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Abstract. Given the continuous real-valued objective function f and
the discrete time inhomogeneous Markov process Xt defined by the re-
cursive equation of the form Xt+1 = Tt(Xt, Yt), where Yt is an inde-
pendent sequence, we target the problem of finding conditions under
which the Xt converges towards the set of global minimums of f . Our
methodology is based on the Lyapunov function technique and extends
the previous results to cover the case in which the sequence f(Xt) is not
assumed to be a supermartingale. We provide a general convergence
theorem. An application example is presented: the general result is
applied to the Simulated Annealing algorithm.

1. Introduction

Let (A, d) be a compact metric space. Assume that f : A → R is the
continuous problem function with global minimum min f = 0 and A? =
{x ∈ A : f(x) = 0} is the set of the solutions of the global minimization
problem. The last decades have witnessed the great development of iterative
numerical techniques designed for finding an element from A?. The most
popular methods are: genetic and evolutionary algorithms [35, 34, 5, 33],
inspired by the mechanisms of biological evolution, Simulated Annenaling
algorithm (SA) [4, 39, 20, 21, 22, 1], which is based on analogy with the
physical process of annealing, and methods based on the swarm intelligence
of individuals [16] like Particle Swarm Optimization (PSO) [10, 9] or Ant
Colony Optimization (ACO) [13]. Those methods, and many other iterative
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heuristics, [3, 15, 23, 32, 40, 41] are used in practice for solving difficult
real world problems for which analytical methods fail. The corresponding
literature puts great attention to the numerical aspect of the subject. From
the theoretical perspective, majority of such optimization techniques can be
represented as discrete–time inhomogeneous Markov processes of the form

(1.1) xt+1 = Tt(xt, yt), for t ∈ N,

where the sequence xt represents the successive states of the algorithm, yt
represents the probability distributions of the algorithm and Tt stands for
the deterministic “mechanisms” of the algorithm. Recursions of the form
(1.1) have been studied in many contexts, including control theory, iterated
function systems (IFS), fractals, and other applications. Various examples
can be found, for instance, in [24, 11, 14, 18]. Generally speaking, the stan-
dard analysis of processes (1.1) concerns the problem of the existence and
the convergence to the unique stationary distribution. This paper continues
the research taken in the series of papers [25, 26, 27, 28, 29] which aim at
the problem how to prove that the process given by equation (1.1) converges
towards A? under conditions that can be verified in practical cases.

General results on global convergence are often based on the classical
probability theory [38], [31]. Markov chains theory is used to prove the con-
vergence towards A? in some cases, see for example [35] or [1]. An important
class of global optimization methods are methods with the supermatingale
property - we shortly say that an optimization method Xt is a supermartin-
gale if the corresponding sequence of record values f(Xt) is a supermatin-
gale. In this case stochastic Lyapunov functions arise quite naturally as a
tool ensuring stability of the process Xt, see Chapter VIII in [2] for general
framework or [36] for an example from evolutionary optimization. Previ-
ous papers [25]-[29] work under assumption E(f(Tt(x, Yt))|Xt = x) ≤ f(x),
x ∈ A, which implies that they also aim at the supermartingale class. The
general methodology used there was to consider the nonautonomous dynami-
cal system on the setM(A) of Borel probability measures on A (the system is
induced by equation (1.1)) and next to prove the asymptotic stability of the
set M? = {µ ∈M(A) : µ(A?) = 1}. One of the basic tools used in the proof
was the Lyapunov function given by V : M(A) 3 µ→

∫
A

fdµ ∈ [0,∞). This

paper extends this methodology to cover the case of non-supermartingales.
For instance, Simulated Annealing algorithm and Evolution Algorithms with
non-elitist selection strategies belong to the class of non-supermatingales.
The main result of this paper is Theorem 2. Theorem 3, which is the con-
clusion of Theorem 2, is less general but easier to use and still covers some
important practical cases like Simulated Annealing and many non-elitist
evolutionary methods. To present how the general results work in practice
Theorem 2 is applied to the SA algorithm. The SA convergence result is
expressed in Theorem 4.
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This paper is organized as follows. Section 2 presents some general equiva-
lences between basic modes of stochastic global convergence. These general
results are rather easy to prove but according to the author’s knowledge
such general statements are not formulated in literature (special cases are
proved separately in various papers). Section 3 presents and discusses the
main results of this paper, Theorem 2, and its conclusion, Theorem 3. Sec-
tion 4 applies Theorem 3 to the Simulated Annealing algorithm. Section 5
presents some facts on the weak convergence of Borel probability measures
and Section 6 presents some ideas expressed in the language of dynamical
systems and necessary for the proof of the main result. Finally, Section 7
uses the results of Sections 5 and 6 to prove Theorem 2. Appendix presents
the proofs of results from Section 2.

2. Some Equivalences for Stochastic Global Convergence

This section presents some general equivalences for stochastic global con-
vergence and introduces corresponding notation which will be used in further
sections. Although this paper targets the compact case situation, the gen-
eral results of this section are presented under assumption that the metric
space A is separable. The results are rather simple but they generalize many
partial observations stated in the literature and will be used further in this
paper. The corresponding proofs can be found in Appendix.

We denote:

(1) A? = {x ∈ A : f(x) = 0},
(2) Aδ = {x ∈ A : f(x) ≤ δ}, where δ > 0,
(3) A(δ) = {x ∈ A : f(x) < δ}, where δ > 0,
(4) A?(ε) = {x ∈ A : d(x,A?) < ε}, where ε > 0 and d(x,A?) =

inf
a∈A?

d(x, a).

Let (Ω,Σ, P ) be a probability space and let {Xt}∞t=0 be a measurable se-
quence which represents the successive states of the given optimization
method. The global minimization task usually stands either for generat-
ing a sequence xt ∈ A which converge towards the set A? of solutions of
the global minimization problem f(x) = 0 or for generating a sequence
xt ∈ A which satisfies f(xt) → 0. We will say that a sequence Xt : Ω → A

stochastically converges to A? ⊂ A, which we will denote by Xt
s→ A?, iff

(2.1) ∀ε > 0 lim
t→∞

P (d(Xt, A
?) < ε) = 1.

Naturally, the stronger condition P (d(Xt, A
?) → 0) = 1 is sometimes an

object of analysis but for some cases it is to strong. Recall that f(x) < δ iff
x ∈ A(δ). Thus, in the context of the f(Xt) convergence, the convergence
in probability takes the form:

(2.2) ∀δ > 0 P (Xt ∈ A(δ))→ 1.
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For instance, Theorems 1 and 2 in [4] say that under appropriate assump-
tions the sequence f(Xt) generated by the SA algorithm satisfies (2.2) but
does not converge surely. Additionally, from Observation 1 it follows that
under those assumptions SA does not converge to A? surely but still it is con-
vergent stochastically to it. This paper works on sufficient conditions for an
optimization method to satisfy (2.1) and (2.2) which under assumptions of
next sections are equivalent to E(d(Xt, A

?)) −→ 0 and E(f(Xt)) −→ 0. This
section shows, in particular, that under some general assumptions various
notions of global convergence reduce to the weak convergence of probability
distributions µt = PXt of Xt towards the set M? = {µ ∈M(A) : µ(A?) = 1}.

Assume that the measurable function f is given and that it satisfies the
following, rather natural, conditions:

A1) ∀ε > 0 ∃δ > 0 A(δ) ⊂ A?(ε),
A2) ∀δ > 0 ∃ε > 0 A?(ε) ⊂ A(δ).

For example, conditions A1) and A2) are satisfied if for some δ0 > 0
the underlevel set Aδ0 is compact and the function f is continuous on Aδ0 .
Under those conditions both previous mentioned interpretations of global
minimization problem (xt → A? and f(xt)→ 0) are equivalent which is ex-
pressed in Observation 1. This simple observation generalizes many special
cases existing in literature. In particular, in the case where A? is a singleton
some equivalences from statement (1) were proved and used in [4] and [32].
Under assumptions related to A1), A2), the general equivalence from state-
ment (2) was presented in [31]. The precise meaning of condition (1)(b) will
be given in Section 5.

Observation 1. Assume that the space (A, d) is separable and that the
function f : A→ R satisfies conditions A1) and A2). We have:

(1) The following conditions are equivalent:
(a) Xt converges stochastically to A?,
(b) probability distributions of Xt converge towards the set of distri-

butionsM? = {µ ∈M(A) : µ(A?) = 1} in the weak convergence
topology,

(c) f(Xt) converges in probability to 0,
(d) f(Xt) converge to 0 in distributions

(2) The following conditions are equivalent:
(a) f(Xt)→ 0 almost sure
(b) d(Xt, A

?)→ 0 almost sure.
(3) Assume additionally that the measurable functions f(Xt) and d(Xt, A

?)
are bounded from the above by some measurable function Z : Ω →
[0,+∞) with E(Z) < ∞. Then the following conditions are equiva-
lent:
(a) E(f(Xt)) −→ 0,
(b) E(d(Xt, A

?)) −→ 0.
Additionally, under the above boundedness assumption, they are equiv-
alent to conditions 1(a),1(b),1(c),1(d).
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Warning 1. Conditions E(f(Xt)) → 0 and E(d(Xt, A
?)) → 0 are not

equivalent to each other in general unbounded situation.

We will focus for a moment on methods which satisfy the following su-
permartingale inequality:

E(f(Xt+1)|f(Xt), f(Xt−1), . . . , f(X0)) ≤ f(Xt) a. s.

The above inequality follows from the stronger condition

E(f(Xt+1)|Xt, Xt−1, . . . , X0) ≤ f(Xt) a. s.

which is easier to verify in practice. In particular, if the sequence Xt is a
Markov chain, then the above supermartingale–type inequalities follow from
the following inequality:

(2.3) E(f(Xt+1))|Xt = x) ≤ f(x), x ∈ A,
which was one of the convergence assumptions of the previous paper [28].
Thus the following theorem, a consequence of Observation 1, can be applied
to some results of [28]. In particular, this result covers the class of monotonic
methods (in sense f(Xt+1) ≤ f(Xt)), i.e. methods which always remember
the best found problem solution candidate.

Theorem 1. Assume that the space (A, d) is separable and that the function
f : A → R satisfies A1), A2). If f(Xt) is a supermartingale then the
following conditions are equivalent:

(1) probability distributions of Xt converge towards the set of distribu-
tions M? = {µ ∈M(A) : µ(A?) = 1} in the weak convergence topol-
ogy,

(2) Xt→A? stochastically,
(3) d(Xt, A

?)→ 0 with probability one,
(4) f(Xt) converges to 0 in distribution,
(5) f(Xt) converges to 0 in probability,
(6) f(Xt) converges to 0 with probability one,

If we assume additionally that the measurable functions f(Xt) and d(Xt, A
?)

are bounded from the above by some measurable function Z : Ω → [0,+∞)
with E(Z) < ∞ then the above conditions (1),(2),(3),(4),(5),(6) are equiv-
alent to the following conditions:

(7) E(d(Xt, A
?)) −→ 0,

(8) E(f(Xt))↘ 0.

Remark 1. For any Borel probability measures µ1 and µ2 on A let

‖µ1 − µ2‖ = sup
B∈B(A)

|µ1(B)− µ2(B)|.

denote the total variation distance. In a standard situation A ⊂ Rn the
probability distributions µt of Xt are absolutely continuous with respect to
the Lebesgue Measure µ and usually we have µ(A?) = 0 which leads to
||µt −m|| = 1 for any m ∈ M?. The total variaton convergence is thus to
strong to be analysed in the context of this paper.
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3. Main result and conclusions

In this section we present the main result of this paper, Theorem 2, and
next we discuss some of the implications. In particular, from Theorem 2
we conclude Theorem 3 and the latter is less general but also less technical
and still covers some important cases. Also we show that the main result of
the previous paper [28] which concerns the supermartingale case is a special
case of Theorem 2. First we will introduce further assumptions and notation
which will hold throughout the paper.

From now on we assume that (A, d) is a compact metric space and that
the function f : A → R is continuous. Recall that this function obtains its
minimal value and the set A? = f−1(0) is the set of global minima. Let
(Ω,Σ, P ) be a probability space and let (B, d) be a separable metric space.
We assume that the sequence of random variables Xt : Ω → A, t ∈ N, is
defined by the following nonautonomous equation:

(3.1) Xt+1 = Tt(Xt, Yt),

where

• Yt : Ω→ B, t ∈ N, are random variables
• Tt : A×B −→ A, t ∈ N, are Borel measurable
• the random variables X0, Y0, Y1, · · · are independent.

For a Markov chain Xt given on a separable metric space there exists a
representation of the form Xt+1 = T (Xt, Yt), where B = [0, 1] and Tt = T ,
t ∈ N, see [8]. However, in cases of many stochastic iterative optimiza-
tion methods the corresponding theoretical representations arise naturally
in more general form (3.1). This paper thus concerns this general situation.
Let T = M(A × B,A) denote a topological space of all measurable opera-
tors T : A×B −→ A equipped with the topology of uniform convergence: a
sequence {Tn}n∈N ⊂ T converges to a limit T ∈ T iff

sup
(a,b)∈A×B

d(Tn(a, b), T (a, b))
n→∞−→ 0.

As the space A is assumed to be compact (and thus bounded), the above
topology is induced by the uniform convergence metric. Let N = M(B)
denote the topological space of Borel probability measures on B equipped
with the weak convergence topology. The space T ×N is endowed with the
product topology.

For any δ > 0 we define sets U(δ) ⊂ T ×N and U0(δ) ⊂ T ×N as follows:

T × N ⊃ U(δ) 3 (T, ν)
def⇐⇒


∫
B

f(T (x, y))v(dy) ≤ f(x) for x /∈ A(δ)∫
B

f(T (x, y))v(dy) ≤ δ for x ∈ A(δ)



7

T × N ⊃ U0(δ) 3 (T, ν)
def⇐⇒


∫
B

f(T (x, y))v(dy) < f(x) for x /∈ A(δ)∫
B

f(T (x, y))v(dy) ≤ δ for x ∈ A(δ).

Recall that a function F : S → R given on a metric space S is upper semi–
continuous (lower semi–continuous) at x0 ∈ S iff for any sequence xn ∈ S,
if xn → x0, then lim sup

n→∞
F (xn) ≤ F (x0) (lim inf

n→∞
F (xn) ≥ F (x0)). We will

also say that a family of sets {Un}n∈N is a decreasing family iff Un+1 ⊂ Un,
n ∈ N. Finally, to simplify the notation for any sequence of real numbers

{δi}i∈N and t ∈ N we will denote
t−1∑
i=t

δi := 0 and similarly
∑
i∈∅

δi := 0.

The following theorem is the most general result of this paper. As we will
show later, it directly implies both the supermartingale case analysed in [28]
and Theorem 3 which is simpler but still covers many important cases of
non-supermartingale methods (including SA method).

Theorem 2. Assume that we have a decreasing family of compact sets
{Uk0 }k∈N with Uk0 ⊂ U0( 1

k ), k ∈ N, and a sequence {δt}t∈N ⊂ R such that
the following conditions are satisfied:

(A1) for any k ∈ N, any pair (T, ν) ∈ Uk0 and x ∈ A, the f ◦ T is upper
semi–continuous at (x, y) for ν-almost any y from B,

(B1) ∀t ∈ N (Tt, νt) ∈ U(δt) and lim
t→∞

δt = 0,

(C1) for any k ∈ N the sequence (Tt, νt) contains a subsequence (Ttkn , νtkn) ∈
Uk0 such that lim

n→∞
Skn = 0, where:

Skn =

tkn+1−1∑
i=tkn+1

δi.

Then

Ed(Xt, A
?)

t→∞−→ 0 and Ef(Xt)
t→∞−→ 0.

Note that the variables Xt and Yt are independent, and thus we have

E(f(Xt+1)|Xt) = E(f(Tt(Xt, Yt))|Xt) =

∫
B

f(Tt(Xt, y))vt(dy).

Hence, for t ∈ N and x ∈ A, we have

(3.2)

∫
B

f(Tt(x, y))vt(dy) = E(f(Xt+1)|Xt = x).
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This makes assumptions of Theorem 2 more intuitive. In particular,

U(δ) 3 (Tt, νt) ⇐⇒

{
E(f(Xt+1)|Xt = x) ≤ f(x) for x /∈ A(δ),

E(f(Xt+1)|Xt = x) ≤ δ for x ∈ A(δ).

Note that under assumptions of Theorem 2 for Ckn = {i ∈ N : tkn < i <
tkn+1} we have Skn =

∑
i∈Ck

n

δi. The case in which the sets Ckn are empty

strongly simplifies the theorem formulation - this situation is expressed in
Theorem 3.

Theorem 3. Let {Uk0 }k∈N be a decreasing family of compact sets with Uk0 ⊂
U0( 1

k ) and such that the following conditions are satisfied:

(A1) for any k ∈ N, (T, ν) ∈ Uk0 and x ∈ A, f◦T is upper semi–continuous
at (x, y) for ν-almost any y ∈ B,

(C2) for any t ∈ N, (Tt, νt) belongs to Ukt0 , where kt is a sequence with
kt →∞.

Then
E(d(Xt, A

∗)
t→∞−→ 0 and Ef(Xt)

t→∞−→ 0.

Proof. Define δt = 1
kt

. The thesis of the theorem follows from Theorem 2.

In fact, as Ukt0 ⊂ U( 1
kt

), condition (B1) of Theorem 2 follows directly from

condition (C2). Furthermore, condition (C1) of Theorem 2 also follows
from condition (C2) - to see this it is enough to note that for any k ∈ N
we can simply put tkn = n to have that almost all elements of the sequence
{Skn}n∈N are equal to 0. In fact, for a fixed k0 ∈ N, as the family {Uk0 }k∈N
is decreasing and (Tt, νt) ∈ Ukt0 with kt → ∞ , we have that (Tt, νt) ∈ Uk00

for all t big enough. Thus the corresponding sets {Ck0n }n are empty for n
big enough (as Ck0n denote the indexes between the n-th and the (n+ 1)-th

visit of the sequence (Tt, νt) in Uk00 ). �

Before we recall the result which concerns the supermartingale situation
as a special case of Theorem 2.

Theorem 4 ([28]). Assume that U0 ⊂ T ×N is a compact set such that the
following conditions are satisfied:

(A) for any (T, ν) ∈ U0 and x ∈ A, f ◦ T is upper semi–continuous in
(x, y) for any y from some set of full measure ν,

(B) for any x ∈ A and t ∈ N,

(3.3)

∫
B

f(Tt(x, y))vt(dy) ≤ f(x),

(C) for any (T, ν) ∈ U0 and x ∈ A \A∗

(3.4)

∫
B

f(T (x, y))v(dy) < f(x)
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If the sequence (Tt, νt) contains a subsequence (Ttn , νtn) ∈ U0, then

d(Xt, A
?) −→ 0 and f(Xt) −→ 0 almost sure.

Proof. To show that assumptions of Theorem 2 hold true it is enough to
define the decreasing family of compact sets {Uk0 }k∈N by Uk0 = U0. Condition
(B1) is satisfied as (Tt, νt) ∈

⋂
δ>0

U(δ), t ∈ N. Condition (A1) thus follows

from (A). Condition (C1) is also easy to verify as the set U0 contains a
subsequence (Ttk , νtk) and again (Tt, νt) ∈

⋂
δ>0

U(δ), t ∈ N. The assumptions

of Theorem 2 are thus satisfied which leads to Ed(Xt, A
?)

t→∞→ 0. Theorem
1 finishes the proof as from equation (3.2) it follows that under condition
(B) the sequence f(Xt) is a supermartingale. �

4. Simulated Annealing.

This section applies Theorem 3 to the Simulated Annealing algorithm
which illustrates the functionality of the presented methodology. This op-
timization method is inspired by the physical procedure called annealing
which is used to remove defects from metals and crystals by heating and
slow re-cooling the materials so they could lower the energy configuration.
According to the physical interpretation, a point x ∈ A corresponds to
the configuration of the atoms of a substance and f(x) determines the en-
ergy of the configuration. At every step t, the algorithm which currently
is at state xt generates a candidate Q(xt, ·) for the next state. The can-
didate is accepted with the probability pt(∆) which depends on the value
∆ = f(xt)− f(Q(xt, ·)). The better points (∆ ≤ 0) are accepted with prob-
ability one but in case ∆ > 0 the acceptance probability is still positive.
One of the crucial convergence assumptions is that for any ∆ < 0 the ac-
ceptance probabilities pt(∆) converge to 0 as the iteration number t goes to
infinity. A standard formula for the acceptance probabilities pt is given by
the Metropolis function pt(∆) = min{1, exp(− 1

βt
·∆)}, where the sequence

βt > 0 is called a “cooling schedule” and converges to zero.
The method is very popular and has been widely analyzed from both

numerical and theoretical perspective. This section presents the conver-
gence result for an algorithm with standard Metropolis formula for accep-
tance probabilities, deterministic cooling schedule and a general regularity
assumption on the candidate function Q. One can compare the presented
methodology and the obtained convergence result with the results and tech-
niques of many papers regarding SA, including papers [19], [20], [4],[21],[22],
[1]. As one can see in those papers various relations between the cooling
schedule βt and candidate function Q determine (or exclude) convergence.
Theorem 5 presented here provides general conditions under which the con-
dition βt → 0 is enough to guarantee global convergence (more common
approach makes some assumptions on the βt convergence rate to ensure the
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global convergence). The crucial convergence assumption of Theorem 5 is
P (f(Q(x, Yt) < f(x)) > 0 for x /∈ A?.

Below we construct a formal model of the algorithm which satisfies equa-
tion (3.1). Let A ⊂ Rn be a compact metric space and let B̄ be a separable
metric space. Let M > 0 and let B = B̄ × [0, 1] × [0,M ]. Let ξt : Ω → B̄,
t ∈ N, be an i.i.d. sequence distributed according to some ν̄ ∈ M(B̄) and
let rt : Ω → [0, 1], t ∈ N, be an i.i.d. sequence with uniform distribution.
Let [0,M ] 3 βt be a sequence with lim

t→∞
βt = 0 and let Q : A × B̄ → A be

measurable. Now we can define the mapping T : A×B → A as:

T (x, ξ, r, β) =


Q(x, y), if f(Q(x, y)) ≤ f(x)

Q(x, y), if f(Q(x, y)) > f(x) ∧ r ≤ exp(− 1
β · |f(Q(x, y))− f(x)|)

x, otherwise

If β = 0, then in the above formula we put − 1
β = −∞ and exp(−∞) = 0.

The Simulated Annealing algorithm Xt : Ω→ A is defined by:

Xt+1 = T (Xt, ξt, rt, βt),

where X0 is a random variable independent of the sequence {ξt, rt}t∈N.

Theorem 5. Let f : A → R be a continuous function given on a compact
metric space A. Assume that for any x ∈ A, ν̄(Df◦Q(x)) = 0, where Df◦Q(x)
is the set of y ∈ B̄ such that f ◦ Q is not continuous at (x, y). Assume
additionally that for any x ∈ A \A?,
(4.1) ν̄({y ∈ B̄ : f(Q(x, y)) < f(x)}) > 0.

Then,

Ed(Xt, A
∗)

t→∞−→ 0 and Ef(Xt)
t→∞→ 0.

Proof. First note that the probability distribution νt of the random vector
Yt = (ξt, rt, βt) satisfies νt = ν̄×ud×δβt ∈M(B), where ν̄ is the distribution
of ξt and ud = U(0, 1). For k ∈ N we define

M(B) ⊃ U (2)
k = {ν̄ × ud × δβ : β ∈ [0, βk]} and Uk = {T} × U (2)

k .

We will show that there is an increasing sequence nk ∈ N with Unk
⊂

U0( 1
k ), k ∈ N such that the sets

Uk0 := Unk
⊂ U0(

1

k
)

satisfy the assumptions of Theorem 3.
First note that for any k ∈ N the set Uk is compact as the continuous

image of an interval [0, βk] and any family of the form {Unk
}k∈N is decreasing

if the sequence nk satisfies βnk
↘ 0. We will show now that any family of

the form {Unk
}k∈N satisfies condition (A1), i.e. we will prove that for any

β ∈ [0,M ] we have the following:

(�) (ν̄ × ud × δβ)(Du
f◦T (x)) = 0 for any x ∈ A.
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Fix x ∈ A and β ∈ [0,M ]. We need to show that the function f ◦ T is
continuous at (x, ξ, r, β) for (ν̄×ud)−almost any (ξ, r). Fix ξ ∈ B̄ such that
f ◦Q is continuous at (x, ξ). We have f ◦ T (x, ξ, ·, β) ∈ {f(x), f(Q(x, ξ))}.
Fix r ∈ [0, 1] and let zn = (xn, ξn, rn, βn) → (x, ξ, r, β) = z. If f(x) >
f(Q(x, ξ)) then condition (�) is satisfied by the continuity of f at x and
f ◦ Q at (x, ξ) as for n big enough we will have f(xn) > f(Q(xn, ξn))
and f(T (zn)) = f(Q(xn, ξn)) → f(Q(x, ξ)) = f(T (z)). The case f(x) =
f(Q(x, ξ)) is even more straightforward. It remains to consider the inequal-
ity f(x) < f(Q(x, ξ)). For simpler notation, define:

∆f(x, ξ) = |f(Q(x, ξ))− f(x)|, x ∈ A, ξ ∈ B.

It is enough to consider two cases: r < exp(− 1
β∆f(x, ξ)) and r > exp(− 1

β∆f(x, ξ)).

In both situations the required condition (�) is satisfied because of the
continuity of functions: (x, ξ, β) −→ exp(− 1

β∆f(x, ξ)), f and the conti-

nuity of f ◦ Q at point (x, ξ) (the argument is very similar to the the case
f(x) > f(Q(x, ξ))). Thus, for any x ∈ A we have that for any β ∈ [0,M ],
ξ ∈ B̄ such that f ◦ Q is continuous at (x, ξ) and any r ∈ [0, 1] with
r 6= exp(− 1

β∆f(x, ξ)) the function f ◦ T is continuous at point (x, ξ, r, β).

Thus those ξ and r, which satisfy the desired continuity assumption, form
a set of full measure.

It remains to prove condition (C2). Fix k ∈ N. Recall that
Un = {(T, ν̄ × ud × δβ) : β ≤ βn}. As βn → 0, to prove condition (C2) it
will be enough to show that for any k ∈ N and any n ≥ n̄k ∈ N big enough
we have 

(?)
∫̄
B

f(T (x0, y))ν(dy) < f(x0), for x0 ∈ A( 1
k )′

(??)
∫̄
B

f(T (x0, y))ν(dy) ≤ 1
k , for x0 ∈ A( 1

k ).

for all (T, ν) from Un. For any x ∈ A and β ∈ [0,M ] letA1(x), A2(x, β), A3(x, β) ⊂
B̄ × [0, 1] be defined as:

• A1(x) = {(ξ, r) : f(Q(x, ξ)) ≤ f(x)},
• A2(x, β) = {(ξ, r) : f(Q(x, ξ)) > f(x) ∧ r > exp(− 1

β ·∆f(x, ξ))},
• A3(x, β) = {(ξ, r) : f(Q(x, ξ)) > f(x) ∧ r ≤ exp(− 1

β ·∆f(x, ξ))}.
For x ∈ A, β ∈ [0,M ] and n ∈ N let:

• A1
3(x, β, n) = A3(x, β) ∩ {∆f(x, ξ) ≤ 1

n},
• A2

3(x, β, n) = A3(x, β) ∩ {∆f(x, ξ) > 1
n}.

Note that for any x ∈ A, β ∈ [0,M ] and n ∈ N, we have:

A3(x, β) = A1
3(x, β, n) ∪A2

3(x, β, n).

Let:

I(x) =
∫

A1(x)

f(Q(x, ξ))(ν̄×ud)(dξ, dr) =
∫

{ξ : f(Q(x,ξ))≤f(x)}
f(Q(x, ξ))ν̄(dξ),
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IIβ(x) =
∫

A2(x,β)

f(x)(ν̄ × ud)(dξ, dr),

IIIβ(x) =
∫

A3(x,β)

f(Q(x, ξ))(ν̄ × ud)(dξ, dr).

III1
3 (x, β, n) =

∫
A1

3(x,β,n)

f(T (x, ξ, r, β))(ν̄ × ud)(ξ, r),

III2
3 (x, β, n) =

∫
A2

3(x,β,n)

f(T (x, ξ, r, β))(ν̄ × ud)(ξ, r).

For ν = (ν̄, ud, δβ) ∈M(B), n ∈ N and any x ∈ A we have∫
B

f(T (x, y))ν(dy) =

∫
[0,1]

∫
B̄

f(T (x, ξ, r, β))ν̄(dξ)dr =

I(x) + IIβ(x) + IIIβ(x) = I(x) + IIβ(x) + III1
3 (x, β, n) + III2

3 (x, β, n).

Note that for any x, β and n we have

I(x) + IIβ(x) + III1
3 (x, β, n) ≤ I(x) +

(
f(x) +

1

n

)
· (ν × ud)(A1(x)′).

We will show now that for any n ∈ N and x ∈ A( 1
n)′ there is εn > 0 with

(4.2) I(x) + f(x) · (ν × ud)(A1(x)′) < f(x)− εn.

To see this consider T̃ : A×B −→ A defined by

T̃ (x, ξ, r, β) =

{
Q(x, ξ), if f(Q(x, ξ)) ≤ f(x)

x, otherwise.

From assumption (4.1) it follows that

(4.3)

∫
B̄

f(T̃ (x, y))ν(dy) = I(x) + f(x) · (ν × ud)(A1(x)′) < f(x).

Since the function f ◦ T̃ (x, ξ, r, β) = max{f(x), f(Q(x, ξ))} is continuous
at (x, y) ∈ A × B for ν− almost any y = (ξ, r, β) then from Proposition 1

it follows that the function x −→
∫
B

f(T̃ (x, y))ν(dy) upper semi-continuous

and hence the function x −→ f(x)−
∫̄
B

f(T̃ (x, y))ν(dy) is bounded from zero

on a compact set A( 1
n)′ for any n ∈ N. From (4.3) we thus have

I(x)+f(x)·(ν×ud)(A1(x)′) < f(x)−εn for any x ∈ A(
1

n
)′ and some εn > 0,

which proves inequality (4.2).
Fix k ∈ N and let εk satisfies (4.2). We have that for nk ∈ N big enough

and any x ∈ A( 1
k )′:

I(x) +

(
f(x) +

1

nk

)
· (ν × ud)(A1(x)′) < f(x)− εk

2
.



13

For such nk ∈ N, any x ∈ A( 1
k )′ and any β ∈ [0,M ] we thus have

I(x)+IIβ(x)+III1
3 (x, β, n) ≤ I(x)+

(
f(x) +

1

n

)
·(ν×ud)(A1(x)′) < f(x)−εk

2
.

To show condition (?) it is enough to show that for any β small enough
we have:

(4.4) III2
3 (x, β, nk) =

∫
A2

3(x,β,nk)

f(T (x, ξ, r, β))(ν × ud)(ξ, r) ≤
εk
2

As the function f is bounded from above it will be enough to show that
for any β small enough we have (ν×ud)(A2

3(x, β, nk)) ≤ 1
max
x∈A

f(x) ·
εk
2 for any

x. We have

A2
3(x, β, nk) = {(ξ, r) : r ≤ exp(− 1

β
·∆f(x, ξ))} ∩ {∆f(x, ξ) >

1

nk
}

and

{(ξ, r) : r ≤ exp(− 1

β
·∆f(x, ξ))}∩{∆f(x, ξ) >

1

nk
} ⊂ {(ξ, r) : r ≤ exp(− 1

β
· 1
nk

)}

which leads to (ν × ud)(A2
3(x, β, nk)) ≤ exp(− 1

β ·
1
nk

) and proves that condi-

tions (?) is satisfied as exp(− 1
β ·

1
nk

)→ 0 with β → 0+.

We have thus shown that:
(4.5)

∀k ∈ N∃n̄k ∈ N∀n > n̄k∀(T, ν) ∈ Un∀x ∈ A(
1

k
)′
∫
B̄

f(T (x, y))νdy < f(x).

Now we will prove (??). To be more specific, we will show that:
(4.6)

∀k ∈ N∃n̄k ∈ N∀n > n̄k∀(T, ν̄) ∈ Un∀x ∈ A(
1

k
)

∫
B̄

f(T (x, y))ν̄dy ≤ 1

k
.

Fix k ∈ N. First we will show that for β small enough we have IIIβ(x) ≤
3
4k for any x ∈ A( 1

4k ). Fix nk ∈ N such that 1
nk

< 1
4k . From (4.4) for

β ≤ βtk small enough we have III2
3 (x, β, nk) <

1
4k . From the definition

of A1
3(x, β, nk) for any x ∈ A( 1

4k ) we have III1
3 (x, β, nk) ≤ 1

4k + 1
nk
≤ 1

2k .

Hence, for any x ∈ A( 1
4k ), IIIβ(x) ≤ 3

4k and∫
B̄

f(T (x, y))ν̄dy ≤ f(x) + IIIβ(x) ≤ 1

4k
+

3

4k
=

1

k
.

To prove (4.6) it is enough to assume additionally that βtk is small enough
to have equation (4.5) satisfied for any x /∈ A( 1

4k ). We have thus shown that
condition (C2) of Theorem 3 holds true.

�
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5. Weak Convergence, Foias Operators and Optimization

In this section we recall some facts about weak convergence of Borel prob-
ability measures, [7, 12], and some properties of Foias operators which are
induced by equation (3.1) (the use of Poias operators in other contexts one
can see in [18, 37]). This section also introduces further notation.

Let (S, dS) be a separable metric space and let B(S) denote the sigma-
algebra of Borel subsets of S. By M(S) we will denote the space of Borel
probability measures on S. A sequence µn ∈ M(S) weakly converges to
some µ ∈M(S) iff for any bounded continuous function h : S → R we have

(5.1)

∫
S

h dµn →
∫
S

h dµ, as n→∞.

Another equivalent condition for the weak convergence is that the sequence
µn ∈M(S) converges to some µ ∈M(S) iff for any upper semi–continuous
function h : S → R bounded from above we have

(5.2) lim sup
n→∞

∫
S

hdµn ≤
∫
S

hdµ, as n→∞.

The mapping S 3 s −→ δs ∈ M(S), where δs denotes a Dirac mea-
sure concentrated on the point s ∈ S, is continuous and injective. The
weak topology on M(S) is separable and additionally, if we assume that
the metric space S is compact then M(S) is compact. Let S1 and S2

be separable metric spaces. For any h : S1 → S2, we will write Dh =
{x ∈ S1 : h is not continuous in x}. If S2 = R, then we write Du

h =
{x ∈ S1 : h is not upper semi–continuous in x}. Weak convergence condi-
tion given by (5.2) can be rather easily strengthened to the form presented
in the following lemma (standard argument can be found, for example, in
[28], Lemma 2).

Lemma 1. Assume that µn is a sequence of Borel probability measures
on a metric space S with µn → µ for some µ ∈ M(S). Then for any
bounded from above and measurable function h : S → R, if µ(Du

h) = 0, then
lim sup
n→∞

∫
S

hdµn ≤
∫
S

hdµ.

If h : S1 → S2 is a Borel function, then for any µ ∈M(S1), µh−1 denotes
a Borel probability measure on S2, defined by µh−1(C) = µ

(
h−1(C)

)
, for

any C ∈ B(S2). As S1 and S2 are separable, we have B(S1 × S2) = B(S1)⊗
B(S2) = Σ(A1 × A2 : A1 ∈ S1, A2 ∈ S2). For µ ∈ M(S1) and ν ∈ M(S2),
µ× ν denotes the Cartesian product of measures µ and ν, which is uniquely
characterized by (µ×ν)(C×D) = µ(C)·ν(D), for all C ∈ B(S1), D ∈ B(S2).
Finally, as S is separable, the topology of weak convergence on M(S) is
metrizable and one of available metrics is Prohorov metric:

dM (ν1, ν2) = inf{ε > 0: ν1(D) ≤ ν2(D(ε)) + ε for any Borel set D},
where D(ε) = {x ∈ S : dS(x, y) < ε for some y ∈ D}.



15

Now we recall assumptions of Section 3: it is assumed that A is a compact
metric space, the spacesM =M(A) and N =M(B) are equipped with the
Prohorov metric and T =M(A×B;A) are measurable operators with the
uniform convergence topology induced by the uniform convergence metric.
The T × N is considered as equipped with the product metric.

For any u = (T, ν) ∈ T × N , by Pu : M 3 µ → Puµ ∈ M we denote a
Foias operator which transforms probability measures on A according to the
following relation:

(5.3) (Pνµ)(C) = (µ× ν)(T−1(C)), for any Borel set C ⊂ A.
The following lemma is the immediate consequence of the above definition.

Lemma 2. Let X : Ω → A and Y : Ω → B be independent random vari-
ables with distributions µ and ν, respectively. Then, T (X,Y ) is distributed
according to P(T,ν)µ. Furthermore, for any continuous function h : A→ R,
by change of variables,

(5.4)

∫
A
hdP(T,ν)µ =

∫
Ω
h (T (X,Y )) dP =

∫
A×B

(h ◦ T )d(µ× ν).

In consequence, if the sequence {µt}t∈N ⊂ M corresponds to probability
distrubutions of the process {Xt}t∈N given by equation (3.1), then we have
µt+1 = Putµt, t ∈ N, where ut = (Tt, νt) and νt is the distribution Yt. Thus
the algorithm’s distrubutions are the trajectories of dynamical system given
by the family of Foias operators determined by (3.1).

Lemma 3 (Theorem 2.8 in [7]). Let µn, νn be sequences of Borel probability
measures on separable metric spaces S1, S2 respectively, with µn → µ and
νn → ν for some µ ∈M(S1) and ν ∈M(S2). Then µn × νn → µ× ν.

Lemma 4 (Theorem 2.7 in [7]). Assume that S1, S2 are metric spaces,
µ ∈ M(S1) and T : S1 → S2 is measurable with µ(DT ) = 0. Then, for any
sequence µn of Borel probability measures on S1, if µn → µ, then µnT

−1 →
µT−1.

Lemmas 1, 3 and 4 lead to the Proposition 1 which explains the regularity
assumption (A) (and thus (A1)) of Section 3 (the detailed proof is presented
in [28], Proposition 2).

Proposition 1. Assume that U0 ⊂ T ×N satisfies the assumption (A) of
Theorem 4. Consider U0 ×M as equipped with the product topology. The
function

U0 ×M 3 (u, µ) −→
∫
A

fdPuµ ∈ R

is upper semi–continuous.

Finally, for a D ∈ B(S) define M?(D) = {µ ∈ M | µ(D) = 1} and
D(ε) =

⋃
d∈D

K(d, ε). The following observation is rather easy to prove.



16

Observation 2 (Folklore). For any sequence µn ∈ M(S) and a set D ∈
B(S) we have

dM (µn,M?(D))→ 0⇐⇒ ∀ε > 0 µn(D(ε))→ 1.

Note that if µt is the sequence of distributions of Xt and D = A? then
the above observation expresses the stochastic global convergence of the
sequence Xt in terms of the distributions’ convergence towards the setM? =
M?(A?). The next section will prepare necessary tools for showing that
under assumptions of Theorem 2 the set M? is a global attractor for the
dynamical system induced by the Foias operators corresponding to equation
(3.1). In other words, Section 7 will show that if the sequence ut = (Tt, νt)
determined by (3.1) satisfies assumptions of Theorem 2 for some decreasing
family of compact sets {Uk0 }, k ∈ N, then any sequence µt ∈ M defined by
µt+1 = Putµt converges towards M?.

6. Some Concepts of Dynamical Systems in Metric Spaces

The ideas used for proving Theorem 2 are presented in this section and
are formulated in the language of the discrete time nonautonomous systems,
see [17]. For the general stability concepts of (continuous time) topological
dynamical systems we refer to [6].

Let (X, d) be a metric space and let ϕ : X → X be a given map. We
do not assume that ϕ is continuous or invertible. According to [30], the
mapping ϕ induces a discrete–time pseudo–dynamical semi–system on X.
For any x ∈ X its orbit is given by o(x) = {ϕ0(x), ϕ(x), ϕ2(x), . . .}, where
ϕ0(x) = x and ϕt+1(x) = ϕ(ϕt(x)). Let ∅ 6= K ⊂ X be a closed set. We say
that a point x ∈ X is attracted to K iff d(ϕt(x),K) −→ 0. We will shortly
say that a set D ⊂ X is attracted to K if it satisfies

d(ϕt(x),K)
t→∞−→ 0, for any x ∈ D,

i.e. any point x ∈ D is attracted to K.
Note that we do not assume in the above definitions that K is positively

invariant under ϕ (we do not assume that ϕ(K) is a subset of K) or stable.
Recall that K is stable iff

∀ε > 0∃δ > 0∀x ∈ K(δ), o(x) ⊂ K(ε),

where K(ε) = {x ∈ X : d(x,K) < ε}. The tools for examining the at-
tractiveness, presented in this section, are based on the Lyapunov function
technique. Untypically, we will not assume that the Lyapunov function is
monotonically decreasing along trajectories as a more general concept is nec-
essary for further use.

Assume that the function W : X → [0,∞) satisfies:

(1) W (x) = 0, for x ∈ K,
(2) W (x) > 0, for x ∈ X \K.
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For any ε > 0 we write

W (ε) = {x ∈ X : W (x) < ε}.
It is a simple observation that if the following conditions:

(6.1) ∀ε > 0 ∃δ > 0 W (δ) ⊂ K(ε),

(6.2) ∀δ > 0 ∃ε > 0 K(ε) ⊂W (δ),

are satisfied, then

d(ϕt(x),K)→ 0⇐⇒W (ϕt(x))→ 0.

Note that if X is compact and W is continuous then conditions (6.1) and
(6.2) are satisfied - this follows from the uniform continuity of W and the
sequential compactness of K.

The observation below concerns a property of a closed set K weaker than
a standard stability concept.

Observation 3. Let the conditions (6.1) and (6.2) be satisfied and let D0 ⊂
X. Assume additionally that for some sequence εs → 0+ and any x ∈ D0

the function W satisfies

(6.3) ∀t ∈ N ∀s ∈ N, W (ϕt(ϕs(x))) ≤W (ϕs(x)) + εs.

Then,

∀ε > 0 ∃ε0 > 0 ∃s0 > 0 ∀s > s0 ∀x ∈ K(ε0) ∩ ϕs(D0), o(x) ⊂ K(ε).

If the function W decreases along trajectories, i.e. εs = 0 for s ∈ N and
D0 = X,then the set K is positively invariant and stable.

Proof. If ε > 0 then from (6.1) and (6.2) it follows that there are δ > 0 and
ε0 > 0 with K(ε0) ⊂ W ( δ2) ⊂ W (δ) ⊂ K(ε), which implies o(x) ⊂ W (δ) ⊂
K(ε) for any x ∈ K(ε0) ∩ ϕs(D0), where s is big enough to have εs <

δ
2 .

Under the additional assumption εs = 0 and D0 = X we have εs <
δ
2 for any

s which proves the stability of K. The invariantness is also a straightforward
consequence of the monotonicity of the sequence W (ϕs(x)), x ∈ X, as K is
the set of global minimums of W . �

Lemma 5. Let W : X → [0,+∞) be a continuous function with W−1({0}) =
K and let D ⊂ X, ε > 0 be such that:

(6.4) W (ϕs(x)) ≤W (x) + ε for any x ∈ D and s ∈ N.
Let S ⊂ X be such that for any x ∈ X, o(x) ∩ S 6= ∅. Assume that for

some δ > 0 and ε0 > ε we have

(6.5) ∀x ∈ S \W (δ) W (ϕ(x)) < W (x)− ε0.

Then
lim sup
t→∞

W (ϕt(x)) ≤ δ + ε for any x ∈ D.
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Proof. From (6.4) it is enough to show that for any x ∈ D there is s ∈ N
with ϕs(x) ∈ W (δ). Assume for a contradiction that W (ϕs(x0)) ≥ δ for
some x0 ∈ D and any s ∈ N. Hence, as o(x) ∩ S 6= ∅, x ∈ X, there exists
a susbequence ϕkn(x0) of {ϕk(x0)}k∈N with ϕkn(x0) ∈ S \W (δ). But for
s ≥ 1 we have

W (ϕs(x0)) = W (x0)−
s−1∑
i=0

(
W (ϕi(x0))−W (ϕi+1(x0))

)
.

From (6.4) and (6.5) it follows that W (ϕk1(x)) ≤ W (x) − (ε0 − ε) and,
by induction, W (ϕkn(x0)) ≤ W (x0) − n · (ε0 − ε). As ε0 > ε, it leads to

W (ϕkn(x0))
k→∞→ −∞, a contradiction. �

Theorem 6. Let W : X → [0,+∞) be a continuous function with Wmin = 0
and let D0 ⊂ X be such that for any x ∈ D0 and s ∈ N, t ∈ N

(6.6) W (ϕt(ϕs(x))) ≤W (ϕs(x)) + εs,

where εs > 0 is a sequence with εs → 0. Let δ > 0, S ⊂ X, S′ ⊂ X be such
that S′ is compact and

(1) o(x) ∩ S 6= ∅ for any x ∈ X,
(2) W (ϕ(s)) < W (s) for any s ∈ S′ \W (δ),
(3) W ◦ ϕ : X → R is upper semi–continuous on S′,
(4) there exists a function ψ : S → S′ with W |S= W ◦ψ and W ◦ϕ |S=

W ◦ ϕ ◦ ψ
Then lim sup

t→∞
W (ϕt(x)) ≤ δ for any x ∈ D0.

Proof. Fix δ1 > 0 and x ∈ D0. We will show that lim sup
t→∞

W (ϕt(x)) ≤

δ + δ1. First note that since for any s ∈ S, W (s) = W (ψ(s)), we have
ψ (S \W (δ)) ⊂ S′ \ W (δ). The compactness of S′ and the continuity of
W imply that S′ \ W (δ) is compact. Furthermore, by (2) and (3), the
function W −W ◦ ϕ is lower semi–continuous and positive on S′ \W (δ).
In consequence, it is bounded from zero on S′ \ W (δ) (from Weierstrass
theorem a lower semi-continuous function attains its infimum on a compact
set). Thus, for some positive ε0 > 0 we have

W (x)−W (ϕ(x)) > ε0 for any x ∈ S \W (δ).

From (6.6) it follows that for s ∈ N greater from some s0 big enough we
have

W (ϕt(ϕs(x))) ≤W (ϕs(x)) + min{δ1,
ε0

2
}, x ∈ D0.

Now we can use Lemma 5 as set S, constant ε0 > 0, the set D = ϕs0(D0)
and ε = min{δ1,

ε0
2 } satisfy the assumptions. �

Let (U , dU ) be a metric space and let (M, d) be a compact metric space.
Let θ : U 3 u → θu ∈ U and Π : U ×M : (u,m) → Πum ∈ M be given
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maps. We define Πt : U ×M 3 (u,m)→ Πt
um ∈M, t ∈ N by the following

formula:

(6.7) Π0(u,m) = m and Πt+1
u m = ΠθtuΠ

t
um, where θ0u = u.

In other words: Πt
um = (Πθt−1u ◦Πθt−2u ◦ . . . ◦Πu) (m), t ≥ 1. Fix

u ∈ U . By equation (6.7), Π and θ determine a non–autonomous pseudo–
dynamical system on M. Space U can be called a base space and space X
can be called a state space. The orbit of an element m ∈ M is given by
ou(m) = {Πt

um : t = 0, 1, 2, . . .}. The pair (θ,Π) forms the skew-product
flow ϕ : U ×M −→ U ×M according to the relation ϕ(u,m) = (θu,Πum),
this general construction is featured, for example, in [17]. The following the-
orem provides the sufficient conditions for the attractiveness and a stability
type property of a closed set M? ⊂M in this context.

Theorem 7. Let U0 ⊂ U , ∅ 6=M? ⊂M and let V : M→ R be a continuous
function such that:

(1) V (m) = 0 for m ∈M∗,
(2) V (m) > 0 for m ∈M \M∗,
(3) V (Πt

φsuΠ
s
um) ≤ V (Πs

um) + εs for any t ∈ N, s ∈ N, u ∈ U0 and

m ∈M, where εs → 0+.

Assume that for any k ∈ N there are sets U0( 1
k ) ⊂ U and U ′0( 1

k ) ⊂ U such

that U ′0( 1
k ) is compact and:

(a) for any u ∈ U there is s ≥ 0 with θsu ∈ U0( 1
k ),

(b) for any u ∈ U ′0( 1
k ) and m ∈M \ V ( 1

k ), V (Πum) < V (m),

(c) V ◦Π : U ×M→ R is upper semi–continuous on U ′0( 1
k )×M,

(d) there is a function ζk : U0( 1
k ) → U ′0( 1

k ) such that for u ∈ U0( 1
k ) and

m ∈M

(6.8) V (Πum) = V (Πζk(u)m)

Then, for any u ∈ U0 and m ∈M,

d(Πt
um,M∗)→ 0, as t→∞, and V (Πt

um)→ 0, as t→∞.

Furthermore, for any ε > 0 there is δ > 0 and s0 such that for any s > s0

and u ∈ U0 we have

d(Πt
θsum,M?) < ε, t ∈ N, for any m ∈M?(δ) ∩Πθsu(M).

Proof. Let X = U ×M be the product metric space and let the product
mapping ϕ : X → X be as follows

ϕ(u,m) = (θu,Πum).

Clearly ϕt(u,m) = (θtu,Πt
um) and ϕt+s(u,m) = (θt+su,Πt

θsuΠ
s
um). Let

K = U ×M∗ and let

W : X 3 (u,m)→ V (m) ∈ R.
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We will take advantage of Theorem 6. It is clear that W−1(0) = K. From
condition (3) it follows that equation (6.6) is satisfied with D0 = U0 ×M.
Fix k ∈ N. Define S = U0( 1

k ) ×M and S′ = U ′0( 1
k ) ×M. Clearly S′ is

compact and, by (a), o(x) ∩ S 6= ∅ for any x = (u,m) ∈ X. From (b),
W (ϕ(u,m)) < W (u,m) for any (u,m) ∈ S′ \W ( 1

k ) = U ′0( 1
k )× (M\ V ( 1

k )).
Furthermore, since W ◦ ϕ = V ◦ Π, then, by (c), W ◦ ϕ is upper semi–
continuous on S′. Let

ψ : S 3 (u,m)→ (ζk(u),m) ∈ S′.
For any (u,m) ∈ S, by the definitions of W and ψ, and (d),

W (u,m) = V (m) = W (ζk(u),m) = W (ψ(u,m))

and

W (ϕ(u,m)) = V (Πum) = V (Πζk(u)m) = W (ϕ(ζk(u),m)) = W (ϕ(ψ(u,m))).

The assumptions of Theorem 6 are satisfied and hence lim sup
t→∞

W (ϕt(x)) ≤
1
k . We thus have lim sup

t→∞
V (Πt

um) ≤ 1
k . Letting k → ∞ we obtain that

V (Πt
um)→ 0. To prove the remaining part ot the theorem, note that since

M is compact and V is continuous, the function W and the system ϕ on
X satisfy equations (6.1) and (6.2). Now we apply Observation 3 to the
function W , the system ϕ and the set D0, which finishes the proof. �

7. The Proof

In this section we prove Theorem 2. We will work under notation of
Section 3. First recall that for any δ > 0 the sets U(δ) ⊂ T × N and
U0(δ) ⊂ T ×N are defined as follows:

T × N ⊃ U(δ) 3 (T, ν)
def⇐⇒


∫
B

f(T (x, y))v(dy) ≤ f(x) for x /∈ A(δ)∫
B

f(T (x, y))v(dy) ≤ δ for x ∈ A(δ)

T × N ⊃ U0(δ) 3 (T, ν)
def⇐⇒


∫
B

f(T (x, y))v(dy) < f(x) for x /∈ A(δ)∫
B

f(T (x, y))v(dy) ≤ δ for x ∈ A(δ).

Now we recall the theorem.

Theorem 8. Assume that we have a decreasing family of compact sets
{Uk0 }k∈N with Uk0 ⊂ U0( 1

k ), k ∈ N, and a sequence {δt}t∈N ⊂ R such that
the following conditions are satisfied:

(A1) for any k ∈ N, any pair (T, ν) ∈ Uk0 and x ∈ A, the f ◦ T is upper
semi–continuous at (x, y) for ν-almost any y from B,

(B1) ∀t ∈ N (Tt, νt) ∈ U(δt) and lim
t→∞

δt = 0,
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(C1) for any k ∈ N the sequence (Tt, νt) contains a subsequence (Ttkn , νtkn) ∈
Uk0 such that lim

n→∞
Skn = 0, where:

Skn =

tkn+1−1∑
i=tkn+1

δi.

Then

Ed(Xt, A
∗)

t→∞−→ 0 and Ef(Xt)
t→∞−→ 0.

We will start the proof with Lemma 6. Let

V : M3 µ −→
∫
A

fdµ ∈ [0,∞), where M =M(A),

and let

V (
1

k
) = {µ ∈M : V (µ) <

1

k
} and V (

1

k
)′ =M\ V (

1

k
).

Lemma 6. We have

∀k ∈ N ∃nk ∈ N ∃ε̄k > 0 ∀u ∈ Unk
0 ∀µ ∈ V (

1

k
)′, V (Puµ) < V (µ)− ε̄k,

where Pu : M→M denotes the Foias operator.

Proof. Fix k ∈ N. At first note that for any n ∈ N, u = (T, ν) ∈ U0( 1
n) and

µ ∈M we have:

(7.1) V (Puµ) =

∫
A

fdPuµ =

∫
A( 1

n
)

fdPuµ+

∫
A( 1

n
)′

fdPuµ ≤
1

n
+

∫
A( 1

n
)′

fdPuµ.

Now, note that the function

V : Uk0 ×A 3 ((T, ν), x)→
∫
B

f(T (x, y))v(dy) ∈ R

is upper semi–continuous. In fact, the function X 3 x→ δx ∈ M is contin-
uous and

V ((T, ν), x) =

∫
B

f(T (x, y))v(dy) =

∫
A

∫
B

f(T (z, y))v(dy)δx(dz) =

∫
A

fdP(T,ν)δx.

Thus, the upper semi-continuity follows from Proposition 1. Now, since
Uk0 ⊂ U0( 1

k ) and Uk0×A( 1
k )′ is compact, and V (u, x) =

∫
A

fdPuδx =
∫
B

f(T (x, y))ν(dy) <

f(x) for any x ∈ A( 1
k )′ and u = (T, ν) ∈ Uk0 , we have that the function

(T, ν, x) −→ f(x)−
∫
B

f(T (x, y))ν(dy)
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is bounded from zero on the set Uk0×A( 1
k )′. In other words, for any x ∈ A( 1

k )′

and u ∈ Uk0 , we have f(x)−
∫
B

f(T (x, y))ν(dy) > εk for some εk > 0 and, in

consequence, for any µ ∈M,∫
A( 1

k
)′

fdµ−
∫

A( 1
k

)′

fdPuµ =

∫
A( 1

k
)′

f(x)µ(dx)−
∫

A( 1
k

)′

∫
B

f(T (x, y))ν(dy)µ(dx) ≥ εkµ(A(
1

k
)′).

Now, note that there is ε > 0 such that for any µ ∈ V ( 2
k )′ we have

µ(A( 1
k )′) > ε > 0. In fact, if µn ∈ V ( 2

k )′ is a sequence with µn(A( 1
k )′)

n→∞→ 0,
then

lim sup
n→∞

∫
A

fdµn = lim sup
n→∞

∫
A( 1

k
)

fdµn ≤
1

k
,

a contradiction with µn ∈ V ( 2
k )′. Furthermore, for any n ≥ k we have

Un0 ⊂ Uk0 and, for any µ ∈ V ( 2
k )′, µ(A( 1

n)′) ≥ µ(A( 1
k )′) > ε. Thus for any

n ≥ k, u = (T, ν) ∈ Un0 and µ ∈ V ( 2
k )′,∫

A( 1
k

)′

fdµ−
∫

A( 1
k

)′

fdPuµ ≥ εk · ε > 0.

Hence, by (7.1), for n ≥ k, u ∈ Un0 and µ ∈ V ( 2
k )′, we have

V (Puµ) ≤ 1

n
+

∫
A( 1

n
)′

fdPuµ ≤
1

n
+

∫
A( 1

n
)′

fdµ− εk · ε ≤ V (µ) +
1

n
− εk · ε.

Thus, for n̄k ∈ N big enough we have that V (Puµ) < V (µ) − δ̄k for any
µ /∈ V ( 2

k ), u ∈ U n̄k
0 and some δ̄k > 0. This finishes the proof of the lemma as

constant k ∈ N was chosen arbitrarily and constants nk = n̄2k and ε̄k = δ̄2k

satisfy the lemma’ thesis. �

Proof of Theorem 2. . The proof will be based on Theorem 7. Recall
that the space M =M(A), equipped with the weak convergence topology,
is compact. Let U = T × N and let

U = {u ∈ UN : ∃{tk}k∈N utk ∈ U
k
0 }

be a metric space with the product metric dU , which is defined by

dU (u, v) =
∞∑
i=0

2−idU (ui, vi),

where dU : U × U → R is a metric compatible with the topology on U . For
u = (u0, u1, . . . ) ∈ U we will use the following notation:

(B1)(u) ≡ ∀t ∈ N ut ∈ U(δt),
(C1)(u) ≡ ∀k ∈ N ∀n ∈ N utkn ∈ U

k
0 ,
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where {δt}t∈N and {tkn}n∈N are sequences from assumptions of Theorem 2.
Let

U0 = {u = (u0, u1, . . .) ∈ U : conditions (B1)(u) and (C1)(u) are satisfied }

Obviously assumptions of Theorem 1 imply that the sequence ut = (Tt, νt)
belongs to U0. Let θ : U → U be a shift map, defined by

θ(u0, u1, . . .) = (u1, u2, . . .)

and let Π : U ×M→M be as follows

Π : U ×M 3 ((u0, u1, . . .), µ) −→ Pu0µ ∈M.

Recall that Πt, defined by equation (6.7), satisfies Πt+1
u = Πθtu ◦ Πt

u =
Put ◦ Πt

u. Note that if µt = PXt denote the distributions of the sequence
Xt then from Lemma 2 it follows that Πt

u(µ0) = µt, where u = (Tt, νt)
∞
t=0.

Recall that V : M→ R and M? ⊂M are defined as

V (µ) =

∫
A

fdµ and M? =M?(A?).

We assumed that f is continuous (and bounded as A is compact), there-
fore the continuity of V follows directly from the definition of weak con-
vergence. It is easy to see that V satisfies assumptions (1),(2) of Theo-
rem 7. In fact, µ ∈ M?(A?) iff µ(A?) = 1. For any x ∈ A, f(x) ≥ 0
and f(x) = 0 ⇔ x ∈ A?, and hence for any µ from M, V (µ) ≥ 0 and
V (µ) = 0⇔ µ(A?) = 1⇔ µ ∈M?.

Now we define

U0(
1

k
) = Unk

0 × U
N and U ′0(

1

k
) = Unk

0 × U
nk+1

0 × Unk+2

0 × . . . ,

where nk is a sequence as in Lemma 6 and {Uk0 }k∈N is a family from the
assumptions of Theorem 2. Recall that compactness of sets Unk

0 implies
that U ′0( 1

k ) is compact. We will show now that for any k ∈ N, U0( 1
k ) and

U ′0( 1
k ) satisfy the assumptions (a),(b),(c),(d) of Theorem 7. Assumption (a)

follows directly from the definitions of U , U0( 1
k ) and θ. Condition (b) is a

consequence of Lemma 6 as for any u = (u0, u1, · · · ) ∈ U and µ ∈M we have
V (Πuµ) = V (Pu0µ). As the projection U 3 u → u0 ∈ U is continuous, to
check (c) it is enough to note that (V ◦Π)(u, µ) =

∫
A

fdPu0µ, u ∈ U , µ ∈M

and that from Proposition 1 it follows that the function (u0, µ) −→
∫
A

fdPu0µ

is upper semi-continuous on Unk
0 ×M for any k ∈ N.

To show condition d) fix k ∈ N and a sequence w = (w0, w1, . . . ) ∈ U ′0( 1
k )

and define

ζk : U0(
1

k
) 3 u −→ (u0, w1, w2, . . . ) ∈ U ′0(

1

k
).
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To see d) it is enough to note that for any u ∈ U and µ ∈M we have:

V (Πuµ) =

∫
A

fdPu0µ = V (Πζk(u)µ).

It remains to show condition (3). Fix ε > 0. We need to show that for all
s > s0 big enough we have V (Πt

φsuΠ
s
uµ) ≤ V (Πs

uµ) + ε, for any µ ∈ M,
u ∈ U0 and t ∈ N. It will be enough to show that for all s > s0 big
enough,u ∈ U0 and µ ∈M we have

(7.2) V (Pus+t . . . Pus+2Pus+1µ) < V (µ) + ε, t ∈ N.

Let k0 be such that 1
k0
< ε

4 and let ε0 > 0 satisfy

ε0 < inf{
∫
fdµ−

∫
fdPuµ : u ∈ Unk0

0 , µ ∈ V (
1

k0
)′}

(for example we can take ε0 = ε̄k0 from Lemma 6). As {ut}t ⊂ U0 there is

a subsequence uts of ut such that uts ∈ U
nk0
0 and that Ss =

ts+1−1∑
i=ts+1

δi → 0 as

s→∞. We can assume that t0 is big enough to have

Ss =

ts+1−1∑
i=ts+1

δi < min{ε
2
,
ε0

2
}, s ∈ N.

Note that to show (7.2) it is enough to show that for any s ∈ N and any
0 < i < ts+1 − ts we have

(7.3) V (Pu(ts+i)
. . . Pu(ts+2)

Pu(ts+1)
µ) < V (µ) +

ε

2
, µ ∈M

and

(7.4) V (Put(s+1)
. . . Put(s)+2Put(s)+1µ) < max{V (µ),

ε

2
}, µ ∈M.

In fact, by simple induction, from (7.4) it follows that for any s ∈ N and
k ∈ N we have

V (Put(s+k)
. . . Puts+2Puts+1µ) < max{V (µ),

ε

2
}

and thus from (7.4) and (7.3) easily follows (7.2). To see (7.3) note that if
0 < i < ts+1 − ts then, as ut ∈ U(δt), from (7.1) we easily conclude that

V (Puts+i . . . Puts+1µ) < V (µ)+δts+1+δts+2+· · ·+δts+i ≤ V (µ)+Ss < V (µ)+
ε

2
.

Now, for µ ∈M and s ∈ N, let

µs = Put(s+1)
. . . Puts+1µ and µs−1 = Put(s+1)−1 . . . Puts+1µ

so we have

µs = Put(s+1)
µ(s−1)
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(we put µs−1 = µ if t(s+1) = t(s) + 1). Recall that ut(s+1)
∈ Unk0

0 . We have

either µs−1 ∈ V ( 1
k0

) or µs−1 ∈M \ V ( 1
k0

). In the first case we have

V (µs) ≤ V (µs−1) +
1

k 0
≤ 2

k 0
<
ε

2
.

In the second case, we have

V (µs) < V (µs−1) + Ss − ε0 < V (µs−1)− ε0

2
.

We thus have that

V (µs) = V (Put(s+1)
. . . Puts+2Puts+1µ) < max{V (µ)− ε0

2
,
ε

2
},

which proves (7.4). We thus have that all the assumptions of Theorem 7 is
satisfied. Therefore, the probability distributions µt of Xt weakly converge
towards M?. Observation 1 finishes the proof. �

Below we state an additional stability result which follows from Theorem
7 and the above proof. Let

M?(ε) = {µ ∈M : dM(µ,M?) < ε},

where ε > 0 and dM states for Prohorov metric.

Theorem 9. Let Xt be a process defined by (3.1). Under assumptions of
Thereom 2 we have:

∀ε > 0 ∃δ > 0 ∃t0 ∀t > t0 P (d(Xt, A
?) < δ) ≥ 1− δ =⇒

=⇒ P (d(Xt+s, A
?) < ε) ≥ 1− ε, s ∈ N.

Proof. The objects constructed in the previous proof satisfy the assumptions
of Theorem 7. Hence, as u = (Tt, νt) ∈ U0, the sequence µt ∈ M, defined
by µt+1 = P(Tt,νt)µt and µ0 = PX0 , is such that for any ε > 0 there is δ > 0
such that for any s big enough,

µs ∈M?(δ) =⇒ µs+tM
?(ε), t ∈ N.

The above, expressed in terms of Prohorov metric and the process Xt, takes
the form:

P (d(Xs, A
?) < δ) ≥ 1− δ =⇒ P (d(Xs+t, A

?) < ε) ≥ 1− ε.

�
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8. APPENDIX

Proof of Observation 1. To prove statement (1) note that conditions
A1) and A2) imply that

∀ε > 0 ∃δ > 0 P (Xt ∈ A?(ε)) ≥ P (Xt ∈ A(δ))

and
∀δ > 0 ∃ε > 0 P (Xt ∈ A(δ)) ≥ P (Xt ∈ A?(ε)).

This proves the equivalence between conditions 1a) and 1c). Condition 1c)
means that f(Xt) goes in probability to a one point distributed limit 0 and
thus this is equivalent to the weak convergence expressed in condition 1d).
The equivalence 1a) ⇔ 1b) is a straightforward conclusion of Observation
2 from Section 5. To show the second statement it is enough to note that
for any sequence xt ∈ A we have d(xt, A

?) → 0 ⇔ f(xt) → 0, which
follows directly from A1), A2). To see the third statement it is enough
to notice that under the boundedness assumption the sequences f(Xt) and
d(Xt, A

?) are uniformly integrable and hence the expected value convergence
is equivalent to the convergence in probability in case of both sequences
f(Xt) and d(Xt, A

?). �
Proof of Theorem 1. Based on Observation 1 it is enough to show

equivalence (5)↔ (6). This follows from the Doob’s martingale convergence
theorem as f(Xt) is a supermartignale with 0 ≤ f(Xt) and thus the almost
sure limit lim

t→∞
f(Xt) exists and equals to the stochastic limit. �
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