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Stylized facts

OTC interest rate derivatives market has grown remarkably over the
past 20 years

interest rates have become the dominant underlying for options
contracts (by notional) in both OTC and organised exchanges
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HJM framework

We start in the standard Heath-Jarrow-Morton setting, with time t price
of a zero coupon bond maturing at time T, B(t, T), given by

T

T
B(t,T) = exp —jf(t,s)ds = 1—fB(t,s)f(t,s)ds
t

t

where f(t,T) is the instantaneous forward rate. Define by r(s) = f(s, s)
the short rate. Under the risk-neutral measure

B(dt,T) = B(t,T){r(t) = X(¢t,T) - dW (t)},
T

df(t,T) = a(t,T) - j o(t,s)dsdt + a(t,T) - dW(t),

05(t, )
ot

a(t,T) =




Yield %

Yield curve

__,...----.--NOrmal
"

3
<
4
I%‘IIIIIIIIIIIIIIIIIFIat
.0
&
= Inverted

Maturity (Years)



Swap options

Denote by B(t,T) zero coupon bond price, T > t, S(t,T) the swap rate

T
N(t,T) = fB(t,S)dS,
t

[, Bt )f(t,s)ds 1—B(t,T)
N(t,T) N T) '’

T
R(t,T) = exp {—jr(s)ds},
t

C(K,t,T) = E{R(0,)N(t, T)(S(t,T) — K)* }.

S(t,T) =




Swaption cube
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Quoting conventions

Black and Bachelier implied volatilities for 1x10 USD swaption (in bp; as of
27 April 2018)
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Bermudan swaption challenge

Bermudan swaption is a best-of chooser option giving right to choose among
several European options on swap rates with different fixing dates.

Consider a Bermudan to enter at Te, € {TQ-._TQ_l_]_._ ..., Tg} into fixed-
for-floating swap terminating at Tj:

Ta x (Tg — Ta) swaption

e T
P .,

P . ® o9

T x (Tg — T5) swaption
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Bermudan swaption pricing

Price of a Bermudan option

AK,T) = max E{R(0,7)N(z,T)(S(7,T) — K)*}.

Markovian approach.

Let f(t,x) = g(t,Y(t))(x), where Y is a Markov process on a finite or
infinite dimensional state space. Then there exists a function G such that

G(Y(t),t) =N(t,T)S(tT)—K)™ .
If
V(y,T;) = max{G(y, T;); E{R(T;, T+ )V (Y (Ti41), Tis DIY (T = y3},
Vi, Ty) = Gy, Ty).
Then
ACK, Tyy) = V(¥(0),0).
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Free boundary problem

Stopping area V(y,T;) = G(y, T;).
Continuation area

VW, T;) = E{R(T;, Ty DV (Y (Ti41), Tix DY (T) = y}.
-é'!:o: o -\ =
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Interest rate models

Hull-White — one, two-dimensional.
Black-Karasinski —one, two-dimensional.
Cox-Ingersoll-Ross — one, two-dimensional.
Gaussian Heath-Jarrow-Morton — N-dimensional.
Libor market model — infinite dimensional.
Cheyette — N X (N + 1)-dimensional.

Linear Gauss-Markov — N-dimensional.

HW ~ HIM ~ LGM
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Calibration

Calibrate to:

1. Full swaption cube.

2. Co-terminal swaptions with full strike structure.
3. All swaptions with given strike prices.

4. Co-terminal swaptions with given strike prices.
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N =

Scylla and Charibdis

Larger dimension means better calibration.
Bermudan pricing is accurate only in dimenion 1.
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American-style options

* Number of factors has little impact on the American/Bermudan
option price.

® Value of the early exercise right depends on the dividend yield
and its relation to the short rate

Option price ($)
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Swap rate dynamics

Define

D(t) = N(t,T)R(0, t) - discounted riskless asset,

S(t) = S(t,T)—swaption rate,

X(@t)=(1—-B(,T))R(0,t) =S(t)D(t)— discounted risky asset,
C(K,t)=C(K,t,T).

Let
dS(t) = e(t)dW(t) — (...)dLt.

It is straightforward to calculate that
dD(t) = (...)dW(t) — R(0, t)dt,

dX(t) = (...)dW(t) — R(0, t)r(t)dt.
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Option payoff dynamics

1
dDO)(S®) = K)F) =5 9*()6(S®) — K)D(£)de
+I(S(t) > K){D(t)dS(t) + d(S, D).} + (S(t) — K)TdD(t)

= %goz(t)S(S(t) — K)D(t)dt
+I1(S(t) > K){D(t)dS(t) + d(S,D); + (S(t) — K)dD(t)}

_ %5(5@) _ K)D(D)@2(D)dt + 1(S(t) > K){dX() — KdD(D)}.

Taking the expected value we get

dC(K,t) 10°C(K,t)
ot 2 axz YWD
= ER(0,t)I(S(t) > K)R(0,t){K —r(t)}

_ j”aZC(x, £)

d0x?2

(g(x,t) — Kh(x,t))dx,
K
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Option dynamics

where
@*(x,t) = EH{o*(®)IS(t) = x},
— _Et T'(t) S —
g(x, t) - N(t,T) (t) =X,
h(x,t) = —Et {N(t,T) S(t) = x}
and
.. ED@®)¢
-~ ED(t)

Differentiating twice we get

93C(K,t) 1 0% (0°C(K,t)
OtoK? _EaKZ{ K2

0 (0°C(K,¢t)
_aK{ 0K?

(K, t)}

0°C(K,t)
0K?

(g(K,t) — Kh(K, t))} + h(K,t).
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Markovian projection

0%C(K,T)
0K?

dZ(t) = (Z(t), )dW(t) + (g((Z(t),t) — Z(Dh(Z (1), 1))dt,
dQ(t) = Q(Oh(Z(®), t)dt.

t
Q(t) = exp {j h(Z(S),S)dS}.
0

C(K,t) =ED(t)(S(t) —K)* = EQ(t)(Z(t) — K)™.

Then

is the density function for a stochastic process Z, namely

LaW(S (t)) + Law(Z (t)).

AK,T) = I?<aTXEQ(T)(Z(T)) —K)*t
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Useful approximations

r) _ r®OS® . fO,0B0,1)

N(t, T) 11— B(t, T) - S(t) B(O’ t) — B(O, T) — p(t)S(t),

1 B(,)
N(ET) [T B(0,s)ds

= q(t).

Hence g(x,t) = —p(t)x and h(x,t) = —q(t),

dZ(t) = ¢(Z(0), t)dW (t) + Z(t)(q(t) — p(t))dt,
dQ(t) = —Q()q(t)dt.

and

ac K, 162C K, ac K,
(.0 _10°0K0 o 20K0 00 o)

9,
—p(t)C(K, t)
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Quality of approximation

Regression fit of the 1-year forward 9-year zero coupon bond price
and the 5-year forward 5-year zero coupon bond price against
their time t ,frozen" forecasts
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Implied short rate and dividend

US vield curve data as of October 5, 2016
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Cheyette model
Short rate dynamics r(t) = f(0,t) + x(t)

dx(t) = (y() — k(©)x(8))dt + v(x(t), y(t), t)dW (¢),
y'(@) = v(x(t),y(@), t)* — 2k(®)y(t),
x(0) =y(0) =0,

where k(t) = b’(t)/b(t) and b is a given deterministic function.
All zero coupon bonds are deterministic functions of x(t) and

y(1):

, T 1
-2 t)) exp =66, Tx(®) - 5625 Ty(®)},

T
1
G(t.T) = %tf b(s)ds.
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Triangle approximation

Notice that

0

t t
y(t) = fv(x(s),y(t), t)? exp <—2Jk(u)du> ds.

Apply triangle approximation for y(t):

t 5 t
y(t,x(t)) = jv(x(z)s,o, S> exp (—2]k(u)du> ds.

0

Now x(t) follows a one-dimensional SDE:

dx(t) = (y(t, x(£)) — k(®)x(t))dt + 7(x(t), t)dW (¢),
x(0) = 0.
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Volatility

Finally, we link swaption volatility to our yield curve
parameterization. Let

dS(t) = (...)dt + o(S(t), t)dW (t).
Since S(t) = S(x(t),y(t),t)
dS(x(t),y(t),t) = (...)dt

dS(x (), y(t),t)
dx(t)

v(x(t), y(t), t)dW (t).
Then

9S(z,y,t)\
V(Z,y,t)=< (gzy t)> o(S(z,y,t),t).
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Bermudan swaption pricing

Prices of a Bermudan receiver swaption with 100 notional
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Cheyette vs Markovian proxy

Cheyette model Markovian proxy

e Complete arbitrage free model * Short cut/dirty trick

. Accurately calibrated to European ° SWap rate evolves like a dividend
swaptions paying stock

* Only swap rate derivatives may
be prices

e Equity derivatives software may
be used

e Able to price all products

Calibration + pricing is nothing more than an interpolation between prices!



Conclusions

We have presented a simple trick that allows us to price Bermudan
swaptions essentially as if they were options on a dividend paying
stock. The practical signficance of this contribution is that, while
the approach is not strictly arbitrage free and unfortunately can be
directly applied only to swap rate derivatives, it offers a potentially
attractive solution especially in cases when the development of a
fully-edged interest rate model is too time or resource consuming.
Perhaps the most attractive feature of the model is that it makes it
possible to transpose some of the well-established rules of thumb
from the world of equities to interest rate space.
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