Topic IX

Functions. Continuity of functions.

0. Find "left-side" and „right-side" limits of functions:
a) $f(x)=2^{\frac{1}{x-1}}$, at point $x=1$,
b) $f(x)=\frac{2^{\frac{1}{x}}+3}{3^{\frac{1}{x}}+2}$, at point $x=0$.
1. Find functions $f(g(x))$ and $g(f(x))$, where:
a) $f(x)=1-x^{2}, \quad g(x)=2 x+3$;
b) $f(x)=-17, \quad g(x)=|x|$;
c) $f(x)=\sqrt{x^{2}-3}, \quad g(x)=x^{2}+3$;
d) $f(x)=x^{2}+1, \quad g(x)=\frac{1}{x^{2}+1}$;
e) $f(x)=x^{3}-4, \quad g(x)=\sqrt[3]{x+4}$.
2. Find a function of the form $f(x)=x^{k}$ (k does not have to be an integer) and a function $g(x)$ in such a way that $f(g(x))=h(x)$, where:
a) $h(x)=\frac{1}{1+x^{2}}$;
b) $h(x)=\frac{1}{\sqrt{x+10}}$;
c) $h(x)=\frac{1}{\left(1+x+x^{2}\right)^{3}}$.
3. Let $f(x)=1+x^{2}$. Find a function $g(x)$, to have

$$
f(g(x))=1+x^{2}-2 x^{3}+x^{4} .
$$

4. Let $g(x)=1+\sqrt{x}$. Find a function $f(x)$, to have

$$
f(g(x))=3+2 \sqrt{x}+x .
$$

5. Find a function $g(x)$ to have $f(g(x))=h(x)$, where

$$
f(x)=x^{2}, \quad h(x)=x^{4}+1 .
$$

6. a) Is this possible to choose the value $f(1)$, in such a way that the function defined for $x \neq 1$ by the formula

$$
f(x)=\frac{|x-1|}{(x-1)^{3}}
$$

is continuous on \mathbb{R} ?
b) Is this possible to choose the values $f(-2), f(3)$, in such a way that the function defined for $x \in \mathbb{R} \backslash\{-2,3\}$ as

$$
f(x)=\frac{x+1}{x^{2}-x-6}
$$

is continuous on \mathbb{R} ?
c) Is this possible to choose the values $f(-1), f(1)$, in such a way that the function defined for $x \in \mathbb{R} \backslash\{-1,1\}$ as

$$
f(x)=\frac{\left|x^{2}-1\right|}{x^{2}-1}
$$

is continuous on \mathbb{R} ?
7. a) Show that equation $x^{4}+2 x-1=0$ is satisfied for some $x \in[0,1]$.
b) Show that equation $x^{5}-5 x^{3}+3=0$ is satisfied for some $x \in[-3,2]$.
c) Show that equation $x^{3}-4 x+1=0$ has three different real valued solutions.
d) Show that there is an x between $\frac{\pi}{2}$ and π such that $\operatorname{tg} x=-x$.
8. At which points the following function is continuous

$$
f(x)=\left\{\begin{array}{cc}
0, & x \in \mathbb{Q}, \\
x^{2}, & x \notin \mathbb{Q} ?
\end{array}\right.
$$

Krzysztof Barański i Waldemar Pałuba

