New normality test based on the conditional second moments and the $$20{\text{-}}60{\text{-}}20$$ rule

Damian Jelito

Based on the joint work with Marcin Pitera

damian.jelito@im.uj.edu.pl

Jagiellonian University in Kraków

27-th November, 2018

Outline

Motivation - different aspects of normality

The 20-60-20 Rule

The new test statistic

Numerical experiments

Derivation of the asymptotic distribution

Possible generalisations

Several tests for normality

Cramer-von Mises family

$$CvM := n \int_{-\infty}^{+\infty} (F_n(x) - F(x))^2 w(x) \,\mathrm{d}F(x)$$

Special case - Anderson-Darling

$$w_{AD}(x) := \frac{1}{F(x)(1-F(x))}$$

Computational version of the AD test statistic

$$AD := -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left(\ln \left(\Phi \left(Y_{(i)} \right) \right) - \ln \left(1 - \Phi \left(Y_{(n-i+1)} \right) \right) \right)$$

with

$$Y_{(i)} := rac{X_{(i)} - ar{X}}{\hat{\sigma}}$$

Several tests for normality

Shapiro-Wilk test

$$SW := \frac{\left(\sum_{i=1}^{n} a_i X_{(i)}\right)^2}{\sum_{i=1}^{n} \left(X_{(i)} - \bar{X}\right)^2}$$

where

$$(a_1,\ldots,a_n)=\frac{m^TV^{-1}}{(m^TV^{-1}V^{-1}m)^{\frac{1}{2}}}, \quad m_i=\mathbb{E}(X_{(i:n)}), \quad V_{ij}=\mathrm{Cov}(X_{(i:n)},X_{(j:n)}).$$

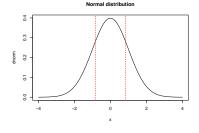
Jarque-Bera test

$$JB := \frac{n}{6} \left(\hat{S}^2 + \frac{1}{4} (\hat{C} - 3)^2 \right)$$

with

$$\hat{S} := \frac{\frac{1}{n}\sum\limits_{i=1}^{n}\left(X_i - \hat{X}\right)^3}{\hat{\sigma}^3}, \quad \hat{C} := \frac{\frac{1}{n}\sum\limits_{i=1}^{n}\left(X_i - \hat{X}\right)^4}{\hat{\sigma}^4}$$

The 20-60-20 Rule



$$\sigma_L^2 = \sigma_M^2 = \sigma_R^2$$

 We split the normal random variable into three disjoint conditioning sets: left (L), middle (M), and right (R):

$$\begin{split} L &:= \left(-\infty, F_X^{-1}(\tilde{q})\right], \\ M &:= \left(F_X^{-1}(\tilde{q}), F_X^{-1}(1-\tilde{q})\right), \\ R &:= \left[F_X^{-1}(1-\tilde{q}), +\infty\right) \end{split}$$

- For a unique q̃ ≈ 0.2 the conditional variances coincide
- This property might be linked to the statistical phenomenon known as *The* 20-60-20 Rule.

Mathematical formulation of the 20-60-20 Rule

▶ Recall the conditional variance $\sigma_A^2 := \mathbb{E}((X - \mathbb{E}(X|A))^2|A)$

Theorem If $X \sim \mathcal{N}(\mu, \sigma)$, then

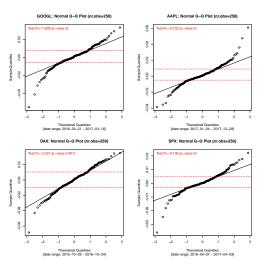
$$\sigma_L^2 = \sigma_M^2 = \sigma_R^2,$$

where $\tilde{q} = \Phi(x) \approx 0.19809$ and x is a unique negative solution of the equation

$$-x\Phi(x)-\phi(x)(1-2\Phi(x))=0.$$

The property holds true for an arbitrary number of conditioning sets as well as in multivariate and elliptical case (for covariance matrices).

The 20-60-20 Rule and the Q-Q plot



- 1. We take return rates (based on adjusted daily close prices)
- 2. We make a simple Q-Q plot with theoretical normal distribution
- 3. We check if 20/60/20 division leads to accurate clustering

The test statistic

```
1 Test.N <- function(x){
    q1 <- quantile(x,0.2)
    q2 <- quantile(x,0.8)
    n <- length(x)
    x.low <- x[x <= q1]
    x.med <- x[x > q1 & x < q2]
    x.high <- x[x > q2]
    N <- var(x.low)+var(x.high)-2*var(x.med)
    N <- N * sqrt(n)/(var(x)*1.8)
    return(N)}</pre>
```

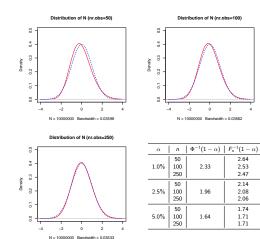
1. We introduce the test statistic

$$\mathsf{N} := \frac{\sqrt{n}}{\rho} \left(\frac{\hat{\sigma}_L^2 - \hat{\sigma}_M^2}{\hat{\sigma}^2} + \frac{\hat{\sigma}_R^2 - \hat{\sigma}_M^2}{\hat{\sigma}^2} \right)$$

where $\rho\approx 1.8$ is a fixed normalising constant

- 2. Under the normality assumption N is a pivotal quantity
- N can be seen as a measure of tail fatness (cf. Anderson-Darling test)
- N is based on the conditional second moments while Jarque-Bera test uses the third and fourth moments

Asymptotic distribution of the test statistic



Theorem Let $X \sim N(\mu, \sigma)$. Then, $N \xrightarrow{d} \mathcal{N}(0, 1), \qquad n \to \infty.$

Moreover, ρ is independent of $\mu,\,\sigma$ and n.

We will come back to the asymptotics later.

Market data case study - overview

- We take S&P500 stocks returns from 01.2000 to 05.2018 (4610 daily adjusted close price returns for 381 stocks)
- For a given stock, the sample is split into disjoint sets of length *n* with $n \in \{50, 100, 250\}$.
- ▶ N is compared with Jarque–Bera test, Anderson–Darling test, and Shapiro–Wilk test.
- Normality hypothesis is checked at confidence level $\alpha \in \{1.0\%, 2.5\%, 5.0\%\}$.
- Non-normality of returns is a well known fact, hence we expect the null hypothesis to be rejected.
- We compute three supplementary metrics
 - Statistic T total rejection ratio of a given test at confidence level α for what proportion of all subsets the normality assumption was rejected.
 - Statistic U unique rejection ratio of a given test at confidence level α for what proportion of all subsets the normality assumption was rejected only by a given test (among all four tests).
 - Statistic A acceptance ratio of a given test at confidence level α for what proportion of all subsets the normality assumption was not rejected by any tests if it was not rejected by a given test.

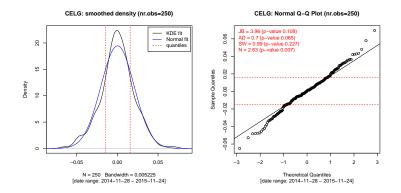
Market data case study - results

Desc	nr runs	α	n	rejects	JB	AD	SW	N
T U A	35052	1.0%	50	31.5%	25.9% 1.9% 94.4%	17.3% 0.6% 85.8%	23.2% 0.3% 91.7%	25.9% 3.1% 94.4%
T U A	35052	2.5%	50	39.6%	32.4% 2.4% 92.8%	22.9% 0.9% 83.3%	28.3% 0.3% 88.7%	32.5% 3.9% 92.8%
T U A	35052	5.0%	50	47.9%	38.6% 2.4% 90.6%	29.1% 1.3% 81.1%	33.7% 0.4% 85.8%	39.6% 5.1% 91.6%
T U A	17526	1.0%	100	52.8%	45.2% 2.2% 92.5%	31.8% 0.6% 79.1%	41.3% 0.3% 88.6%	46.1% 4.4% 93.4%
T U A	17526	2.5%	100	61.3%	52.9% 2.2% 91.6%	38.8% 0.7% 77.5%	47.6% 0.2% 86.3%	54.3% 5.1% 93.1%
T U A	17526	5.0%	100	68.4%	59.7% 2.2% 91.3%	45.7% 0.8% 77.3%	53.4% 0.2% 84.9%	61.3% 5.3% 92.9%
T U A	6858	1.0%	250	88.5%	82.1% 1.0% 93.6%	71.2% 0.4% 82.7%	79.3% 0.1% 90.8%	85.4% 3.8% 96.9%
T U A	6858	2.5%	250	91.8%	86.8% 0.7% 95.1%	77.7% 0.2% 85.9%	83.7% 0.1% 91.9%	89.4% 3.0% 97.6%
T U A	6858	5.0%	250	93.9%	89.7% 0.5% 95.7%	82.4% 0.2% 88.5%	86.9% 0.0% 92.9%	92.0% 2.5% 98.1%

Metrics for the *i*-th test

$$T_{i} = \frac{\#\{\text{i-th test rejected}\}}{\#\text{samples}},$$
$$U_{i} = \frac{\#\{\text{only i-th test rejected}\}}{\#\text{samples}},$$
$$A_{i} = \frac{\#\{\text{no test rejected}\}}{\#\{\text{i-th test didn't reject}\}}$$

Market data case study - close-up



Market data case study - p-value performance

Desc	nr runs	cond nr runs	n	JB	AD	SW	Ν
O S	35052	16807	50	20.3% 35.7%	7.8% 17.2%	5.1% 25.8%	28.7%
O S	17526	11994	100	15.0% 26.1%	4.6% 10.8%	3.2% 18.7%	26.2%
O S	6858	6443	250	4.6% 8.3%	1.4% 3.4%	0.6% 6.2%	15.4%

$$O_i = \frac{\#\{\forall_j \text{ p.value}_i \leq \text{ p.value}_j\}}{\#\text{samples}}$$
$$S_i = \frac{\#\{\text{p.value}_i \leq \text{p.value}_N\}}{\#\text{samples}}$$

- We compare p-values between different tests.
- For brevity, we consider only samples that were rejected by at least one test at level 5%.
- We present two performance measures:
 - Statistic O ratio of best p-values compared to other tests - for what number of observations the p-value for a given statistic is smaller compared to all other p-values.
 - Statistic S ratio of best p-values compared to single test N - for what number of observations the p-value for a given statistic is smaller compared to N test p-value.

Asymptotic distribution - notation

- $X \sim \mathcal{N}(\mu, \sigma)$ with mean parameter μ and standard deviation parameter σ
- $X_{(i)}$ *i*th order statistic of the sample (X_1, \ldots, X_n)
- $\blacktriangleright~$ For 0 $\leq \alpha < \beta \leq 1$ we define the conditioning set

$$A[\alpha,\beta] := \{ x \in \mathbb{R} : F_X^{-1}(\alpha) < x \le F_X^{-1}(\beta) \}.$$

▶ Recall
$$L := A[0, \tilde{q}], R := A[1 - \tilde{q}, 1], M := A[\tilde{q}, 1 - \tilde{q}],$$

The conditional sample mean on set A

$$\overline{X}_A := \frac{1}{[n\beta] - [n\alpha]} \sum_{i=[n\alpha]+1}^{[n\beta]} X_{(i)}$$

The conditional sample variance on set A

$$\hat{\sigma}_A^2 := \frac{1}{[n\beta] - [n\alpha]} \sum_{i=[n\alpha]+1}^{[n\beta]} \left(X_{(i)} - \overline{X}_A \right)^2$$

Main result

Recall that the test statistic N is given by

$$N = \frac{1}{\rho} \left(\frac{\hat{\sigma}_L^2 - \hat{\sigma}_M^2}{\hat{\sigma}^2} + \frac{\hat{\sigma}_R^2 - \hat{\sigma}_M^2}{\hat{\sigma}^2} \right) \sqrt{n}.$$

Restate our main result:

Theorem

Let $X \sim N(\mu, \sigma)$. Then,

$$N \xrightarrow{d} \mathcal{N}(0,1), \qquad n \to \infty,$$

where ρ is a fixed normalising constant independent of μ , σ , and n.

In the proof we make use of the series of lemmas.

Additional notation

For a fixed set $A = A[\alpha, \beta]$, we define

$$\begin{split} \mu_A &:= \mathbb{E}[X|X \in A], \\ \sigma_A^2 &:= \mathbb{E}[(X - \mu_A)^2 | X \in A], \\ \kappa_A &:= \frac{1}{(\sigma_A^2)^2} \mathbb{E}[(X - \mu_A)^4 | X \in A], \\ \mathbf{a} &:= F_X^{-1}(\alpha) = \mu + \sigma \Phi^{-1}(\alpha), \\ \mathbf{b} &:= F_X^{-1}(\beta) = \mu + \sigma \Phi^{-1}(\beta). \end{split}$$

Asymptotic normality of a conditional sample variance

Lemma (Asymptotic normality of a conditional sample variance) For any $A = A[\alpha, \beta]$ it follows that

$$\sqrt{n}\left(\hat{\sigma}_{A}^{2}-\sigma_{A}^{2}
ight)\xrightarrow{d}\mathcal{N}(0, au_{A}),$$

where

$$\begin{aligned} \tau_A^2 &:= \frac{1}{(\beta - \alpha)^2} \left((\beta - \alpha) (\sigma_A^2)^2 (\kappa_A - 1) + \alpha (1 - \alpha) \left((a - \mu_A)^2 - \sigma_A^2 \right)^2 \right. \\ &\left. - \alpha (1 - \beta) \left((a - \mu_A)^2 - \sigma_A^2 \right) \left((b - \mu_A)^2 - \sigma_A^2 \right) \right. \\ &\left. + \beta (1 - \beta) \left((b - \mu_A)^2 - \sigma_A^2 \right)^2 \right). \end{aligned}$$

¹Note that for degenerate cases $\alpha = 0$ and $\beta = 1$, we get $a = -\infty$ and $b = \infty$, respectively. In those cases, the convention $0 \cdot \infty = 0$ should be used.

Additional lemmas

Lemma (Consistency of a conditional sample mean) For any $A = A[\alpha, \beta]$ it follows that $\overline{X}_A \xrightarrow{\mathbb{P}} \mu_A$, $n \to \infty$.

Lemma (Asymptotic normality of a conditional sample mean) For any $A = A[\alpha, \beta]$ it follows that

$$\sqrt{n}\left(\overline{X}_{A}-\mu_{A}
ight) \xrightarrow{d} \mathcal{N}(\mathbf{0},\eta_{A}), \quad n \to \infty,$$

where $0 < \eta_A < \infty$.

Some remarks on quantile estimators

Remark

We can replace $[n\beta] - [n\alpha]$ by $[n\beta] - [n\alpha] - 1$ in the definition of the conditional sample variance and our results remain valid.

Remark

Consider sequences (α_n) and (β_n) such that $n\alpha - \alpha_n$ and $\beta_n - n\beta$ are bounded. The corresponding conditional sample mean and variance is given by

$$\begin{split} \bar{X}^*_A &:= \frac{1}{\beta_n - \alpha_n} \sum_{i=\alpha_n+1}^{\beta_n} X_{(i)}, \\ \hat{\sigma}^{2,*}_A &:= \frac{1}{\beta_n - \alpha_n} \sum_{i=\alpha_n+1}^{\beta_n} \left(X_{(i)} - \bar{X}^*_A \right)^2. \end{split}$$

Then, we can replace \overline{X}_A and $\hat{\sigma}_A^2$ by \overline{X}_A^* and $\hat{\sigma}_A^{2,*}$ in our theorem and lemmas and their statements remain valid.

Some possible generalisations

• Different test statistic, e.g.
$$S_1 := \left(\frac{\hat{\sigma}_L^2 - \hat{\sigma}_R^2}{\hat{\sigma}_M^2}\right) \sqrt{n}$$
 or $S_2 := \left(\frac{\hat{\sigma}_L^2}{\hat{\sigma}_M^2} - \lambda\right) \sqrt{n}$

More conditioning sets, e.g.

$$N_k := \sqrt{n} \left(\frac{\hat{\sigma}_{A_1}^2 - \hat{\sigma}_{A_k}^2}{\hat{\sigma}^2} + \ldots + \frac{\hat{\sigma}_{A_{k-1}}^2 - \hat{\sigma}_{A_k}^2}{\hat{\sigma}^2} \right)$$

for partitioning sets A_1, \ldots, A_k such that $\sigma_{A_1}^2 = \ldots = \sigma_{A_k}^2$ (exist for any $k \in \mathbb{N}$) Multivariate case, i.e. $\|\Sigma_A - \Sigma_B\|$, where $\|\cdot\|$ is a matrix norm and Σ_A is a

conditional covariance matrix

The End

Thank you for your attention!

References

- P. Jaworski, M. Pitera, *The 20-60-20 Rule*, Discrete Cont Dyn-B, Vol. 21 (2016), No 4, pp. 1149-1166.
- [2] P. Jaworski, M. Pitera, A note on conditional covariance matrices for elliptical distributions, Stat Probabil Lett, Vol. 129C (2017), pp. 230-235.
- [3] D. Jelito, M. Pitera, *New fat-tail normality test based on conditional second moments with applications to finance*, preprint, arXiv: 1811.05464
- [4] H. Thode, Testing for normality, Marcel Dekker, 2002