Classes 1

1.
2. Let A, B, C be variables with values in the set of students. Every student learns at least two languages from the set $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$. Is the following sentence always true? If A and B learn at least one language together and B and C learn at least one language together then A and C learn at least one language together.
3. Let a, b, c be natural numbers. Is the following sentence true?

If $b \mid a$ and $c \mid a$ then $(b c) \mid a$.
Remark: symbol b|a means that a is divisible by b. In other words, $a=b \cdot c$ for some natural number c.
3. Is the following sentense a tautology:

1. $[(p \vee q) \wedge \neg p] \Rightarrow q$
2. $[(p \Rightarrow q) \wedge(q \Rightarrow p)] \Rightarrow(p \vee q)$
3. Consider the formula $\Phi(m, x)$ with two real-valued variables m, x :

$$
\Phi(m, x) \Leftrightarrow m x^{2}+m x+4>0
$$

Which of the sentences are true:
a) $\forall m \forall x \quad \Phi(m, x)$.
b) $\forall m \exists x \Phi(m, x)$.
c) $\exists m \forall x \Phi(m, x)$.
d) $\exists m \exists x \Phi(m, x)$.
e) $\forall x \exists m \Phi(m, x)$.
f) $\exists x \forall m \quad \Phi(m, x)$.
5. On the real plan, draw the set of points with coordinates (x, y) given by the following condition: a) $x^{2}+y^{2} \geq 2$;
b) $|x|+|y| \leq 2$.
6. Let

$$
A=\{(x, y): y<x\}, \quad B=\left\{(x, y): \frac{y}{x}<1\right\}
$$

Find and draw the following sets:

$$
A \cap B, \quad A \cup B, \quad A \backslash B, \quad B \backslash A
$$

7. Let

$$
A=\left\{(x, y): x^{2}+y^{2} \leq 2\right\}, \quad B=\{(x, y): x+y>0\}
$$

Draw the following sets on the real plane:

$$
A \cap B, \quad A \cup B, \quad A \backslash B, \quad B \backslash A
$$

8. Using the mathematical induction, show that for any natural number n :
9. $(1+a)^{n} \geq 1+n a$, where $a>-1$
10. $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
