Topic IX

Functions. Continuity of functions.

0. Find "left–side" and "right–side" limits of functions:

- a) $f(x) = 2^{\frac{1}{x-1}}$, at point x = 1, b) $f(x) = \frac{2^{\frac{1}{x}} + 3}{3^{\frac{1}{x}} + 2}$, at point x = 0.
- 1. Find functions f(g(x)) and g(f(x)), where: a) $f(x) = 1 - x^2$, g(x) = 2x + 3; b) f(x) = -17, g(x) = |x|; c) $f(x) = \sqrt{x^2 - 3}$, $g(x) = x^2 + 3$; d) $f(x) = x^2 + 1$, $g(x) = \frac{1}{x^2 + 1}$; e) $f(x) = x^3 - 4$, $g(x) = \sqrt[3]{x + 4}$.

2. Find a function of the form $f(x) = x^k$ (k does not have to be an integer) and a function g(x) in such a way that f(g(x)) = h(x), where:

a)
$$h(x) = \frac{1}{1+x^2};$$

b) $h(x) = \frac{1}{\sqrt{x+10}};$
c) $h(x) = \frac{1}{(1+x+x^2)^3}.$

3. Let $f(x) = 1 + x^2$. Find a function g(x), to have

$$f(g(x)) = 1 + x^2 - 2x^3 + x^4.$$

4. Let $g(x) = 1 + \sqrt{x}$. Find a function f(x), to have

$$f(g(x)) = 3 + 2\sqrt{x} + x.$$

5. Find a function g(x) to have f(g(x)) = h(x), where

$$f(x) = x^2, \quad h(x) = x^4 + 1.$$

6. a) Is this possible to choose the value f(1), in such a way that the function defined for $x \neq 1$ by the formula

$$f(x) = \frac{|x-1|}{(x-1)^3}$$

is continuous on \mathbb{R} ?

b) Is this possible to choose the values f(-2), f(3), in such a way that the function defined for $x \in \mathbb{R} \setminus \{-2, 3\}$ as

$$f(x) = \frac{x+1}{x^2 - x - 6}$$

is continuous on \mathbb{R} ?

c) Is this possible to choose the values f(-1), f(1), in such a way that the function defined for $x \in \mathbb{R} \setminus \{-1, 1\}$ as

$$f(x) = \frac{|x^2 - 1|}{x^2 - 1}$$

is continuous on \mathbb{R} ?

- **7.** a) Show that equation $x^4 + 2x 1 = 0$ is satisfied for some $x \in [0, 1]$. b) Show that equation $x^5 5x^3 + 3 = 0$ is satisfied for some $x \in [-3, 2]$. c) Show that equation $x^3 4x + 1 = 0$ has three different real valued solutions. d) Show that there is an x between $\frac{\pi}{2}$ and π such that $\operatorname{tg} x = -x$.

8. At which points the following function is continuous

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q}, \\ x^2, & x \notin \mathbb{Q} \end{cases}$$

Krzysztof Barański i Waldemar Pałuba