Temat III

Induction, benomial Theorem, inequalities.

1. Show that for any $n \geq 5$ we have

$$
2^{n}>n^{2}
$$

2. Show that for any $n \in \mathbb{N} \backslash\{1\}$ we have $7 \mid\left(n^{7}-n\right)$.
3. Show that for any $n \in \mathbb{N} \backslash\{1\}$ we have $42 \mid\left(n^{7}-n\right)$
4. Show that for any $n \in \mathbb{N}$ we have

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

5. Show that for any $n \in \mathbb{N}$ we have

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

6. Find a general formula for the sum:

$$
3 \cdot 7+7 \cdot 11+11 \cdot 15+\cdots+(4 n-1)(4 n+3)
$$

7. Show that for any $n \in \mathbb{N}$ we have

$$
\frac{1}{3 \cdot 7}+\frac{1}{7 \cdot 11}+\frac{1}{11 \cdot 15}+\cdots+\frac{1}{(4 n-1)(4 n+3)}=\frac{n}{3(4 n+3)}
$$

8. Using the binomial theorem find a general formulas for:

$$
\begin{aligned}
(1+1)^{4} & =\cdots \\
(2+1)^{4} & =\cdots \\
(3+1)^{4} & =\cdots \\
& \vdots \\
(n+1)^{4} & =\cdots
\end{aligned}
$$

and next, using the results of exercices 4 i 5 find a general patern for:

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}
$$

9. Assuming that we already know the general paterns for the following sums:

$$
\begin{aligned}
& S^{1}(n) \stackrel{\text { def }}{=} 1^{1}+2^{1}+3^{1}+\cdots+n^{1} \\
& S^{2}(n) \stackrel{\text { def }}{=} 1^{2}+2^{2}+3^{2}+\cdots+n^{2} \\
& S^{3}(n) \stackrel{\text { def }}{=} 1^{3}+2^{3}+3^{3}+\cdots+n^{3} \\
& \vdots \\
& S^{k}(n) \stackrel{\text { def }}{=} \\
& 1^{k}+2^{k}+3^{k}+\cdots+n^{k}
\end{aligned}
$$

find a general formula for the sum:

$$
S^{k+1}(n) \stackrel{\text { def }}{=} 1^{k+1}+2^{k+1}+3^{k+1}+\cdots n^{k+1}
$$

10. Show that for any $n \in \mathbb{N}$ we have

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

11. Show that for any $n \in \mathbb{N}$ we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

12. For any $n \in \mathbb{N}$ calculate:
$-1\binom{n}{1}+2\binom{n}{2}-3\binom{n}{3}+\cdots+(-1)^{n-1}(n-1)\binom{n}{n-1}+(-1)^{n}(n)\binom{n}{n}$.
13. Using the binomial theorem show that for any $n \in \mathbb{N}$ the Bernoulli inequality with n as a power and $x \geq 0$, is true.
14. Using the binomial theorem show that for any $n \in \mathbb{N}$ the Bernoulli inequality with n as a power and $x>-1$, is true.
Hint: divide the interval $(-1,0)$ into two subintervals and consider 2 cases: $x \in(-1, a)$ and $x \in[a, 0)$. How should you choose the value of a ?
15. Show that for any nonnegative real numbers a, b we have

$$
\frac{a+b}{2} \geq \sqrt{a b} .
$$

16. Prove the inequality between an „arithmetic mean" and a „geometric mean" for any number n of nonnegative real numbers .
17. Show that for any $x>0$ and $y>0$ the inequality

$$
(x+y)^{n} \leq 2^{n-1}\left(x^{n}+y^{n}\right)
$$

holds true for any $n \in \mathbb{N}$.
18. Show that for any $n \in \mathbb{N}$ we have

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)}<1 .
$$

19. Show that for any $n \in \mathbb{N}$ we have

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2 .
$$

20. Show that for any $n \in \mathbb{N}$ we have

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}
$$

21. Show that for any $n \in \mathbb{N}$ we have

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n}<\frac{1}{\sqrt{2 n}} .
$$

