## Sequences.

1. Let $a_{n}$ be a geometric sequence, defined by $a_{n+1}=q \cdot a_{n}$, where $q \neq 0$.
2. What is the limit of $a_{n}$ (consider the case $q>1$ and $q<1$ separately)
3. What is the formula for $a_{n}$ (use the induction to prove it)
4. Show that $S_{n}=a_{1}+a_{2}+\cdots+a_{n}=a_{1} \cdot \frac{q^{n}-1}{q-1}$. Use the induction.
5. 

Find the limit of a sequence $a_{n}$, where

1. $a_{n}=\frac{(0,5)^{n}}{n+1}$
2. $a_{n}=\sqrt{3 n^{2}+4 n-6}-2 n$
3. $a_{n}=\frac{2^{2 n+1}-7}{2^{n}+4}$
4. $a_{n}=\left(4^{n}+5^{n}+6^{n}\right)^{\frac{1}{n}}$

Hint: use the sandwich theorem (squeeze theorem, 3 sequences theorem)
5. $a_{n}=\left(1+\frac{4}{n}\right)^{n}$. What is the relation of the sequence $a_{n}$ with the compound interest formula?
Hint: Use the fact that the number $e$ is a limit of some special sequence
6. $a_{n}=\left(\frac{n}{n+1}\right)^{n}$

