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Introduction A few words about backtesting

Introduction

A few words about backtesting
I The are many backtesting techniques with different purposes, e.g.

I Conditional coverage backtests, where one assess independence of observed
breaches. This might be formally quantified e.g. by Kupiec Test but is typically done
through visual inspection.

I General adequacy point-forecast backtests, where realised values are compared with
theoretical risks with two-way penalisation. Those are typically formulated in
elicitability-based framework.1

I Density-forecast backtests, where, one considers the adequacy of the whole projected
distribution of the P&L moves. Most backtests rely on the framework introduced in
Berkowitz (2001); they are sometimes called p-value backtests. Typically, they use PIT
transforms with realised quantiles as input.

I The backtesting framework we introduce is focused on assessing point-forecast
conservativeness, where realised portfolio P&Ls are compared with projected capital
reserves. Following regulatory guidelines, we focus on so called unconditional
coverage backtesting.

1these backtest penalise capital overestimation. This is not aligned with standard regulatory approach:
the VaR model with zero-breaches is still classified into the green zone
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Introduction A few words about backtesting

Introduction

Before we begin...
I Currently, there are no ES backtesting market standards. In FRTB, despite VaR 1%

to ES 2.5% shift, VaR’s cumulative exception (breach) rate is used for backtesting.
I During the discussions, a lot of (academia) focus has been set on elicitability and

related backtests. Recall that those are not aligned with regulatory framework (as
they assess overall fit rather than conservativeness).

I We propose a novel framework based on a dual link between risk and performance
measures, the same one that is used to define VAR.

I First, we will define the backtest statistic for VaR and ES, and discuss its
rationality. Next, we will show how easy it is to implement it, and then focus on it’s
underlying mathematical properties.
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Introduction General notation

Introduction

General notation
I We use ρ to denote a law-invariant risk measure (VAR or ES) and P&L to denote a

random variable associated with the future portfolio profits and losses.
I For transparency, we set the holding period to 1-day.
I We assume that we have an Internal Model (IM) that is used to compute/estimate

the capital reserve to protect against fluctuations in the future value of a financial
portfolio; this could refer to Historical Simulation, Gaussian, or Monte Carlo risk
estimation models.

I For day i we use P&Li to denote the ith day realised portfolio P&L and ρ̂i to denote
the projected (estimated) capital reserve for that portfolio that was computed using
historical data (up to day i − 1) combined with the IM methodology,
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Introduction

Notation (backtest input)
I For a pre-specified period n (typically one year data, i.e. n = 250) the regulatory

backtesting is focused on assessing IM methodology conservativeness based on two
main inputs:
1. Realised portfolio P&Ls: (P&Li )

n
i=1;

2. Projected capital reserves for the porfolio: (ρ̂i )
n
i=1 .

I To ease the notation, for (i = 1, 2, . . . , n), we use yi := P&Li + ρ̂i to denote a
secured position sample.

Normalization: If the portfolio profile or market volatility is changing (through time) one
could introduce additional normalisation scheme and consider modified secured position
sample (ỹi ) given by

ỹi :=
P&Li + ρ̂i

ρ̂i
=

P&Li

ρ̂i
+ 1.

For positively homogeneous risk measure, we scale our portfolio so that the estimated risk
is equal to one. Note that this is aligned with regulatory expectations and linked e.g. to
so called Loss Overshooting Ratios as defined in TRIM [Guideline 93(c)].a

anote this transformation does not impact breach count for VaR breach test.
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VaR backtesting Regulatory backtesting

Regulatory (breach) backtest

VAR exception rate statistic
Given secured sample yi = P&Li+ρ̂i and assuming the total number of backtesting
days is n, the VaR exception rate backtesting statistic is given by

Tn :=
1
n

n∑
i=1

1{yi<0}.

I We count the number of capital breaches (exceptions) in the sample to quantify IM
methodology performance. We divide by n to get exception rate.

I In regulatory backtesting the window length is fixed (n = 250) and a nominal
number of breaches (nTn) is used.

I For VaR at level 1% the model is said to be in:
- green zone, if there are less then 5 breaches: this corresponds to Tn ∈ [0.00, 0.02);
- yellow zone, if the number of breaches is 5 to 9: this corresponds to Tn ∈ [0.02, 0.04);
- red zone, if there are 10 or more breaches: this corresponds to Tn ∈ [0.04, 1.00].
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VaR backtesting Backtesting statistic as performance measure

Regulatory (breach) backtest

Tn :=
1
n

n∑
i=1

1{yi<0}.

I Test statistic Tn is used by the regulator to quantify the performance
(conservativeness) of the secured sample. Counting the number of breaches is very
tightly connected to VAR measurement philosophy.

I Indeed, we can rewrite Tn as

Tn = inf{α ∈ (0, 1] : ˆV@Rα(y) ≤ 0}, (1)

where ˆV@Rα(y) := −y(bnαc+1) is the family of empirical VAR estimators.
I From (1) we see that Tn is a natural estimator of performance measure dual to the

VAR family; see e.g. [Cherny and Madan, 2009].
I We look for the minimal confidence level α which makes the secured position sample

acceptable (i.e. having non-positive risk); traffic-light approach (with 0.02 and 0.04
thresholds) allows some variability due to various biases, misspecifications, etc.

I Note that in (1) we use empirical VAR estimator to quantify the performance of
secured position. IM methodology is used to construct y , and does not impact
definition of Tn.
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ES backtesting Definition of ES backtest

Definition of ES backtesting statistic

ES cumulative exception rate statistic
Given secured sample yi = P&Li+ρ̂i and assuming the total number of backtesting
days is n, the ES cumulative exception rate backtesting statistic is given by

Gn :=
1
n

n∑
i=1

1{y(1)+...+y(i)<0},

where y(k) is the kth order statistics of (yi ).

I We look for the smallest number of worst realisations of the secured position that
add up to a positive total, and then we divide the outcome by n. Indeed, we can
rewrite Gn as

Gn =
1
n
inf

{
k ∈ N :

k+1∑
i=1

y(i) ≥ 0

}
,

I Alternatively speaking, We look for the smallest (possible) number of scenarios so
that the aggregated risk reserve is sufficient to cover the aggregated loss.
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ES backtesting Financial intuition & practical computations

Intuitive financial interpretation

VaR framework: we identify the minimal index i , when the capital reserve is
sufficient to cover losses, i.e when we get

−P&L(i) < ρ̂(i).

The value (i − 1) defines Tn.

ES framework: we identify the minimal index k, when the aggregated capital
reserve is sufficient to cover aggregated losses, i.e. when we get

−
k∑

i=1

P&L(i) <
k∑

i=1

ρ̂(i).

The value (k − 1) determines defines Gn.

I This change of paradigm is very natural to VaR to ES migration. One needs to
consider conditional scenario sums instead of single scenarios.
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ES backtesting Financial intuition & practical computations

Practical computations

Gn =
1
n

n∑
i=1

1{y(1)+...+y(i)<0},

I It is very easy to implement the backtest and compute Gn:

1. Given inputs (P&Li ) and (yi ) we construct secured position

yi = P&Li + ρ̂i .

2. We sort the values and produce a cumulative sum vector

(y(1), y(1) + y(2), y(1) + y(2) + y(3), . . .).

3. We identify the smallest number of scenarios such that the aggregated
secured position is non-negative, i.e. find minimal k ∈ N for which we get

y(1) + . . .+ y(k) ≥ 0.

4. We set Gn = k−1
n

.

I n · Gn could be computed in one line of R code: sum(cumsum(sort(y))<0).
I n · Tn could be computed using R code: sum(sort(y)<0).
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Embedding backtests into regulations

I One can easily embed ES backtest into regulations. The language could be
simplified to streamline the financial interpretation.

I To be consistent with VaR framework we keep backtesting period fixed (n = 250)
and consider nominal number of scenarios (n · Gn).

I For ES at level 2.5% and n = 250 the model is said to be in:
- green zone, if the sum of the 12 smallest values of y is positive: this corresponds to
Gn ∈ [0.00, 0.05)

- yellow zone, if the sum of the 12 smallest values of y is negative but the sum of the
25 smallest values of y is positive: this corresponds to Gn ∈ [0.05, 0.10);

- red zone, if the sum of the 25 smallest values of y is negative: this corresponds to
Gn ∈ [0.10, 1.00].

I Note that n · Gn could be used to easily define multiplicative penalisation add-on as
in VAR framework.

I Our choice of threshold is robust and consistent with the old framework. Why?
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ES backtesting Embedding ES backtests into regulations

Rationale behind threshold choice

The consistency is achieved on multiple layers:
1. First, thresholds are obtained by multiplying base levels by 2 and 4:

I VAR: base level is 1%, yellow zone threshold is 2%, and red zone threshold is 4%.
I ES: base level is 2.5%, yellow zone threshold is 5%, and red zone threshold is 10%.

2. Second, assuming normal model, the theoretical thresholds correspond to
approximately the same capital reserve values. Let X ∼ N(0, 1). Then:
I V@R1%(X ) = 2.33, V@R2%(X ) = 2.05, V@R4%(X ) = 1.75.
I ES2.5%(X ) = 2.34, ES5%(X ) = 2.06, ES10%(X ) = 1.75.

3. Third, proposed thresholds lead to statistical framework that is aligned with VAR
backtest. Even under extreme specification imposed on the null distribution the
proposed thresholds lead to statistical confidence thresholds close to 95% and
99.99%. The thresholds could be considered as (almost) model-independent.

4. Fourth, we will show later that the ES thresholds could be treated as maximal
acceptable risk level misspecification thresholds as in VaR framework. In fact, Gn is
a performance measure dual to the ES risk measure family in a same way that Tn is
a performance measure dual to the VaR family. Arguably, this is the most important
point as it shows very deep mathematical link between Gn and Tn, and both
backtests.
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ES backtesting Traffic-light table and backtesting statistic distribution

Summary: traffic-light table and p-values

Zone VAR ES
(color) (number of exceptions) (worst-case scenarios with negative sum)
Green 0–4 0–11
Yellow 5–9 12–24

Red 10+ 25+

Risk metric VAR ES
Statistic value 4 5 9 10 11 12 24 25

t-student ν = 3 0.8914 0.9586 0.9998 0.9999 0.8944 0.9205 0.9967 0.9973
ν = 5 0.8931 0.9588 0.9998 1.0000 0.9074 0.9372 0.9998 0.9999
ν = 10 0.8909 0.9580 0.9998 1.0000 0.9185 0.9464 1.0000 1.0000
ν = 15 0.8930 0.9590 0.9999 1.0000 0.9224 0.9518 1.0000 1.0000

normal 0.8913 0.9585 0.9997 1.0000 0.9292 0.9591 1.0000 1.0000

The second table presents the cumulative (empirical) distribution values of the nominal backtesting statistics for VAR and ES,

for large samples from various pre-defined distributions. The distribution of VAR test statistics correspond to Bernoulli

distribution with p = 0.99, and the theoretical threshold values are 0.9588, and 0.9999 (for 5 and 10 exceeds, respectively). One

can see that ES backtesting statistic is stable even in extreme conditions (for ν = 3) and the cumulative probability for the

thresholds is comparable to VAR (for values 12 and 25). The values were obtained using a 50 000 Monte Carlo run.

Marcin Pitera Backtesting Expected Shortfall 17 / 26



ES backtesting Traffic-light table and backtesting statistic distribution

Backtest statistic distribution under various distributions
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Empirical probability mass functions of the nominal VAR backtest statistics n · Tn (left) and nominal ES backtest statistic n · Gn

(right) for n = 250. We consider five different a priori distributions, and construct the secured samples using true risk capital

reserve add-ons. Note that the probability mass function for VAR corresponds to Bernoulli probability mass function with

p = 0.99. We can see that ES backtest statistic is remarkably stable under extreme conditions, i.e under t-student distribution

with ? = 3 degrees of freedom. Dotted lines indicate the proposed traffic-light thresholds. The values were obtained using a 50

000 Monte Carlo run.
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Mathematical justification of ES backtest: dual-link quick summary

I We already shown a lot of arguments why our backtest is a solid choice.
I Now, we want to quickly explain why we believe that our backtest is the best choice.
I The argument is based on the dual-link theorem that was established in

[Cherny and Madan, 2009, Theorem 1] as which links the family of risk measures to
a performance measure (acceptability index).
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Mathematical justification of ES backtest: dual-link quick
summary

Duality between risk measures and performance measures

Theorem [Cherny and Madan, 2009, Theorem 1]
A map φ is a regular (scale-invariant) performance measure if and only if there
exists a family of (coherent) risk measures (ρα)α∈R+ decreasing in α such that

φ(X ) = inf{α ∈ R : ρα(X ) ≤ 0}, X ∈ X .

Remarks
I We look for the minimal value of α which makes the position X acceptable (i.e.

having non-positive risk).
I Typically, we assume that the parameter space is R+ but it could be different. For

example, for VaR it is more reasonable to use (0, 1) instead. One can apply some
standard (parameter) distortion function to recover one from another (e.g.
g(x) = 1/(1+ x)).

I If family of VAR maps is so popular if finance, where we can find the corresponding
dual acceptability index?
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Mathematical justification of ES backtest: dual-link quick
summary

Duality between risk measures and performance measures

I As already pointed out, it is exactly Tn backtest statistic, i.e. it’s empirical
estimator. Indeed, we have:

Tn = inf{α ∈ (0, 1] : ˆV@Rα(y) ≤ 0},

I I hope you know now how we obtained our ES backtesting statistic Gn?
I In exactly the same way! We get

Gn = inf{α ∈ (0, 1] : ÊSα(y) ≤ 0},

where ÊS is the empirical estimator of ES.
I Gn is dual to the family of empirical ES estimators in a same way that Tn is dual to

the family of empirical VAR estimators. If we want to be consistent, this is the way.
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Live implementation demo

Now, using R, we are going to perform the live implementation demo. We will do the
following:

1. Assuming we get (P&Li ) and (ρ̂i ) samples we will compute both Tn and Gn.

2. We will perform the backtest on simulated data for various setting (e.g. risk
underestimated by 10% or 20%).

3. We will compare Tn outcomes to Gn outcomes to see the consistency between those
frameworks.

4. We will compute the distribution of Gn under various null-distributions.

Let us switch to R.

Marcin Pitera Backtesting Expected Shortfall 25 / 26



Live implementation demo

The End

Thank you!
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