Temat X

Continuity continued

1. Where possible, find the upper and lower bounds of the following functions. Indicate which functions actually attain the bounds.
a) $f(x)=\frac{1}{1+x^{2}} ; \quad D_{f}=\mathbb{R}$.
b) $f(x)=\frac{2}{e^{x}+e^{-x}} ; \quad D_{f}=\mathbb{R}$.
c) $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} ; \quad D_{f}=\mathbb{R}$.
d) $f(x)=x \sqrt{1-x^{2}} ; \quad D_{f}=(-1,1)$.
e) $f(x)=\frac{2+x-x^{2}}{(x-1)^{2}} ; \quad D_{f}=(1,+\infty)$.
f) $f(x)=\frac{x^{2}+x-1}{x-1} ; \quad D_{f}=(1,+\infty)$.
g) $f(x)=\frac{x^{2}+x-1}{x-1} ; \quad D_{f}=\mathbb{R} \backslash\{1\}$.
h) $f(x)=\cos \frac{1}{x} ; \quad D_{f}=\mathbb{R} \backslash\{0\}$.
i) $f(x)=e^{-x} \cos x ; \quad D_{f}=(0,+\infty)$.
j) $f(x)=e^{-x} \cos x ; \quad D_{f}=[0,+\infty)$.
2. Determine if the following functions have an inverse. In the cases that they do, give the domain of the inverse function and determine if it is continuous.
a) $f(x)=x^{2}$;

$$
D_{f}=[-2,1] .
$$

b) $f(x)=x^{2}$;
$D_{f}=[-2,-1]$.
c) $f(x)=x^{3}$;
$D_{f}=\mathbb{R}$.
d) $f(x)=2^{x^{3}} ; \quad D_{f}=\mathbb{R}$.
e) $f(x)=\operatorname{ctg} x ; \quad D_{f}=(-2 \pi,-\pi)$.
f) $f(x)=\frac{a x+b}{c x+d}, \quad c \neq 0 ; \quad D_{f}=\mathbb{R} \backslash\left\{-\frac{d}{c}\right\}$.
g) $f(x)=\frac{e^{x}-e^{-x}}{2} ; \quad D_{f}=\mathbb{R}$.
h) $f(x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} ; \quad D_{f}=\mathbb{R} \backslash\{0\}$.
3. a) Show that the function $f(x)=\frac{1}{x}$ satisfies a Lipschitz condition on $(\varepsilon,+\infty), \varepsilon>0$, i.e., there is a positive constant $L_{\varepsilon}(f)$ such

$$
|f(x)-f(y)| \leq L_{\varepsilon}(f)|x-y|
$$

for all $x, y \in(\varepsilon,+\infty)$. Conversely, show that no Lipschitz condition is possible for f on ($0,+\infty$.)
b) Show that $f(x)=x^{2}$ satisfies a Lipschitz condition on any bounded interval but does not on the open intervals $(-\infty, 0),(0, \infty)$ and $(-\infty, \infty)$
c) Show that a Lipschitz function with bounded domain is a bounded function.
4. Give an example of a continuous function $f(x)$, with domain $D_{f}=[0,1)$, such that the range $=f\left(D_{f}\right)$ is the interval:
a) $(0,1]$,
b) $[0,1]$,
c) $(0,1)$;
d) $[0,+\infty)$,
e) $(0,+\infty)$,
f) $(-\infty,+\infty)$.
5. a) Explain why among the triangles inscribed in a circle of radius R there is one with maximal area.
b) A mountain climber climbs a mountain with a stop watch timing the ascent. At the top, the climber immediately turns around, resets the timer to zero, and begins to descend along the same path. Show that there is a point on the path where the travel time up is the same as the travel time down.

Kristofer Abraśki i Waldemar PaEuna

