Sequences.05.11.2013

Sequences.

- **1.** Let a_n be a geometric sequence, defined by $a_{n+1} = q \cdot a_n$, where $q \neq 0$.
 - 1. What is the limit of a_n (consider the case q > 1 and q < 1 separately)
 - 2. What is the formula for a_n (use the induction to prove it)
 - 3. Show that $S_n = a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{q^n 1}{q 1}$. Use the induction.

2.

Find the limit of a sequence a_n , where

1.
$$a_n = \frac{(0,5)^n}{n+1}$$

2. $a_n = \sqrt{3n^2 + 4n - 6} - 2n$
3. $a_n = \frac{2^{2n+1}-7}{2^n+4}$

4.
$$a_n = (4^n + 5^n + 6^n)^{\frac{1}{n}}$$

Hint: use the sandwich theorem (squeeze theorem, 3 sequences theorem)

5. $a_n = (1 + \frac{4}{n})^n$. What is the relation of the sequence a_n with the compound interest formula?

Hint: Use the fact that the number e is a limit of some special sequence

6.
$$a_n = (\frac{n}{n+1})^n$$