ 0
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and so

· − 2 · + · ≥ 0.

Applying the definition of multiplication, we obtain

+ − − + ≥ 0.

The same holds after using averaging operator. It is linear, so[[ ]]
+
[[ ]]

−
[[ ]]

−
[[ ]]

+
[[ ]]

≥ 0.

This, after applying the definition of averaging operator, gives

+
1

3
− 2

3
− 2

3
+

1

3
≥ 0

and so

− 1

3
− 1

3
≥ 0.

Dividing the last inequality by 2 and adding to equation

=
1

3
+

2

3

(valid in flag algebra of triangle-free graphs) we get

≤ 1

2
+

1

6
+

1

2
≤ 1

2
.

This means that edge density of any triangle-free graph G is at most
1/2 + o(1), so π(K3) ≤ 1/2.

The big ‘source’ for inequalities on flag algebras are the Cauchy-
Schwarz inequalities.

Theorem 1.1 (Razborov [67]). For any f , g ∈ Aσ[[
f 2
]]
·
[[
g2
]]
≥
[[
fg
]]2
.

In particular [[
f 2]] ·

[[
σ
]]
≥
[[
f
]]2
,

which implies [[
f 2
]]
≥ 0.

As an easy example, we will very quickly show Mantel’s theorem
one more time. Let us notice that in the flag algebra of graphs (without
any forbidden graphs) we have

+ =
1

3
+

2

3
+ 2 =

=
1

3
+ 2
[[

+
]]

=
1

3
+ 2
[[ 2]]

.
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From the theorem
[[

2
]]
≥
[[ ]]2

= 2, so

+ ≥ 1

3
+ 2

2 ≥ 2
2
.

This means that ≥ 2 2 − . In particular, if the edge density
is greater than 1/2, then the triangle density is greater than 0, and
therefore, there must be at least one triangle.

We get it more quickly than before, and it is also a stronger result.
Of course, it is possible to translate this proof to ‘normal’ language,
and instead of using operations on flags, to make some counting ar-
guments. But, in practice, many proofs based on flag algebra use so
many inequalities that after translation, it would be unreadable.

Moreover, using flag algebras we have a systematic approach to
Turán problems. To bound some πA(F) we can choose some type σ (or
few different types), pick some not very large l and make a computer
program to generate all possible Cauchy-Schwarz inequalities for flags
up to l vertices. Then expand each inequality and, using averaging
operator, express them as linear inequalities on graphs on l vertices.
After that, formulate a semidefinite programming problem to calculate
numerically the best bound. If we are lucky, we can get good bound.
After rationalization our proof is numerically stable. This method was
used in many papers to obtain new results (see for example [39, 75]).

Flag algebras have also been used to obtain results in a different
setting than Turán problems. For example to get new results on the
Caccetta-Häggkvist conjecture for triangles (see [42, 71]), where we
have assumption about minimal outdegree, in extremal problems in a
colored setting [6, 22, 38, 50], or on the problem of selecting heavily
covered points [51]. More applications can be found in a recent survey
of Razborov [68].

It is worth mentioning that flag algebras permit ‘differential meth-
ods’ (see [67]). Maximum value of πA(F) is achieved for some extremal
positive homomorphism φ, so any small perturbation of φ must reduce
φ(A). Perturbation with respect to a single vertex is analogous to some
deletion arguments, but general perturbation do not have any obvious
analogue in final setting. That is why flag algebras may turn out to be
very powerful tool for a wider collections of problems in combinatorics.





CHAPTER 2

The Erdős problem on pentagons in triangle-free
graphs

In [26] Erdős conjectured that the number of cycles of length 5 in a
triangle-free graph of order n is at most (n/5)5. Moreover, he suspected
that this bound is attained in the case when n is divisible by 5 only
by the blow-up of a pentagon (i.e., five sets of n/5 independent ver-
tices; vertices from different sets are connected according to the edges
in pentagon). Győri [36] showed that a triangle-free graph of order

n contains no more than c
(
n+1

5

)5
pentagons, where c = 16875

16384
< 1.03.

Recently, this bound has been further improved by Füredi (personal
communication). In this chapter we present a proof of the Erdős con-
jecture using flag algebras. The result has been published in [35] and
independently in [39].

According to the notation from the previous chapter we are inter-
ested in finding the value of exC5(n,K3), where K3 states for a triangle
and C5 for a pentagon. As usual, our first task is to achieve the as-
ymptotic value, i.e., the Turán density πC5(K3).

Theorem 2.1. πC5(K3) ≤ 24
625

.

Proof. We use the algorithm described in the Section 1.3.
Let us consider familyH of all triangle-free graphs on l = 5 vertices,

up to isomorphism:

and three types on 3 vertices – σ0 stands for a graph with no edges,
the type σ1 has one edge and σ2 has two. In each case, we consider
m = 4. There are 8 admissible σ0-flags (the corresponding variables to
these flags form the matrix P , say), 6 admissible σ1-flags (we denote
the corresponding matrix by Q) and 5 admissible σ2-flags (matrix R).

σ0-flags:

σ1-flags:

σ2-flags:

19
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According to the described algorithm, now we need to find for each
H ∈ H the functions cH(σ0, 4, P ), cH(σ1, 4, Q), and cH(σ2, 4, R) by
computing all appearances of each pair of flags (on 4 vertices with 3
labeled ones) in each graph H. And then use the inequality

πC5(K3) ≤ max
H∈H

(d(C5, H) + cH(σ0, 4, P ) + cH(σ1, 4, Q) + cH(σ2, 4, R)).

After all required calculations, we obtain

πC5(K3) ≤ 1

120
max{120p11, 12p11 + 24p12 + 24p13 + 24p15 + 12q11,

8p12 + 8p13 + 8p14 + 8p15 + 8p16 + 8p17 + 4p22 + 4p33 + 4p55+

+ 8q12 + 8q13 + 4r11,

12p14 + 12p16 + 12p17 + 12p18 + 6q22 + 6q33 + 12r13,

48p18 + 24r33,

16p23 + 16p25 + 16p35 + 8q11 + 16q14,

8p27 + 8p36 + 8p45 + 8q14 + 8q24 + 8q34 + 4q44 + 4r11,

4p23 + 4p24 + 4p25 + 4p26 + 4p34 + 4p35 + 4p37 + 4p56 + 4p57+

+ 4q12 + 4q13 + 4q15 + 4q16 + 4q23 + 4r12 + 4r14,

4p27 + 4p28 + 4p36 + 4p38 + 4p45 + 4p58 + 4q15 + 4q16 + 4q25+

+ 4q36 + 4r13 + 2r22 + 4r23 + 4r34 + 2r44,

8p44 + 8p66 + 8p77 + 16q23 + 16r15,

4p48 + 4p68 + 4p78 + 4q26 + 4q35 + 2q55 + 2q66 + 4r15 + 4r23+

+ 4r25 + 4r34 + 4r35 + 4r45,

12p88 + 24r35 + 12r55,

4p46 + 4p47 + 4p67 + 4q24 + 4q26 + 4q34 + 4q35 + 4q45 + 4q46+

+ 4r12 + 4r14 + 4r24,

20q56 + 20r24 + 120},
where the maximum is taken over all possible coefficients pij, qij, rij
such that all of the respective matrices P , Q, and R are positive semi-
definite.

For an explanation of the calculations, we will consider one example
– graph , and count appearances of each pair of flags in it. We need
to consider all 120 possibilities of placing 5 labels – three for a type and
one additional for each vertex left in the two flags. Let us consider all
those possibilities by looking which labels are connected by an edge. If
labels 1 and 2 are connected by an edge (there are 12 such possibilities),
we always get two flags , yielding coefficient 12q11. If labels 1 and
3 or 2 and 3 are connected by an edge, we get pairs of flags which
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are not under our consideration (we do not consider such type). If
labels 1 and 4 or 1 and 5 are connected by an edge, we get flag

and flag , yielding coefficient 24p12. Similarly, we get coefficients
24p13 (2 and 4 or 2 and 5 are connected) and 24p15 (3 and 4 or 3 and
5 are connected). The only possibilities left are those when 4 and 5
are connected by an edge. In those situations we get two flags ,
yielding coefficient 12p11. Hence, we get

c =
1

120
(12p11 + 24p12 + 24p13 + 24p15 + 12q11).

Now, we can run the semidefinite programming, to obtain matrices
P , Q, and R giving us the best bound.

Here, we present one of the choices of the matrices, which give us
the required bound. Let us take P , Q, and R to be the matrices

P =
1

625



24 −36 −36 24 −36 24 24 −36
−36 277 97 −79 97 −79 −259 54
−36 97 277 −79 97 −259 −79 54

24 −79 −79 247 −259 67 67 −36
−36 97 97 −259 277 −79 −79 54

24 −79 −259 67 −79 247 67 −36
24 −259 −79 67 −79 67 247 −36
−36 54 54 −36 54 −36 −36 54


,

Q =
1

2500


1728 −1551 −1551 −1308 687 687
−1551 2336 742 908 2557 −4084
−1551 742 2336 908 −4084 2557
−1308 908 908 1728 −254 −254

687 2557 −4084 −254 15264 −14424
687 −4084 2557 −254 −14424 15264

 ,

R =
1

625


1512 568 −380 568 −376
568 475 −191 0 −93
−380 −191 192 −191 −2

568 0 −191 475 −93
−376 −93 −2 −93 190

 .

It can be checked by any program for mathematical calculations
(e.g., Mathematica, Maple) that matrix P multiplied by 625 has char-
acteristic polynomial

x4(x− 360)2(x2 − 930x+ 53766),

and so it has eigenvalues 0, 0, 0, 0, ≈ 62, 360, 360 and ≈ 868, matrix
Q multiplied by 2500 has characteristic polynomial

x(x2 − 31282x+ 3219791)(x3 − 7374x2 + 7536419x− 324955440)
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and eigenvalues 0, ≈ 45, ≈ 103, ≈ 1170, ≈ 6159, ≈ 31179, and matrix
R multiplied by 625 has characteristic polynomial

−x2(x− 475)(x2 − 2369x+ 492426)

and eigenvalues 0, 0, ≈ 230, 475 and ≈ 2139. Thus, P , Q, and R are
all positive semidefinite.

Hence, for an upper bound on πC5(K3) we get

πC5(K3) ≤ max

{
24

625
,

24

625
,

24

625
,

24

625
,

24

625
,

24

625
,

322

9375
,

2355

62500
,

24

625
,

24

625
,

24

625
,

24

625
,− 126

6250
,

24

625

}
=

24

625
.

�

The Erdős conjecture is a straightforward consequence of the above
result.

Theorem 2.2. The number of pentagons in a triangle-free graph of

order n is at most
(
n
5

)5
.

Proof. Suppose that there is a triangle-free graph G on n vertices

which has at least
(
n
5

)5
+ ε cycles C5, where ε > 0. Then, we can con-

struct triangle-free graphs GnN consisting of n sets of N independent
vertices and all edges between vertices in different sets according to the
edges in G.

The graph GnN has nN vertices and at least
((

n
5

)5
+ ε
)
N5 cycles

C5. Thus, the Turán density is at least

πC5(K3) ≥ lim
N→∞

(
nN
5

)5
+ εN5(

nN
5

) =
24

625
+

120ε

n5
>

24

625
,

which contradicts Theorem 2.1. �

Since multiplying a positive semidefinite matrix by a vector from
both sides can be written as a sum of squares, instead of using the
matrices, we could also just write the wanted inequality as sum of
some non-negative terms. We actually use this other approach in the
next section, but it is worth noting that the two are mathematically
equivalent.



CHAPTER 3

Seymour second neighborhood conjecture

In this chapter we we introduce the notion of applying flag algebras
to combinatorial structures other than graphs. Our general technique
to deal with an open problem were the typical flag algebraic approaches
do not work is to define and work with a special structure. The con-
sidered problem is so called Seymour second neighborhood conjecture.
We will prove the conjecture for Eulerian graphs with an additive error.

In every oriented graph (directed simple graph) we define the first
neighborhood of a vertex v as the set of all the vertices w to which
we can go from v in one step, i.e., there is an edge (v, w). Its size we
denote by d+(v) and call it outdegree of a vertex v. Similarly, we define
indegree d−(v) as the number of vertices w having an edge (w, v). We
define the second neighborhood of a vertex v as the set of all the vertices
w to which we can go from v in two steps and not in one, i.e, they are
not in the first neighborhood and there exists a vertex u and edges
(v, u) and (u,w). Its size we denote by d++(v).

The main conjecture is

Conjecture 3.1 (Seymour second neighborhood conjecture). In
every oriented graph there exists a vertex v such that d++(v) ≥ d+(v).

The special case when the considered graph is a tournament was
conjectured by Dean and proved by Fisher [29] and later, using dif-
ferent method, by Havet and Thomassé[40]. Kaneko and Locke [47]
proved this conjecture for oriented graphs having a vertex with outde-
gree at most 6. Godbole, Cohn, and Wright [21] have proved that the
conjecture holds for almost all oriented graphs.

An interesting approach was introduced by Chen, Shen, and Yuster
[19]. They proved the conjecture with a multiplicative error, i.e., there
exist a vertex v such that d++(v) ≥ ad+(v), where a is the solution of
2x3 + x2 = 1, which is ≈ 0.657.

Using presented in this chapter approach with flag algebras, it is
possible to prove similar result, but with an additive error in the class
of Eulerian graphs (oriented graph for which every vertex has the out-
degree equal to the indegree).

23
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Theorem 3.1. For every Eulerian graph on n vertices∑
v

(d++(v)− d+(v) + 0.075507n) ≥ 0

In particular, there exists a vertex v such that

d++(v) ≥ d+(v)− 0.075507n.

Since the purpose of this chapter is to present the method, not
necessarily the best possible bound, for the sake of simplicity, we ex-
plicitly show the full proof only for the error 0.2n. In order to achieve
the bound 0.075507n more computations are required and it is impos-
sible is to write them in the paper.

It is worth mentioning that Conjecture 3.1 implies a special case of
the Caccetta-Häggkvist conjecture – every oriented graph on n vertices
with minimal outdegree and indegree at least n/3, contains a directed
triangle. Proving it with multiplicative or additive errors, will also pro-
vide a proof for the Caccetta-Häggkvist conjecture. Strictly speaking,
proving the Seymour second neighborhood conjecture with multiplica-
tive error a and additive error cn, will prove that every oriented graph
with minimal outdegree and indegree at least 1+c

2+a
n, contains a directed

triangle.

3.1. Flag algebra setting

We cannot directly use flag algebras to this problem, since it is im-
possible to express second neighborhood of a vertex using just densities
of some subgraphs. Let us present different framework, proposed by
Oleg Pikhurko, which made possible to use flag algebras in this case.

For every oriented graph one can construct a new structure – di-
rected graph with two types of edges – by adding additional dotted
edges representing second neighborhood, i.e., whenever w is in the sec-
ond neighborhood of v we add dotted directed edge (v, w). There might
be dotted edges (v, w) and (w, v). Also dotted edge (v, w) and edge
(w, v) may appear.

We will now work in the world of this type of structures. Let us
consider a set G of directed graphs with two types of edges – edges
and dotted edges. We forbid loops, dotted loops, double edges, double
dotted edges, edges making 2-cycles, edge (v, w) and dotted edge (v, w),
and if there are edges (v, u), (u,w), and no edge (v, w), then there must
be a dotted edge (v, w). The last condition give us the fact that every
graph in G is obtained from an oriented graph by adding dotted edges
according to the second neighborhood, and, possibly, some additional
dotted edges. Since we are interested in proving lower bounds for the
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second neighborhood, additional dotted edges are not influencing the
obtained bounds.

Now, the Conjecture 3.1 can be rewritten as follows – in every
graph in G there exists a vertex with dotted outdegree at least as big
as outdegree. It implies the conjecture for oriented graphs from the
latter fact.

In G we can now use the flag algebras framework.

3.2. Main proof

In order to prove that for every Eulerian graph on n vertices∑
v

(d++(v)− d+(v) + 0.2n) ≥ 0

it is enough to show the following lemma.

Lemma 3.1. Every graph in G with + = + satisfies[[
+ + − − + 0.2

]]
≥ 0.

It is so, since existence of a counterexample, by a similar argu-
ment as in the end of the Chapter 2, provides a convergent sequence
of counterexamples, and results with a counterexample to the above
lemma.

Proof. It is enough to show the inequality

(3.1)
[[
v0

]]
≥ 3

40

[[
v2

1

]]
+

24

40

[[
v2

2

]]
+

37

40

[[
v2

3

]]
− 69

40

[[
v2

4

]]
,

where

v0 = + + − − + 0.2,

v1 = + − 4 ,

v2 = − − + + − ,

v3 = − ,

v4 = − + − .

This inequality implies the lemma, since v4 = 0 from the assump-
tion, and the other right-hand side terms are non-negative.

We represent both sides of the inequality (3.1) in the space of graphs
from G on 3 unlabeled vertices. There are 85 such graphs in G. All
components from the inequality (3.1) multiplied by 120 are presented
in the following table. The difference between the left-hand side and
the right-hand side of the inequality is also shown.
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120
[[
v0

]]
9
[[
v2

1

]]
72
[[
v2

2

]]
114
[[
v2

3

]]
−207

[[
v2

4

]]
diff.

24 0 0 0 0 24

4 0 0 0 0 4

44 0 0 0 0 44

24 0 0 0 0 24

64 0 0 0 0 64

−16 3 24 0 −69 26

24 0 −24 0 0 48

24 0 24 0 0 0

4 0 24 0 −69 49

44 −12 0 0 0 56

−16 3 24 0 −69 26

24 0 24 0 0 0

24 0 −24 0 0 48

4 0 24 0 −69 49

44 −12 0 0 0 56

64 0 24 0 0 40

64 0 −24 0 0 88

44 0 −24 0 0 68

44 0 24 0 0 20

84 0 0 0 0 84

64 0 24 0 0 40

44 0 24 0 0 20

44 0 −24 0 0 68

84 0 0 0 0 84

24 0 24 38 −69 31

64 0 0 0 0 64

24 0 24 38 −69 31

64 0 0 0 0 64

104 48 0 0 0 56

−36 9 24 0 −69 0

4 3 24 0 −69 46

−16 3 24 0 −69 26
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24 −21 24 0 −69 90

4 3 −72 0 69 4

−16 3 24 0 −69 26

24 −21 −24 0 69 0

4 3 24 0 −69 46

44 0 24 0 0 20

44 0 −72 0 0 116

24 0 −72 0 69 27

24 0 24 0 −69 69

64 −12 −24 0 0 100

44 0 24 0 0 20

44 0 24 0 0 20

24 0 24 0 −69 69

64 −12 24 0 0 52

−16 3 24 0 −69 26

24 0 24 0 −69 69

24 0 24 0 −69 69

4 0 24 38 −69 11

4 0 24 −38 −69 87

44 −12 24 0 −69 101

24 0 −72 0 69 27

4 0 24 38 −69 11

44 −12 −24 0 69 11

24 −21 24 0 −69 90

64 −12 24 0 0 52

64 −12 −24 0 0 100

44 −12 −24 0 69 11

44 −12 24 0 −69 101

84 24 0 0 0 60

84 0 24 0 0 60

64 0 24 0 0 40

104 0 24 0 0 80

84 0 −72 0 0 156
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64 0 24 0 0 40

64 0 −72 0 0 136

104 0 −24 0 0 128

64 0 24 0 0 40

44 0 24 38 −69 51

44 0 −72 −38 69 85

84 0 −24 0 0 108

44 0 24 38 −69 51

84 0 24 0 0 60

104 0 24 0 0 80

84 0 24 0 0 60

84 0 −24 0 0 108

124 48 0 0 0 76

24 0 24 38 −69 31

64 0 24 38 −69 71

24 0 −72 −114 207 3

64 0 −24 −38 69 57

64 0 24 38 −69 71

104 48 0 0 0 56

144 144 0 0 0 0

For every graph the difference is non-negative, thus the inequality
3.1 holds. �

Remark 3.1. Using the same method, but considering graphs in G
on 4 vertices (there are 7101 of them), we can improve the constant 0.2
in the Lemma 3.1 to approx. 0.075507, but the number of calculations
would be too big to write in a paper.



CHAPTER 4

Finitely forcible graphons and permutons

The results of this chapter has been obtained in a joint paper [30].
We focus on a question when the limit analytic object is uniquely de-
termined by finitely many densities of substructures. We consider this
property, known as finite forcibility, for permutons (permutation lim-
its) and the related graphons (graph limits) via permutation graphs. In
fact, questions of this kind are closely related to quasirandomness and
they were studied well before the theory of limits of combinatorial ob-
jects emerged. For example, the classical result of Chung, Graham and
Wilson [20] says that the homomorphic densities of K2 and C4 guar-
antee that densities of all subgraphs behave as in the random graph
Gn,1/2. In the language of graphons, this result asserts that the graphon
identically equal to 1/2 is finitely forcible by densities of 4-vertex sub-
graphs. A similar result on permutations, which was originally raised
as a question by Graham, was proven by Král’ and Pikhurko [52] who
exploited the analytic view of permutation limits.

Let us now give motivation for the concepts. The result of Chung,
Graham, and Wilson [20] on finite forcibility of the graphon identically
equal to 1/2 was generalized by Lovász and Sós [55] who proved that
any stepwise graphon is finitely forcible. These results were further
extended by Lovász and Szegedy [56] who also gave several conditions
when a graphon is not finitely forcible.

We start this chapter with proving an analogue of the result of
Lovász and Sós [55] for permutons, which is stated as Corollary 4.1.
We then focus on finite forcibility of permutons with infinite recursive
structure, and on the interplay between finite forcibility of permutons
and graphons, partly motivated by Question 11 from [56].

A graph can be associated with a permutation in the following way:
the vertices of the graph correspond to the elements of the permuta-
tion and two of them are joined by an edge if they form an inversion.
Along the same lines, a graphon can be associated with a permuton.
We show that, surprisingly, there exist finitely forcible permutons such
that the associated graphons are not finitely forcible. We proved that

29
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permutons with infinite recursive structures – union of monotone per-
mutations (Section 4.3) and union of random permutations (Section
4.4) are finitely forcible. Then, we show that the associated graphons
are not finitely forcible in Sections 4.5 and 4.6, where we also prove the
stronger statement, that all graphons with infinite recursive structure
are not finitely forcible. Let us also remark that the methods we use in
this chapter were subsequently extended by Glebov, Král’, and Volec
[33] to resolve Conjecture 9 from [56] on compactness of finitely forcible
graphons.

4.1. Notation

In this section, we introduce concepts related to graphs and permu-
tations and their limits used in the sequel. We start with the slightly
simpler notion of permutation limits.

4.1.1. Permutations and permutons. The theory of permuta-
tion limits was built by Hoppen, Kohayakawa, Moreira, Ráth, and
Sampaio in [43, 44]. Here, we follow the analytic view of the limit as
used in [52], which also appeared in an earlier work of Presutti and
Stromquist [65].

A permutation of order n is a bijective mapping from [n] to [n],
where [n] denotes the set of integers from 1 to n. The order of a
permutation π is also denoted by |π|. The set of all permutations of
order n is denoted by Sn. In what follows, we identify a sequence of
n different integers a1 . . . an between 1 and n with a permutation π by
setting π(i) = ai. For example, the identity permutation of order 4 is
denoted by 1234.

If π is a permutation of order n, a subpermutation induced by
1 ≤ i1 < . . . < ik ≤ n in π is a permutation σ of order k such that
σ(j) < σ(j′) if and only if π(ij) < π(ij′). For example, the subper-
mutation of 7126354 induced by 3, 4, 6 is 132. Subpermutations are
more commonly referred to as patterns but we decided to use the term
subpermutation in the paper to be consistent with the analogous con-
cept for graphs as well as with previous work on permutation limits.
A density d(σ, π) of a permutation σ of order k in a permutation π
of order n is the number of k-tuples inducing σ in π divided by

(
n
k

)
.

Conveniently, we set d(σ, π) = 0 if k > n.
An infinite sequence (πi)i∈N of permutations with |πi| → ∞ is con-

vergent if d(σ, πi) converges for every permutation σ. We see that one
can associate with every convergent sequence of permutations the fol-
lowing analytic object: a permuton is a probability measure µ on the
σ-algebra Å of Borel sets of the unit square [0, 1]2 such that µ has
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uniform marginals, i.e., µ ([α, β]× [0, 1]) = µ ([0, 1]× [α, β]) = β − α
for every 0 ≤ α ≤ β ≤ 1. In what follows, we use λ for the uniform
measure on Å. More generally, if A ⊆ [0, 1]2 is a non-trivial convex
polygon, i.e., a convex polygon different from a point (however, which
can be a segment), we define λA to be the unique probability measure

on Å with support A and mass uniformly distributed inside A. In
particular, λ[0,1]2 = λ.

We now describe the relation between permutons and convergent
sequences of permutations. Let µ be a permuton. For an integer n, one
can sample n points (x1, y1), . . . , (xn, yn) in [0, 1]2 randomly based on µ.
Because µ has uniform marginals, the x-coordinates of all these points
are mutually different with probability one. The same holds for their
y-coordinates. Assume that this is indeed the case. One can then define
a permutation π of order n based on the n points (x1, y1), . . . , (xn, yn) as
follows: let i1, . . . , in ∈ [n] be such that xi1 < xi2 < · · · < xin and define
π to be the unique bijective mapping from [n] to [n] satisfying that
π(j) < π(j′) if and only if yij < yij′ . We say that a permutation π of
order n obtained in the just described way is a µ-random permutation of
order n. A uniformly random permutation is a λ-random permutation,
i.e., each permutation of order n is chosen with probability 1/n! at
random.

If µ is a permuton and σ is a permutation of order n, then d(σ, µ) is
the probability that a µ-random permutation of order n is σ. We now
recall the core results from [43, 44]. For every convergent sequence
(πi)i∈N of permutations, there exists a unique permuton µ such that

d(σ, µ) = lim
i→∞

d(σ, πi) for every permutation σ.

This permuton is the limit of the sequence (πi)i∈N. On the other hand,
if µ is a permuton and πi is a µ-random permutation of order i, then
with probability one the sequence (πi)i∈N is convergent and µ is its
limit.

We now give four examples of the just defined notions (the cor-
responding permutons are depicted in Figure 1). Let us consider a
sequence (π1

i )i∈N such that π1
i is the identity permutation of order i,

i.e., π1
i (k) = k for k ∈ [i]. This sequence is convergent and its limit is

the measure λA where A = {(x, x), x ∈ [0, 1]}. Similarly, the limit of
a sequence (π2

i )i∈N, where π2
i is the permutation of order i defined as

π2
i (k) = i + 1 − k for k ∈ [i], is λB where B = {(x, 1− x), x ∈ [0, 1]}.

A little bit more complicated example is the following: the sequence
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(π3
i )i∈N, where π3

i is the permutation of order 2i defined as

π3
i (k) =

{
2k − 1 if k ∈ [i],
2(k − i) otherwise

is convergent and its limit is the measure 1
2
λC + 1

2
λD, where C =

{(x/2, x), x ∈ [0, 1]} and D = {((x+ 1)/2, x), x ∈ [0, 1]}. Next, con-
sider a sequence (π4

i )i∈N such that π4
i is a random permutation. This

sequence is convergent with probability one and its limit is the measure
λ.

Figure 1. The limits of sequences (π1
i )i∈N, (π2

i )i∈N,
(π3

i )i∈N and (π4
i )i∈N.

A permuton µ is finitely forcible if there exists a finite set S of per-
mutations such that every permuton µ′ satisfying d(σ, µ) = d(σ, µ′) for
every σ ∈ S is equal to µ. For example, the following result from [52]
asserts that the random permuton is finitely forcible with S = S4.

Theorem 4.1. Let µ be a permuton. It holds that d(σ, µ) = 1/24
for every σ ∈ S4 if and only if µ = λ.

If µ is a permuton, then Fµ is the function from [0, 1]2 to [0, 1]
defined as Fµ(x, y) = µ ([0, x]× [0, y]). For example, if µ = λ, then
Fµ(x, y) = xy. Observe that Fµ is always a continuous function satis-
fying Fµ(ξ, 1) = Fµ(1, ξ) = ξ for every ξ ∈ [0, 1]. Furthermore, notice
that µ 6= µ′ implies Fµ 6= Fµ′ , that is, the function Fµ determines the
permuton µ.

The next theorem was implicitly proven in [52]. We include its
proof for completeness.

Theorem 4.2. Let p(x, y) be a polynomial and k a non-negative
integer. There exist a finite set S of permutations and coefficients γσ,
σ ∈ S, such that

(4.1)

∫
[0,1]2

p(x, y)F k
µ (x, y)dλ =

∑
σ∈S

γσd(σ, µ)

for every permuton µ.
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Proof. By additivity, it suffices to consider the case p(x, y) = xαyβ

for non-negative integers α and β. Fix a permuton µ. Since µ has
uniform marginals, the product xαyβF k

µ (x, y) for (x, y) ∈ [0, 1]2 is equal
to the probability that out of α + β + k points are chosen randomly
independently based on µ, the first α points belong to [0, x]× [0, 1], the
next β points belong to [0, 1] × [0, y], and the last k points belong to
[0, x] × [0, y]. So, the integral in (4.1) is equal to the probability that
the above holds for a uniform choice of a point (x, y) in [0, 1]2.

Since µ is a measure with uniform marginals, a point (x, y) uni-
formly distributed in [0, 1]2 can be obtained by sampling two points
randomly independently based on µ and setting x to be the first coor-
dinate of the first of these two points and y to be the second coordinate
of the second point. Thus, we can consider the following random event.
Let us choose α+β+k+2 points independently at random based on µ
and denote by x the first coordinate of the last but one point, and by
y is the second coordinate of the last point. Then the integral on the
left hand side of (4.1) is equal to the probability that the first α points
belong to [0, x]× [0, 1], the next β points belong to [0, 1]× [0, y], and the
following k points belong to [0, x]× [0, y]. We conclude that the equa-
tion (4.1) holds with S = Sα+β+k+2 and γσ equal to the probability that
the following holds for a random permutation π of order α+β+ k+ 2:
π(i) ≤ π(α + β + k + 1) for i ≤ α and for α + β + 1 ≤ i ≤ α + β + k,
and σ(π(i)) ≤ σ(π(α + β + k + 2)) for α + 1 ≤ i ≤ α + β + k. �

Instead of sampling two additional points to get a random point
with respect to the uniform measure λ, we can also sample just a
single point, which is a random point with respect to µ. This gives the
following.

Theorem 4.3. Let p(x, y) be a polynomial and k a non-negative
integer. There exist a finite set S of permutations and coefficients γσ,
σ ∈ S, such that

(4.2)

∫
[0,1]2

p(x, y)F k
µ (x, y)dµ =

∑
σ∈S

γσd(σ, µ)

for every permuton µ.

Let now Sk be the set of permutations of order k with one distin-
guished element; we call such permutations rooted . To denote rooted
permutations, we add a bar above the distinguished element: e.g., if
the second element of the permutation 2341 is distinguished, we write
2341. Note that

∣∣Sk∣∣ = k!·k. If σ ∈ Sk, then F σ
µ (x, y) is the probability

that the point (x, y) and k − 1 points randomly independently chosen
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based on µ induce the permutation σ with the distinguished element
corresponding to the point (x, y). Observe that Fµ(x, y) = F 12

µ (x, y),

F 12
µ (x, y) + F 21

µ (x, y) = x and F 12
µ (x, y) + F 21

µ (x, y) = y. This notation
comes from the notion of 1-labeled flags introduced in Chapter 1.

Similarly to Theorem 4.3, the following is true. We omit the proof
as it is completely analogous to that of Theorem 4.2.

Theorem 4.4. Let Σ be a multiset of rooted permutations. There
exist a finite set S of permutations and coefficients γσ, σ ∈ S, such
that

(4.3)

∫
[0,1]2

∏
σ∈Σ

F σ
µ (x, y)dµ =

∑
σ∈S

γσd(σ, µ)

for every permuton µ.

4.1.2. Graphs and graphons. The other limit structure we con-
sider is limits of graphs. If G and G′ are graphs, then by G ∪ G′ we
denote the disjoint union of G and G′ and by G+G′ the graph obtained
from G ∪ G′ by adding all edges between G and G′. If G is a graph
and U is a subset of its vertices, then let G \ U be the graph obtained
from G by removing the vertices of U and all edges containing at least
one vertex from U . We recall that the density d(H,G) of H in G is the
probability that |H| randomly chosen vertices of G induce a subgraph
isomorphic to H. If |H| > |G|, we set d(H,G) = 0.

We now survey basic results related to the theory of dense graph
limits as developed in [15, 16, 17, 57]. A sequence of graphs (Gi)i∈N is
convergent if the limit d(H,Gi) exists for every H. The associated limit
object is called a graphon: it is a symmetric λ-measurable function
from [0, 1]2 to [0, 1]. Here, symmetric stands for the property that
W (x, y) = W (y, x) for every x, y ∈ [0, 1]. If W is a graphon, then a
W -random graph of order k is obtained by sampling k random points
x1, . . . , xk ∈ [0, 1] uniformly and independently and joining the i-th and
the j-th vertex by an edge with probability W (xi, xj). As in the case of
permutations, we write d(H,W ) for the probability that a W -random
graph of order |H| is isomorphic to H. For every convergent sequence
(Gi)i∈N of graphs, there exists a graphon W such that d(H,W ) =
limi→∞ d(H,Gi) for every graph H. We call such a graphon W a limit
of (Gi)i∈N. On the other hand, if W is a graphon, then with probability
one the sequence (Gi)i∈N where Gi is a W -random graph of order i is
convergent and its limit is W .

Unlike in the case of permutations, the limit of a convergent se-
quence of graphs is not unique. For example, if W is a limit of (Gi)i∈N
and ϕ : [0, 1]→ [0, 1] is a measure preserving transformation, then the
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graphon W ′ := W (ϕ(x), ϕ(y)) is also a limit of (Gi)i∈N. Let us intro-
duce the following definition of equivalence of graphons: two graphons
W and W ′ are weakly isomorphic if d(H,W ) = d(H,W ′) for every
graph H.

Finally, a graphon W is called finitely forcible if there exist graphs
H1, . . . , Hk such that any graphon W ′ satisfying d(Hi,W ) = d(Hi,W

′)
for i ∈ [k] is weakly isomorphic to W .

The densities of graphs in a graphonW can be expressed as integrals
using W . If W is a graphon and H is a graph of order k with vertices
v1, . . . , vk and edge set E, then

d(H,W ) =
k!

|Aut(H)|

∫
[0,1]k

∏
vivj∈E

W (xi, xj)
∏

vivj 6∈E

(1−W (xi, xj))dx1 . . . dxk

where Aut(H) is the automorphism group of H.
A permutation π of order k can be associated with a graph Gπ of

order k as follows. The vertices of Gπ are the integers between 1 and
k and ij is an edge of G if and only if either i < j and π(i) > π(j),
or i > j and π(i) < π(j). If (πi)i∈N is a convergent sequence of per-
mutations, then the sequence of graphs (Gπi)i∈N is also convergent.
Moreover, if two convergent sequences of permutations have the same
limit, then the graphons associated with the two corresponding (con-
vergent) sequences of graphs are weakly isomorphic. In this way, we
may associate each permuton µ with a graphon Wµ, which is unique
up to a weak isomorphism (see Figure 2 for examples).

Figure 2. The graphons associated with the first three
permutons depicted in Figure 1, where the point (0,0) is
in the lower left corner.

4.2. Permutons with finite structure

In this section, we give a sufficient condition on a permuton to
be finitely forcible. A function f : [0, 1]2 → R is called piecewise
polynomial if there exist finitely many polynomials p1, . . . , pk such that
f(x, y) ∈ {p1(x, y), . . . , pk(x, y)} for every (x, y) ∈ [0, 1]2.
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Theorem 4.5. Every permuton µ such that Fµ is piecewise poly-
nomial is finitely forcible.

Proof. Let µ be a permuton such that Fµ is piecewise polyno-
mial, that is, there exist polynomials p1, . . . , pk such that Fµ(x, y) ∈
{p1(x, y), . . . , pk(x, y)} for every (x, y) ∈ [0, 1]2. Let F be the set of
all continuous functions f on [0, 1]2 such that for every (x, y) ∈ [0, 1]2

f(x, y) ∈ {p1(x, y), . . . , pk(x, y)}. The set F is finite. Indeed, let

q(x, y) =
∏

1≤i<j≤k

(pj(x, y)− pi(x, y))

and let Q be the set of all points (x, y) ∈ R2 such that q(x, y) = 0.
By Harnack’s curve theorem, the set Q has finitely many connected
components. Bézout’s theorem implies that the number of branching
points in each of these components is finite and these points have fi-
nite degrees. Consequently, R2 \ Q has finitely many components. If
A1, . . . , A` are all the connected components of [0, 1]2 \ Q, then each
function f ∈ F coincides with one of the k polynomials p1, . . . , pk on
every Ai. So, |F| ≤ k`.

Observe that the function Fµ(x, y) is continuous since the measure
µ has uniform marginals. By the Stone-Weierstrass theorem, there
exist a polynomial p(x, y) and ε > 0 such that∫

[0,1]2
(Fµ(x, y)− p(x, y))2 dλ < ε , and(4.4) ∫

[0,1]2
(f(x, y)− p(x, y))2 dλ > ε for every f ∈ F , f 6= Fµ.(4.5)

Let ε0 be the value of the left hand side of (4.4). We claim that the
unique permuton µ′ satisfying∫

[0,1]2

k∏
i=1

(Fµ′(x, y)− pi(x, y))2 dλ = 0 , and(4.6) ∫
[0,1]2

(Fµ′(x, y)− p(x, y))2 dλ = ε0(4.7)

is µ. Assume that µ′ is a permuton satisfying both (4.6) and (4.7). The
equation (4.6) implies that Fµ′ ∈ F . Next, (4.5), (4.7), and (4.4) yield
that Fµ′ 6= f for every f ∈ F , f 6= Fµ. We conclude that Fµ′ = Fµ and
thus µ′ = µ.

By Theorem 4.2, the left hand sides of (4.6) and (4.7) can be ex-
pressed as finite linear combinations of densities d(σ, µ). Let S be the
set of all permutations appearing in these linear combinations. Any
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permuton µ′ with d(σ, µ′) = d(σ, µ) for every σ ∈ S satisfies both (4.6)
and (4.7) and thus it must be equal to µ. This shows that µ is finitely
forcible. �

We immediately obtain the following corollary.

Corollary 4.1. If µ is a permuton such that there exist non-
negative reals α1, . . . , αk and non-trivial polygons A1, . . . , Ak ⊆ [0, 1]2

satisfying µ =
k∑
i=1

αiλAi, then µ is finitely forcible.

Proof. Let Fi, i ∈ [k], be the function from [0, 1]2 to [0, 1] defined
as Fi(x, y) = λAi ([0, x]× [0, y]). Clearly, each function Fi is piecewise

polynomial. Since Fµ =
k∑
i=1

αiFi, the finite forcibility of µ follows from

Theorem 4.5. �

A particular case of permutons that are finitely forcible by Corol-
lary 4.1 is the following. If k is an integer, z1, . . . , zk ∈ [0, 1] are reals
such that z1 + · · · + zk = 1 and M is a square matrix of order k with
entries being non-negative reals summing to zi in the i-th row and in
the i-th column, we can define a permuton µM to be the sum

µM =
k∑

i,j=1

MijµAij ,

where Aij = [si−1, si] × [sj−1, sj], i, j ∈ [k] and si = z1 + · · · + zi (in
particular, s0 = 0 and sk = 1). For instance, if z1 = z2 = z3 = 1/3 and

M =

 0 0 1/3
2/9 1/9 0
1/9 2/9 0

 ,

we get the permuton depicted in Figure 3.

Figure 3. The permuton µM constructed as an exam-
ple at the end of Section 4.2. The gray area in the picture
is the support of the measure and different shades corre-
spond to the density of the measure.
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4.3. Union of monotone permutations

In this section we show that permutons with infinite recursive struc-
ture – permutons related with union of monotone permutations are
finitely forcible. Such permutons appears often in extremal problems.

For α ∈ (0, 1), define µmα to be the permuton

µmα =
∞∑
i=1

(1− α)αi−1λI(1−αi−1,1−αi) ,

where I(z, z′) = {(x, z′ + z − x), x ∈ [z, z′]}. Examples of the just de-
fined permutons can be found in Figure 4. We next show that all
permutons µmα are finitely forcible.

Figure 4. The permutons µm1/3, µm1/2, and µm2/3.

Theorem 4.6. For every α ∈ (0, 1), the permuton µmα is finitely
forcible.

Proof. We claim that any permuton µ satisfying

d(231, µ) + d(312, µ) = 0 ,(4.8)

d(21, µ) = (1− α)2
∞∑
i=0

α2i , and(4.9) ∫
[0,1]2

(
1− x− y + Fµ(x, y)− α

1−α (x+ y − 2Fµ(x, y))
)2

dµ = 0(4.10)

is equal to µmα . This would prove the finite forcibility of µmα by Theo-
rem 4.3. Note that the permuton µmα satisfies (4.8), (4.9), and (4.10).

Assume that a permuton µ satisfies (4.8), (4.9), and (4.10). Let X
be the support of µ and consider the binary relation R defined on the
support of µ such that (x, y)R(x′, y′) if

• x = x′ and y = y′, or
• x < x′ and y > y′, or
• x > x′ and y < y′.

The relation R is an equivalence relation. Indeed, the reflexivity
and symmetry is clear. To prove transitivity, consider three points
(x, y), (x′, y′) and (x′′, y′′) such that (x, y)R(x′, y′) and (x′, y′)R(x′′, y′′)
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but it does not hold that (x, y)R(x′′, y′′). By the definition of R, either
x < x′ and x′′ < x′, or x > x′ and x′′ > x′. If x < x′ and x′′ < x′,
then we obtain that d(231, µ) > 0 unless x = x′′ (recall that R is
defined on the support of µ). We can now assume that x = x′′ and
y < y′′. Since µ has uniform marginals, the support of µ intersects
at least one of the open rectangles (0, x)× (y, y′′), (x, x′)× (y, y′′) and
(x′, 1)× (y, y′′). However, this yields that d(231, µ) > 0 in the first two
cases and d(312, µ) > 0 in the last case. The case x > x′ and x′′ > x′

is handled in an analogous way.
Let R be the set of equivalence classes of R. If A ∈ R, let Ax

and Ay be the projections of A on the x and y axes. It is not hard to
show that Ax is a closed interval for each A ∈ R and these intervals
are internally disjoint for different choices of A ∈ R. The same holds
for the projections on the y axis. Since µ has uniform marginals, the
intervals Ax and Ay must have the same length for every A ∈ R.
Moreover, the definition of R implies that if Ax precedes A′x, then Ay
also precedes A′y for any A,A′ ∈ R. We conclude that there exists a
set I of internally disjoint closed intervals such that⋃

[z,z′]∈I

[z, z′] = [0, 1] and

the support of µ is equal to (because the density of subpermutations
231 and 312 is zero)⋃

[z,z′]∈I

{(x, z′ − x+ z), x ∈ [z, z′]} .

Note that some intervals contained in I may be formed by single points.
Let I0 be the subset of I containing the intervals of positive length.

Let [z, z′] ∈ I0 and let I = {(x, z′ − x+ z), x ∈ [z, z′]}. Since
µ([0, x] × [0, y]) = µ([0, z] × [0, z]) and the measure µ has uniform
marginals, it follows that Fµ(x, y) = z. The equality (4.10) implies
that the (continuous) function integrated in (4.10) is zero for every
(x, y) ∈ I. Substituting x + y = z + z′ and Fµ(x, y) = z into this
function implies

(4.11) z′ = z + (1− α)(1− z) .

Let Z be the set formed by the left end points of intervals in I0.
Define z1 to be the minimum elements of Z, and in general zi to be
the minimum element of Z \

⋃
j<i

{zj}. The existence of these elements

follows from (4.11) and the fact that the intervals in I0 are internally
disjoint. If Z is finite, we set zk = 1 for k > |Z|. We derive from the
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definition of Z and from (4.11) that

I0 =
{

[zi, zi + (1− α)(1− zi)], i ∈ N+
}
\ {[1, 1]} .

Consequently, we obtain

(4.12) d(21, µ) =
∞∑
i=1

(1− α)2(1− zi)2 = (1− α)2

∞∑
i=1

(1− zi)2 .

For j ∈ N, we define βj ∈ [0, 1] as follows:

βj =


1− z1 for j = 0,

1−zj
α(1−zj−1)

if zj 6= 1 and j > 0, and

0 otherwise.

The equation (4.12) can now be rewritten as

(4.13) d(21, µ) = (1− α)2

∞∑
i=1

α2(i−1)

i∏
j=1

β2
j .

Hence, the equality (4.9) can hold only if βj = 1 for every j which
implies that zi = 1−αi−1. Consequently, the permutons µ and µmα are
identical. �

4.4. Union of random permutations

We now show finite forcibility of another class of permutons with
infinite recursive structure – permutons related with union of random
permutations. Its structure is similar to that of µmα . The proof proceeds
along similar lines as the proof of Theorem 4.6 but we have to overcome
several new technical difficulties.

For α ∈ (0, 1), define µrα to be the permuton

µrα =
∞∑
i=1

(1− α)αi−1λ[1−αi−1,1−αi]×[1−αi−1,1−αi] .

See Figure 5 for examples. Our goal is to show that all permutons µrα
are finitely forcible.

Figure 5. The permutons µr1/3, µr1/2, and µr2/3.

We start by proving an auxiliary lemma.
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Lemma 4.1. There exist a finite set S of permutations and reals γσ,
σ ∈ S, such that the following is equivalent for every permuton µ:

•
∑
σ∈S

γσd(σ, µ) = 0,

• µ restricted to [x1, x2] × [y2, y1] is a (possibly zero) multiple
of λ[x1,x2]×[y2,y1] for any two points (x1, y1) and (x2, y2) of the
support of µ with x1 < x2 and y1 > y2.

Proof. The proof technique is similar to that used in [52]. Let

λ̃A(X) = λ(X ∩ A), i.e., λ̃A(X) = λ(A) · λA(X). Let (x1, y1) and
(x2, y2) be two points of the support of µ with x1 < x2 and y1 > y2. By
Cauchy-Schwartz inequality, the measure µ restricted [x1, x2]× [y2, y1]

is a multiple of λ̃[x1,x2]×[y2,y1] if and only if it holds that

(4.14)

 ∫
(x,y)

µ([x1, x]× [y2, y])2 dλ̃[x1,x2]×[y2,y1]

×
 ∫

(x,y)

(x− x1)2(y − y2)2 dλ̃[x1,x2]×[y2,y1]

−
 ∫

(x,y)

(x− x1)(y − y2)µ([x1, x]× [y2, y]) dλ̃[x1,x2]×[y2,y1]


2

= 0 .

Since the left hand side of (4.14) cannot be negative, we obtain that
the second statement in the lemma is equivalent to

(4.15)

∫
(x1,y1)

∫
(x2,y2)

∫
(x,y)

∫
(x′,y′)

(x′ − x1)2(y′ − y2)2 · µ ([x1, x]× [y2, y])2−

(x− x1)(y − y2) · µ ([x1, x]× [y2, y]) · (x′ − x1)(y′ − y2)·
µ([x1, y2]× [x′, y′]) dλ̃[x1,x2]×[y2,y1] dλ̃[x1,x2]×[y2,y1] dµ dµ = 0 .

In the rest of the proof, we show that the left hand side of (4.15) can
be expressed as a linear combination of finitely many subpermutation
densities. Since this argument follows the lines of the proofs of Theo-
rems 4.2–4.4, we only briefly explain the main steps.

The left hand side of (4.15) is equal to the expected value of the in-
tegrated function in (4.15) for two points (x1, y1) and (x2, y2) randomly
chosen in [0, 1]2 based on µ and two points (x, y) and (x′, y′) randomly
chosen in [0, 1]2 based on λ when treating the value of the integrated
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function to be zero if x1 ≥ x2, y1 ≥ y2, x 6∈ [x1, x2], x′ 6∈ [x1, x2],
y 6∈ [y1, y2], or y′ 6∈ [y1, y2]. Such points (x1, y1), (x2, y2), (x, y), and
(x′, y′) can be obtained by sampling six random points from [0, 1]2 based
on µ since µ has uniform marginals (see the proof of Theorem 4.2 for
more details). When the four points (x1, y1), (x2, y2), (x, y), and (x′, y′)
are sampled, any of the quantities x1, y2, x, y, x′, y′, µ ([x1, y2]× [x, y]),
and µ([x1, y2]× [x′, y′]) appearing in the product is equal to the proba-
bility that a point randomly chosen in [0, 1]2 based on µ has a certain
property in a permutation determined by the sampled points. Since
we need to sample six additional points to be able to determine each
of the products appearing in (4.14), the left hand side of (4.14) is
equal to a linear combination of densities of 12-element permutations
with appropriate coefficients. We conclude that the lemma holds with
S = S12. �

Analogously, one can prove the following lemma. Since the proof
follows the lines of the proof of Lemma 4.1, we omit further details.

Lemma 4.2. There exist a finite set S of permutations and reals γσ,
σ ∈ S such that the following is equivalent for every permuton µ:

•
∑

σ∈S γσd(σ, µ) = 0,
• if (x1, y1), (x2, y2), and (x3, y3) are three points of the support

of µ with x1 < x2 < x3 and y2 < y3 < y1, then µ restricted
[x2, x3]× [y2, y3] is a (possibly zero) multiple of λ[x2,x3]×[y2,y3].

We are now ready to show that each permuton µrα, α ∈ (0, 1), is
finitely forcible.

Theorem 4.7. For every α ∈ (0, 1), the permuton µrα is finitely
forcible.

Proof. Let S0 be the union of the two sets of permutations from
Lemmas 4.1 and 4.2. Next, consider the following eight functions:

F↖µ (x, y) = F 21
µ (x, y) , f↖µ (x, y) = F 231

µ (x, y) + F 321
µ (x, y) ,

F↗µ (x, y) = F 12
µ (x, y) , f↗µ (x, y) = F 231

µ (x, y) ,

F↙µ (x, y) = F 12
µ (x, y) , f↙µ (x, y) = F 312

µ (x, y) ,

F↘µ (x, y) = F 21
µ (x, y) , f↘µ (x, y) = F 312

µ (x, y) + F 321
µ (x, y) .

To save space in what follows, we often omit parameters when no con-
fusion can arise, e.g., we write F↘µ for the value F↘µ (x, y) if x and y
are clear from the context.

We claim that any permuton satisfying the following three condi-
tions is equal to µrα:

(4.16) d(σ, µ) = d(σ, µrα) for every σ ∈ S0,
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(4.17)

∫
[0,1]2

(
(1− α)

(
F↗µ f

↘
µ − F↘µ f↗µ

)
f↖µ −

α
(
F↖µ f

↖
µ f

↘
µ + F↘µ f

↖
µ f

↘
µ + F↖µ f

↙
µ f

↘
µ + F↘µ f

↖
µ f

↗
µ

))2

dµ = 0 ,

and

(4.18) d(21, µ) =
(1− α)2

2

∞∑
i=0

α2i .

This would prove the finite forcibility of µrα by Theorem 4.4.
Suppose that a permuton µ satisfies (4.16), (4.17), and (4.18). Let

X be the support of µ and consider the binary relation R defined on
the support of µ such that (x, y)R(x′, y′) if

• x = x′ and y = y′,
• x < x′ and y > y′, or
• x > x′ and y < y′.

Unlike in the proof of Theorem 4.6, the relation R need not be an
equivalence relation. Instead, we consider the transitive closure R0 of
R and let R be the set of the equivalence classes of R0.

We define ρ((x, y), (x′, y′)), where (x, y) and (x′, y′) are two points
of the support of µ such that (x, y)R(x′, y′), as follows

ρ ((x, y), (x′, y′)) =


µ([x,x′]×[y′,y])
(x′−x)(y−y′) if x < x′ and y > y′,
µ([x′,x]×[y,y′])
(x−x′)(y′−y)

if x > x′ and y < y′, and

0 otherwise.

Since µ satisfies (4.16), Lemma 4.1 implies that any three points (x, y),
(x′, y′) and (x′′, y′′) of the support of µ such that (x, y)R(x′, y′) and
(x′, y′)R(x′′, y′′) satisfy ρ((x, y), (x′, y′)) = ρ((x′, y′), (x′′, y′′)). In par-
ticular, the quantity ρ((x, y), (x′, y′)) is the same for all pairs of points
(x, y) and (x′, y′) with (x, y)R(x′, y′) lying in the same equivalence class
of R0. So, we may define ρ(A) to be this common value for each equiv-
alence class A ∈ R or for a closure of such class.

As in the proof of Theorem 4.6, we define Ax and Ay to be the
projections of an equivalence class A ∈ R on the x and y axes. The
definition of R yields that Ax and Ay are closed intervals for all A ∈ R
and these intervals are internally disjoint for different choices of A ∈ R.
Since µ has uniform marginals, the intervals Ax and Ay must have the
same length for every A ∈ R. As in the proof of Theorem 4.6, we
conclude that there exists a set I of internally disjoint closed intervals
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such that ⋃
[z,z′]∈I

[z, z′] = [0, 1] ,

the support of µ is a subset of⋃
[z,z′]∈I

[z, z′]× [z, z′] ,

and the interior of each of these squares intersects at most one class
A ∈ R. Since some intervals contained in I may be formed by single
points, we define I0 to be the subset of I containing the intervals of
positive length.

Let [z, z′] ∈ I0 and let A be the closure of the corresponding equiv-
alence class from R. Let f(x), x ∈ [z, z′], be the minimum y such that
(x, y) belongs to A; similarly, g(x) denotes the maximum such y.

Assume first that ρ(A) > 0. Since µ has uniform marginals, it must
holds that g(x)− f(x) = ρ(A)−1 for every x ∈ (z, z′). From (4.16) and
Lemma 4.1 we see that the functions f and g are non-decreasing, and
similarly (4.16) and Lemma 4.2 imply that f and g are non-increasing.
We conclude that A = ([z, z′]× [z, z′]) and ρ(A) = (z′ − z)−1.

Assume now that ρ(A) = 0. Lemma 4.2 and (4.16) imply that if
(x, y) ∈ (z, z′) × (z, z′) belongs to the support of µ, then µ([x, z′] ×
[z, y]) = 0 (otherwise, ρ(A) > 0). But then (x, y) cannot be in relation
R with another point of the support of µ. So, we conclude that the
case ρ(A) = 0 cannot appear.

The just presented arguments show the support of the measure µ
is equal to ⋃

[z,z′]∈I

[z, z′]× [z, z′]

and the measure is uniformly distributed inside each square [z, z′] ×
[z, z′], [z, z′] ∈ I0.

Let [z, z′] be one of the intervals from I0. Recall that we have
argued that

µ
(
[0, z]× [0, z] ∪ [z, z′]× [z, z′] ∪ [z′, 1]× [z′, 1]

)
= 1

and the measure µ is uniform inside the square [z, z′]× [z, z′] (see Fig-
ure 6). By (4.17), the following holds for almost every point of the
support of µ:

(4.19) (1− α)
(
F↗µ f

↘
µ − F↘µ f↗µ

)
f↖µ =

α
(
F↖µ f

↖
µ f

↘
µ + F↘µ f

↖
µ f

↘
µ + F↖µ f

↙
µ f

↘
µ + F↘µ f

↖
µ f

↗
µ

)
.
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In particular, this holds for all points in [z, z′]×[z, z′] since the functions
appearing in (4.19) are continuous.

(0, 0) z x z′

z

y
z′

x1 x2

y1

y2

(0, 0) x

y

F↖
µ (x, y)

F↙
µ (x, y)

F↗
µ (x, y)

F↘
µ (x, y)

Figure 6. Notation used in equalities (4.20) and (4.21).
Areas that can contain the support of µ are drawn in
grey.

Let (x, y) be a point from (z, z′)×(z, z′). Let x1 = x−z, x2 = z′−x,
y1 = y − z, and y2 = z′ − y (see Figure 6). Since all the quantities
appearing in (4.19) are positive, we may rewrite (4.19) as
(4.20)

(1− α)

(
F↗µ − F↘µ

f↗µ

f↘µ

)
= α

(
F↖µ + F↘µ + F↖µ

f↙µ

f↖µ
+ F↘µ

f↗µ

f↘µ

)
.

Observe that F↗µ (x, y) = µ([x, 1]×[y, 1]), F↖µ (x, y) = µ([z, x]×[y, z′]) =
x1y2
z′−z , and F↘µ (x, y) = µ([x, z′]× [z, y]) = x2y1

z′−z . Further observe that

f↗µ (x, y)

f↘µ (x, y)
=

2x22y1y2
2(z′−z)2

x22y
2
1

(z′−z)2
=
y2

y1

and
f↙µ (x, y)

f↖µ (x, y)
=

2x21y1y2
2(z′−z)2

x21y
2
2

(z′−z)2
=
y1

y2

.

Plugging these observations in (4.20), we obtain that
(4.21)

(1− α)

(
µ([x, 1]× [y, 1])− x2y2

z′ − z

)
= α

x1y2 + x2y1 + x1y1 + x2y2

z′ − z
.

Since x1 +x2 = y1 + y2 = z′− z and x2y2
z′−z = µ([x, z′]× [y, z′]), we obtain

from (4.21) that

(4.22) (1− α)µ([z′, 1]× [z′, 1]) = α
(z′ − z)2

z′ − z
= α(z′ − z) .
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Finally, we substitute 1− z′ for µ([z′, 1]× [z′, 1]) in (4.22) and get the
following:

(4.23) z′ = z + (1− α)(1− z) .

So, we conclude that the right end point of every interval in I0 is
uniquely determined by its left end point.

Let Z be the set formed by the left end points of intervals in I0. As
in the proof of Theorem 4.6, for a positive integer i, let zi be the ith
smallest element of Z. Notice that the existence of minimum elements
follows from (4.23). If Z is finite, we set zk = 1 for k > |Z|.

We derive from the definition of Z and from (4.23) that

I0 =
{

[zi, zi + (1− α)(1− zi)], i ∈ N+
}
\ {[1, 1]} .

Consequently, we obtain

(4.24) d(21, µ) =
∞∑
i=1

(1− α)2(1− zi)2

2
=

(1− α)2

2

∞∑
i=1

(1− zi)2 .

Analogously to the proof of Theorem 4.6, for j ∈ N, we define βj ∈ [0, 1]
as follows:

βj =


1− z1 for j = 0,

1−zj
α(1−zj−1)

if zj 6= 1 and j > 0, and

0 otherwise.

The equation (4.24) can be rewritten as

(4.25) d(21, µ) =
(1− α)2

2

∞∑
i=1

α2(i−1)

i∏
j=1

β2
j ; .

Hence, the equality (4.18) can hold only if βj = 1 for every j, i.e., zi =
1− αi−1. This implies that the permutons µ and µrα are identical. �

4.5. Union of complete graphs

In this section, we prove that graphons corresponding to permutons
from Section 4.3 are not finitely forcible. Any graph associated with a
union of monotone permutations is a union of complete graphs. Such
graphs can be characterized by not having as an induced subgraph a
path on 3 vertices P3. Thus, in this section we focus on graphons with
d(P3,W ) = 0. We start with the following lemma, which seems to
be of be of independent interest. Informally, the lemma asserts that
any finitely forcible graphon with zero density of P3 can be forced by
finitely many densities of complete graphs.
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Lemma 4.3. If W0 is a finitely forcible graphon and d(P3,W0) = 0,
then there exists an integer `0 such that any graphon W with d(P3,W ) =
0 and d(K`,W ) = d(K`,W0) for ` ≤ `0 is weakly isomorphic to W0.

Proof. To prove the statement of the lemma, it is enough to show
the following claim: the density of any n-vertex graph G in a graphon
W with d(P3,W ) = 0 can be expressed as a combination of densities
of K1, . . ., Kn in W . We proceed by induction on n + k where n and
k are the numbers of vertices and components of G respectively. If
n = k = 1, there exists only a single one-vertex graph K1 and the
claim holds.

Assume now that n+k > 2. If G is not a union of complete graphs,
then d(G,W ) = 0 since d(P3,W ) = 0. So, we assume that G is a union
of k complete graphs G1, . . . , Gk, i.e., G = G1∪· · ·∪Gk. If k = 1, then
G = Kn and the claim clearly holds. So, we assume k > 1.

For 2 ≤ i ≤ k, we denote

Hi = (G1 +Gi) ∪
⋃

j∈[k]\{1,i}

Gj .

Observe that the following holds:

d(G1,W )d(G2 ∪ · · · ∪Gk,W ) =

p1 · d (G1 ∪ · · · ∪Gk,W ) +
k∑
i=2

pi · d (Hi,W )(4.26)

where p1 is the probability that a set V of randomly chosen |G1| vertices
of the graph G1 ∪ · · · ∪ Gk induces a complete graph and the graph
(G1 ∪ · · · ∪Gk) \ V is isomorphic to G2 ∪ · · · ∪Gk, and pi, i > 1, is the
probability that a set V of randomly chosen |G1| vertices of Hi induces
a complete graph and the graph Hi \ V is isomorphic to G2 ∪ · · · ∪Gk.
To see (4.26), observe that the product d(G1,W )d(G2∪ · · · ∪Gk,W ) is
equal to the product of the probability that a W -random graph of order
|G1| is isomorphic to G1 and the probability that a W -random graph
of order |G2|+ · · ·+ |Gk| is isomorphic to G2 ∪ · · · ∪Gk. This is equal
to the probability that randomly chosen |G1| vertices of a W -random
graph of order |G1|+ · · ·+ |Gk| induce a subgraph isomorphic to G1 and
the remaining vertices induce a subgraph isomorphic to G2 ∪ · · · ∪Gk.
This probability is equal to the right hand side of (4.26).

By induction, d(G2 ∪ · · · ∪ Gk,W ) and d (Hi,W ), 2 ≤ i ≤ k, can
be expressed as combinations of densities of complete graphs of order
at most n in W . Rearranging the terms of (4.26), we obtain that
d(G1 ∪ · · · ∪Gk,W ) is equal to a combination of densities of complete
graphs of order at most n in W . �
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For a sequence of non-negative reals ~a = (ai)i∈N such that
∑∞

i=1 ai =
1, define a graphon W c

~a such that W (x, y) = 1 if and only if there exists
j ∈ N such that

j−1∑
i=1

ai ≤ x, y ≤
j∑
i=1

ai .

We consider a particular case of this graphon W c
α for α ∈ (0, 1):

W c
α = W c

~a for ai = (1 − α)αi−1. Observe that W c
α = Wµmα . The main

result of this section asserts that unlike the associated permuton µmα ,
the graphon W c

α is not finitely forcible. Although it immediately follows
as a corollary of the more general Theorem 4.9 from Section 4.6, we
give its proof here to increase the readability.

Theorem 4.8. For every α ∈ (0, 1), the graphon W c
α = Wµmα is not

finitely forcible.

Proof. Observe that d (P3,W
c
α) = 0. By Lemma 4.3, it is enough

to show that W c
α is not finitely forcible with S = {P3, K1, . . . , Kn}

for any n ∈ N, i.e., by setting the densities of P3 and the complete
graphs of orders 1, . . . , n. Suppose for the sake of contradiction that
for some n ∈ N the graphon W c

α is uniquely determined by the densities
of P3 and K1, . . . , Kn. Let ai = (1− α)αi−1. Further, define functions
Fi(x1, . . . , xn+1) : Rn+1 → R for i = 1, . . . , n as follows:

(4.27) Fi(x1, . . . , xn+1) =
n+1∑
j=1

(
xij − aij

)
.

Observe that if x1 + · · · + xn+1 = a1 + · · · + an+1, which is equivalent
to F1(x1, . . . , xn+1) = 0, then it holds that

(4.28) d(Ki,W
c
~b

) = d(Ki,W
c
α) + Fi(x1, . . . , xn+1) for i ∈ [n],

where ~b is the sequence with bi = xi for i ≤ n + 1 and bi = ai for
i > n+1. Hence, to obtain the desired contradiction, it suffices to prove
that there exist functions gj(xn+1), j ∈ [n], on some open neighborhood
of an+1 such that

(4.29) Fi(g1(xn+1), . . . , gn(xn+1), xn+1) = 0 for every i ∈ [n].

Indeed, if such functions gj(xn+1), j ∈ [n], exist, then (4.28) yields that
the densities of K1, . . . , Kn in the graphon W c

~b
with bi = gi(xn+1) for

i ≤ n, bn+1 = xn+1 and bi = ai for i > n+ 1 equal their densities in the
graphon W c

~a . This implies that W c
~a is not forced by the densities of P3

and K1, . . . , Kn.
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We now establish the existence of functions g1, . . . , gn satisfying
(4.29) on some open neighborhood of an+1. Observe that

∂Fi
∂xj

(x1, . . . , xn+1) = i · xi−1
j .

We consider the Jacobian matrix of the functions F1, . . . , Fn with re-
spect to x1, . . . , xn. The determinant of the Jacobian matrix is equal
to

(4.30) n!
∏

1≤j<j′≤n

(xj′ − xj) .

Substituting xj = aj for j = 1, . . . , n, we obtain that the Jacobian
matrix has non-zero determinant. In particular, the Jacobian is non-
zero. The implicit function theorem now implies the existence of the
functions g1, . . . , gn satisfying (4.29). This concludes the proof. �

4.6. Union of graphs

In this section, we prove general theorem stating that every graphon
with infinite recursive structure is not finitely forcible. In particular,
in proves that graphons related to permutons µrα from Section 4.4 are
not finitely forcible.

Let W be a graphon. For a sequence of non-negative reals ~a =
(ai)i∈N such that

∑∞
i=1 ai = 1, define a graphon W→~a as follows. In-

formally speaking, we take the graphon W c
~a and plant a copy of W on

each of its “components”. Formally, for x, y ∈ [0, 1), let jx and jy be
the integers such that

jx−1∑
i=1

ai ≤ x <
∑jx

i=1 ai and

jy−1∑
i=1

ai ≤ y <
∑jy

i=1 ai .

If jx 6= jy, then W→~a(x, y) = 0. If jx = jy, then

W→~a(x, y) = W


x−

jx−1∑
i=1

ai

ajx
,

y −
jy−1∑
i=1

ai

ajy

 .

The set of pairs (x, y) with one of the coordinates being equal to zero
has mesure zero, so we can for example set the values of W (x, y) for
such pairs to be equal to zero. Similarly as before, we also define W→α
for α ∈ (0, 1) as W→α = W→~a, where ai = (1− α)αi−1.
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If W 0
ρ is the graphon identically equal to ρ ∈ [0, 1], then W 0

1,→~a is W c
~a

(we put a comma to separate the two indices, the first referring to the
density of edges inside connected components, the second determining
the sizes of those). More generally, we use W r

ρ,α for the graphon W 0
ρ,→~a,

where ai = (1− α)αi−1. Examples can be found in Figure 7.

Figure 7. The graphons W r
1/2,1/3, W r

3/4,1/2, and W r
1/4,2/3.

Our main theorem asserts that a graphon W→α is not finitely for-
cible unless it is W 0

0 .

Theorem 4.9. For every α ∈ (0, 1) and every graphon W , if the
graphon W→α is finitely forcible, then W is weakly isomorphic to W 0

0 ,
i.e., the graphon W→α is identically equal to zero up to a set of measure
zero.

Proof. It is enough to show that for every n, there exists~b different
from ~a, ai = (1− α)αi−1, such that

(4.31) d
(
G,W→~b

)
= d (G,W→α) for every graph G with |G| ≤ n.

The proof of Theorem 4.8 yields that for every n, there exists such ~b
different from ~a satisfying

(4.32) d
(
G,W c

~b

)
= d (G,W c

α) for every graph G with |G| ≤ n.

We claim that this ~b also satisfies (4.31). Also note that (4.32) is non-
zero only for graphs G that are disjoint union of cliques.

Let G be a graph with n vertices and let G1, . . . , Gk be the con-
nected components of G. Furthermore, let F = {I1, . . . , I`} be the
partition of [k] according to the isomorphism classes of the graphs
G1, . . . , Gk, i.e., for every i, j ∈ [`] with i 6= j and every a1, a2 ∈ Ii and
a3 ∈ Ij, the graphs Ga1 and Ga2 are isomorphic, and the graphs Ga1

and Ga3 are not isomorphic.
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Observe that

d
(
G,W→~b

)
=

∑
f :[k]→N

c(f)

 ∞∏
i=1

d

 ⋃
j∈f−1(i)

Gj,W

 b

∣∣∣∣∣∣ ⋃
j∈f−1(i)

Gj

∣∣∣∣∣∣
i


(4.33)

with the normalizing factor

c(f) =
∏
m∈[`]

∞∏
i=1

|f−1(i) ∩ Im|!

|Im|!
,

where we set 0! = 1 and the density d(∅,W ) of the empty graph in the
graphon W to 1.

We consider partitions of the set of connected components of G. If
Q = {Q1, . . . , Qk} is such a partition, we slightly abuse the notation
and identify Qi with the subgraph of G induced by the components of
Qi. In particular, |Qi| denotes the number of vertices in this subgraph..
Furthermore, we always view a partition Q as a multiset, and also allow
some of the Qi’s to be empty. Let Q be the set of all such partitions.
The identity (4.33) can now be rewritten as follows:

(4.34) d
(
G,W→~b

)
=
∑
Q∈Q

∏
i∈[k]

d(Qi,W )d

⋃
i∈[k]

K|Qi|,W
c
~b

 ,

where K0 is the empty graph. Since ~b satisfies (4.32), we obtain that
it satisfies (4.34), and therefore also (4.31). �

We immediately obtain the following two corollaries.

Corollary 4.2. For every α ∈ (0, 1) and every ρ ∈ (0, 1], the
graphon W r

ρ,α is not finitely forcible.

Corollary 4.3. For every α ∈ (0, 1), the graphon Wµrα = Wλ,→α,
which is associated with the permuton µrα, is not finitely forcible.

4.7. Conclusion

We have shown that graphons associated with finitely forcible per-
mutons need not be finitely forcible. In [56], Question 11 asks whether
there exists a “2-dimensional” finitely forcible graphon and such graph-
ons naturally arise from permutons. Glebov, Král’, and Volec [33] con-
structed a finitely forcible graphon where the Minkowski dimension of
the associated topological space of typical points is two but the space
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is not connected. Our discussions with the authors of [56] led to the
intuition that the graphon Wλ (as defined at the end of Section 4.1)
is a good candidate for a finitely forcible graphon with the associated
space being connected and having dimension two.

Problem 4.1. Is the graphon Wλ associated with the permuton λ
finitely forcible?

More generally, we suspect that all graphons associated with per-
mutons µM constructed at the end of Section 4.2 might be finitely
forcible.

Problem 4.2. Let M be a square matrix of order k with entries
being non-negative reals such the sum of the entries in the i-th row is
equal to that in the i-column and the sum of all the entries of M is one.
Is the graphon WµM associated with the permuton µM finitely forcible?
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