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Introduction

Motivation

M a C 1-manifold, f : M → M a diffeomorphism. We are given an invariant subset
S of M [that is f (S) = S ].
Interested in: the behaviour of f in (the neighbourhood) of S .

A lot of information comes from the fact that f is hyperbolic on S .

Hyperbolicity:

important: guarantees stability, shadowing, etc.;

hard to verify;
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Introduction

Definition of hyperbolicity

By TxM we denote the tangent space to x at the point M.

TM =
⋃

x∈M

TxM, TSM =
⋃
x∈S

TxM.

We consider the linear mapping

Df : TM → TM

restricted to TSM. Roughly speaking, we say that f is hyperbolic on an invariant
set S if the linearization Df is hyperbolic on TSM.

Jacek Tabor () On semi-hyperbolicity September 7, 2007 3 / 14



Introduction

Definition of hyperbolicity

By TxM we denote the tangent space to x at the point M.

TM =
⋃

x∈M

TxM, TSM =
⋃
x∈S

TxM.

We consider the linear mapping

Df : TM → TM

restricted to TSM. Roughly speaking, we say that f is hyperbolic on an invariant
set S if the linearization Df is hyperbolic on TSM.

Jacek Tabor () On semi-hyperbolicity September 7, 2007 3 / 14



Introduction

Definition of hyperbolic operator

We therefore go to the linear case. X is a Banach space and A : X → X is a linear
operator.

Definition

We say that A is hyperbolic if there exists a splitting X = Xs ⊕ Xu and an
equivalent norm on X such that

Xs ,Xu are A-invariant;

there exist λs < 1, λu > 1 such that

‖Axs‖ ≤ λs‖xs‖, ‖Axu‖ ≥ λu‖xu‖ for xs ∈ Xs , xu ∈ Xu.

One can easily see that if A is hyperbolic then A has no nontrivial bounded orbit.
Small modification of a hyperbolic operator is still a hyperbolic one, but the
invariant subspaces change.
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Introduction

Reformulation:

Definition

We say that A is hyperbolic if there exists a splitting X = Xs ⊕ Xu and an
equivalent norm on X such that

A has the matrix form [
As 0
0 Au

]
;

there exist λs < 1, λu > 1 such that

‖As‖ ≤ λs , ‖A−1
u ‖ ≤

1

λu
;
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Quasi-hyperbolicity

Henon

Open problem:
hyperbolicity of the Henon attractor for the classical parameter values.

Partial Answer: Z. Arai, On Hyperbolic Plateaus of the Hénon Maps [to appear
in Experimental Mathematics].

Henon attractor is hyperbolic on the chain recurrent set for the large set of
parameter values.
The use of the quasi-hyperbolicity.
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Quasi-hyperbolicity

Quasi-hyperbolicity

Definition

A linear mapping A is called quasi-hyperbolic if it does not have a nontrivial
bounded orbit.

Zin Arai proved that the Henon attractor is quasi-hyperbolic for the large set of
parameter values.

Theorem (Churchill et al. 77, Sacker and Sell 74)

Assume that f |Λ is chain recurrent. Then f is hyperbolic on Λ if and only if f is
quasi-hyperbolic on it.

Consequently, by the above theorem Z. Arai obtained that the Henon attractor is
hyperbolic on its chain recurrent subset. In particular that every periodic orbit is
hyperbolic.
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Semi-hyperbolicity

How to deal with hyperbolicity?

One of possible solutions is semi-hyperbolicity [introduced by P. Diamond, P. E.
Kloeden, V. S. Kozyakin, A. V. Pokrovskii]:

easier to check;

allows lipschitzian perturbations;
A.A. Al-Nayef, P.E. Kloeden, A.V. Pokrovskii, Semi-hyperbolic mappings, condensing operators,
and neutral delay equations, J. Differential Equations 137 (1997), 320–339.

P. Diamond, P.E. Kloeden, V. S. Kozyakin, A.V. Pokrovskii, Semi-hyperbolic mappings, in

preparation.

Situation in R2: [
λs

λu

]
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Semi-hyperbolicity

Definition of hyperbolicity

X a Banach space, X = Xs ⊕ Xu. A : X → X a linear operator, and
assume that Xs and Xu are A-invariant. Then in the matrix form we have

A =

[
As 0
0 Au

]

Definition

We say that a linear operator A is hyperbolic if

λs < 1 < λu;

‖As‖ ≤ λs , ‖A−1
u ‖ ≥ 1

λu
;

‖Ps‖ ≤ µs , ‖Pu‖ ≤ µu;
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Definition of semi-hyperbolicity
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Semi-hyperbolicity implies hyperbolicity

Basic results

We are ready to proceed to our investigation. Our aim is to present an approach
to investigation of hyperbolic operators via semi-hyperbolicity. We obtain some
numerical estimations of hyperbolicity constants (in the nonlinear case) with the
use of semi-hyperbolicity.
M. Mazur, J. Tabor, P. Kocielniak, Semi-hyperbolicity and hyperbolicity, to appear in Discrete

Contin. Dynam. Syst (IM UJ preprint 2007/04, http://www.im.uj.edu.pl/badania/preprinty/).

Let us begin with the following result

Theorem

If the operator A is semi-hyperbolic with respect (λs , λu, µs , µu), then A is
hyperbolic.
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Semi-hyperbolicity implies hyperbolicity

Estimation of the spectrum

Theorem

We assume that A is semi-hyperbolic with respect to a split (λs , λu, µs , µu).
Then the spectrum of A does not intersect the ring

R(λ∗s , λ
∗
u) := {λ ∈ C : λ∗s < |λ| < λ∗u},

where

λ∗s =
λs + λu

2
−
√

(λu − λs)2 − 4µsµu

2
< 1,

λ∗u =
λs + λu

2
+

√
(λu − λs)2 − 4µsµu

2
> 1.

(1)

Let us mention that the estimation obtained in (1) are sharp. To observe this,
consider the linear operator A : R2 → R2 given by

A =

[
λs µs

µu λu

]
.

Obviously, A is semi-hyperbolic with respect to the the split from the above
theorem, but the eigenvalues of A are exactly λ∗s and λ∗u.
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Semi-hyperbolicity implies hyperbolicity

Projection constant

Let A be a semi-hyperbolic operator with the splitting X = Xs ⊕ Xu. By Ps (Pu)
we denote the projection onto Xs (Xu).
Then by the previous result we know that A is hyperbolic, and therefore there
exists an A-invariant splitting X = X ∗s ⊕ X ∗u . By P∗s (P∗u ) we denote the
projection onto X ∗s (X ∗u ).

Theorem

Let A be a semi-hyperbolic operator with respect to (λs , λu, µs , µu).
Then

‖P∗s ‖ ≤ L, ‖P∗u ‖ ≤ L + 1,

where

L =
λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
h,

and h := max{‖Ps‖, ‖Pu‖}.
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Semi-hyperbolicity implies hyperbolicity

Main technical result

Theorem

Let S be a compact invariant subset of M.
Assume that for every x ∈ S the operator Dforb(x) is
(λs , λu, µs , µu; h)-semi-hyperbolic according to the norm ‖ · ‖∞. Let λ∗s , λ

∗
u be

given by (1) and let γ∗s , γ
∗
u be arbitrary reals such that

λ∗s < γ∗s < 1 < γ∗u < λ∗u.

Let

h∗ = max{ (λu − λs + µs + µu)h

(γ∗s − λs)(λu − γ∗s )− µsµu
,

(λu − λs + µs + µu)h

((γ∗s )−1 − λs)(λu − (γ∗s )−1)− µsµu
}.

Then then the set S is (γ∗s , γ
∗
u ; h∗)-hyperbolic.
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Semi-hyperbolicity implies hyperbolicity

Hyperbolicity of the Henon attractor

Now we are ready to formulate the main result of the paper. We consider the
Henon mapping

Ha,b(x , y) = (−x2 + by + a, x)

The Henon attractor is the set of all points which have bounded orbits.

Theorem

If a = 5.4 and b = −1 then the Henon attractor is hyperbolic.
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