Temat \mathbf{X}

Continuity continued

1. Where possible, find the upper and lower bounds of the following functions. Indicate which functions actually attain the bounds.

a)
$$f(x) = \frac{1}{1+x^2};$$
 $D_f = \mathbb{R}.$
b) $f(x) = \frac{2}{e^x + e^{-x}};$ $D_f = \mathbb{R}.$
c) $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}};$ $D_f = \mathbb{R}.$
d) $f(x) = x\sqrt{1-x^2};$ $D_f = (-1,1).$
e) $f(x) = \frac{2+x-x^2}{(x-1)^2};$ $D_f = (1,+\infty).$
f) $f(x) = \frac{x^2 + x - 1}{x-1};$ $D_f = (1,+\infty).$
g) $f(x) = \frac{x^2 + x - 1}{x-1};$ $D_f = \mathbb{R} \setminus \{1\}.$
h) $f(x) = \cos \frac{1}{x};$ $D_f = \mathbb{R} \setminus \{0\}.$
i) $f(x) = e^{-x} \cos x;$ $D_f = (0,+\infty).$
j) $f(x) = e^{-x} \cos x;$ $D_f = [0,+\infty).$

2. Determine if the following functions have an inverse. In the cases that they do, give the domain of the inverse function and determine if it is continuous.

a)
$$f(x) = x^2;$$
 $D_f = [-2, 1].$
b) $f(x) = x^2;$ $D_f = [-2, -1].$
c) $f(x) = x^3;$ $D_f = \mathbb{R}.$
d) $f(x) = 2^{x^3};$ $D_f = \mathbb{R}.$
e) $f(x) = \operatorname{ctg} x;$ $D_f = (-2\pi, -\pi).$
f) $f(x) = \frac{ax+b}{cx+d}, \ c \neq 0;$ $D_f = \mathbb{R} \setminus \{-\frac{d}{c}\}.$
g) $f(x) = \frac{e^x - e^{-x}}{2};$ $D_f = \mathbb{R}.$
h) $f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}};$ $D_f = \mathbb{R} \setminus \{0\}.$

3. a) Show that the function $f(x) = \frac{1}{x}$ satisfies a Lipschitz condition on $(\varepsilon, +\infty), \varepsilon > 0$, i.e., there is a positive constant $L_{\varepsilon}(f)$ such

$$|f(x) - f(y)| \le L_{\varepsilon}(f)|x - y|$$

for all $x, y \in (\varepsilon, +\infty)$. Conversely, show that no Lipschitz condition is possible for f on $(0, +\infty)$.

b) Show that $f(x) = x^2$ satisfies a Lipschitz condition on any bounded interval but does not on the open intervals $(-\infty, 0), (0, \infty)$ and $(-\infty, \infty)$

c) Show that a Lipschitz function with bounded domain is a bounded function.

4. Give an example of a continuous function f(x), with domain $D_f = [0, 1)$, such that the range $f(D_f)$ is the interval:

a) (0,1], b) [0,1], c) (0,1);

d) $[0, +\infty)$, e) $(0, +\infty)$, f) $(-\infty, +\infty)$.

5. a) Explain why among the triangles inscribed in a circle of radius R there is one with maximal area.

b) A mountain climber climbs a mountain with a stop watch timing the ascent. At the top, the climber immediately turns around, resets the timer to zero, and begins to descend along the same path. Show that there is a point on the path where the travel time up is the same as the travel time down.

Kristofer Abraśki i Waldemar PaŁuna