Topic XI

The derivative of a function

1. Calculate the derivative of function f wherever it exists.

a) $f(x) = \frac{1}{x^3}$.	b) $f(x) = \frac{1}{\sin x}$.	c) $f(x) = \frac{x+1}{x-1}$.
d) $f(x) = \sin^3 x$.	e) $f(x) = \sqrt[3]{x}$.	f) $f(x) = \sqrt[3]{1+x^3}$.
g) $f(x) = e^{-x}$.	h) $f(x) = e^{x^2}$.	i) $f(x) = x \ln x$.
$\mathbf{j}) \ f(x) = \log_2 x.$	k) $f(x) = \log_x 2$.	$f(x) = x^x.$
m) $f(x) = x^{x^2}$.	n) $f(x) = (x^x)^2$.	

2. Examine if the following function is differentiable at point $x_0 = 0$.

a) $f(x) = x x ;$	d) $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{dla} & x \neq 0 \\ 0 & \text{dla} & x = 0 \end{cases}$),);
b) $f(x) = x ^3;$	e) $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{dla} & x \neq \\ 0 & \text{dla} & x = \end{cases}$	$0, \\ 0;$
c) $f(x) = \sin^3(x) ;$	f) $f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{dla} x > 0, \\ 0 & \text{dla} x \le 0. \end{cases}$	

3. Find the equation of the line which is tangent to the graph of function $f(x) = x^x$ at point (2, 4).

4. Calculate the angles under which the graphs of functions $f(x) = x^2$ and $g(x) = x^3$ intersect themselfs.

5. Calculate the angles under which the graphs of functions $f(x) = \sqrt[3]{x}$ i $g(x) = x^3$ intersect each other.

6. Using the theorem about the derivative of an inverse function calculate the $(f^{-1})'(0)$, where $f(x) = x + \sin x$.

7. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable odd function (i.e. f(-x) = -f(x) for any x). Show that f'(x) is an even function.

8. Let $f : \mathbb{R} \to \mathbb{R}$ be an even function, differentiable at point $x_0 = 0$. Show that f'(0) = 0.

9.Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Is this true that for any $x_0 \in \mathbb{R}$ there exists a pair of points $a < x_0 < b$ which is such that $f'(x_0) = \frac{f(b) - f(a)}{b - a}$?

Krzysztof Barański i Waldemar Pałuba