## Topic XI

## The derivative of a function

1. Calculate the derivative of function $f$ wherever it exists.
a) $f(x)=\frac{1}{x^{3}}$.
b) $f(x)=\frac{1}{\sin x}$.
c) $f(x)=\frac{x+1}{x-1}$.
d) $f(x)=\sin ^{3} x$.
e) $f(x)=\sqrt[3]{x}$.
f) $f(x)=\sqrt[3]{1+x^{3}}$.
g) $f(x)=e^{-x}$.
h) $f(x)=e^{x^{2}}$.
i) $f(x)=x \ln x$.
j) $f(x)=\log _{2} x$.
k) $f(x)=\log _{x} 2$.
l) $f(x)=x^{x}$.
m) $f(x)=x^{x^{2}}$.
n) $f(x)=\left(x^{x}\right)^{2}$.
2. Examine if the following function is differentiable at point $x_{0}=0$.
a) $f(x)=x|x|$;
b) $f(x)=|x|^{3}$;
c) $f(x)=\left|\sin ^{3}(x)\right|$;
d) $f(x)=\left\{\begin{array}{lll}x \sin \frac{1}{x} & \text { dla } & x \neq 0, \\ 0 & \text { dla } & x=0 ;\end{array}\right.$
e) $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { dla } \quad x \neq 0, \\ 0 & \text { dla } x=0 ;\end{cases}$
f) $f(x)=\left\{\begin{array}{lll}e^{-\frac{1}{x}} & \text { dla } & x>0, \\ 0 & \text { dla } & x \leq 0\end{array}\right.$
3. Find the equation of the line which is tangent to the graph of function $f(x)=x^{x}$ at point $(2,4)$.
4. Calculate the angles under which the graphs of functions $f(x)=x^{2}$ and $g(x)=x^{3}$ intersect themselfs.
5. Calculate the angles under which the graphs of functions $f(x)=\sqrt[3]{x}$ i $g(x)=x^{3}$ intersect each other.
6. Using the theorem about the derivative of an inverse function calculate the $\left(f^{-1}\right)^{\prime}(0)$, where $f(x)=x+\sin x$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable odd function( ie. $f(-x)=-f(x)$ for any $x)$. Show that $f^{\prime}(x)$ is an even function.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an even function, differentiable at point $x_{0}=0$. Show that $f^{\prime}(0)=0$.
9.Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Is this true that for any $x_{0} \in \mathbb{R}$ there exists a pair of points $a<x_{0}<b$ which is such that $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$ ?
