Classes 1

1.

1. Let A, B, C be variables with values in the set of students. Every student learns at least two languages from the set $\{L_1, L_2, L_3, L_4\}$. Is the following sentence always true? If A and B learn at least one language together and B and C learn at least one language together then A and C learn at least one language together.

2. Let a, b, c be natural numbers. Is the following sentence true? If b|a and a|a then (ba)|a

If b|a and c|a then (bc)|a.

Remark: symbol b|a means that a is divisible by b. In other words, $a = b \cdot c$ for some natural number c.

3. Is the following sentense a tautology:

1.
$$[(p \lor q) \land \neg p] \Rightarrow q$$

- 2. $[(p \Rightarrow q) \land (q \Rightarrow p)] \Rightarrow (p \lor q)$
- 4. Consider the formula $\Phi(m, x)$ with two real-valued variables m, x:

$$\Phi(m, x) \Leftrightarrow mx^2 + mx + 4 > 0.$$

Which of the sentences are true:

a) $\forall m \forall x \quad \Phi(m, x).$ b) $\forall m \exists x \quad \Phi(m, x).$ c) $\exists m \forall x \quad \Phi(m, x).$ d) $\exists m \exists x \quad \Phi(m, x).$ e) $\forall x \exists m \quad \Phi(m, x).$ f) $\exists x \forall m \quad \Phi(m, x).$

5. On the real plan, draw the set of points with coordinates (x, y) given by the following condition: a) x² + y² ≥ 2;
b) |x| + |y| ≤ 2.

6. Let

$$A = \{(x, y) : y < x\}, \quad B = \{(x, y) : \frac{y}{x} < 1\}.$$

Find and draw the following sets:

$$A \cap B$$
, $A \cup B$, $A \setminus B$, $B \setminus A$.

7. Let

$$A = \{(x,y) : x^2 + y^2 \le 2\}, \quad B = \{(x,y) : x + y > 0\}.$$

Draw the following sets on the real plane:

$$A \cap B$$
, $A \cup B$, $A \setminus B$, $B \setminus A$.

- 8. Using the mathematical induction, show that for any natural number n:
 - 1. $(1+a)^n \ge 1 + na$, where a > -1
 - 2. $1+2+3+\ldots+n = \frac{n(n+1)}{2}$