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Chapter 1

Introduction

The terms risk and performance are now a part of everyday language. Despite the fact, that the
meaning of those words is clear on intuitive level, no good unifying definition has been proposed so
far. One can even say that those words are closer to primitive notions, than undefined terms.

Let us mention just a few words, such as preference, hazard, fortune, safety, opportunity or
uncertainty, which strongly relates to both risk and performance, allowing a wide spectrum of
non-equivalent interpretations.

From the mathematical point of view, we are more interested in quantifying risk and perfor-
mance, i.e. defining the proper methods of measurement. Through time, a lot of beautiful concepts
were introduced to answer this question. Let us alone mention people such as Daniel Bernoulli,
John von Neumann or Oskar Morgenstern who made a major contribution to this subject. As
the description of evolution of mathematical methods quantifying risk and performance, or more
generally speaking preference and utility, is not the main topic of this thesis, we refer interested
reader to [70, 102, 77] and references therein for a a good overview on this subject and historic
survey.

In this work we will focus on quantifying the utility (this term will cover both risk and per-
formance) of a financial position and follow the modern (normative) approach, suggested e.g. by
Artzner, Delbaen, Eber, and Heath [6]. The notation of coherent risk measures proposed in [6]
attracted attention both on theoretical and practical level resulting in the development of many
objects such as convex risk measures [76] or acceptability indices [45], which we will introduce in
this thesis.

At the beginning, the theory of risk measures was developed in the static framework. On a
given probability space (Ω,F ,P), the (real valued) random variables coincided with the future
(discounted) values of financial positions and risk measure was a map which assigned a number
to any financial position, measuring it’s risk. The normative approach from [6] required this map
to satisfy certain sets of axioms such as cash-additivity, convexity or monotonicity. Those axioms
have been also given a clear financial interpretation. The real values produced by a coherent
risk measures could be also interpreted as minimal capital requirements sufficient for the financial
position to be acceptable, i.e. having non-positive risk. The notation of utility measures, often
considered as negatives of risk measures was very similar. The similar results also hold true for
risk and utility measures quantifying the risk of cash-flows of some financial position, which are
typically described by a stochastic process [36].

For convex risk measures (defined for random variables) satisfying certain regularity conditions,
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the duality theory of Fenchel-Legandre lead to so called robust representation, which allowed the
risk measure ρ, to be expressed as

ρ(X) = − inf
Q∈M

[EQ[X]− α(Q)],

for the set of all probability measuresM and the penalty function α :M→ [−∞,∞] [75]. In other
words, the risk of a financial position could be considered as the penalised worst case expectation
taken under probabilistic modelM, where the penalty function α describes how seriously we treat
each scenario from M.

The need to consider the evolution of preferences through time T lead to the definition of
conditional and dynamic risk measures (and utility measures) [7]. The information available at
time t ∈ T could be described by a σ-subfield of F , denoted by Ft, and the whole evolution of
market is given by a filtered probability space, where the filtration is given by {Ft}t∈T. Then, the
conditional risk measure ρt is a mapping which assignes a Ft-measurable random variable to any
financial position, measuring it’s conditional risk. The dynamic risk measure is simply a collection
of conditional risk measures, i.e. the family of mappings {ρt}t∈T [2]. Besides the conditional
equivalents of properties from the static definition of risk measures, one has to introduce additional
axioms, which will link preferences from different time points, i.e. explain the relation between
ρt(X) and ρs(X) for any financial position X and time points t, s ∈ T. Such axioms are related to
so called time-consistency conditions [2], which will be one of the main topics of this thesis.

Dynamic utility measures very often act as objective functions in the stochastic control prob-
lems, while dynamic risk measures serve as constraints [109]. The need to consider their dynamic
equivalents is also justified by the use of the dynamic programming approach [7]. Bellman principle
of optimality, needed for the backward recursive reformulation of stochastic control problems, is
tightly connected with time consistency condition, as will be shown later. Let us mention the fact,
that in some types of optimisation problems, time-inconcistency (and thus the lack of the standard
Bellman principle of optimality) could be present (cf. [26]) but we will not focus on those problems
here.

In this thesis, we will focus on three types of utility maps, namely convex risk measures [75],
acceptability indices [45] and limit growth indices [18], as they are often used in stochastic control
problems. We have decided to show some representatives of each class, to explain why those classes
are interesting.

Apart from theoretical study about time constancy, we have decided to show three explicit
representative examples, which will show how to perform optimisation, using dynamic risk and
performance measures. The first two examples will be connected to portfolio optimisation, while
the last one will cover the subject of pricing an American options, by solving an optimal stopping
problem.

This thesis is organized as follows. The Introduction will be followed by Chapter 2, where we
shall introduce the basic framework, notations and definitions used throughout the whole thesis.
Next, in Chapter 3 we will focus on time-consistency conditions, providing a new definition for this
type of objects and linking it with the existing literature. Chapter 4 will be dedicated to the study
of various specific families of dynamic risk and performance measures, namely dynamic convex and
coherent risk measures, dynamic acceptability indices and dynamic limit growth indices. We will
provide also many explicit examples with the emphasis on time consistency. Finally, in Chapter 5
we will deal with three stochastic control problems. The first problem will be connected with risk
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sensitive control for Markov decision processes on infinite time horizon. The second one will cover
the classical risk-to-reward optimisation, using coherent risk measure as a constraint. Finally the
last example will provide an explicit algorithm, which can numerically approximate conditional
expectation and Snell envelopes, providing a recipe for pricing various types of American options.

Contribution

Three papers [18, 19, 99] could be seen as a main building blocks of this dissertation.
In particular, Chapter 3 is based on the first paper, A unified approach to time consistency of

dynamic risk measures and dynamic performance measures in discrete time, written together with
prof. T. R. Bielecki and I.Cialenco. Next, Section 4.3 is based on Dynamic Limit Growth Indices in
Discrete Time, written together with prof. T. R. Bielecki and prof. I. Cialenco. Finally, Section 5.3
is based on the last paper, The least squares method for option pricing revisited, written together
with prof. M. Klimek.

Our feeling is that our contribution to the subject of dynamic risk and performance measurement
as well as dynamic stochastic control theory is mainly through the depth of construction, which
unifies those theories and provide the space for new interesting objects as well as shed a new light
on the old ones. While almost all of the proofs from Chapters 3 and 4 are rather elementary,
i.e. not requiring any advanced mathematical tools and methods, we think they provide a nice
framework for future development. Nevertheless, let us mention some of the results, which we
consider noteworthy.

The new definition (Definition 3.1.3) of time-consistency, also introduced in [19] is promising,
in the sense that it allows to handle both cash-additive and scale-invariant maps using the same
tools. The difference between those two maps caused a lot of problems for many people, as the
benchmark definition of time-consistency provided only limited answers.

The Dynamic equivalent of Risk Sensitive Criterion defined in [18] is an interesting object,
which requires further attention. The proof that Risk Sensitive Criterion is in fact an acceptability
index surprisingly was not present in the literature. We think, that the proof of supermartingale
property for this map, i.e. Thoerem 4.3.11, 5), is interesting and non-trivial. It also show a nice
application of a variation of conditional Borel-Cantelli lemma, exploiting the strength of power
utility transformation.

While the proofs from Section 5.1 are present in the literature, we think that our reformulations
can shed a new light on risk sensitive control problems, connecting them with risk measurement
theory. In particular, our presentation of Bellman equation (5.10) and related results seem to be
more intuitive than the usual formulation, which relates to Multiplicative Poisson Equations.

Apart from results mentioned above, we have decided to list some Propositions and Theorems,
which we think contribute to the theory of dynamic risk measurement and for which the proofs
are noteworthy, namely: Proposition 3.2.1, Proposition 3.2.13, Proposition 4.2.3, Proposition 4.2.4,
Proposition 4.3.2, Theorem 4.3.11, Proposition 5.1.6, Theorem 5.3.3 and Theorem 5.3.6.
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Chapter 2

Preliminaries

In this Chapter we will introduce basic concepts and ideas from dynamic risk measure theory and
related fields. In particular, we will provide some general comments about certain aspects of the
stochastic control theory and convex analysis, needed in this thesis. We will also introduce here
the basic framework, i.e. definitions and notation, used throughout this thesis. Let us underline
the fact that only selected aspects of dynamic risk measure theory are considered here. For a good
survey about risk measures we refer to [77] and references therein.

Almost all results from this section are well known and used commonly in the field of dynamic
risk measurement. While we will give definitions, which are more general than those usually seen
in the literature, the generalisations are rather intuitive and straightforward. Nevertheless, we will
provide proofs for statements, which have no direct counterparts in the existing literature.

In particular, Propositions 2.2.13 and 2.2.15 due to our knowledge did not occur in this form
in the literature before, and could be seen as an original contribution. Despite this fact, we have
decided to put them here, as they are very simple and the proofs are elementary.

This Chapter is organized as follows. In Section 2.1 we provide a set of some general underlying
concepts that will be used throughout the thesis. In particular we introduce the space on which we
will define all objects, give some comments about conditional expectations and recall definitions of
conditional equivalents of essential infimum and supremum, for various types of objects.

Section 2.2 recalls basic properties of maps which try to quantify (measure) the risk or per-
formance of objects describing terminal payoffs, portfolio cash-flows or dividend streams. Those
objects are usually represented as random variables or adapted stochastic processes. We will also
give some comment about how to extend such maps onto bigger space and give some insight about
robust representations of risk and performance measures.

Next, in Section 2.3 we give a general overview about dynamic stochastic control problems
which naturally arise, when we study maps introduced in the previous section.

Finally, in Section 2.4 we give some additional remarks concerning all objects introduced in the
previous Sections in this Chapter. This Section will try to give some overview on the literature and
present some new results and ideas, which were introduced recently. We put here all the remarks,
which are not required in the main body of this Chapter. It was done to not confuse the reader
with too many auxiliary facts. Still, they could help understand the objects, which were introduced
before and shed some new light on them.

As we have mentioned above, the main purpose of this Chapter is to provide basic definitions
and notation, which we will use later. Thus, we have decided to postpone all proofs from this
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Chapter to Appendix, in order to make everything more transparent.

2.1 General framework

Throughout this thesis, (Ω,F , {Ft}t∈T,P) will denote a discrete-time filtered probability space.
We will consider both finite and infinite time horizons, i.e T = {0, 1, . . . , T}, for a fixed T ∈ N,
or T = N ∪ {0}. We will also assume that F0 is trivial and F =

⋃
t∈TFt. Furthermore, we will

assume that (Ω,F , {Ft}t∈T,P) is a standard filtered probability space (Lebesgue-Rokhlin probability
space [123]), i.e. it is (a.s.) isomorphic to ([0, 1]T,B([0, 1]T), {F ′t}t∈T, λT), where B(·) denotes the
Borel σ-algebra of considered set1, λT is a product of the Borel measures and {F ′t}t∈T is the
filtration generated by the coordinate functions (see e.g. [103] for similar settings in the risk measure
framework). While almost all of the results could be easily reformulated for the general case, we
make this assumption to avoid many technical difficulties. In particular note that we could define
conditional (regular) probabilities, through Canonical system of measures and (Ω,F ,P) always
contain countably separated2 subset of full measure (cf. [123, 127] and references therein for more
detailed description of standard probability spaces). For clarity we will also assume that the
(original) filtration is completed with sets of measure zero.3

For σ-algebra G, such that G ⊆ F , we denote by L0(Ω,G,P) and L̄0(Ω,G,P) the sets of all
(a.s. identified) G-measurable random variables with values in (−∞,∞) and [−∞,∞], respectively.
Moreover, we define L̂p(Ω,G,P) := {X ∈ L̄0(Ω,G,P) | (X ∨ 0) ∈ Lp(Ω,G,P)}, for p ∈ [0,∞]. We
shall write Lp := Lp(Ω,F ,P) and Lpt := Lp(Ω,Ft,P), for p ∈ [0,∞]. Analogous definitions will
apply to L̄0 and L̂p. The financial interpretation of the elements of Lpt (also L̂pt and L̄0

t ) will depend
on the context. Usually they will illustrate terminal payoffs of some (zero cost) financial portfolio or
cash-flows at time t. They might also correspond to the preference level. We will also use notation

Vp := {(Vt)t∈T | Vt ∈ Lpt , t ∈ T}, (2.1)

Vpln := {(Vt)t∈T | lnVt ∈ Lpt , Vt > 0, t ∈ T}, (2.2)

Vpτ := {(Vt)t∈T | Vt ∈ Lpt , Vt ≥ 0, and Vt = Vt∧τV , t ∈ T}, (2.3)

where τV := inf{t ∈ T | Vt = 0} and p ∈ [0,∞], to define various spaces of adapted stochastic
processes. Similarly as in the previous case, we also define V̄0, V̂p, etc. The financial intuition
going behind (2.1), (2.2) and (2.3) will also depend on the context. Usually Vpln and Vpτ will
denote (cumulative) value processes of portfolios of financial securities, where the stopping time
condition relates to bankrupcy event. Moreover, the elements of Vp can be viewed e.g. as cash-flows
corresponding to some investment strategy or dividend stream of some financial portfolio.

Throughout this thesis, X will always denote the certain space of random variables or adapted
stochastic processes, described in the previous paragraph. All equalities and inequalities will be
understood in the almost sure sense. Let us now present some additional notation used for X ,
which will allow us to keep the notation uniform:

1We will use notation B(R̄) := {B ∪ S : B ∈ B(R), S ∈ {∅, {+∞}, {−∞}, {+∞,−∞}}.
2i.e. there exists a sequence of sets {An}n∈N, such that {n : x ∈ An} = {n : y ∈ An} implies x = y, for any

x, y ∈ Ω.
3For simplicity, in the static case (i.e. for t = 0), with slight abuse of notation, we will say that F0-adapted random

variables are constants. Consequently, we will use R and R̄ to denote corresponding spaces of random variables, rather
than defining the spaces of equivalent classes of random variables as in all other cases.
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(1) If L∞ ⊆ X ⊆ L̄0, for t ∈ T, we shall write

X̄ = L̄0,

X̂ = {X ∈ X̄ | (X ∨ 0) ∈ X},
Xt = X ∩ L̄0

t ,

1{t} = 1.

Moreover, for X,X ′ ∈ X , we shall write X ≤ X ′, if P[X ≤ X ′] = 1. In other words, we
consider the usual almost sure order for random variables.

(2) If V∞ ⊆ X ⊆ V̄0, we shall write

X̄ = V̄0,

X̂ = {(Vt)t∈T ∈ X̄ | (Vt ∨ 0)t∈T ∈ X},
Xt = {X ∈ L̄0

t |X = Vt, for some V ∈ X},
1{t} = (0, 0, . . . , 0︸ ︷︷ ︸

t

, 1, 0, 0, . . .).

Moreover, for V, V ′ ∈ X , we shall write V ≤ V ′, if P[Vt ≤ V ′t ] = 1, for all t ∈ T.

We will often assume that the space X is embedded with certain topology. For example, if
p ∈ [1,∞], we will assume that Lp is a standard Banach space, and the topology is induced by
the norm ‖ · ‖p. On the other hand, if L0, we will use the topology of convergence in measure, i.e.
topology generated by metric d(X,Y ) = E[|X − Y | ∧ 1] (X,Y ∈ L0). See Appendix A.3 for more
detailed description.

Following e.g. [44, 38], while working in risk measure framework and using tools from convex
analysis, we will adapt the convention

∞−∞ = −∞ and 0 · ±∞ = 0. (2.4)

Remark 2.1.1. Convention (2.4) has a financial interpretation. We will work with (utility) functions
which illustrate preferences of portfolios, cash-flows, etc. For example, if the negative part of
random variable is unpredictable (e.g. in a sense that the conditional expectation of the negative
part is infinite), then such portfolios are of no interest for us, however big the positive part is.
Consequently, our preference level for such random variables should be equal to −∞. See also
(2.6), where the generalized (robust) conditional expectation is defined explicitly.

Remark 2.1.2. In this thesis (to get rid of various minus signs) we will mostly work with mappings
which admit (quasi)concavity, the reason why we introduce the convention (2.4). In particular,
(quasi)convex maps will be treated as negatives of (quasi)concave maps. If we wanted to consider
everything in convex framework, then the convention∞−∞ =∞ should be applied. See [143, 122]
for more details about this convention in convex framework.

In particular, with (2.4) in mind, we will use standard (coordinate wise) additive and multi-
plicative operators both for random variables and adapted stochastic processes. Furthermore, we
define multiplicative operator (·t) by

m ·t X = mX, X ∈ L̄0, m ∈ L̄0
t ,

m ·t V = (V0, . . . , Vt−1,mVt,mVt+1, . . .), V ∈ V̄0, m ∈ L̄0
t . (2.5)
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In the case of random variables, operator (·t) coincides with the standard multiplicative operator,
but we introduce the notation to keep the definitions uniform. See Remark 2.4.1 for additional
comments about operator (·t).

2.1.1 Generalized conditional expectation

For t ∈ T and X ∈ L̄0, using (2.4), we define the (generalized) conditional expectation of X by

E[X|Ft] := E[X+|Ft]− E[X−|Ft]
= lim

n→∞
E[(X+ ∧ n)|Ft]− lim

n→∞
E[(X− ∧ n)|Ft] (2.6)

where X+ = (X ∧ 0) and X− = (−X ∧ 0). Let us now recall that the generalized conditional
expectation is not a linear operator.

Proposition 2.1.3. For any X,Y ∈ L̄0 and s, t ∈ T, s > t we get

1) E[λX|Ft] ≤ λE[X|Ft] for λ ∈ L0
t and E[λX|Ft] = λE[X|Ft] for λ ∈ L0

t , λ ≥ 0;

2) E[X|Ft] ≤ E[E[X|Fs]|Ft] and E[X|Ft] = E[E[X|Fs]|Ft] for X ≥ 0;

3) E[X|Ft] + E[Y |Ft] ≤ E[X + Y |Ft] and E[X|Ft] + E[Y |Ft] = E[X + Y |Ft] if X,Y ≥ 0;

The proof of this proposition is deferred to the Appendix A.1 (page 115). See Remark 2.1.4 and Re-
mark 2.4.2 (page 21) for additional comment about (2.6).

Remark 2.1.4. All inequalities in Proposition 2.1.3 can be strict. Let t = 0 and k, s, t ∈ T, be such
that k > s > 0. Let ξ ∈ L0

k, ξ = ±1, each with probability 1
2 . Let Z ∈ L0

s be such that Z ≥ 0, Z is
independent of ξ and E[Z] =∞. With λ = −1, X = ξZ and Y = −X we get strict inequalities in
1), 2) and 3).

2.1.2 Essential infimum and supremum

For a non-negative family {Xi}i∈I (the index set I might be uncountable), where Xi ∈ L0, we will
denote by ess infi∈I Xi a unique (up to a set of measure zero) random variable from L̄0, such that

• For all i ∈ I, Xi ≥ ess infi∈I Xi;

• If Y ∈ L̄0, is such that Xi ≥ Y for any i ∈ I, then ess infi∈I Xi ≥ Y .

We will call ess infi∈I Xi the essential infimum (also called essential lower bound) for a family
{Xi}i∈I . Analogously, we can define the essential supremum (essential upper bound) denoted by
ess supi∈I Xi. Next, we define (generalized) essential lower bound for a family of random variables
{Xi}i∈I , such that Xi ∈ L̄0, by

ess inf
i∈I

Xi = lim
n→∞

[
ess infi∈I(X

+
i ∧ n)

]
− lim
n→∞

[
ess supi∈I(X

−
i ∧ n)

]
.

In particular, it is worth mentioning, that if Xi ∈ L̄0
t for i ∈ I, then ess infi∈I Xi ∈ L̄0

t . Futhermore
if for all i, j ∈ I, there exists k ∈ I, such that Xk ≤ Xi ∧ Xj , then there exists a sequence
in ∈ I (n ∈ N), such that {Xin}n∈N is non-increasing and ess infi∈I Xi = infn∈NXin = limn→∞Xin

(see [97, Appendix A]). Analogous results are true for ess supi∈I Xi.
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We will also make use of a conditional equivalents of ess inf and ess sup defined for a single
random variable. For X ∈ L∞ and t ∈ T, we will denote by ess inftX a unique (up to a set of
measure zero), random variable from L̄0

t , such that

• X ≥ ess inftX;

• If Y ∈ L̄0
t , is such that X ≥ Y , then ess inftX ≥ Y .

We will call it the Ft-conditional essential infimum of X (see [10] for the proof of existence and
uniqueness). Respectively, we will call ess supt(X) := − ess inft(−X) the Ft-conditional essential
supremum. Next, For any t ∈ T and X ∈ L̄0 we define the Ft-conditional essential infimum by4

ess inftX := lim
n→∞

[
ess inft(X

+ ∧ n)
]
− lim
n→∞

[
ess supt(X

− ∧ n)
]
, (2.7)

As in the previous case, we put ess supt(X) := − ess inft(−X). For convenience, we present some
fundamental properties of conditional essential infimum and supremum, for L̄0 setup, that will be
used throughout the paper.

Proposition 2.1.5. For any X,Y ∈ L̄0, s ≥ t (s, t ∈ T), A ∈ Ft and U ∈ L̄0
t we get

1) ess infω∈AX = ess infω∈A(ess inftX);

2) If ess infω∈BX = ess infω∈B U for any B ∈ Ft, then U = ess inftX;5

3) X ≥ ess inftX;

4) If Z ∈ L̄0
t , is such that X ≥ Z, then ess inftX ≥ Z.

5) If X ≥ Y , then ess inftX ≥ ess inft Y ;

6) 1A ess inftX = 1A ess inft(1AX);

7) ess infsX ≥ ess inftX ;

The similar results are true for {ess supt}t∈T.

The proof of Proposition 2.1.5 for X,Y ∈ L∞ can be found in [10]. Basing on the fact that for
any n ∈ N and X,Y ∈ L̄0 we get X+ ∧ n ∈ L∞, X− ∧ n ∈ L∞ and X+ ∧X− = 0, the proof for
X,Y ∈ L̄0 is straightforward.

Please note that the concept of ess inf for a family of random variables, slightly differs from the
concept of conditional ess inf for a single random variable. We hope the notation will be transparent,
and it will be clear from the context, which definition we have in mind.

4One could also extend ess inft from L∞ to L̄0 e.g. noting that the function arctan is strictly monotone and
bounded and setting ess inftX = arctan−1[ess inft(arctanX)]. Such extension will coincide with (2.7).

5ess infω∈AX := sup{k ∈ R : 1Ak ≤ 1AX}.
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2.2 Utility measures

Let X denote the space of random variables or adapted stochastic processes, described in Section 2.1.
In this subsection we will now recall various notation and definitions used in the literature, espe-
cially in the theory of risk measures, performance measures and utility theory. The definitions
and properties are usually linked to the corresponding (static) definitions and properties from the
classical convex analysis (cf. [122] and references therein).

Definition 2.2.1 (General properties of maps). Let t0 ∈ T. For any X,Y ∈ X , A ∈ Ft, s ∈ T,
such that s > t, and m,λ, β ∈ Xt,6 such that 0 ≤ λ ≤ 1, β > 0 and ‖β‖∞ < ∞,7 we will say that
the map f : X → L̄0 is

(SBA) Subadditive if f(X + Y ) ≤ f(X) + f(Y );

(SPA) Superadditive if f(X + Y ) ≥ f(X) + f(Y );

(AD) Additive if f(X + Y ) = f(X) + f(Y );

(N) Normalized if f(0) = 0;

(M) Monotone if (MI) or (MD) hold, where

(MI) (Monotone increasing) X ≤ Y ⇒ f(X) ≤ f(Y );

(MD) (Monotone decreasing) X ≤ Y ⇒ f(X) ≥ f(Y );

(P) Proper if (P1) or (P2) hold, where

(P1) f(X) ∈ L̂0 and there exists X0 ∈ X , such that f(X0) > −∞;

(P2) −f(X) ∈ L̂0 and there exists X0 ∈ X , such that f(X0) <∞;

(F) Finite if f(X) ∈ L0;

(tA) Ft-adapted if f(X) ∈ L̄0
t ;

8

(tL) Ft-local if 1Af(X) = 1Af(1A ·t X);

(tCA) Ft-cash additive if f(X +m1{t}) = f(X) +m;

(tCCA) Ft-counter cash additive if f(X +m1{t}) = f(X)−m;9

(tQCC) Ft-quasi-concave if f(λ ·t X + (1− λ) ·t Y ) ≥ f(X) ∧ f(Y );

(tCC) Ft-concave if f(λ ·t X + (1− λ) ·t Y ) ≥ λf(X) + (1− λ)f(Y );

(tQCV) Ft-quasi-convex if f(λ ·t X + (1− λ) ·t Y ) ≤ f(X) ∨ f(Y );

6See page 6 for the definition of Xt.
7Note that we only consider (essentially) bounded elements, so that β ·tX ∈ X , for any X ∈ X . See Remark 2.4.5

for details.
8Note that for the static case (t = 0) we will write simply f(X) ∈ R̄.
9Note that for X ⊆ L̄0, we get 1{t} = 1. On the other hand, for X ⊆ V̄0, the value m1{t} corresponds to a single

cash flow m, received at time t, see page 6 for details.
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(tCV) Ft-convex if f(λ ·t X + (1− λ) ·t Y ) ≤ λf(X) + (1− λ)f(Y );

(tSI) Ft-scale invariant if f(β ·t X) = f(X);

(tPH) Ft-positively homogeneous if f(β ·t X) = βf(X);

(tLSC) Ft-lower semi-continous wrt. η, if {Z ∈ L̄0
t | f(X) ≤ Z} is η-closed10;

(tUSC) Ft-upper semi-continous wrt. η, if {Z ∈ L̄0
t | f(X) ≥ Z} is η-closed.

Moreover, if X ⊆ V̄0, with the same notation as before, we will say that f satisfies11

(tIP) Ft-independent of the past if f(X) = f(X − 0 ·t X);

(tTI) Ft-translation invariant if f(X +m1{t}) = f(X +m1{s}).

If t = 0, then we will abandon the notation ”Ft-” and call the map f simply adapted (A), translation
invariant (TI), cash additive (CA), counter cash additive (CCA), quasi-concave (QCC), concave
(CC), quasi-convex (QCV), convex (CV), scale invariant (SI), positively homogeneous (PH), lower
semicontinous (LSC) and lower semicontinous (USC).

Remark 2.2.2. Most of the properties introduced in Definition 2.2.1 have a natural financial inter-
pretation. For example quasi-concavity (tQCC), concavity (tCC) or superadditivity (SPA) might
correspond to the positive effect of portfolio diversification. Please cf. [78, 45] and references
therein, for more details and financial interpretation of other properties introduced above.

Remark 2.2.3. Please note that if X ⊆ L̄0 then for any t ∈ T, the properties independence of the
past (tIP) and translation invariance (tTI) are automatically satisfied.

See also Remark 2.4.3 (page 22) for more comment about locality (tL), and Remark 2.4.4
(page 22) for alternative definitions of properties from Definition 2.2.1 using the idea of Acceptance
sets. In Remark 2.4.5 (page 22) one could find additional comment about L0-modules, which allow
to get rid of various technical assumptions from Definition 2.2.1.

Proposition 2.2.4 (Selected implications for L∞). Let X = L∞ and let f : X → L̄0. Then the
map f satisfies the following implications:

1) Positively homogeneus (tPH) + Superadditive (SPA) ⇒ Convex (tCV);

2) Convex (tCV) + Positively homogeneus (tPH) ⇒ Superadditive (SPA);

3) Adapted (tA)+Monotone (MI)+Quasi-convex (tQCV)+Cash additive (tCA)⇒Convex (tCV);

4) Monotone (MI) + Cash additive (tCA) ⇒ Local (tL)

5) Concave (CC) ⇒ Local (tL)

The proof of this proposition is deferred to the Appendix A.1 (page 116).

10i.e. closed with respect to topology η; if η will be clear from the context, we will simply write that f is (tLSC).
For example, if X = Lp, then we will usually use the topology induced by ‖ · ‖p norm (see [77, Appendix A.7], for
details).

11Note that for X ⊆ L̄0, those properties are automatically satisfied; this is the very reason why we have decided
to distinguish those properties from the previous ones.
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Definition 2.2.5 (Additional properties for random variables). Let X ⊆ L̄0. For any X,Y ∈ X ,
we will say that the map f : X → L̄0 is

(FP) Admitting Fatou property, if f(X) ≥ lim supn→∞ f(Xn) for X -dominated sequence 12 {Xn}n∈N
such that Xn ∈ X and Xn

a.s.−−→ X.

(LP) Admitting Lebesgue property , if f(X) = limn→∞ f(Xn) for X -dominated sequence {Xn}n∈N
such that Xn ∈ X and Xn

a.s.−−→ X.

(LI) Law-invariant if f(X) = f(Y ), whenever Law(X) = Law(Y ).

Moreover we shall write that f admits (FP’) if (−f) admits (FP).

See Remarks 2.4.6 and 2.4.7 (page 22) for additional comment about Fatou property. Also, for
a general survey about properties introduced in this Section, see e.g. [107, 57, 77].

2.2.1 Families of utility measures

In this subsection we will present some specific families of (dynamic) utility measures, which are
present in the literature. In mathematical finance, there are two most important families of maps:

• Risk measures were studied e.g. in [77, 7, 78] and provide theoretical framework for maps,
which try to explain how risky an asset (investment strategy, stream of cash flows, etc.) can
be. In practise the risk is associated with the amount of an asset or set of assets (currency)
which must be kept in reserve, so that the position will be acceptable by the regulator [110].
The standard example (used widely by practitioners) is Value at Risk [93].

• Performance measures were studied in [17, 45, 66] and corresponds to maps designed to
measure how good a financial position could be. The value of Performance measure might e.g.
denote the degree of arbitrage consistency in the market [45, 65, 29], compare the financial
position with a benchmark index [9, 66] or present the ratio between reward and risk [39].
In this case, industry standard is Sharpe Ratio [9].

Unfortunately both Value at Risk and Sharpe Ratio lack a lot of properties which are desired from
a practical point of view (e.g. in general Sharpe’s Ratio is not monotone and Value at Risk is not
subadditive). This justifies the need for additional measures, which will be more suitable (see [7, 45]
for more detailed comment). Please see Introduction and Section 4 for a more detailed comment
about (dynamic) risk and performance measures, examples, properties, etc.

Definition 2.2.6 (Families of maps – static case). We will say that the map f : X → L̄0 is

UM Utility measure, if f is adapted (A), translation invariant (TI) and monotone increasing (MI);

RM (Monetary) risk measure, if f is adapted (A), translation invariant (TI), monotone decreasing
(MD), normalized (N) and counter cash-additive (CCA);

– Convex risk measure, if f is additionally convex (CV);

12This means that there exists Y ∈ X such that for all n ∈ N we have |Xn| ≤ |Y |.
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– Coherent risk measure, if f is additionally positively homogeneous (PH) and superaddi-
tive (SPA);

PM Performance measure, if f is adapted (A), translation invariant (TI), monotone increasing
(MI) and scale invariant (SI);

– Acceptability index, if f is additionally quasi-concave (QCC);

Moreover, if X ⊆ L̄0, then we will say that f is

CE Certainty equivalent, if there exists u : R̄ → R̄, u strictly increasing and continuous on R̄13,
such that for any X ∈ X and t ∈ T:

f(X) = u−1(E[u(X)]); (2.8)

Additionally, we usually assume that maps from Definition 2.2.6 are also proper (P). See
Remark 2.4.8 (page 23) for additional comment about this fact.

Remark 2.2.7. Sometimes, instead of dealing with a (monetary, convex or coherent) risk measure
f , it is more convenient to consider the mapping −f (cf. [44] and references therein). Note that
such maps belong to the family of UMs (they are called Monetary utility functions or Monetary
utility measures e.g. in [40, 36, 94, 79, 44]). Similar remark will apply for corresponding conditional
and dynamic families of maps.

Definition 2.2.8 (Families of maps - conditional case). We will say that the map f : X → L̄0 is

tUM Ft-cond. utility measure if f is adapted (tA), translation invariant (tTI), independent of the
past (tIP) and monotone increasing (MI);

tRM Ft-cond. (monetary) risk measure, if f is adapted (tA), translation invariant (tTI), indepen-
dent of the past (tIP), normalized (N), monotone decreasing (MD) and counter cash-additive
(tCCA);

– Ft-cond. convex risk measure, if f is additionally convex (tCV);

– Ft-cond. coherent risk measure, if f is additionally positively homogeneous(tPH) and
super additive (SPA);

tPM Ft-cond. performance measure, if f is adapted (tA), translation invariant (tTI), independent
of the past (tIP), monotone increasing (MI) and scale invariant (tSI);

– Ft-cond. acceptability index, if f is additionally quasi-concave (tQCC);

Moreover, if X ⊆ L̄0, then we will say that f is

tCE Ft-cond. certainty equivalent, if there exists u : R̄ → R̄, u strictly increasing and continuous
on R̄, such that for any X ∈ X and t ∈ T:

ft(X) = u−1(E[u(X)|Ft]); (2.9)

13i.e. strictly increasing and continuous of R, with u(±∞) = limn→±∞ u(n).
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Remark 2.2.9. Maps defined in Definition 2.2.6 are a special case of corresponding maps defined in
Definition 2.2.8, with t = 0.

See Remark 2.4.9 (page 23) for the alternative definition of conditional map, when the static
map is provided and it is law invariant (LI).

Having in mind Remark 2.4.3 (page 22), which explains why Ft-locality plays crucial role in
dynamic framework, we are now ready to present the definition of a dynamic map.

Definition 2.2.10 (Families of maps - dynamic case). We will say that a family f = {ft}t∈T of
maps ft : X → L̄0, is

1) Adapted (dA), Local (dL), etc., if for any t ∈ T, ft is adapted (tA), local (tL), etc. We will
also use (dSBA), (dSPA), (dAD), (dN), (dM), (dMI), (dMD), (dP), (dP1), (dP2), (dF), (dIP),
(dTI), (dCA), (dCCA), (dQCC), (dCC), (dQCV), (dCV), (dSI), (dPH), (dLI), (dFP), (dFP’),
(dLP) to denote the corresponding property of f ;

2) Dynamic map if f is adapted (dA) and local (dL);

3) Dynamic utility measure (dUM), Dynamic risk measure (dRM), etc. if for any t ∈ T, the map
ft is tUM, tRM, etc. We will also use symbols dPM and dCE.

Usually the filtration {Ft}t∈T corresponds to the evolution of time, so a dynamic utility describes
the change of our preferences through time. See Remark 2.4.10 (page 23) for the spatial approach.

The main objects of study in this thesis will be Ft-conditional utility measures and dynamic
utility measures. Thus, from now on we will always use

• ϕ to denote utility measure (UM) or dynamic utility measure (dUM) (depending on the
context).

• ϕt, to denote conditional utility measure (tUM).

We hope it will be clear from the context, which X we have in mind. Similarly, we will use f to
denote a (general) map f : X → L̄0 and f = {ft}t∈T to denote a (general) dynamic map.

2.2.2 How to extend an utility measure

In this subsection we will assume that L∞ ⊆ X ⊂ L0. Let X̃ be such that X ⊂ X̃ (for transparency,
one might assume that X = L∞ and X̃ = L0). For a given map f : X → L̄0, we want to create a
map f ′ : X̃ → L̄0, which will inherit some or all of the properties of map f . In this subsection we
will present some approaches to this problem. First of all let us say what we understand by the
extension of tUM.

Definition 2.2.11 (Extension of utility measure). Let ϕt : X → L̄0 be tUM and let X̃ ⊃ X . We
will call a map ϕ̃t : X̃ → L̄0, an X̃ -extension of ϕt, if ϕ̃t is tUM and ϕ̃t|X ≡ ϕt. Similarly, given
ϕ = {ϕt}t∈T dUM, we will say that ϕ̃ = {ϕ̃t}t∈T is an X̃ -extension of ϕ, if for any t ∈ T, ϕ̃t is
X̃ -extension of ϕt.

See Remark 2.4.11 (page 23) for a comment about extending a map using so called robust repre-
sentation and Remark 2.4.12 (page 23) about the extensions which preserve additional properties.
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It could be easily shown that for any tUM or dUM and X ⊂ X̃ there exist tUM or dUM, which
extends the map from X to X̃ . The exemplary detailed procedure of construction is shown in
Appendix A.4.1. One could also define the biggest and smallest maps, which extend tUM. To do
this we will make use of the following sets

Y+
A (X) := {Y ∈ X | 1AY ≥ 1AX},

Y−A (X) := {Y ∈ X | 1AY ≤ 1AX},

defined for X ∈ L̄0 and A ∈ F .

Definition 2.2.12 (Upper and lower extensions of utility measure). Let ϕt be tUM. We will denote
by ϕ+

t : L̄0 → L̄0
t , an upper L̄0-extension of ϕt, where14

ϕ+
t (X) := ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]
. (2.10)

Respectively, we will denote by ϕ−t : L̄0 → L̄0
t , an lower L̄0-extension of ϕt, where

ϕ−t (X) := ess sup
A∈Ft

[
1A ess sup

Y ∈Y−A (X)

ϕt(Y ) + 1Ac(−∞)
]
. (2.11)

The next result shows that ϕ± are two ‘extreme’ extensions, and any other extension is sand-
wiched between them.

Proposition 2.2.13. Let ϕt be tUM. Then ϕ−t and ϕ+
t are L̄0-extensions of ϕt. Moreover, let ϕ̃t

be an L̄0-extension of ϕt. Then, for any X ∈ L̄0 we get

ϕ−t (X) ≤ ϕ̃t(X) ≤ ϕ+
t (X). (2.12)

The proof of this proposition is deferred to the Appendix A.1 (page 116).

Clearly, generally speaking the maps (2.10) and (2.11) are not equal, and thus the extensions
of a dUM are not unique.

Corollary 2.2.14. Let t ∈ T and B ⊆ L̄0 be such that, for any A ∈ Ft, 1AB ⊆ B and
1AB + 1AcB ⊆ B. For any Ft-local and monotone15 mapping f : B → L̄0

t , the maps f± de-
fined analogously as in (2.10) and (2.11) will be extensions of f to L̄0, preserving locality and
monotonicity.

We omit the detailed proof here, as it is a simple generalization of Proposition 2.2.13. Next,
let us present two ways of constructing maps on X̂ and X̄ from maps on X (see page 6 for the
definition of X̂ and X̄ ).

1) For f : X → L̄0, we define a mapping f̂ : X̂ → L̄0 as

f̂(X) := lim inf
n→−∞

f
(
X ∨ n

)
, n ∈ Z. (2.13)

14We will use convention ess sup ∅ = −∞ and ess inf ∅ =∞.
15That is, Ft-local and monotone on B.
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2) For f : X → L̄0, we also define a mapping f̄ : X̄ → L̄0 as

f̄(X) := lim inf
m→∞

f̂
(
X ∧m

)
, m ∈ Z. (2.14)

Clearly, for monotone f , one can replace lim inf with lim in (2.13) and (2.14). Next propositions
shows that the functions f̂ and f̄ could inherit some of the properties of f , although generally
speaking, f̂ and f̄ are not X̂ -extensions and X̄ -extenstions of f unless they satisfy some additional
properties, like (FP) or (LP). (See Remark 2.2.16 for counterexample.)

Proposition 2.2.15. Let ϕt : X → L̄0
t be tUM. Then

1) ϕ̂t and ϕ̄t are tUM.

2) If ϕt is cash-additive (tCA) and ϕt(0) 6=∞, then ϕ̂t and ϕ̄t are cash-additive (tCA);

3) ϕt(X) = ϕ̂t(X) = ϕ̄t(X) for X ∈ L∞. Moreover, if ϕt satisfies Fatou property (FP), then
ϕt(X) = ϕ̂t(X) for X ∈ X and if ϕt satisfies Lebesgue property (LP), then ϕt(X) = ϕ̄t(X) for
X ∈ X .

The proof of this proposition is deferred to the Appendix A.1 (page 118).

Remark 2.2.16. In general f̂ and f̄ might not be an extensions of f . On X = L1, It is sufficient to
consider the example

f(X) =


1, if E[X] > 0,
0, if E[X] = 0.
−1, if E[X] < 0.

It is easy to show, that this function is UM. For X ∼ N(0, 1), we get f̂(X) = 1, f(X) = 0 and
f̄(X) = −1.

Remark 2.2.17. Please note that extensions (2.13) and (2.14) are a natural way of extending the
map from L∞ into any bigger space, especially if we want to preserve continuity, i.e. properties
(FP) or (LP). This is the main reason, why usually we only deal with those type of extensions
[56, 69] (see also Remark 2.4.12). Moreover, (2.13) and (2.14) are a natural extension of conven-
tion (2.4), especially if the map admits robust representation (2.16), which will be introduced in
Subsection 2.2.3.

2.2.3 Robust representation

The duality is among the most important properties for UMs and dUMs. Many methods used
to solve optimal stochastic control problems base on such representation, which allow us to move
the original problem to the dual space and to obtain dual representations (cf. [79] and references
therein). For example if X is a locally convex topological vector space (e.g. for X = Lp, when
p ≥ 1), then Separation theorem (Hahn-Banach theorem) hold, which allow us to use many classical
results from convex analysis, such as Fenchel-Moreau theorem (see Appendix A.3). The similar
result is also true in quasi-convex framework (again see Appendix A.3). In this thesis we will
mostly use the robust representation for convex RMs defined for random variables, the reason we
only introduce Definition 2.2.18.
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Following [75] (see also [78, Section 2.5], for the explanation of this notation) we will use notation
M1 :=M1(Ω,F) to denote the set of all probability measures on (Ω,F), M1(P) :=M1(Ω,F ,P)
to denote the set of all probability measures on (Ω,F) absolutely continuous wrt. P. For q ∈ [1,∞]
and t ∈ T, we will also write (see e.g. [95, 3, 75])

Qqt :=

{
{Q ∈M1(P) | dQ

dP ∈ L
q, Q = P on Ft} if q 6=∞,

{Q ∈M1(P) | Q ∈ ba(F), Q = P on Ft} if q =∞. (2.15)

The number q will always denotes the conjugate index of p (i.e. 1
p + 1

q = 1) and ba(F) will denote

the set of all finitely additive signed measures on F . For the static case we willl write Qp := Qp0.

Definition 2.2.18 (Representable risk measures). Let ϕ be a monetary RM (defined for random
variables). We will call ϕ representable, if

ϕ(X) = − inf
Q∈M1(P)

[EQ[X] + αmin(Q)], (2.16)

for some function αmin : M1(P)→ R ∪ {∞}. Similarly, we will say that {ϕt}t∈T, a monetary dRM
is representable, if for all t ∈ T,

ϕt(X) = − ess inf
Q∈M1(P)

[EQ[X|Ft] + αmint (Q)], (2.17)

for some function αmin
t : M1(P)→ L̂0

t .

Remark 2.2.19. Representation (2.16) has a financial interpretation. Any element of M1(P) could
be treated as a (risk) scenario (i.e. plausible probabilistic model) and the function αmin is so called
penalty function, which tell us how seriously we treat any particular scenario. Then ϕ could be
seen as a penalised worst case expectation, taken over elements of M1(P). This approach is also
in line with the concept of stress testing (cf. [75] and references therein).

See Remark 2.4.13 (page 23) for more comment about function αmin, Remark 2.4.14 (page 23)
for more general approach to robust representation using minimal risk functions and Remark 2.4.15
(page 24) about connection to dual spaces. Remark 2.4.16 (page 24) could provide some information
about robust representations in conditional case and robust representation for maps defined for
stochastic processes.

We will conclude this subsection with Theorems which link convex RMs and dRMs defined on
Lp (p ∈ [1,∞]) with robust representation. We refer to [95] and [3] for more details and proofs of
Theorem 2.2.20 and 2.2.21, respectively.

Theorem 2.2.20. Let ϕ be a monetary RM defined on Lp for p ∈ [1,∞]. Moreover, let ϕ be proper
(P2). Then, the following are equivalent:

1. The mapping ϕ is convex (CV) and satisfies Fatou property (FP’).

2. The mapping ϕ admits robust representation16

ϕ(X) = − inf
Q∈Qq

[EQ[X] + αmin(Q)], (2.18)

where αmin :M1(P)→ R+ ∪ {∞} is such that αmin(Q) =∞, if Q 6∈ Qq.
16Recall that q denote the conjugate index of p ( 1

p
+ 1

q
= 1)



18

Moreover, if ϕ is convex (CV), law-invariant (LI) and finite (F), then it satisfies Fatou property
(FP’).

The proof of Theorem 2.2.20 could be found e.g. in [95, Theorem 2.4 and 3.1]. See also [75,
Section 3] for more comments about representation (2.18). See also Remark 2.4.17 (page 24) for
more comment about Proposition 2.2.20. The similar result is also true in the dynamic setting.

Theorem 2.2.21. Let ϕ be a monetary dRM defined on Lp, for p ∈ [1,∞]. Moreover, let
−ϕt(X) ∈ L̂1

t for any X ∈ X and t ∈ T.17 Then, the following are equivalent:

1. The mapping ϕ is convex (dCV) and satisfies Fatou property (dFP’).

2. The mapping ϕ admits robust representation, i.e. for any t ∈ T,

ϕt(X) = inf
Q∈Qqt

[EQ[X|Ft] + αmint (Q)], (2.19)

where αmint :M1(P)→ (L̄0
t ∨ 0)18 is such that αmin(Q) =∞, if Q 6∈ Qqt .

Moreover, if ϕ is convex (dCV), law-invariant (dLI) and finite (dF), then it satisfies Fatou property
(dFP’).

2.3 Stochastic control with utility measures

In a very general (static) framework we will be interested in solving problems of the form

sup
X∈Z

ϕ(X), (2.20)

where ϕ is UM and Z ⊆ X . Of course we must impose some additional restrictions on ϕ and Z, if
want to solve (2.20) explicitly (e.g. to guarantee existence and uniqueness of the optimal solution).
While we will generally assume that ϕ is quasi-concave (QCC) and upper semi-continuous (USC)
(at least on the set Z), the conditions imposed on the set Z will depend on the problem, which we
will consider (cf. [117] and references therein, where sufficient conditions are presented in a more
general context).

For example, in portfolio optimisation theory, we might require that for any X ∈ Z, we get
X = F (Z), for some Z ∈ H, where F : H → X is concave and H is a convex subset of some vector
space. This would lead to problems of the form

sup
Z∈H

ϕ(F (Z)), (2.21)

which were studied e.g. in [109, 131] for negatives of (quasi)convex RMs.
The set Z could also be constructed using UMs, typically (convex) RMs. For example it could

be given by Z = {X ∈ Ẑ : ρ(X) ≤ x}, where Ẑ is the set of all admissible portfolios (e.g. self-
financing, or corresponding to the choice of some appropriate weights in portfolio construction), ρ
is RM, and x ∈ R.

17Note that this condition might be considered as an extension of (P2) to the conditional case.
18(L̄0

t ∨ 0) is the set of nonnegative Ft-measurable random variables with values in R̄.
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Moreover, the optimal stopping problems could be presented in this form. For example let
ϕ : L1 → R, let CT0 denote the set of all stopping times with values in T = {0, 1, . . . , T} and let
V = (Vt)

T
t=1 ∈ V1. Then the class of problems

sup
ν∈CT0

ϕ(Vν) (2.22)

leads to optimal stopping problems studied e.g. in [77, Section 6.5] or [36, Section 5.1 and 5.2] for
coherent dRMs. In particular if ϕ is a standard expectation then this leads to classical formulation
of optimal stopping problem (cf. [118] and references therein).

Remark 2.3.1. The family of maps ϕ, for which the problem (2.20) was studied extensively, corre-
spond to the class of Certainty Equivalents defined in (2.8). If X ⊆ L̄0 and we have some given
(possibly stochastic) utility function u (see e.g. [15, Section 2.1]), then we seek for ϕ, such that for
any X ∈ X , we get

u(ϕ(X)) = E[u(X)]. (2.23)

The value ϕ(X) corresponds to certainty equivalent of X. For transparency, in this thesis we will
use this name only for u : R̄→ R̄ being a classic von Neumann-Morgenstern utility function. The
corresponding family of maps was defined in (2.8) and could be obtain using formula

ϕ(X) = u−1(E[u(X)]). (2.24)

The families of the form (2.24) were extensively studied in the literature, especially in the actuarial
risk theory, where they were reffered to as Mean value principles (see e.g. [85, Chapter 5, Section 4]).
Note, that for such ϕ, the problem could be translated to so called expected utility optimisation
problem, as maximisation of (2.24) is equivalent to maximisation of the function E[u(·)]. Please
also note that with u(x) = x, we get the standard expectation operator.

2.3.1 Bellman principle of optimality

In (2.20), the shape of Z is typically strongly connected with the filtration {Ft}t∈T, usually through
a (finite) family of adapted stochastic process {(Xi

t)t∈T}i∈I , where I = {1, 2, . . . , N} for some
N ∈ N. They might describe e.g. the evolution of all market factors, securities, etc.

Moreover, any X ∈ Z could be seen as a function of {(Xi
t)t∈T}i∈I and a (predictable) control

process u = (ut)t∈T, which basically tell us what we decide to do at any time t ∈ T (see [12] for
a more formal introduction and definition of u). In other words, at any time t ∈ T we could have
an impact on X, changing the strategy (e.g. rebalancing a portfolio), where the choice will depend
on the evolution of the whole market till time t as well as our previous control decisions (e.g. on
{(Xi

k)}k≤t and (uk)k≤t, as they will determine our current wealth, shape of portfolio, etc.). Let Xu

correspond to the choice of strategy u.

Basically, Bellman principle of optimality (also called dynamic programming principle) tell us
that if u∗ = (u∗t )t∈T is optimal control for the problem (2.20), then for any time t ∈ T, the control
(u∗k)k≥t should be optimal for the conditional version of the problem (2.20), considered at time
t. We will refer to the sequence of conditional versions of the problem (2.20) for all t ∈ T as the
dynamic programming equations for (2.20).
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In a general framework, for a finite time horizon T = {0, 1, . . . , T}, where T ∈ N, such sequence
could be given recursively by

UT (u0, u1, . . . , uT ) := ΦT (Xu)

Ut(u0, u1, . . . , ut) := ess sup
ut+1

Φ
ut+1

t [Ut+1(u1, . . . , ut+1)], t ∈ {T − 1, . . . , 0}, (2.25)

where Φ
ut+1

t corresponds to so called response function and reflects the impact of the choice of ut+1

at time t for a (preference) value function, ΦT : X → L̄0
T shifts the final value of Xu into the space

of preferences and Xu ∈ Z correspond to the element obtained using control u = (u1, . . . , uT ). The
maps Φ

ut+1

t very often depend on some dUM, being a dynamized version of ϕ. Moreover we assume
that Ut ∈ L̄0

t for any t ∈ T, and thus, we could define U ∈ V̄0, as U = (U0, U1, . . . , UT ).
To make the problem (2.25) traceable, and reduce the number of parameters needed for dynamic

programming equations we usually assume that Z is a Markov chain and use (time-consistent)
dynamic version of ϕ (see e.g. [129]). A various specific approaches to this problem will be
presented in Section 5. See also (2.27) for the exemplary application of dynamic programming
principle in the context of optimal stopping.

2.3.2 Optimal stopping

For t ∈ T (t ≤ T ), let CTt denote the set of all stopping times with values in the set {t, t+ 1, . . . , T}.
In this subsections we will present some insight on the class of problems given by

sup
ν∈CT0

EVν , (2.26)

for a fixed V ∈ V1. In other words we will consider problems of the form (2.22), for ϕ(·) = E[·].
Applying the dynamic programming principle to (2.26), we define U ∈ V1 recursively, by

UT = VT ,

Ut = max (Vt,E[Ut+1|Ft]) , t ∈ {T − 1, . . . , 0}. (2.27)

Since V is assumed to be integrable, U is also integrable due to L1-continuity of the conditional
expectation operator. We will call U the Snell envelope of V [104]. The following theorem collects
the standard properties of Snell envelopes:

Theorem 2.3.2. Let V ∈ V1 and let U denote it’s Snell envelope. Then:

1. U is the smallest supermartingale dominating V .

2. Ut = ess sup{E[Vτ |Ft] : τ ∈ CTt }.

3. Let τt = min(s ≥ t | Us = Vs). Then τt ∈ CTt and

τT = T,

τt = t1{Vt≥E[Ut+1|Ft]} + τt+11{Vt<E[Ut+1|Ft]}, t ∈ {0, . . . , T − 1}.

4. Ut = E[Vτt | Ft].
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5. E[Ut+1|Ft] = E[Vτt+1 |Ft].

6. τ0 is optimal for V . In particular, for any optimal stopping time σ,

U0 = E[Vτ0 ] = E[Vσ].

7. τt can also be defined recursively:

τT = T,

τt = t1{Vt≥E[Vτt+1 |Ft]} + τt+11{Vt<E[Vτt+1 |Ft]}, t ∈ {0, . . . , T − 1}.

8. τ ∈ CT0 is optimal for V if and only of

(a) Vτ = Uτ ,

(b) Ut∧τ is a martingale (where t ∧ τ = min(t, τ)).

9. U0 = max(Z0,E[Vτ1 ]).

10. The random variable τ0 is the smallest optimal stopping time.

11. Let Ut = Mt−At be the Doob decomposition of the Snell envelope into a martingale Mt and a
non-decreasing predictable process At starting at 0. If K = {t : At+1 > 0} ⊂ {0, 1, . . . , T−1},
then

% =

{
T if K = ∅,
minK if K 6= ∅,

is the largest optimal stopping time.

The proof of Theorem 2.3.2 can be found e.g. in [104].

2.4 Additional remarks

Remark 2.4.1. It is worth noticing, that for stochastic processes, the space X , embedded with the
operator (·t) does not define a proper L0–module (see e.g. [67, 68]). It is enough to notice that
the property 0 ·t V = 0 (for any V ∈ X ) does not hold. This is one of the basic properties of
L0–modules (their structure is similar to the structure of vector spaces). Nevertheless, the ideas
presented in this thesis will be strictly connected with this theory. Moreover, most dynamic utility
measures (see Subsection 2.2.1) considered in this thesis will admit so called independence of the
past for which the operator (·t) becomes an appropriate operator for an L0–module, i.e. one might
consider the corresponding operator, with V0, . . . , Vt−1 substituted with 0s in (2.5), for which X
becomes an L0–module (see [17] for details).

Remark 2.4.2. As stated in Remark 2.1.4, the operator E[·|Ft] might be not linear in the general
case. Nevertheless, such notation is strictly connected to the theory of (dynamic) risk measures.
See [113, 114, 115] for the general concepts of Nonlinear Expectations (in particular g-Expectations)
and [32] for the relation to Choquet Integrals (also called Choquet Expectations).
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Remark 2.4.3. The properties similar or equivalent to locality (tL) were studied in many forms (see
e.g. [57, Subsection 2.2]). Sometimes they were referred to as the regularity property. Moreover,
some authors treat locality as a part of dynamic time-consistency property (see [103, Definition 1.1]).
Moreover, nearly all of the properties considered in Definitions 2.2.1 are local in a sense that Ft-
locality allow us to treat them locally, even if we assume they hold just for t = 0. For example,
let us assume that the map f : X → L̄0 is scale invariant (SI) and local (tL). Then, we get
f(β ·t X) = f(X), for β =

∑∞
i=1 1Aiβi, where Ai ∈ Ft,

⋃∞
i=1Ai = Ω, Ai ∩ Aj = ∅ (i 6= j), βi ∈ R,

βi > 0. Moreover, if we assume that f possess some form of continuity (e.g. Lebesgue property for
X = L1, as in Definition 2.2.5, see also [103]), then we get f(β ·t X) = f(X) for β ∈ Xt, β > 0 and
consequently conditional scale invariance (tSI) holds.

Remark 2.4.4. In many cases for a fixed t ∈ T and f : X → L̄0, most of the properties introduced
in Definition 2.2.1 could be alternatively defined using the corresponding properties for sets, using
the idea of so called (Ft-conditional) acceptance sets, denoted by At(m) = {X ∈ X | f(X) ≥ m}
for m ∈ L̄0

t . See e.g. [77, Section 4.1] and [45] for details.

Remark 2.4.5. For X = Lp (p ∈ [1,∞]), properties in Definition 2.2.1 are suited for the Lp-
framework, which implies some drawbacks. Let us alone point out that we need additional re-
striction for scalar in the definition of (SI) (see [67] for detailed discussion and more drawbacks).
To overcome this and many more problems, the theory of L0-modules was developed. Intuitively
speaking, instead of dealing with the space Lpt , we can define the space

LpFt := L0
t · Lp = {Y X | Y ∈ L0

t , X ∈ Lp},

where the elements of the space L0
t act as scalars (defining module over a ring [67]). Such space is a

natural interpretation of the fact, that at time t, we can treat any Ft-measurable random variable
as a constant, so no additional restriction should be imposed on such random variables. Moreover,
when we embed LpFt with a certain kind of topology, it allow us to extend many theorems from
classic (convex) functional analysis. This approach could also be applied, when we consider the
space of adapted stochastic processes. See [67, 68], when this theory was initiated, for more formal
and detailed description. Also, for a good review of existing literature, more detailed explanation of
this idea, and it’s application for Lp-type of maps, see [83, 88]. Nevertheless, it is worth mentioning
that the theory of L0-modules is not yet polished (see e.g. [145, 88] for potential problems).

Remark 2.4.6. The Fatou property (FP) has been studied in many various forms in existing liter-
ature (cf. [55, 13] and references therein). In risk measure framework, it is usually assumed that
(−f) satisfies Fatou property (FP), the reason we introduced notation (FP’). For maps defined
on order complete Riesz spaces19, which are monotone (MI), Fatou property (FP) coincide with so
called order upper semicontinuity [13]. Moreover, for maps defined on Lp, where p ∈ [0,∞], upper
semi-continuity (USC) (wrt. ‖ · ‖p) implies Fatou property (FP) [13]. The Fatou property (FP) is
also strictly connected to continuity from above, as shown e.g. in [13, 95]. Thus, Fatou property
(FP) is crucial if we want the robust representation to hold (cf. [95]). The Lebesgue property (LP)
has been studied e.g. in [112, 94].

Remark 2.4.7. On L∞, we know that adaptivity (A), properness (P1), concavity (CC), monotonicity
(MI), cash-additivity (CA) and law invariance (LI) imply the Fatou property (FP) (see [94] for

19Riesz space is a partially ordered vector space where the order structure is a lattice (i.e. for any X,Y ∈ X , there
exists Z, such that X ∨ Y ≤ Z
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details). In particular, any Monetary risk measure (see Definition 2.2.6) on L∞, which is law
invariant(LI), satisfies Fatou property (FP’). Moreover, on Lp, for p ∈ [1,∞), any convex risk
measure (see Definition 2.2.6), which is finite (F), satisfies Fatou property (FP’) (cf. [95]).

Remark 2.4.8. We will usually assume that maps from Definition 2.2.6 also satisfy properness (P)
(see [56] for discussion). While proper maps are the real object of study, it would be inconvenient
to exclude maps without this property, as they arise in many natural situations (cf. [122]). Similar
remark will apply for corresponding conditional and dynamic families of maps. Note that the
properness (P) is also needed if we want to use certain classical tools from convex analysis like
Fenchel-Moreau Theorem (cf. [95] and references therein). It is also worth mentioning, that in
general we could not require the map to be finite as it would exclude many interesting cases. For
example, if the space is atomless, then there is no real-valued coherent risk measure on L0 (see [55,
Theorem 5.1]).

Remark 2.4.9. As R equipped with Borel σ-algebra B is a Borel space, for any t ∈ T there always
exist a unique probability kernel P(X,Ft) : Ω × B → [0, 1] from (Ω,Ft) to (R,B) such that for any
X ∈ X we get

P(X,Ft)(·, B) = P [X ∈ B|Ft](·),

for B ∈ B [96]. In particular, for UMs which are law invariant (LI), we could try to define Ft-
conditional utility measure directly from the static one, i.e. for given f , we put

ft(X)(ω) = f(P(X,Ft)(ω, ·)).

Remark 2.4.10. In a general framework a family of σ-subfields of F could be associated with a
different concept. For example, in the spatial framework it could describe a node in the financial
system (as in systemic risk framework). Then a conditional utility measure will correspond to the
value of local preferences, e.g. for a certain financial institution (see [74] for details).

Remark 2.4.11. Some tUM or dUM which are additionally quasi-concave (QCC) and satisfy Fatou
property (FP) can be extended through so called robust representation (see Subsection 2.2.3 for
details). Exemplary procedure for coherent dUMs could be found in [41]. See also [69].

Remark 2.4.12. It is known that every RM defined on L∞ which is additionally proper (P), law
invariant (LI), convex (CV) and which negative admits Fatou property (FP) can be extended to
RM defined on L1 with the same properties. Moreover, such extension is unique [69], so L1 could
be treated as canonical space for this type of maps. To see when there exists extension of RM,
which additionally preserve finiteness (F) and continuity, see [100].

Remark 2.4.13. Please note that the function αmin :M1(P)→ R ∪ {∞} might be used to define a
monetary RM. Given a representable Monetary RM one might recover αmin noticing that20

αmin(Q) = − inf
X∈Aρ

EQ[X],

for Aρ = {X ∈ Lp | ϕ(X) ≥ 0}. See [75, 78] for details.

Remark 2.4.14. The robust representation for a general case of UMs defined for random variables
(i.e. when X = Lp for p ≥ 1) is of the form

ϕ(X) = inf
Q∈M1

R(Q, EQ[X]), (2.28)

20Note that infQ∈M1(P) α
min(Q) = 0, as ϕ satisfies (N).
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where R is so called Minimal risk function (see [63, 17, 82] for details). Robust representation hold
usually when ϕ admits quasi-concavity (QCC) and upper semi-continuity (USC). This represen-
tation could be also extended to the case, when X is a locally convex topological L0–module (see
e.g. [17]). See also [37, 107, 63, 17] for information about robust representation in a more general
framework (e.g. for stochastic processes).

Remark 2.4.15. Let X = Lp, p ∈ [1,∞). Usually, for representable dRM defined on X , instead of
taking infimum on M1(P) in (2.16) it is enough to consider it on the subset Qq ⊆ M1(P). The
space Qq corresponds to the dual space of X (considering the standard topology induced by ‖ · ‖p
norm). See Theorems 2.2.20 and 2.2.21 for details.

Remark 2.4.16. There are several papers which characterise robust representations in the condi-
tional case, both for random variables as well as adapted stochastic processes [3, 67, 63, 82, 17, 68].
We usually consider only probability measures which coincide with P on Ft, see e.g. Theorem 2.2.21.
Moreover, equation (2.17) seems to be a natural way to construct tRM from a (static) RM which
admits (2.16), if only we get formula for conditional equivalent of αmin (cf. [41, 69] and references
therein). One could also consider conditional robust representation (2.28) in the general framework,
as in Remark 2.4.14 (see e.g. [17, 68, 107]).

Remark 2.4.17. In Theorem 2.2.20 we could replace the Fatou property (FP’) with lower semi-
continuity (LSC) (wrt. ‖ · ‖p), as those properties coincide in the static framework (see [95, Theo-
rem 3.3]). Moreover, for p =∞, the mapping ϕ in Theorem 2.2.20, point 2) is always finite, so any
law invariant and convex RM is representable (cf. Remark 2.4.7).



Chapter 3

Time-consistency of dynamic utility
measure

As we have pointed our in the introduction, a line of research that branched out from [8] was
dedicated to extension of the theory of risk and performance measure to the dynamical, multi-
period setup, where the flow of information is modeled by a filtration, say F = (Ft)t∈T, that is
a component of the underlying probability space (Ω,F ,F, P ). When the space X is considered,
the risk measures are defined on the set of F-measurable random variables that correspond to
(terminal) cashflows, or, more generally, on the set of adapted stochastic processes that correspond
to dividend streams or to cumulative cashflows. As shown in Section 2, most of the axioms from
static case are transferred to the dynamic setup in a natural way, with addition of requirement that
the measures are F-adapted (tA) and, frequently, that they are independent of the past (tIP). From
another point of view, an extension from one period to multi-period models can be realized through
robust representation theorems, essentially by replacing expectations with conditional expectations
(see Subsection 2.2.3). As defined in the previous Section, risk measures obtained by this procedure
are referred to as conditional and dynamic risk measures (also cf. [124, 57, 24]).

As shown in one of the first papers that studied dynamic coherent risk measures, [121], if one is
concerned about making noncontradictory decisions (from the risk/utility point of view) over the
time, then an additional axiom, called time consistency, is needed. Over the past decade significant
progress has been made towards expanding the theory of dynamic risk measures and their time
consistency. For example, so called cocycle condition (for convex risk measures) was studied in
[25, 73], recursive construction was exploited in [40], relation to acceptance and rejection sets was
studied in [53], the concept of prudence was introduced in [116], connections to g-expectations were
studied in [125], and the relation to Bellman’s principle of optimalty was shown in [7]. For more
details on we also refer the reader to [35, 38, 36, 50, 57, 92, 121, 81, 80, 124, 141, 54, 140, 82, 17],
as well as to a comprehensive survey paper [2] and the references therein.

Let us briefly recall the concept of strong time consistency of dynamic monetary risk measures
(dRMs), which is one of the most recognized forms of time consistency (see Appendix A.2 for other
types). Assume that ρt(X) is the value of a dynamic monetary risk measure at time t ∈ T, that
corresponds to the riskiness, at time t, of the cashflow X, with X being an F-measurable random
variable. The monetary risk measure is said to be strongly time consistent if for any t < s (t, s ∈ T),
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and any F-measurable random variables X,Y ∈ X we have that

ρs(X) = ρs(Y ) ⇒ ρt(X) = ρt(Y ). (3.1)

The financial interpretation of strong time consistency is clear – if X is as risky as Y at some future
time s, then today, at time t, X is also as risky as Y . One of the main features of the strong time
consistency is its connection to dynamic programming principle. It is not hard to show that in the
L∞ framework, a monetary risk measure is strongly time consistent if and only if

ρt = ρt(−ρs), 0 ≤ t < s. (3.2)

All other forms of time consistency for monetary risk measures, such as weak and middle acceptance
time consistentcy or rejection time consistentcy, are tied to this connection as well. In [140], the
author proposed a general approach to time consistency for cash-additive risk measures by intro-
ducing so called ‘test sets’ or ‘benchmark sets.’ Each form of time consistency was associated to a
benchmark set of random variables, and larger benchmark sets correspond to stronger forms of time
consistency. For reader convenience, this concept is presented with more details in Appendix A.2.

Let us now present some insight on time consistency for dynamic performance measures (dPMs).
The first study of time consistency of scale invariance measures is presented in [20], where the au-
thors elevated the theory of coherent acceptability indices to dynamic setup in discrete time. It
was pointed out that none of the forms of time consistency for risk measures is suitable for scale
invariant maps. Recursive property similar to (3.2) or benchmark sets approach essentially can
not be applied to scale invariant maps. Consequently, one of the main challenge was to find an
appropriate form of time consistency of acceptability indices, that would be both financially rea-
sonable and mathematically tractable. For the case of random variables, the proposed form of time
consistency for a dynamic coherent acceptability index α reads as follows: for any Ft-measurable
random variables mt, nt, and any t < T , the following implications hold

αt+1(X) ≥ mt ⇒ αt(X) ≥ mt,

αt+1(X) ≤ nt ⇒ αt(X) ≤ nt. (3.3)

The financial interpretation is also clear – if tomorrow X is acceptable at least at level mt, then
today X is also acceptable at least at level mt; similar interpretation holds true for the second
part (3.3). It is fair to say, we think, that dynamic acceptability indices and their time consistency
properties play a critical role in so called conic approach to valuation and hedging of financial
contracts [16, 23, 126].

We recall that both risk measures and performance measures, in the nutshell, put preferences
on the set of cashflows. While the corresponding forms of time consistency (3.1) and (3.3) for
these classes of maps, as argued above, are different, we note that generally speaking both forms
of time consistency are linking preferences between different times. The aim of this Section is to
present a unified and flexible framework for time consistency of risk and performance measures,
that integrates existing forms of time consistency as well as various connections between them. We
consider a (large) class of maps that are postulated to satisfy only two properties - monotonicity
and locality - which we call dynamic utility measures (dUMs), and we study time consistency of
such maps. These two properties, in our opinion, have to be satisfied by any reasonable dynamic
risk or performance measure. We introduce the notion of an update rule that is meant to link
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preferences between different times. The time consistency is defined in terms of an update rule.
We provide various update rules that allow to recover several known forms of time consistency,
and also such that allow to study some new forms of time consistency. When appropriate, for each
form of time consistency we consider separately the case of (terminal) cashflows, referred in this
paper as the case of random variables, and the case of dividend streams, referred to as the case of
stochastic processes. For each type of time consistency we provide different equivalent formulations
along with a discussion regarding financial interpretation and suitability of each rule. We also
provide a comprehensive analysis of the connections between considered forms of time consistency.
The numerous examples of specific dUMs and types of time consistency, that they follow will be
presented in Chapter 4.

This Chapter is organized as follows. In Section 3.1 we set forth the main concepts of the paper
– the notion of an update rule and the definition of time consistency of a dUM. We prove a general
result about time consistency, that can be viewed as counterpart of dynamic programming principle
(3.2), and that is used conveniently in the sequel.

Section 3.2 is devoted to various types of time consistency for random variables (i.e. when
X ⊆ L̄0). Each type of time consistency is discussed in a separate subsection. We start with the
weakest form of time consistency – the weak time consistency, and we conclude with the notion of
super/submartingale time consistency. We present some fundamental properties for each type of
time consistency, and we establish some relationships between them.

Then, in Section 3.3 we briefly present the corresponding results for random processes, based
on Section 3.2. Numerous examples both for random variables and stochastic processes will be
presented later, in Section 4.

Section 3.4 will be devoted to a recursive construction, which allow to construct a strongly time
consistent dUM form any given map (on finite time horizon),

This Chapter will be based on [18].

3.1 Definition of time consistency

In this section we introduce the time consistency of dynamic risk and performance measures, or
more generally, the time consistency of dUMs introduced in the previous section.

We recall that these dUMs are defined on X , where X either denotes the space of random
variables (e.g. Lp, for p ∈ {0, 1,∞}) or the space of stochastic processes (e.g. Vp for p ∈ {0, 1,∞}),
so, our study of time consistency is done relative to such spaces. While, for clarity, in this section
we will only use spaces Lp and Vp, the definition of time consistency can be easily adapted for
other type of spaces, such as Orlicz hearts (as studied in [37]) or topological L0-modules (see for
instance [17]). Usually, the need to consider spaces smaller than L0 or V0 is motivated by the aim
to obtain robust representation of such measures, as explained in Section 2.2.3. For this, a certain
topological structure is required (cf. Remark 2.4.11). On the other hand, ‘time consistency’ refers
only to consistency of measurements in time, where no particular topological structure is needed,
and thus most of the results obtained here hold true for p = 0.

Assume that {ϕt}t∈T is a dUM on X . For an arbitrary fixed X ∈ X and t ∈ T the value
ϕt(X) represents a quantification (measurement) of preferences about X at time t. Clearly, it is
reasonable to require that any such quantification (measurement) methodology should be coherent
as time passes. This is precisely the motivation behind the concepts of time consistency of dUMs.
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There are various forms of time consistency proposed in the literature, some of them suitable for
one class of measures, other for a different class of measures, without a unified approach to fit them
all. For example, for dynamic convex (or coherent) risk measures time consistency is equivalent
to dynamic programming principle (also called Bellman principle), which we have introduced in
Section 2.3.1, or variations of it [2]. On the other hand, as shown in [20], dynamic programming
principle essentially is not suited for scale invariant measures such as dynamic acceptability indices,
and the authors introduce a new type of time consistency tailored for these measures and provide
a robust representation of them. Nevertheless, in all these cases the time consistency property
connects, in a coherent way, the measurements at different times.

Next, we will introduce the notion of update rule that serves as the main tool in relating the
measurements of preferences at different times, and also, it is the main building block of our unified
theory of time consistency property.

Definition 3.1.1 (Update rule). We will call a family µ = {µt,s}s>t, s, t ∈ T, of maps

µt,s : L̄0
s ×X → L̄0

t

an update rule if for any s > t, the map µt,s satisfies the following conditions:

1) (Locality) 1Aµt,s(m,X) = 1Aµt,s(1Am,X);

2) (Monotonicity) if m ≥ m′, then µt,s(m,X) ≥ µt,s(m′, X);

for any X ∈ X , A ∈ Ft and m,m′ ∈ L̄0
s.

Remark 3.1.2. As we have mentioned, the update rule is responsible for updating preferences
through time. This concept is tightly linked with maps, which are projections. The natural choice
of an update rule is the conditional expectation operator, i.e. we can consider the update rule
{µt,s}s>t, given by1

µt,s(m,X) = E[m|Ft]. (3.4)

Note that this particular update rule does not depend on s and X. Update rule might be also
responsible for discounting the preferences. Intuitively speaking, the risk of loss in the far future
might be more preferred than the imminent risk of loss (see [44] for the more detailed explanation
of this idea). For example, the update rule {µt,s}s>t of the form

µt,s(m,X) =

{
αs−tE[m|Ft] on{E[m|Ft] ≥ 0},
αt−sE[m|Ft] on {E[m|Ft] < 0}. (3.5)

for a fixed α ∈ (0, 1) correspond to this concept. Note that ’discounting’ proposed here has nothing
to do with the ordinary discounting, as we act on discounted values already.

We are now ready to introduce the general definition of time consistency.

Definition 3.1.3.2 Let µ be an update rule. We will say that the dUM {ϕt}t∈T is µ-acceptance
time consistent if

ϕs(X) ≥ ms =⇒ ϕt(X) ≥ µt,s(ms, X), (3.6)

1We consider here the generalized conditional expectation defined in (2.6).
2We introduce the concept of time consistency only for dUMs, for transparency. However, the definition itself is

suitable for any map acting from X to L̄0. For example, traditionally in the literature, the time consistency is defined
for dynamic risk measures (which form a subclass of negatives of dUMs), and the above definition of time consistency
will be appropriate, although one has to flip ‘acceptance’ with ‘rejection’.
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for all s, t ∈ T, s > t, X ∈ X and ms ∈ L̄0
s. Respectively, we will say that {ϕt}t∈T is µ-rejection

time consistent if
ϕs(X) ≤ ms =⇒ ϕt(X) ≤ µt,s(ms, X), (3.7)

for all s, t ∈ T, s > t, X ∈ X and ms ∈ L̄0
s. If properties (3.6) and (3.7) are satisfied only for

s, t ∈ T, such that s = t+ 1, then we will say that {ϕt}t∈T is one step µ-acceptance time consistent
and one step µ-rejection time consistent, respectively.

Since dUMs are local (dL) and monotone (dMI), properties with clear financial interpretations,
the update rules are naturally assumed to be local and monotone too.

We see that the first argument m ∈ L̄0
s in µt,s serves as a benchmark to which the measurement

ϕs(X) is compared. The presence of the second argument, X ∈ X , in µt,s, allows the update rule
to depend on the objects (the Xs), which the preferences are applied to. However, as we will see
in next section, there are natural situations when the update rules are independent of X ∈ X , and
sometimes they do not even depend on the future times s ∈ T.

Remark 3.1.4. With the update rule {µt,s}s>t defined in (3.4), the concept of acceptance and
rejection time consistency coincide with supermartingale and submartingale property, respectively.
In other word for a given dUM, say {ϕt}t∈T, we ask if the property

ϕt(X) ≥ E[ϕs(X)|Ft] (resp. ≤) (3.8)

is satisfied for any X ∈ X .3

Next, we define several particular classes of update rules, suited for our needs.

Definition 3.1.5 (Various types of update rules). Let µ be an update rule. We will say that µ is:

1) X-invariant, if µt,s(m,X) = µt,s(m, 0);

2) sX-invariant, if there exists a family {µt}t∈T of maps µt : L̄0 → L̄0
t , such that µt,s(m,X) = µt(m);

3) Projective, if it is sX-invariant and µt(mt) = mt;

for any s, t ∈ T, s > t, X ∈ X , m ∈ L̄0
s and mt ∈ L̄0

t .

Remark 3.1.6. If an update rule µ = {µt,s}s>t is sX-invariant, then it is enough to consider only
the corresponding family {µt}t∈T. Hence, with slight abuse of notation we shall write µ = {µt}t∈T
and call it an update rule as well.

Remark 3.1.7. Examples of update rules satisfying 1) and 3) are given by (3.5) and (3.4), respec-
tively. The update rule, which satisfy 2), but not 3) can be constructed by substituting αt−s with a
constant in (3.5). Generally speaking update rules for stochastic processes will not satisfy 1) as the
information about the process in the time interval (t, s) will affect µt,s, see Section 3.3 for details.

The financial interpretation of acceptance time consistency is straightforward: if X ∈ X is
accepted at some future time s ∈ T, at least at level m, then today, at time t ∈ T, it is accepted
at least at level µt,s(m,X). Similarly for rejection time consistency. Essentially, the update rule
µ translates the preference levels at time s to preference levels at time t. As it turns out, this
simple and intuitive definition of time consistency, with appropriately chosen µ, will cover various

3See Proposition 3.1.8 for the proof of equivalence between (3.6) and (3.8) for this particular update rule.
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cases of time consistency for risk and performance measures that can be found in the existing
literature. Moreover, it will allow us to establish some fundamental properties of the dUMs and
some important connections between different versions of time consistency.

Next, we will give an equivalent formulation of time consistency. While the proof of the equiva-
lence is simple, the result itself will be conveniently used in the sequel. Moreover, it can be viewed
as a counterpart of dynamic programming principle, which is an equivalent formulation of dynamic
consistency for convex risk measures.

Proposition 3.1.8. Let µ be an update rule and let {ϕt}t be a dUM. Then,

1) {ϕt}t∈T is µ-acceptance time consistent if and only if

ϕt(X) ≥ µt,s(ϕs(X), X), (3.9)

for any X ∈ X and s, t ∈ T, such that s > t.

2) {ϕt}t∈T is µ-rejection time consistent if and only if

ϕt(X) ≤ µt,s(ϕs(X), X), (3.10)

for any X ∈ X and s, t ∈ T, such that s > t.

Proof. Let µ be an update rule.

1) The implication (⇒) follows immediately, by taking in the definition of acceptance time consis-
tency ms = ϕs(X).

(⇐) Assume that ϕt(X) ≥ µt,s(ϕs(X), X), for any s, t ∈ T, s > t, and X ∈ X . Let ms ∈ L̄0
s be

such that ϕs(X) ≥ ms. Using monotonicity of µ, we get ϕt(X) ≥ µt,s(ϕs(X), X) ≥ µt,s(ms, X).

2) The proof is similar to 1).

The financial interpretation of (3.9) is similar to that of (3.6): if in the future, at time s, we
accept the cash-flow X at level ϕs(X), then today, at time t, we should accept the same cash-flow
at least at level µt,s(ϕt(X), X) – the update of the acceptance level of X from time s to time t.
Analogous interpretation applies to rejection time consistency.

Remark 3.1.9. It is clear, and also naturally desired, that a monotone transformation of a dUM will
not change the preference order of the underlying elements. We want to emphasize that a monotone
transformation will also preserve the time consistency. In other words, the preference orders will
be also preserved in time. Indeed, if {ϕt}t∈T is µ-acceptance time consistent, and g : R̄ → R̄ is a
strictly monotone function, then the family {g ◦ ϕt}t∈T is µ̃-acceptance time consistent, where the
update rule µ̃ is defined by µ̃t,s(m,X) = g(µt,s(g

−1(m), X)), for t, s ∈ T, s > t, X ∈ X and m ∈ L̄0
s.

Before moving to the concrete definitions of time consistency, we will give some general remarks
about relationship between time consistency for random variables and time consistency for random
processes.

In what follows, for the case of random variables, X = Lp, we will only consider update rules
that are X-invariant. Hence, as it will be clear later, the case of random variables can be viewed
as a particular case of stochastic processes by considering cash-flows with only the terminal payoff,
i.e. stochastic processes such that V = 1{T}VT (for finite time horizon). Nevertheless, we treat this
case separately for transparency.
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In the present work, in the case of stochastic processes, we will focus on one step update rules,
such that

µt,t+1(m,V ) = µt,t+1(m, 0) + f(Vt), (3.11)

where f : R̄ → R̄ is a Borel measurable function, such that f(0) = 0. We do this primarily to
allow for a direct link between our results and the existing literature. We note, that any such one
step update rule µ can be easily adapted to the case of random variables. Indeed, upon setting
µ̃t,t+1(m) := µt,t+1(m, 0) we get a one step X-invariant update rule µ̃, which is suitable for random
variables. Moreover, µ̃ will define the corresponding type of one step time consistency for random
variables. Of course, this correspondence between update rule for processes and random variables
is valid only for ‘one step’ setup.

Finally, we note that for update rules, which admit the so called nested composition property (cf.
[131, 129] and references therein),

µt,s(m,V ) = µt,t+1(µt+1,t+2(. . . µs−2,s−1(µs−1,s(m,V ), V ) . . . V ), V ), (3.12)

we have that µ-acceptance (resp. µ-rejection) time consistency is equivalent to one step µ-acceptance
(resp. µ-rejection) time consistency.

This is another reason why we consider only one step update rules for stochastic processes,
however one can consider more exotic forms of time consistency, within proposed framework, and
derive numerous properties and relationships between them, a task that we will leave for further
studies.

3.2 Selected types of time consistency for random variables

In this section we will analyze various types of time consistency, including some of those that have
been studied in the literature, using the framework developed earlier in this paper. If X = Lp, for
p ∈ {0, 1,∞}, then the elements X ∈ X are interpreted as discounted terminal cash-flows.

3.2.1 Weak time consistency

The notion of weak time consistency was introduced in [140], and subsequently studied in [2, 7, 36,
57, 1, 38]. The idea is that if ‘tomorrow’, say at time s, we accept X ∈ X at level ms ∈ Fs, then
‘today’, say at time t, we would accept X at least at any level smaller or equal than ms, adjusted
by the information Ft available at time t (cf. (3.25)). Similarly, if tomorrow we reject X at level
smaller than ms ∈ Fs, then today, we should also reject X at any level bigger than ms, adapted to
the flow of information Ft. This suggests that the update rules should be taken as Ft-conditional
essential infimum and supremum, respectively. First, we will show that Ft-conditional essential
infimum and supremum are projective update rules.

Proposition 3.2.1. The family µinf := {µinf
t }t∈T of maps µinf

t : L̄0 → L̄0
t given by

µinf
t (m) := ess inftm,

is a projective4 update rule. Moreover,

µinf
t (m) = ess inf

Q∈Q1
t

EQ[m|Ft], (3.13)

4See Remark 3.1.6 for the comment about notation.
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where Q1
t is defined in (2.15). Similar result is true for family µsup := {µsup

t }t∈T, defined by
µsup
t (m) = ess suptm.

Proof. Monotonicity and locality of µinf is a straightforward implication of Proposition 2.1.5. Thus,
µinf is sX-invariant update rule. The projectivity comes straight from the definition. Now, let a
family µ = {µt}t∈T of maps µt : L̄0 → L̄0

t be given by

µt(m) = ess inf
Q∈Q1

t

EQ[m|Ft]. (3.14)

As any measure Q� P could be associated with random variable dQ
dP , we could write

µt(m) = ess inf
Q∈Q1

t

E[dQ
dPm|Ft]

E[dQ
dP |Ft]

= ess inf
Z∈Pt

E[Zm|Ft], (3.15)

where Pt = {Z ∈ L1 | Z ≥ 0, E[Z|Ft] = 1}. Before proving (3.13), we will need to prove some
facts about µ.

First, let us show that µ is sX-invariant update rule. Let t ∈ T. Monotonicity is straightforward.
Indeed, let m,m′ ∈ L̄0 be such that m ≥ m′. For any Z ∈ Pt, using the fact that Z ≥ 0, we get
Zm ≥ Zm′. Thus, E[Zm|Ft] ≥ E[Zm′|Ft] and consequently

ess inf
Z∈Pt

E[Zm|Ft] ≥ ess inf
Z∈Pt

E[Zm′|Ft].

Locality follows from the fact, for any A ∈ Ft and m ∈ L̄0, using Proposition 2.1.3 and convention
0 · ±∞ = 0, we get

1Aµt(m) = 1A ess inf
Z∈Pt

E[Zm|Ft]

= 1A ess inf
Z∈Pt

(E[(1AZ)m|Ft] + E[(1AcZ)m|Ft])

= 1A ess inf
Z∈Pt

E[(1AZ)m|Ft] + 1A ess inf
Z∈Pt

E[(1AcZ)m|Ft]

= 1A ess inf
Z∈Pt

E[Z(1Am)|Ft] + 1A ess inf
Z∈Pt

1AcE[Zm|Ft]

= 1Aµt(1Am).

Note, that the third equality follows from the fact that (1AZ)(1AcZ
′) = 0 for any Z,Z ′ ∈ Pt. Thus,

µ is sX-invariant update rule.
Secondly, let us prove that we get

m ≥ µt(m), (3.16)

for any m ∈ L̄0. Let m ∈ L0. For α ∈ (0, 1) let5

Zα := 1{m≤q+t (α)}E[1{m≤q+t (α)}|Ft]
−1. (3.17)

where q+
t (α) is Ft-conditional (upper) α quantile of m, defined as

q+
t (α) := ess sup{Y ∈ L0

t | E[1{m≤Y }|Ft] ≤ α}. (3.18)

5In the risk measure framework, it might be seen as the risk minimazing scenario for conditional TV@Rα.
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For α ∈ (0, 1), noticing that Zα <∞, due to convention 0 · ∞ = 0 and the fact that

{E[1{m≤q+t (α)}|Ft] = 0} ⊆ {1{m≤q+t (α)} = 0} ∪B,

for some B, such that P[B] = 0, we conclude that Zα ∈ Pt. Moreover, by the definition of q+
t (α)6,

there exists a sequence Yn ∈ L0
t , such that Yn ↗ q+

t (α), and

E[1{m≤Yn} | Ft] ≤ α.

Consequently, by monotone convergence theorem, we have

E[1{m≤q+t (α)} | Ft] ≤ α.

Hence, we deduce

P[m < q+
t (α)] = E[1{m<q+t (α)}] ≤ E[E[1{m≤q+t (α)}|Ft]] ≤ E[α] = α,

which implies that
P[m ≥ q+

t (α)] ≥ (1− α). (3.19)

On the other hand

1{m≥q+t (α)}m ≥ 1{m≥q+t (α)}q
+
t (α) = 1{m≥q+t (α)}q

+
t (α)E[Zα|Ft]

≥ 1{m≥q+t (α)}E[Zαq
+
t (α)|Ft] ≥ 1{m≥q+t (α)}E[Zαm|Ft],

which combined with (3.19), implies that

P
[
m ≥ E[Zαm|Ft]

]
≥ 1− α. (3.20)

Hence, using (3.20), and the fact that

E[Zαm|Ft] ≥ µt(m), α ∈ (0, 1),

we get that
P[m ≥ µt(m)] ≥ 1− α.

Letting α→ 0, we conclude that (3.16) holds true for m ∈ L0.
Now, assume that m ∈ L̄0, and let A := {E[1{m=−∞}|Ft] = 0}. Similar to the arguments

above, we get
1Am ≥ µt(1Am). (3.21)

Indeed, on {E[1{m=∞}|Ft] = 1}, inequality (3.21) is trivial and the set {E[1{m=∞}|Ft] < 1} could
be written as ⋃

α∈(0,1)

{E[1{m=∞}|Ft] < 1− α}.

Next, on {E[1{m=∞}|Ft] < 1 − α} we can set Zα = 0 in (3.17), which allow us to assume that
m ∈ L0 on that set. Finally, we let α→ 0.

6Note that the family of random variables in (3.18) is upwards centered.
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Since µt(0) = 0, and due to locality of µt, we deduce

1Am ≥ µt(1Am) = 1Aµt(1Am) = 1Aµt(m). (3.22)

Moreover, taking Z = 1 in (3.15), we get

1Acm ≥ 1Ac(−∞) = 1AcE[m|Ft] ≥ 1Acµt(m). (3.23)

Combining (3.22) and (3.23), we concludes the proof of (3.16) for all m ∈ L̄0.

Finally, we will show that µt defined as in (3.15) satisfies property 1) from Proposition 2.1.5,
which will consequently imply equality (3.13). Let m ∈ L̄0 and A ∈ Ft. From the fact that
m ≥ µt(m) we get

ess inf
ω∈A

m ≥ ess inf
ω∈A

µt(m).

On the other hand we know that 1A ess infω∈Am ≤ 1Am and 1A ess infω∈Am ∈ L̄0
t . Thus, using

Proposition 2.1.5, 2), we get

ess inf
ω∈A

m = ess inf
ω∈A

(1A ess inf
ω∈A

m) = ess inf
ω∈A

(1Aµt(1A ess inf
ω∈A

m)) ≤

≤ ess inf
ω∈A

(1Aµt(1Am)) = ess inf
ω∈A

(1Aµt(m)) = ess inf
ω∈A

µt(m)

which proves the equality. The proof for ess supt is similar and we omit it here. This concludes the
proof.

Recall that the case of random variables corresponds to X = Lp, for a fixed p ∈ {0, 1,∞}. We
proceed with the definition of weak acceptance and weak rejection time consistency (for random
variables).

Definition 3.2.2 (Weak time consistency for random variables). Let ϕ = {ϕt}t∈T be a dUM. Then
ϕ is said to be

• Weakly acceptance time consistent if it is µinf -acceptance time consistent,

• Weakly rejection time consistent, if it is µsup-rejection time consistent.

Definition 3.2.2 of time consistency is equivalent to many forms of time consistency studied in
the current literature. Usually, the weak time consistency is considered for dynamic monetary risk
measures on L∞ (cf. [2] and references therein), to which we refer to as ‘classical (benchmark) weak
time consistency’ (see Appendix A.2).

It was proved in [2] that in the classical weak time consistency framework, weak acceptance
(respectively weak rejection) time consistency is equivalent to the statement that for any X ∈ X
and s > t, we get

ϕs(X) ≥ 0⇒ ϕt(X) ≥ 0 (resp. ≤). (3.24)

This was the very starting point for our definition of weak acceptance (respectively weak rejection)
time consistency, and the next proposition explains why so.

Proposition 3.2.3. Let ϕ = {ϕt}t∈T be a dUM. The following conditions are equivalent
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1) ϕ is weakly acceptance time consistent, i.e. for any X ∈ X , t, s ∈ T, s > t, and ms ∈ L̄0
s,

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ ess inft(ms). (3.25)

2) For any X ∈ X , s, t ∈ T, s > t, ϕt(X) ≥ ess inft ϕs(X).

3) For any X ∈ X , s, t ∈ T, s > t, and mt ∈ L̄0
t ,

ϕs(X) ≥ mt ⇒ ϕt(X) ≥ mt.

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then the above conditions are equiv-
alent to

4) For any X ∈ X and s, t ∈ T, s > t,

ϕs(X) ≥ 0⇒ ϕt(X) ≥ 0.

Similar result holds true for weak rejection time consistency.

Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency
is similar. Let {ϕt}t∈T be a dUM.

1)⇔ 2). This is a direct application of Proposition 3.1.8.

1)⇒ 3). Assume that ϕ is weakly acceptance consistent, and let mt ∈ L̄0
t be such that ϕs(X) ≥ mt.

Then, using Proposition 3.1.8, we get ϕt(X) ≥ ess inft(ϕs(X)) ≥ ess inft(mt) = mt, and hence 3)
is proved.

3) ⇒ 1). By the definition of conditional essential infimum, ess inft(ϕs(X)) ∈ L̄0
t , for any X ∈ X ,

and t, s ∈ T . Moreover, by Proposition 2.1.5.(3), we have that ϕs(X) ≥ ess inft(ϕs(X)). Using
3) with mt = ess inft(ϕs(X)), we immediately obtain ϕt(X) ≥ ess inft(ϕs(X)). Due to Proposi-
tion 3.1.8 this concludes the proof.

3) ⇔ 4). Clearly 3) ⇒ 4). If additionally ϕ is a monetary risk measure, then in particular −ϕ it
is cash-additive. Hence, for any mt ∈ L̄0

t such that ϕs(X) ≥ mt, we have that ϕs(X −mt) ≥ 0,
and since 4) holds true, we get that ϕt(X −mt) ≥ 0. Invoking one more time cash-additivity, we
complete the proof.

Property 3) in Proposition 3.2.3 was also suggested as the notion of (weak) acceptance and
(weak) rejection time consistency in the context of scale invariant measures, called acceptability
indices (cf. [14, 20]).

As next result shows, the weak time consistency is indeed one of the weakest forms of time
consistency, being implied by any time consistency generated by a projective rule.

Proposition 3.2.4. Let {ϕt}t∈T be a dUM and let µ be a projective update rule. If {ϕt}t∈T is
µ-acceptance (resp. µ-rejection) time consistent, then {ϕt}t∈T is weakly acceptance (resp. weakly
rejection) time consistent.

Proof. Let {ϕt}t∈T be a dUM, µ = {µt}t∈T a projective update rule, and assume that {ϕt}t∈T
is µ-acceptance time consistent. Then, using Proposition 2.1.5, for any t, s ∈ T, s > t, and any
X ∈ X , we get

ϕt(X) ≥ µt(ϕs(X)) ≥ µt(ess infs(ϕs(X))) ≥ µt(ess inft(ϕs(X))) = ess inft(ϕs(X)).

The proof for rejection time consistency is similar.
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Remark 3.2.5. Recall that time consistency is preserved under monotone transformations, Re-
mark 3.1.9. Thus, for any strictly monotone function g : R̄ → R̄ , if {ϕt}t∈T is weakly acceptance
(resp. weakly rejection) time consistent, then {g ◦ ϕt}t∈T also is weakly acceptance (resp. weakly
rejection) time consistent.

3.2.2 Middle time consistency

Before we give the definition of middle acceptance/rejection time consistency, we need to show that
any L̄0-extension of an dUM is an sX-invariant update rule, and we give necessary and sufficient
conditions when this update rule is also projective. Moreover, we will use the notation from
Section 2.2.2, i.e. for any dUM denoted by ϕ = {ϕt}t∈T, the maps ϕ− = {ϕ−t }t∈T and ϕ+ = {ϕ+

t }t∈T
will correspond to upper and lower L̄0-extensions of ϕ, respectively.

Proposition 3.2.6. Any L̄0-extension ϕ̂ of a dUM ϕ is an sX-invariant update rule. Moreover, ϕ̂
is projective if and only if ϕt(X) = X, for t ∈ T and X ∈ X ∩ L̄0

t .

Proof. The first part follows immediately from the definition of L̄0-extension. Clearly, projectivity
of ϕ̂ implies that ϕ(X) = X, for X ∈ Xt. To prove the opposite implication, it is enough to prove
that ϕ+ and ϕ− are projective. Assume that ϕ is such that ϕt(X) = X, for t ∈ T and X ∈ Xt. Let
X ∈ L̄0

t . For any n ∈ N, we get

1{n≥X≥−n}ϕ
+
t (X) = 1{n≥X≥−n}ϕ

+
t (1{n≥X≥−n}X) = 1{n≥X≥−n}ϕt(1{n≥X≥−n}X) = 1{n≥X≥−n}X.

Thus, on set
⋃
n∈N{−n ≤ X ≤ n} = {−∞ < X <∞}, we have

ϕ+
t (X) = X, for X ∈ L̄0

t . (3.26)

Next, for any A ∈ Ft, such that A ⊆ {X =∞}, we get Y+
A (X) = ∅, which implies

1{X=∞}ϕ
+(X) =∞.

Finally, for any n ∈ R, using locality of ϕ+
t and the fact that n ∈ Xt, we get

1{X=−∞}ϕ
+
t (X) ≤ 1{X=−∞}ϕ

+
t (1{X=−∞}n) = 1{X=−∞}ϕt(n) = 1{X=−∞}n,

which implies 1{X=−∞}ϕ
+(X) = −∞. Hence (3.26) holds true on entire space. The proof for ϕ−

is analogous.

Let us start with the definition of middle acceptance and middle rejection time consistency.

Definition 3.2.7 (Middle time consistency for random variables). Let ϕ = {ϕt}t∈T be a dUM.
Then ϕ is said to be

• Middle acceptance time consistent if it is ϕ−-acceptance time consistent.

• Middle rejection time consistent, if it is ϕ+-rejection time consistent.
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As in the case of weak time consistency, the notion of middle time consistency is usually pre-
sented for functions {−ϕt}t∈T being dynamic monetary risk measures on L∞ (cf. [2] and references
therein). It is not difficult to prove (cf. [2]), that in L∞ framework the middle acceptance (resp.
middle rejection) time consistency is equivalent to the statement that

ϕt(X) ≥ ϕt(ϕs(X)) (resp. ≤), X ∈ X , s > t. (3.27)

However, in case of a general domain of definition X of ϕ, we may have that ϕs(X) 6∈ X and,
consequently, (3.27) cannot be used directly for time consistency. This is precisely the reason why
we have introduced the L̄0-extensions. On the other hand, due to the fact that in Definition 3.2.7
the update rules are extensions, our concept of middle time consistency is stronger than the classical
approach to middle time consistency, as shown in the next result.

Proposition 3.2.8. Let ϕ = {ϕt}t∈T be a dUM. The following two conditions are equivalent

1) ϕ is middle acceptance time consistent, i.e. for any X ∈ X , s, t ∈ T, s > t, and ms ∈ L̄0
s,

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ ϕ−t (ms).

2) For any X ∈ X , s, t ∈ T, s > t,

ϕt(X) ≥ ϕ−t (ϕs(X)).

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then 1) or 2) implies

3) For any X ∈ X , s, t ∈ T, s > t, and Y ∈ X ∩ L̄0
s, we get

ϕs(X) ≥ ϕs(Y )⇒ ϕt(X) ≥ ϕt(Y ).

Analogous results are true for middle rejection time consistency,

The proof of the equivalence of 1) and 2) in Proposition 3.2.8 follows immediately from Proposi-
tion 3.1.8, and the proof that 1) implies 3) is straightforward upon taking ms = ϕs(Y ).

Next, we will show that, in principle, middle acceptance time consistency is not suited for
acceptability indices [20, 45].

Proposition 3.2.9. Let {ϕt}t∈T be a dUM such that

1) ϕt(X) =∞, for any t ∈ T and X ∈ X , such that X ≥ 0 and P [X > 0] > 0;

2) there exists X0 ∈ X and t1, t2 ∈ T, t1 6= t2, such that 0 < ϕti(X0) <∞, for i = 1, 2.

Then, {ϕt}t∈T is not middle acceptance time consistent.

Proof. Let us assume that ϕ satisfies 1), 2) and it is ϕ−-acceptance time consistent. Using Propo-
sition 3.1.8 and the monotonicity of ϕ−, we get

∞ > ϕt1(X0) ≥ ϕ−t1(ϕt2(X0)) ≥ ϕ−t1(ϕt2(X0) ∧ 1) = ϕt1(ϕt2(X0) ∧ 1) =∞,

which leads to contradiction.
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Remark 3.2.10. Properties 1) and 2) in Proposition 3.2.9 are characteristic for acceptability indices:
the first property is related to ‘arbitrage consistency’ proposed in [45]; the second property is a
technical assumption that eliminates degenerate cases. Thus, the concept of middle acceptance
time consistency, and therefore (as seen in next section) the concept of strong time consistency, is
not proper for such maps.

Remark 3.2.11. In general, middle acceptance/rejection time consistency does not imply weak
acceptance/rejection time consistency. Indeed, let us consider ϕ = {ϕt}t∈T, such that ϕt(X) = t
(resp. ϕt(X) = −t) for all X ∈ L0. Since ϕt(0) = t 6≥ ess inft ϕs(0) = s (resp. −t 6≤ −s), for
s > t, we conclude that ϕ is not weakly acceptance (resp. weakly rejection) time consistent. On
the other hand ϕt(X) = ϕt(ϕs(X)) for any X ∈ L0, and hence ϕ is both middle acceptance and
middle rejection time consistent.

3.2.3 Strong time consistency

The strong version of time consistency was one of the first one studied in the literature, in the
context of dynamic (coherent and consequently convex) risk measures. There is an extensive lit-
erature on this subject (cf. [2, 7, 36, 57, 1, 36]. The key features of strong time consistency is its
equivalence to Bellman’s principle of optimality [7]. The definition that we will propose here will
be slightly stronger (see Proposition 3.2.13), but nevertheless, the main idea will remain the same.
Let us start with the definition of strong time consistency.

Definition 3.2.12 (Strong time consistency for random variables). Let ϕ = {ϕt}t∈T be a dUM.
Then ϕ is said to be strongly time consistent if there exists ϕ̂, L̄0-extension of ϕ, such that the
family ϕ is both ϕ̂-acceptance and ϕ̂-rejection time consistent.

Using (3.27), we have that strong time consistency for {−ϕt}t∈T a dynamic monetary risk
measure on L∞ (see also [2] and references therein) is equivalent to the following property

ϕt(X) = ϕt(ϕs(X)), fro any X ∈ X , s > t, (3.28)

known as Bellman’s principle or dynamic programming principle. As mentioned in previous section,
once the dUM is defined on larger space than L∞, to make sense of dynamic programming principle,
and thus strong time consistency, one needs to work with proper extensions of these function. Next
key results show an alternative formulation for strong time consistency, that also has a clear financial
interpretation.

Proposition 3.2.13. Let ϕ = {ϕt}t∈T be a dUM so that for any t ∈ T, there exists X ∈ X such
that ϕt(X) = 0. The following conditions are equivalent

1) There exists update rule µ, such that µ is X-invariant and the family ϕ is both µ-acceptance
and µ-rejection time consistent.

2) For any X,Y ∈ X , s, t ∈ T, s > t,

ϕs(X) = ϕs(Y )⇒ ϕt(X) = ϕt(Y ).

In particular 1) and 2) are satisfied if one of the following (equivalent) conditions hold
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3) ϕ is strongly time consistent.

4) There exists ϕ̂, L̄0-extension of ϕ, such that for any X ∈ X , s, t ∈ T, s > t we get

ϕt(X) = ϕ̂t(ϕs(X)).

Proof. Let {ϕt}t∈T be a dUM.

1) ⇒ 2). Assume that µ is an X-invariant update rule, such that ϕ is both µ-acceptance and
µ-rejection consistent. Then, by Theorem 3.1.8, ϕt(X) = µt,s(ϕs(X), 0), for any t ∈ T and X ∈ X .
Let s, t ∈ T and X,Y ∈ X be such that s > t and ϕs(X) = ϕs(Y ). From the above, and by
monotonicity of µ, we have

ϕt(X) = µt,s(ϕs(X), 0) = µt,s(ϕs(Y ), 0) = ϕt(Y ).

2)⇒ 1). Let t, s ∈ T be such that s > t, and consider the following set

Xϕs = {X ∈ L̄0 | X = ϕs(Y ) for some Y ∈ X}.

From 2), for any X,Y ∈ X , such that ϕs(X) = ϕs(Y ), we get ϕt(X) = ϕt(Y ). Thus, there exists a
map φt,s : Xϕs → L̄0

t such that

φt,s(ϕs(X)) = ϕt(X), X ∈ X .

Next, since there exists Z ∈ X , such that ϕs(Z) = 0, using locality of ϕ, we get that for any
X ∈ Xϕs , A ∈ Ft, there exist Y ∈ X , so that7

1AX = 1Aϕs(Y ) = 1Aϕs(1AY ) +1Acϕs(1AcZ) = (1A +1Ac)ϕs(1AY +1AcZ) = ϕs(1AY +1AcZ).

Thus, 1AX ∈ Xϕs , for any A ∈ Ft, X ∈ Xϕs . Hence, from 2) and locality of ϕ, for any X,Y ∈ Xϕs ,
A ∈ Ft, we get

(A) X ≥ Y ⇒ φt,s(X) ≥ φt,s(Y );

(B) 1Aφt,s(X) = 1Aφt,s(1AX).

In other words, φt,s is local and monotone on Xϕs ⊆ L̄0
s. In view of Corollary 2.2.14, there exists

an extension of φt,s, say φ̂t,s : L̄0
s → L̄0

t , which is local and monotone on L̄0
s. Finally, we take

µt,s : L̄0
s ×X → L̄0

t defined by

µt,s(m,X) := φ̂t,s(m), X ∈ X ,m ∈ L̄0
s.

Clearly the family µt,s is an X-invariant update rule, and thus, by Proposition 3.1.8, ϕ is both
µ-acceptance and µ-rejection time consistent.

The proof of the second part of Proposition 3.2.13 is immediate. Clearly, 3)⇒ 1) and 3)⇔ 4),
due to Proposition 3.1.8.

7Note that 1Bϕs(1BZ) = 0 for any B ∈ Ft (as Ft ⊆ Fs).
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Remark 3.2.14. Property 2) from Proposition 3.2.13 is what is referred in the existing literature
as strong time consistency (see Appendix A.2). Note that strong time consistency introduced in
Definition 3.2.12 is stronger than property 2) from Proposition 3.2.13. In particular, the update rule
considered in Definition 3.2.12 is sX-invariant, while property 2) guarantees existence of update
rule, which is just X-invariant.

Remark 3.2.15. On infinite time horizon the class of strongly time consistent dRMs coincided with
the class of maps known as Dynamic Entropic Risk Measures (see Section 4.1.1 or [103] for details).
On the other hand, on finite time horizon, the class of strongly time consistent dRMs is much
richer. The typical scheme to obtain a strongly time consistent dRM from any dRM, is to use so
called recursive construction, which we will introduce in Section 3.4.

Remark 3.2.16. Strong time consistency if crucial property in the theory of Markov Risk Measures.
They provide theoretical framework for (risk-averse) dynamic programming equations for Markov
Decision Processess (cf. [131, 129, 132, 133] and references therein).

3.2.4 Submartingales, supermartingales and robust expectations

The definition of projective update rule is strictly connected to the definition of so called (condi-
tional) non-linear expectation (see for instance [49] for definition and related properties of non-linear
expectation). In [125, 114], the authors made an important connections between non-linear expec-
tations and dynamic risk measures. It was also shown (see, for instance, [33, 34] for details) that
among dynamic convex risk measures, the dynamic coherent risk measures are the only ones which
satisfy Jensen’s inequality for dynamic maps; a property critically important in our framework,
as it leads to projective update rules for which time consistency is invariant under concave trans-
formations (see Proposition 3.2.18). One particularly important case is obtained by using as an
update rule equal to the standard expectation operator. Finally, we want to mention that this type
of time consistency in L∞ framework, was studied in [57, Section 5] and is related to the definition
of supermartingale and submartingale property.

Definition 3.2.17 (Supermartingale and Submartingale time consistency for random variables).
Let ϕ = {ϕt}t∈T be a dUM and let µ = {µt}t∈T be given by µt(m) = E[m|Ft] (for m ∈ L̄0). Then
ϕ is said to be

• Supermartingale time consistent if it is µ-acceptance time consistent, i.e. for any X ∈ X , and
ms ∈ Fs, we have

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ E[ms|Ft].

• Submartingale time consistent if it is µ-rejection time consistent, i.e. for any X ∈ X , and
ms ∈ Fs, we have

ϕs(X) ≤ ms ⇒ ϕt(X) ≤ E[ms|Ft].

Next result is devoted to a more general class of updates rules, and hence concepts of time
consistency, for which we do not give a specific name. The case of super/sub-martingale time
consistency will correspond to the particular case of determining sets Dt = {1}.
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Proposition 3.2.18. Let {Dt}t∈T be a determining family of random variables8 and let {ϕt}t∈T
be a dUM. Consider the family of maps φ = {φt}t∈T and φ′ = {φ′t}t∈T, φt, φ

′
t : L̄0 → L̄0

t , given by

φt(m) = ess inf
Z∈Dt

E[Zm|Ft], φ′t(m) = ess sup
Z∈Dt

E[Zm|Ft]. (3.29)

Then, the following statements hold true:

1) the families φ and φ′ are projective update rules;

2) if {ϕt}t∈T is φ-acceptance time consistent, then {g ◦ϕt}t∈T is also φ-acceptance time consistent,
for any increasing, and concave function g : R̄→ R.

3) if {ϕt}t∈T is φ′-rejection time consistent, then {g ◦ ϕt}t∈T is also φ′-rejection time consistent,
for any increasing, and convex function g : R̄→ R.

Proof. Let us consider {φt}t∈T and {φ′t}t∈T as given in (3.29).

1) The proof of monotonicity and locality is straightforward. Finally, for any t ∈ T, Q ∈ Dt and
m ∈ L̄0

t , we immediately get

EQ[m|Ft] = 1{m≥0}mEQ[1|Ft] + 1{m<0}(−m)EQ[−1|Ft] = m,

and thus, φt(m) = φ′t(m) = m, for any m ∈ L̄0
t . Hence, {φt}t∈T is projective.

2) Let {ϕt}t∈T be a dUM which is φ-rejection time consistent, and g : R̄ → R̄ be an increasing,
concave function. Then, for any X ∈ X , we get

g(ϕt(X)) ≥ g(φt(ϕs(X)) = g(ess inf
Q∈Dt

EQ[ϕs(X)|Ft]) = ess inf
Q∈Dt

g(EQ[ϕs(X)|Ft]). (3.30)

Next, by Jensen’s inequality, we deduce

ess inf
Q∈Dt

g(EQ[ϕs(X)|Ft]) ≥ ess inf
Q∈Dt

EQ[g(ϕs(X))|Ft] = φt(g(ϕs(X))). (3.31)

Combining (3.30) and (3.31), φ-acceptance time consistency of {g ◦ ϕt}t∈T follows.

3) The proof is analogues to 2).

Remark 3.2.19. It could be easily shown from (3.13) that for any determining family of sets we get
φt(m) ≥ ess inftm. Thus, a dUM that is acceptance time consistent with respect to the update rule
φt is also weakly acceptance time consistent. In particular, any supermartingale consistent dUM is
also weakly acceptance time consistent. Similar statement holds true for rejection consistency.

3.2.5 Summary

The main goal of this section was to develop a unified framework for time consistency of dUMs that,
in particular, comprises various types of time consistency for dynamic risk measures and dynamic
performance measures known in the existing literature. The obtained results are summarised in
the Chartflow 3.1. For convenience, we label (by circled numbers) each arrow (implication or
equivalence) in the flowcharts, and we relate the labels to the relevant result from the sectio, along
with comments on converse implications whenever appropriate.

8i.e. it is a non-empty family of random variables , such that for any Z ∈ Dt we get E[Z|Ft] = 1, Dt is uniformly
integrable, L1-closed and Ft-convex, for any t ∈ T.
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Figure 3.1: Summary of results for acceptance time consistency for random variables

ϕs(X) ≥ 0 ⇒ ϕt(X) ≥ 0
if −ϕ is additionally a risk measure

ϕs(X) ≥ mt ⇒ ϕt(X) ≥ mt

Dynamic Utility Measure ϕ is

Weakly Accept Consist
if ϕ is µinf - accept consist

Dynamic Utility Measure ϕ is

Supermartingale Consist
if ϕ is µt = E[m|Ft] middle accept consist

ϕ is µ - accept and µ - reject consist

and µ is X-invariant

ϕs(X) = ϕs(Y )⇒ ϕt(X) = ϕt(Y )
for X,Y ∈ X

ϕ is µ - accept consist

and µ is projective

ϕs(X) ≥ Y ⇒ ϕt(X) ≥ ϕt(Y )
for Y ∈ X ∩ L̄0

s, and ϕ monetary

Dynamic Utility Measure ϕ is

Middle Accept Consist
if ϕ is ϕ− - accept consist

Dynamic Utility Measure ϕ is

Strongly Consist
if it is µ - accept and µ - reject consist

and µ is X̄ -extension of ϕ

ϕt(X) = ∞, for

X ≥ 0, P [X > 0] > 0,

and 0 < ϕt(X0) < ∞,

for some X0

if ϕ− is projective

1

2

3

4

8
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6

9

5

7

1 Proposition 3.2.3, 4)

1 Proposition 3.2.3, 3)

3 Remark 3.2.19 and Proposition 3.2.4. The converse implication is not true in general, see
Section 4.1.1.

4 Proposition 3.2.13, 1), 2)

5 Proposition 3.2.4. Generally speaking the converse implication is not true. See for instance
Section 4.1.1: negative of Dynamic Entropic Risk Measure with γ < 0 is weakly acceptance
time consistent, but it is not supermaringale time consistent, i.e. it is not acceptance time
consistent with respect to the projective update rule µt = Et[m|Ft].

6 Proposition 3.2.13, 3), 4). The converse implication is not true in general. As a counterex-
ample, consider ϕt(X) = tE[X].

7 Proposition 3.2.4, and see also 5 . In general, middle acceptance time consistency does not
imply weak acceptance time consistency, see Remark 3.2.11.

8 Proposition 3.2.8, 3)
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9 Proposition 3.2.9

10 Proposition 2.2.13. The converse implication is not true in general, see [116, Example 4.1].

3.3 Selected types of time consistency for stochastic processes

In this Section we assume that X = Vp, for p ∈ {0, 1,∞}. The elements of X , are interpreted as
discounted dividend processes. It needs to be remarked, that all concepts developed for X = Vp
can be easily adapted to the case of cumulative discounted value processes (see Section 4.3.1 for
details). While we preserve the same name for time consistency as in the case of random variables,
the update rules for stochastic processes will differ significantly.

Usually, the case of stochastic processes is more intricate. If ϕ is a dUM, and V ∈ Vp, then in
order to compare ϕt(V ) and ϕs(V ), for s > t, one also needs to take into account the cash-flows
between times t and s, so the update rule is not X-invariant in general.

In this Section we will briefly present the types of time consistency, which could be regarded as
counterparts of the corresponding types from Section 3.2. We will not present the detailed proofs
and comments, as they coincide with the previous case. It is worth mentioning, that in this section
we will focus on one-step time consistency. See (3.11) and comments below, for the explanation of
this approach. We will also present one new type of time consistency, which we will call semi-weak
time consistency.

3.3.1 Weak time consistency

In this subsection we assume that X = Vp, for a fixed p ∈ {0, 1,∞}, i.e. we consider the case of
adapted stochastic processes.

Definition 3.3.1 (Weak time consistency for stochastic processes). Let ϕ = {ϕt}t∈T be a dUM
(for stochastic processes). We say that ϕ is

• Weakly acceptance time consistent if it is one step µ-acceptance time consistent, where the
update rule is given by

µt,t+1(m,V ) = ess inft(m) + Vt.

• Weakly rejection time consistent, if it is one step µ-acceptance time consistent, where

µt,t+1(m,V ) = ess supt(m) + Vt.

Similarly to Proposition 3.2.3, we have the following result.

Proposition 3.3.2. Let ϕ = {ϕt}t∈T be a dUM on Vp. The following conditions are equivalent

1) ϕ is weakly acceptance time consistent, i.e. for any V ∈ X , t < T (t ∈ T) and mt+1 ∈ L̄0
t+1,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(X) ≥ ess inft(mt+1) + Vt.

2) For all V ∈ X , t ∈ T, t < T ,

ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt.
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3) For all V ∈ X , t ∈ T, t < T and mt ∈ L̄0
t ,

ϕt+1(V ) ≥ mt ⇒ ϕt(V )− Vt ≥ mt.

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then the above conditions are equiv-
alent to

3) For all V ∈ X and t ∈ T, t < T ,

ϕt+1(V ) ≥ 0⇒ ϕt(V )− Vt ≥ 0.

Analogous results hold true for weak rejection time consistency.

Proof. We will only show the proof for weakly acceptance consistency. The proof for rejection
consistency is similar. Let {ϕt}t∈T be a dUM.

1)⇔ 2). This is a direct implication of Proposition 3.1.8.

1)⇒ 3). Let mt ∈ L̄0
t be such that ϕt+1(V ) ≥ mt. Using the monotonicity of ess inft, we have

ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt ≥ ess inft(mt) + Vt = mt + Vt,

which concludes the proof.

3)⇒ 1). By Proposition 2.1.5, we get

ϕt+1(V ) ≥ ess inft(ϕt+1(V )),

for any V ∈ X , and ess inft(ϕt+1(X)) ∈ L̄0
t . Using 3) with mt = ess inft(ϕt+1(X)) we immediately

obtain
ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt

and using 2) the weakly acceptance time consistency of ϕ follows.

3)⇒ 4) is obvious (take mt = 0).

4)⇒ 3) Let us now assume that {ϕt}t∈T is a negative of dynamic risk measure. For given mt ∈ L̄0
t

it is enough to apply 3) to the process V ± 1t+1mt, and 4) follows.

As mentioned earlier, the update rule, and consequently weak time consistency for stochastic
processes, depends also on the value of the process (the dividend paid) at time t. If tomorrow, at
time t+1, we accept X ∈ X at level greater than mt+1 ∈ Ft+1, then today at time t, we will accept
X at least at level ess inftmt+1 (i.e. the worst level of mt+1 adapted to the information Ft) plus
the dividend Vt received today.

Finally, we present the counterpart of Proposition 3.2.4 for the case of stochastic processes.

Proposition 3.3.3. Let {ϕt}t∈T be a dUM on Vp and let φ be a projective update rule. Let {ϕt}t∈T
be one step µ-acceptance (resp. one step µ-rejection) time consistent, where µ is given by

µt,t+1(m,V ) = φt(m+ Vt), m ∈ L̄0
t+1, V ∈ X .

Then, {ϕt}t∈T is weakly acceptance (resp. weakly rejection) time consistent.

The proof of Proposition 3.3.3 is analogous to the proof of Proposition 3.2.4, and we omit it.
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3.3.2 Semi-weak time consistency

In this section we introduce the concept of semi-weak time consistency for stochastic processes. As it
turns out, for the case of random variables semi-weak time consistency coincides with the definition
of weak time consistency, hence omitted before. Thus, we take X = Vp, for a fixed p ∈ {0, 1,∞}.
As it was shown [20], none of the existing, at that time, forms of time consistency were suitable for
scale-invariant maps, such as acceptability indices. In fact, even the weak acceptance and the weak
rejection time consistency for stochastic processes (as defined in the present paper) are too strong
in case of scale-invariant maps. Because of that we need even a weaker notion of time consistency,
which we will refer to as semi-weak acceptance and semi-weak rejection time consistency. The
notion of semi-weak time consistency for stochastic processes, introduced next, is suited precisely
for such maps, and we refer the reader to [20] for a detailed discussion on time consistency for scale
invariant measures and their dual representations9.

Definition 3.3.4 (Semi-weak time consistency for stochastic processes). Let ϕ = {ϕt}t∈T be a
dUM (for processes). Then ϕ is said to be:

• Semi-weakly acceptance time consistent if it is one step µ-acceptance time consistent, where
the update rule is given by

µt,t+1(m,V ) = 1{Vt≥0}µ
inf
t (m) + 1{Vt<0}(−∞).

• Semi-weakly rejection time consistent if it is one step µ′-rejection time consistent, where the
update rule is given by

µ′t,t+1(m,V ) = 1{Vt≤0}µ
sup
t (m) + 1{Vt>0}(+∞).

It is straightforward to check that weak acceptance/rejection time consistency for stochastic
processes always implies semi-weak acceptance/rejection time consistency.

Next, we will show that the definition of semi-weak time consistency is indeed equivalent to
time consistency introduced in [20], that was later studied in [14, 16].

Proposition 3.3.5. Let ϕ = {ϕt}t∈T be a dUM on Vp . The following conditions are equivalent

1) ϕ is semi-weakly acceptance time consistent, i.e. for all V ∈ X , t ∈ T, t < T , and mt ∈ L̄0
t ,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(V ) ≥ 1{Vt≥0} ess inft(mt+1) + 1{Vt<0}(−∞).

2) For all V ∈ X and t ∈ T, t < T , ϕt(V ) ≥ 1{Vt≥0} ess inft(ϕt+1(V )) + 1{Vt<0}(−∞).

3) For all V ∈ X , t ∈ T, t < T , and mt ∈ L̄0
t , such that Vt ≥ 0 and ϕt+1(V ) ≥ mt, then

ϕt(V ) ≥ mt.

Similar result is true for semi-weak rejection time consistency.

9In [20] the authors combined both semi-weak acceptance and rejection time consistency into one single definition
and call it time consistency.
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Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency
is similar. Let {ϕt}t∈T be a dUM.

1)⇔ 2). This is a direct implication of Proposition 3.1.8.

1) ⇒ 3). Assume that ϕ is semi-weakly acceptance consistent. Let V ∈ X and mt ∈ L̄0
t be such

that ϕt+1(V ) ≥ mt and Vt ≥ 0. Then, using Proposition 3.1.8, we get

ϕt(V ) ≥ µt,t+1(ϕt+1(V ), V ) = 1{Vt≥0}µ
inf
t (ϕt+1(V )) ≥ µinf

t (mt) = ess inft(mt) = mt,

and hence 3) is proved.

3)⇒ 2). Let V ∈ X . We must show that

ϕt(V ) ≥ 1{Vt≥0}µ
inf
t (ϕt+1(V )) + 1{Vt<0}(−∞). (3.32)

On the set {Vt < 0} inequality (3.32) is trivial. We know that

(1{Vt≥0} ·t V )t ≥ 0 and ϕt+1(1{Vt≥0} ·t V ) ≥ ess inft ϕt+1(1{Vt≥0} ·t V )

Thus, for mt = ess inft ϕt+1(1{Vt≥0} ·t V ), using locality of ϕ and µinf as well as 3), we get

1{Vt≥0}ϕt(V ) = 1{Vt≥0}ϕt(1{Vt≥0} ·t V ) ≥ 1{Vt≥0}mt = 1{Vt≥0}µ
inf
t (ϕt+1(V )).

and hence (3.32) is proved on the set {Vt ≥ 0}. This conclude the proof of 2).

Property 3) in Proposition 3.3.5 illustrates best the financial meaning of semi-weak acceptance
time consistency: if tomorrow we accept the dividend stream V ∈ X at level mt, and if we get a
positive dividend Vt paid today at time t, then today we accept the cash-flow V at least at level
mt as well. Similar interpretation is valid for semi-weak rejection time consistency.

In the next section we will see (Propositions 4.2.3 and 4.2.4) that semi-weak time consistency
appears naturally, when we study the connection between cash additive and scale invariant maps.

3.3.3 Middle time consistency

In this section we will adapt the middle time consistency to the case of stochastic processes, and
we start with the definition of one step L̄0-extensions.

As before, for the case of stochastic processes we take X = Vp, for a fixed p ∈ {0, 1,∞}. In
what follows we will also make use of notation T′ = {0, 1, . . . , T − 1}.10

In this subsection, for a dUM ϕ = {ϕt}t∈T, we denote by ϕ̃ = {ϕ̃t}t∈T′ a family of maps
ϕ̃t : Lpt+1 → L̄0

t given by

ϕ̃t(X) := ϕt(1{t+1}X). (3.33)

Since ϕ is monotone and local on Vp, then, clearly, ϕ̃t is local and monotone on Lpt+1. Next, similar
to the previous section, for any t ∈ T′, we consider the extension of ϕ̃t to L̄0

t+1, preserving locality
and monotonicity (see Corollary 2.2.14). Note that formally ϕ̃ is not a dUM, since the domain of
the definition depends on t ∈ T′, however, with slight abuse of notation, we will call such extension

10For infinite time horizon we get T′ = T.
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one step L̄0-extension of ϕ̃. For any ϕ̃t and t ∈ T′, we consider the maps ϕ̃+
t : L̄0

t+1 → L̄0
t and

ϕ̃−t : L̄0
t+1 → L̄0

t defined as in (2.10) and (2.11), with the sets Y+
A (X) and Y−A (X) there replaced by

Y+
t,A(X) := {Y ∈ Lpt+1 | 1AY ≥ 1AX}, Y−t,A(X) := {Y ∈ Lpt+1 | 1AY ≤ 1AX},

for any X ∈ L̄0
t+1, We will call ϕ̃+ and ϕ̃− upper and lower one step L̄0-extensions of ϕ̃, respec-

tively. Now, we are ready to present the definition of middle acceptance and middle rejection time
consistency for processes.

Definition 3.3.6 (Middle time consistency for stochastic processes). Let ϕ = {ϕt}t∈T be a dUM
(for stochastic processes). Then ϕ is said to be

• Middle acceptance time consistent if it is one step µ-acceptance time consistent, where the
update rule is given by

µt,t+1(m,V ) = ϕ̃−t (m+ Vt).

• Middle rejection time consistent if it is one step µ-rejection time consistent, where the update
rule is given by

µt,t+1(m,V ) = ϕ̃+
t (m+ Vt).

Proposition 3.3.7. Let ϕ = {ϕt}t∈T be a dUM on Vp. The following conditions are equivalent

1) ϕ is middle acceptance time consistent, i.e. for any V ∈ X , t ∈ T′ and mt+1 ∈ L̄0
t+1,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(V ) ≥ ϕ̃−t (mt+1 + Vt).

2) For any V ∈ X and t ∈ T′, ϕt(V ) ≥ ϕ̃−t (ϕt+1(V ) + Vt).

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then 1) or 2) implies

3) For any V, V ′ ∈ X , and t ∈ T′, we get

ϕt+1(V ) ≥ ϕt+1(1{t+1}V
′
t+1)⇒ ϕt(V ) ≥ ϕ̃−t (V ′t+1 + Vt).

Analogous results are true for middle rejection time consistency.

The first part of Proposition 3.3.7 is a straightforward implication of Proposition 3.1.8. Since
for cash additive measures ϕt+1(1{t+1}V

′
t+1) = V ′t+1, then, by taking mt+1 = V ′t+1 in 1), the second

part follows immediately.

3.3.4 Strong time consistency

In this subsection we will use notation similar to the case of middle acceptance and middle rejection
time consistency from Section 3.3.3.

Definition 3.3.8 (Strong time consistency for stochastic processes). Let ϕ = {ϕt}t∈T be a dUM
(for stochastic processes). Then ϕ is said to be strongly time consistent if there exists ϕ̂, an one
step L̄0-extension of ϕ̃, such that ϕ is both one step µ-acceptance and one step µ-rejection time
consistent with respect to

µt,t+1(m,V ) = ϕ̂t(m+ Vt).
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Proposition 3.3.9. Let ϕ = {ϕt}t∈T be a dUM on Vp. Assume that ϕ is independent of the past,
and for any t ∈ T, there exists V ∈ X such that ϕt(V ) = 0. The following two conditions are
equivalent

1) There exists an update rule µ, such that: for all t ∈ T′, m ∈ L̄0
t , and V, V ′ ∈ X , so that Vt = V ′t ,

we have µt,t+1(m,V ) = µt,t+1(m,V ′); the family ϕ is both one step µ-acceptance and one step
µ-rejection time consistent.

2) For any V, V ′ ∈ X , and t ∈ T′,

Vt = V ′t and ϕt+1(V ) = ϕt+1(V ′)⇒ ϕt(V ) = ϕt(V
′).

In particular 1) and 2) are satisfied if one of the following (equivalent) conditions hold

3) ϕ is strongly time consistent.

4) There exists ϕ̂, one step L̄0-extension of ϕ̃, such that for any V ∈ X and t ∈ T (t < T ), we get
ϕt(V ) = ϕ̂t(ϕt+1(V ) + Vt).

Proof. Let {ϕt}t∈T be a dUM, which is independent of the past.

1) ⇒ 2). Assume that µ is an update rule, fulfilling condition from 1), such that ϕ is both µ-
acceptance and µ-rejection consistent. Then, by Proposition 3.1.8, ϕt(X) = µt,t+1(ϕt+1(X), Y ), for
any t ∈ T (t < T ), X ∈ X and Y ∈ X , such that Xt = Yt. Let t ∈ T (t < T ) and X,Y ∈ X be such
that Xt = Yt and ϕt+1(X) ≥ ϕt+1(Y ). From the above, and by monotonicity of µ, we have

ϕt(X) = µt,t+1(ϕt+1(X), X) = µt,t+1(ϕt+1(X), Y ) ≥ µt,t+1(ϕt+1(Y ), Y ) = ϕt(Y ).

2)⇒ 1). Let t ∈ T be such that t < T and consider the following set

Xϕt+1 = {X ∈ L̄0 | X = ϕt+1(Y ) for some Y ∈ X}.

From 2), for any X,Y ∈ X , such that ϕt+1(X) = ϕt+1(Y ) and Xt = Yt, we get ϕt(X) = ϕt(Y ).
Thus, using independence of the past of ϕ, there exists a map φt,t+1 : Xϕt+1 × L

p
t → L̄0

t such that

φt,t+1(ϕt+1(X), Yt) = ϕt(X − 1{t}(Xt − Yt)), X ∈ X .

Next, since there exists Z ∈ X , such that ϕt+1(Z) = 0, using locality of ϕ, we get that for any
X ∈ Xϕt+1 , A ∈ Ft, there exist Y ∈ X , so that

1AX = 1Aϕt+1(Y ) = 1Aϕt+1(1A ·t+1 Y ) + 1Acϕt+1(1Ac ·t+1 Z) = ϕt+1(1A ·t+1 Y + 1Ac ·t+1 Z).

Thus, 1AX ∈ Xϕt+1 , for any A ∈ Ft, X ∈ Xϕt+1 . Hence, from 2) and locality of ϕ, for any
X,X ′ ∈ Xϕt+1 , Yt ∈ Lpt and A ∈ Ft, we get

(A) X ≥ X ′ ⇒ φt,t+1(X,Yt) ≥ φt,t+1(X ′, Yt);

(B) 1Aφt,t+1(X,Yt) = 1Aφt,t+1(1AX,Yt).
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In other words, for any fixed Yt ∈ Lpt , φt,t+1(·, Yt) is local and monotone on Xϕt+1 ⊆ L̄0
t+1. In view

of Corollary 2.2.14, for any fixed Yt ∈ Lpt there exists an extension (to L̄0
t+1) of φt,t+1(·, Yt), say

φ̂t,t+1(·, Yt), which is local and monotone on L̄0
t+1. Finally, we take µt,t+1 : L̄0

t+1 ×X → L̄0
t defined

by
µt,t+1(m,X) := φ̂t,t+1(m,Xt), X ∈ X ,m ∈ L̄0

t+1.

Clearly the family µt,t+1 is a (one step) update rule. Moreover, we get

µt,t+1(m,X) = µt,t+1(m,X ′),

for m ∈ L̄0
t+1 and X,X ′ ∈ X , such that Xt = X ′t. Finally, by Proposition 3.1.8, ϕ is both

µ-acceptance and µ-rejection time consistent, as

ϕt(X) = ϕt(X − 1{t}(Xt −Xt)) = φt,t+1(ϕt+1(X), Xt) = µt,t+1(ϕt+1(X), X).

The proof of the second part of Proposition 3.3.9 is immediate. Clearly, 3)⇒ 1) and 3)⇔ 4), due
to Proposition 3.1.8.

3.3.5 Submartingales, supermartingales and robust expectations

The sub/super-martingale time consistency is defined similarly, by considering one step update
rules of the form µt,t+1(m,V ) = E[m|Ft] + Vt. Similar to Proposition 3.2.18, we have that time
consistency property generated by updates rules of the form µt,t+1(m,V ) = φt(m+Vt) are invariant
under concave/convex transformations.

Proposition 3.3.10. Let ϕ = {ϕt}t∈T be a dUM (for processes). Let a one step update rule
µ = {µt}t∈T be given by µt,t+1(m,V ) = φt(m+ Vt), for {φt}t∈T defined in (3.29). Then

1) if ϕ is µ-acceptance time consistent, then g◦ϕ = {g◦ϕt}t∈T also is µ-acceptance time consistent,
for any increasing, and concave function g : R̄→ R̄.

2) if ϕ is µ-rejection time consistent, then g ◦ ϕ = {g ◦ ϕt}t∈T also is µ-rejection time consistent,
for any increasing, and convex function g : R̄→ R̄.

The proof of Proposition 3.3.10 is analogous to the proof of Proposition 3.2.18.

3.3.6 Summary

The main goal of this section was to develop a unified framework for time consistency of dUMs for
stochastic processes that, in particular, comprises various types of time consistency for dynamic
risk measures and dynamic performance measures known in the existing literature. The obtained
results are summarised in the Chartflow 3.2. For convenience, we label (by rectangled numbers)
each arrow (implication or equivalence) in the flowcharts, and we relate the labels to the relevant
result from this section, along with comments on converse implications whenever appropriate.
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Figure 3.2: Summary of results for acceptance time consistency for stochastic processes

ϕt+1(V ) ≥ 0 ⇒ ϕt(V ) − Vt ≥ 0
if −ϕ is additionally a risk measure

ϕt+1(V ) ≥ mt ⇒ ϕt(V ) − Vt ≥ mt

Dynamic Utility Measure ϕ is

Weakly Accept Consist
if ϕ is one step µ - accept cons

and µt,t+1(m,V ) = µinft (m) + Vt

Dynamic Utility Measure ϕ is

Semi-weakly Accept Consist
if ϕ is one step µ - accept cons and

µt,t+1(m,V ) = 1{Vt≥0}µ
inf
t (m) + 1{Vt<0}(−∞)

ϕ is one step µ - accept and µ - reject consist

and µt,t+1(m,V ) = µt,t+1(m, 1{t}Vt)

ϕt+1(V ) = ϕt+1(V ′)⇒ ϕt(V ) = ϕt(V
′)

for V, V ′ ∈ X , such that Vt = V ′t

ϕ is one step µ - accept consist and

µt,t+1(m,V ) = φt(m + Vt) (φ is projective)

ϕt+1(V ) ≥ V ′t+1 ⇒ ϕt(V ) ≥ ϕt(1{t+1}(V
′
t+1+Vt))

for V, V ′ ∈ X

Dynamic Utility Measure ϕ is

Middle Accept Consist
if ϕ is one step µ - accept consist

and µt,t+1(m,V ) = ϕ̃−t (m + Vt)

Dynamic Utility Measure ϕ is

Strongly Consist
if ϕ is one step µ-accept and µ-reject consist,

µt,t+1(m,V ) = ϕ̂t,t+1(m + Vt)

and ϕ̂ is one step X̄ -ext of ϕ̃

if ϕ̃− is projective

1

2

3

4

8

9

6

5

7

1 Proposition 3.3.2, 4)

2 Proposition 3.3.2, 3)

3 Proposition 3.3.5, 3)

4 Proposition 3.3.9, 1), 2)

5 Proposition 3.3.3

6 Proposition 3.3.9, 3), 4)

7 Proposition 3.3.3, and see also 5 .

8 Proposition 3.3.7, 3)

9 Proposition 2.2.13.

Remark 3.3.11. The converse implications in Flowchart 3.2 do not hold true in general, and one
can use the same counterexamples as in the case of random variables.
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3.4 Recursive construction on finite time horizon

As we have explained in the previous section, strong time consistency could be considered as a form
of Bellman’s principle, which is very convenient, when we want to conduct the dynamic portfolio
optimisation. In risk measure theory on L∞ a common tool used to construct a strongly-time
consistent dRM (from any dRM) is so called recursive construction, introduced in [36, Section 4.2]
and studied e.g. in [2, Section 4.4] or [40].11 One could also show, that any strongly time consistent
dRM could be written as a composition of (one-step) conditional RMs, so there exists duality
between those two approaches [40]. For some specific families, the dynamic risk measures obtained
using recursive construction are referred to (especially in markov coherent risk measure theory) as
multiperiod or composite dRMs and the recursive construction is called nested composition (see e.g.
[132, 129, 131, 130]).

On L∞, given a dRM (which negative is denoted by ϕ = {ϕt}t∈T), we can construct a mapping
ϕ̃ = {ϕ̃t}t∈T, defined recursively, where ϕ̃T (X) = X and where for (t = T − 1, . . . , 0), we set

ϕ̃t(X) = ϕt(ϕ̃t+1(X)). (3.34)

It is easy to see that ϕ̃ will be a strongly time consistent dRM (see [2, Prop. 1.16]).
Unfortunately, for Lp, when p 6=∞, this approach cannot be always used directly, as we might

get ϕ̃t(X) 6∈ Lp for some t ∈ T. Nevertheless, one could overcome this difficulty, considering the
subset of Lp or extend dRM as in Subsection 2.2.2 and then use construction (3.34). One of many
ways of doing this, is to use Robust representation and simply consider the extended conditional
expectation operator and conditional penalty function (see e.g. [40, 44]).

Let us now show how to obtain such construction for representable coherent dRMs (see [40]
for the class of representable convex dRMs). We know that any representable coherent dRM is
associated with the family of measures {Dt}t∈T, through robust representation.

Definition 3.4.1 (Determining family of measures). We will say that D = {Dt}t∈T is a determining
family of measures, if Dt ⊆ Q1

t , Dt 6= ∅, Dt is uniformly integrable, L1-closed and Ft-convex, for
any t ∈ T.12

We refer to [43, Section 2] for a discussion about determining families. It is straightforward
to check, that any determining family define a representable coherent dRM. Given a determining
family, we can also construct a dRM recursively both for random variables as well as for stochastic
processes, as will be shown in (3.35) and (5.37). We will refer to such dRM as D-composite dRM
and to it’s negative as D-composite dUM, which we will now define.

Definition 3.4.2 (D-composite dUM for random variables). Let D = {Dt}t∈T be a determining
family of measures. We will call a family {ϕt}t∈T of mappings ϕt : L̄0 → L̄0

t a D-composite dUM
(for random variables), if {ϕt}t∈T is defined as:

ϕT (X) := X

ϕt(X) := ess inf
Q∈Dt

EQ[ϕt+1(X)|Ft]. (3.35)

11Please note that if time horizon is infinite, then the class of strongly time consistent dRMs coinccides with the
class of Dynamic Entropic Risk Measures [103]. See Remark 4.1.4.

12in the sense, that the corresponding sets of Radon-Nikodem derivatives (i.e. random variables) admit those
properties; Ft-convex, i.e. for any Q1,Q2 ∈ Dt and λ ∈ L0

t such that 0 ≤ λ ≤ 1, we get Q3 ∈ Dt, where Q3 is such
that dQ3

dP = λdQ1
dP + (1− λ)Q2

dP .



52

Remark 3.4.3. The idea of construction (3.35) coincides with the construction (3.34). Note that
on L∞, the essential idea is to require the map ϕt(X) to admit representation

ϕt(X) = ϕt(ϕt+1(. . . ϕT−1(ϕT (X)) . . .))

for ay X ∈ L∞ and t ∈ T, which implies strong time consistency of the corresponding dUM {ϕt}t∈T.
On a bigger space, we can consider the space of all Xs, which admit the above representation, which
define the biggest space on which {ϕt}t∈T is strongly time consistent – the reason we will consider
spaces defined in (3.39) and (3.40). See [43] for details.

Similarly, one could define a D-composite dUM for stochastic processes.

Definition 3.4.4 (D-composite dUM for stochastic processes). Let D = {Dt}t∈T be a determining
family of measures. We will call a family {ϕt}t∈T of mappings ϕt : V̄0 → L̄0

t a D-composite dUM
(for stochastic processes), if {ϕt}t∈T is defined as:

ϕT (V ) := VT

ϕt(V ) := ess inf
Q∈Dt

EQ[Vt + ϕt+1(V )|Ft]. (3.36)

The D-composite dRMs and dUMs admit simpler representation for random variables and
stochastic processes, which admit additional integrability conditions (see [43] for details). Given
the determining family D = {Dt}t∈T, let {Dt,t+1}t∈T be a family of sets of measures given by

DT,T+1 := DνT , (3.37)

Dt,t+1 := {Q ∈ Q1
t |

dQ
dP

= E[
dQ′

dP
|Ft+1], for Q′ ∈ Dt} (t < T ). (3.38)

Please note that {Dt,t+1}t∈T define the same composite dUM and the family {Dt,t+1}t∈T is also a
determining family. Next, we define new families of measures

D̃ := {Q ∈ Q1
t |

dQ
dP

=

T∏
s=0

dQs

dP
, and {Qs}Ts=t is such that Qs ∈ Ds,s+1},

D̄ := {Q ∈ Q1
t |

dQ
dP

=

T∏
s=0

dQs

dP
, and {Qs}Ts=0 is such that Qs ∈ Ds,s+1 ∪ {1}}.

Please note that Dt,t+1 ⊆ D̄ for any t ∈ T. The strong L1
s(D)-space and weak L1

s(D)-space for a
given set of measures (see [41, Section 2.2] for more details) are defined by

L1
s(D) :=

{
X ∈ L0 : lim

n→∞
sup
Q∈D

EQ
[
1{|X|>n}|X|

]
= 0
}

(3.39)

L1
w(D) :=

{
X ∈ L0 : | inf

Q∈D
EQ[±X]| <∞

}
(3.40)

Note that if D = {Q}, then L1
s(D) = L1

w(D) = L1(Ω,F ,Q), which justifies this notation. Moreover,
we might get L1

s(D) 6= L1
w(D) (see [42] for example). Nevertheless, for many families of dUMs those

two spaces coincide.
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Proposition 3.4.5. Let D denote a determining family of measures and let ϕ denote the corre-
sponding D-composite dUM defined for stochastic processes. For V ∈ V0, such that Vt ∈ L1

s(D̄) for
any t ∈ T, we get

ϕt(V ) = ess inf
Q∈D̃

EQ

[ T∑
i=t

Vi

∣∣∣Ft].
Moreover, there exists a minimiser for any V ∈ V0, such that Vt ∈ L1

s(D̄) for any t ∈ T, i.e. for

any t ∈ T, we get ϕt(V ) = EQ∗
[∑T

i=t Vi

∣∣∣Ft] for some Q∗ ∈ D̃.

The proof of Proposition 3.4.5 could be found in [43, Prop. 2.1].
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Chapter 4

Selected families of dynamic risk and
performance measures

In this Chapter we will introduce three families of dUMs and show some recognisable representatives
from each family.

Firstly, we will introduce the family of convex (and thus coherent) dRMs. This family of
(negatives of) dUMs has attracted significant attention in the literature recently. The need to
understand how to measure the risk, what is the risk and finally, how one can influence the risk
(e.g. through dynamic control) naturally lead to the class of convex dRMs. The axiomatic approach
to RMs initiated in [6] has attracted significant attention in Mathematical Finance (cf. [77, 7, 78]
and references therein for literature overview), as the properties like convexity (CV), monotonicity
(MD) or normalization (N) have a natural financial interpretation (see Remark 2.2.2). Apart from
selected basic facts, which we will use in the next Chapter, we will introduce three important
families of convex dUMs, often used in stochastic control problems, due to their traceability.

Secondly, we will introduce the class of dynamic performance measures, which additionally
satisfy quasi-concavity (QCC), namely dynamic acceptability indices. This class of maps was
introduced in [45], and studied (also for the dynamic case) e.g. in [126, 15, 20]. One can show very
tight connection between dRMs and dynamic acceptability indices, which justifies the importance
of this class. It it used to quantify the performance of a financial position. This class might
measure the degree of arbitrage consistency in the market, compare financial positions or present
the ratio between risk and reward (see e.g. [65, 9, 39] for details). Very often when we deal with
stochastic control problem with risk constraints, it is convenient to transform it to the problem
with single objective function. Usually such function is an acceptability index, as will be explained
in Section 5.2.

Finally, we will introduce the class of Dynamic limit growth indices. This class of maps is
designed to measure the long-run performance of a financial portfolio. Importance of measurement
of the long run growth of a portfolio is widely recognized among financial practitioners, and has been
extensively discussed in the literature (see for instance [5, 71], and references therein). Here, we
shall focus on measures that quantify the tradeoff between portfolio growth and the risk associated
with it, appropriately normalized in time. Among several such possible measures, the one which
has attracted the most attention, is the so called Risk Sensitive Criterion [142, 21, 22]. While, this
class might be in fact considered as a subclass of dynamic acceptability indices, we treat this case
separately, as they are introduced in an entirely different framework.
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4.1 Dynamic convex and coherent risk measures

The family of convex dRMs is (see page 12 for definition) is perhaps the most important class of
monetary dRMs as it allow us to use tools from convex analysis (e.g. in portfolio optimisation [3])
and in particular provide the robust representation of the form

ρ(X) = − inf
Q∈M1(P)

[EQ[X] + αmin(Q)], (4.1)

for some penalty function αmin : M1(P) → R ∪ {∞} (see Subsection 2.2.3 for details and the
dynamic equivalent). We will now present some subclasses of convex RMs, which are often used
in stochastic control theory and show some of their’s properties. Nevertheless, we will not present
here overview of the whole convex risk measurement theory, as this is not a main topic of this
thesis. For a general good brief survey about convex RMs see e.g. [75].

In Subsection 4.1.1, we will introduce the family of Dynamic entropic risk measures, which
are convex, but not coherent. This family is widely used in finance and other fields of applied
mathematics (cf. [46] and references therein).

Next, in Subsection 4.1.2 we will define Dynamic Tail Value at Risk, which represents a class
of coherent dRMs. Let us now explain, why this family of maps plays a crucial role in the coherent
framework. In general, we know that a representable risk measure is coherent, if the penalty
function only takes values in the set {0,∞}. Thus, every representable coherent dRM ϕ = {ϕt}t∈T
could be expressed as

ρt(X) = − inf
Q∈Qt

EQ[X|Ft], (4.2)

for {Qt}t∈T, such that Qt ⊆ Q1
t . Of course, different families {Qt}t∈T could define the same

coherent dRM (for a given X ), but usually one could define the largest family of sets, for which the
representation (4.2) will hold (its called the determining family for a coherent dRM [41]). One of
the most interesting results in the theory of coherent RMs is so called Kusuoka’s Theorem, which
shows that the family of Tail Value at Risk maps could be used as a building blocks for any coherent
dRM, which admits law invariance (LI)1. Let us present this theorem for L∞ (similar result could
be obtained for the general conditional case on Lp [52]; there exists also a generalisation of this
theorem for convex dRMs, admitting (LI) [84]).

Theorem 4.1.1 (Kusuoka’s Theorem). Let X = L∞ and let ρ be a coherent RM. Then ρ is (LI)
if and only if there exists a (compact, convex) set M of probability measures on (0, 1], such that

ρ(X) = − inf
ν∈M

∫ 1

0
ρα(X)ν(dα), (4.3)

where ρα(X) = − ess infQ∈Dα EQ[X] and Dα = {Q ∈M1(P) : dQ
dP ≤ α

−1} for p ∈ (0, 1].

The family of coherent RMs {ρα}α∈(0,1], which appears in Theorem 4.1.1 is precisely the family
of Tail Value at Risk RMs.

Finally, in Subsection 4.1.3 we will introduce the class of Weighted Value at Risk dRMs [41],
sometimes also called Spectral dRMs [4]. In the static framework, this family is obtained, choosing

1For a general non-atomic Ω, we take the risk measure known as Exptected Shortfall as a building block. Never-
theless, in our framework those two families coincide. See [4] for details.
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a singleton in (4.3), i.e. M = {ν} for some fixed probability measure ν on (0, 1]. It is worth
noticing that this class of maps coincides with coherent risk measures which admit law invariance
(LI) and comonotonicity2. The name Spectral risk measure is justified by different representation
for this class of maps. Any Weighted Value at Risk RM admits equality

ρ(X) := −
∫ 1

0
qp(X)φ(p) dp, (4.4)

for some function φ, where qp(X) denotes the (upper) α-quantile of X and φ is an admissible risk
spectrum, i.e. φ : [0, 1)→ [0,∞) is a right-continous, decreasing function such that

∫ 1
0 φ(p)dp = 1

(cf. [41] and references therein). The relation between risk spectrum φ and probability measure ν
is expressed through equation

φ(t) =

∫
(t,1]

1

s
ν(ds).

For other interesting families of convex dRMs see e.g. [75, Section 4].

4.1.1 Dynamic Entropic Risk Measure

Entropic Risk Measure is a classical convex risk measure, which attracted a lot of attention in the
risk measure literature [57, 141, 46, 103]. Let X = Lp, for p ∈ [1,∞].

Definition 4.1.2 (Dynamic entropic risk measure). A Dynamic entropic risk measure is a family
ργ = {ργt }t∈T of mappings ργt : X → L̄0

t , indexed by γ ∈ R, and defined by

ργt (X) =

{
− 1
γ lnE[exp(γX)|Ft] if γ 6= 0,

−E[X|Ft] if γ = 0.
(4.5)

It is straightforward to check that for any γ ∈ R, the map ργ is dRM [103]. Moreover, if γ ≤ 0,
then ργ is convex (dCV). As we will be working in the concave framework (see Remark 2.2.7) we
will use ϕγ = {ϕγt }t∈T to denote the negative of dynamic entropic risk measure, i.e.

ϕγt (X) = −ργt (X).

We will refer to ϕγ as Dynamic entropic utility measure. Let us now recall some basic facts about
these maps.

Proposition 4.1.3. Let X = L1 and let ϕγ denote a dynamic entropic utility measure. Then

1) {ϕγt }t∈T is concave (dCC) if γ ≤ 0 and convex (dCV) if γ ≥ 0.

2) {ϕγt }t∈T is dCE.

3) {ϕγt }t∈T is strongly time consistent.

4) {ϕγt }t∈T is increasing with γ.

5) {ϕγt }t∈T is supermartingale time consistent in L1 if and only if γ ≥ 0.

2i.e. ρ(X + Y ) = ρ(X) + ρ(Y ) for comonotone X, Y , that is random variables for which
(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0, P(dω)⊗ P(dω′)-a.s.
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6) {ϕγt }t∈T is submartingale time consistent in L1 if and only if γ ≤ 0.

For the proof of 1) and 2), see e.g. [103]; the proof in [103] is given for the case of L∞, but can be
adapted to the case of L1. Moreover, the function defining ϕγ as (dCE) is given by

Uγ(x) :=

{
1−exp(γx)
1−exp(γ) if γ 6= 0,

x if γ = 0.

For the proof of 3), we first need to recall that the dynamic entropic utility measure is upper semi-
continuous (USC) in L1 (cf. [13, 37]), and then refer to [17]. For the proof of 4), we need to recall
that the robust representation of dynamic entropic risk measures holds in the L1 framework [37, 3],
and then refer to [103]. Properties 5) and 6) follow directly from property 4), combined with
dynamic programming reformulation of property 3); see [2] and [57, Proposition 6], where the
proofs are done for the case of L∞, but can be adapted to the case of L1.

Remark 4.1.4. For X = Lp (p ∈ [1,∞]) and infinite time horizon, one could show that the entropic
dRMs are the only dRMs, which admit strong time consistency. It follows from the fact, that
the class of entropic dRMs coincides with the class of dCEs which additionally admit counter
cash-additivity (dCCA). See [103] for details.

Proposition 4.1.5. Let X = L13 and let ϕγ denote dynamic entropic utility measure. For any
γ < 0, the map ϕγ is representable and admits representation

ϕγt (X) = ess sup
Q∈M1(P)

EQ[X|Ft]−
1

γ
Ht(Q|P), (4.6)

where Ht(Q|P) corresponds to the conditional relative entropy of Q w.r.t. P, i.e.

Ht(Q|P) =

{
E
[

dQ
dP ln dQ

dP |Ft
]

if Q� P,
+∞ otherwise.

(4.7)

The proof of Proposition 4.1.5 is a direct implication of the variational principle. See e.g. [3,
Example 2.5] or [51, 77, 57] for more detailed proofs.

Remark 4.1.6. The (conditional) relative entropy introduced in (4.7), also called Kullback-Leibler
divergence, might be considered as a (non-symmetric) measure of distance between two probability
measures Q and P, which describes the information lost when Q is used to approximate P. It has
strong connections to physics, as entropy can be described in terms of the Energy dispersal. See [51]
for the connections to stochastic dynamic games and [46] for a general comment about applications
to finance and economy.

Proposition 4.1.7. Let X = L1 and let ϕγ denote dynamic entropic utility measure. Let γ < 0.
For any t ∈ T and X ∈ L1, such that µγ0(X) ∈ R and µγ0(X lnX) ∈ R, the essential supremum in
(4.6) is attained for measure QX , such that

dQX

dP
=

eγX

E[eγX |Ft]
= eγ[X−ϕγt (X)]. (4.8)

3One could also consider the space {X ∈ L0 | X lnX ∈ L1}. See [51] for details.
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The proof of Proposition 4.1.7 is a direct extension of the proof from [51, Proposition 2.3], which
was done for the static case. See also [57, Section 4], for the conditional case in L∞ framework.

Remark 4.1.8. The transformation P→ QX introduced in (4.8) is usually called Esscher transfor-
mation (see e.g. Gerber [85]). See also [77, Section 3.2] for more details about exponential utility
and relative entropy and [46] for a general comment about problems, which involve minimisation
of the relative entropy, using Esscher transformation.

One could generalise the Dynamic Entropic Risk Measure introduced in (4.5) by making the
risk aversion parameter a non-constant adapted process, i.e. we could consider the dynamic risk
measure given by

ϕγtt (X) =

{ 1
γt

lnE[exp(γtX)|Ft] if γt 6= 0,

E[X|Ft] if γt = 0.
(4.9)

where {γt}t∈T is such that γt ∈ L∞t and X ∈ X = L∞, t ∈ T. Noting that the map introduced in
(4.5) is increasing with γ, it could be easily shown (see [2] for the idea of the proof) that {ϕγtt }t∈T
is strongly time consistent, if and only if {γt}t∈T is a constant process, middle acceptance time
consistent if and only if {γt}t∈T is a non-increasing process (i.e. γt+1 ≤ γt for t ∈ T, t < T ) and
middle rejection time consistent if and only if {γt}t∈T is non-decreasing.

4.1.2 Dynamic TV@R

Let X = L0. The static Tail Value at Risk is a classic example of a coherent RM. In the literature,
sometimes other names are used for this class of maps, such as Tail Value at Risk, Average Value
at Risk or Expected Shortfall. While the definitions coincide for random variables with continuous
distribution, they slightly differ in the general case [77].

Tail Value at Risk could be regarded as the modification of Value at Risk, when we consider
the conditional expectation, instead of a simple quantile (see [93] for details).

Definition 4.1.9. A Tail Value at Risk (TV@R) is a map ρα : X → R̄, indexed by α ∈ (0, 1], and
defined by

ρα(X) = − inf
Q∈Dα

EQ[X]. (4.10)

where Dα := {Q ∈M1(P) : dQ
dP ≤ α

−1}.

From the definition, we get that TV@R is a representable coherent RM for any α ∈ (0, 1].
Moreover, if X has the continuous distribution, then we get

ρα(X) := −E[X|X ≤ qα(X)], (4.11)

where α ∈ (0, 1] and qα(X) denotes the α-quantile of X. This representation explains the name
Tail Value at Risk. See [41] for a through discussion about properties of (static) TV@R.

The dynamic version of TV@R could be obtained, modifying the set Dα. For α ∈ (0, 1] let
{Dαt }t∈T be defined by

Dαt := {Q ∈ Q1
t :

dQ
dP
≤ α−1}. (4.12)

Definition 4.1.10. A Dynamic Tail Value at Risk (dTV@R) is a family {ραt }t∈T of mappings
ραt : X → L̄0

t , indexed by α ∈ (0, 1), and defined by

ραt (X) = − ess inf
Q∈Dαt

EQ[X|Ft]. (4.13)
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It is straightforward to check that for any α ∈ (0, 1), the map {ραt }t∈T is dRM [41]. Working in
concave framework, throughout this Subsection we will use ϕα = {ϕαt }t∈T to denote negative of
{ραt }t∈T, i.e.

ϕαt (X) = −ραt (X). (4.14)

Proposition 4.1.11. Let X = L0 and let {ϕαt }t∈T denote negative of dTV@R. Then

1) {ϕαt }t∈T is subadditive (dSPA) and positively homogeneous (dPH).4

2) {ϕαt }t∈T is increasing with α.

3) {ϕαt }t∈T is submartingale time consistent in L0.5

4) {ϕαt }t∈T is not weakly acceptance time consistent in L0.

The proof of 1) is straightforward (see e.g. [41]). Indeed for α ∈ (0, 1], t ∈ T, β ≥ 0 (β ∈ L̄0
t ) and

X,Y ∈ L0, using Proposition 2.1.3, we get

ϕαt (X + Y ) = ess inf
Q∈Dαt

EQ[X + Y |Ft] ≥ ess inf
Q∈Dαt

[EQ[X|Ft] + EQ[X|Ft]]

≥ ess inf
Q∈Dαt

EQ[X|Ft] + ess inf
Q∈Dαt

EQ[Y |Ft] = ϕαt (X) + ϕαt (Y ),

and
ϕαt (βX) = ess inf

Q∈Dαt
EQ[βX|Ft] = ess inf

Q∈Dαt
βEQ[X|Ft] = βϕαt (X).

Next, 2) is a simple implication of the fact, that for α1 > α2 and t ∈ T, we get Dα1
t ⊆ D

α2
t .

To prove 3), it enough to note that for t, s ∈ T, such that s > t, we get Dαs ⊆ Dαt . Because of
that we get6

ϕαt (X) = ess inf
Q∈Dαt

EQ[X|Ft] ≤ ess inf
Q∈Dαs

EQ[X|Ft] ≤ ess inf
Q∈Dαs

E[EQ[X|Fs]|Ft]. (4.15)

Now, using the fact that Dαs is L1-closed (see [41] for details), for any X ∈ L0, there exist QX ∈ Dαs
such that ϕαs (X) = EQX [X|Fs]. This implies

ess inf
Q∈Dαs

E[EQ[X|Fs]|Ft] = E[EQX [X|Fs]|Ft] = E[ess inf
Q∈Dαs

EQ[X|Fs]|Ft] = E[ϕαs (X)|Ft]. (4.16)

Combining (4.15) and (4.16) we obtain submartingale time-consistency.
For the proof of 4) it is enough to consider the counterexample in L∞ framework (taken from

[7]). Take a 2-step discrete dynamics with 3 paths in each step and consider

Ω = {[uu], [um], [ud], [du], [dm], [dd]}

where P is uniform on Ω and F1 is generated by [u·] and [d·]. Take

X([uu]) = −10, X([um]) = 12, X([ud]) = 14, X([du]) = −20, X([dm]) = 22, X([dd]) = 22.

4i.e. ρα is a coherent dRM.
5Note, that this implies that negative of dynamic TV@R is weakly rejection time consistent.
6Note that for any Z := dQ

dP we get E[ZX|Ft] ≤ E[E[ZX|Fs]|Ft].
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Then, for α = 2
3 we get

ϕα0 (X) =
−20− 10 + 12 + 14

4
= −1

ϕα1 (X)([u·]) =
−10 + 12

2
= 1, ϕα1 (X)([d·]) =

−20 + 22

2
= 1,

which implies −1 = ϕα0 (X) 6≥ ess inf0(ϕα1 (X)) = 1. It is also worth mentioning that {ϕαt }t∈T is not
middle rejection time consistent.7

The lack of weak acceptance time consistency (and strong time consistency) is one of the main
drawbacks of using dTV@R. Nevertheless, using so called recursive construction (see [2] for details)
for a finite time horizon T = {0, 1, . . . , T} (T ∈ N) and L∞ one could define a new (coherent) dRM,
which will be strongly time consistent. For a fixed α ∈ (0, 1) it will take the form:

ρ̃αt (X) = − ess inf
Q∈D̃αt

EQ[X|Ft], (4.17)

for

D̃αt :=
{
Q ∈ Q1

t

∣∣∣ dQ
dP

=
T−1∏
s=t

dQs

dP
, where Qs ∈ Dαs ,

dQs

dP
∈ L1

s+1

}
=
{
Q ∈ Q1

t

∣∣∣ ZQs+1

ZQs
≤ α, for s = t, . . . , T − 1, where ZQs =

dQ
dP
∣∣
Ft

}
See [40, Example 2.3.1] or [2, Example 36] for details.

Moreover, one could generalise the family of dTV@R maps, allowing risk-averse parameter to
be non constant, i.e. we can consider a process {at}t∈T, where at ∈ L0

t and 0 < at < 1, instead of
a ∈ (0, 1) in (4.13) or (4.17) (again see [2, Example 36] for details).

4.1.3 Dynamic WV@R

In this subsection let us give some comment about a special family of coherent dRMs, namely
Dynamic Weighted Value at Risk, which includes also the family of TV@Rs. The class of dWV@Rs
appears to be very convenient and analytically traceable (where portfolio optimisation problems
are considered, the reason we introduce those mappings (see e.g. [44, 43] for details).

Let us start, by recalling the definition of the (static) Weighted Value at Risk RM for X = L0

Definition 4.1.12. We say that ρν : X → R̄ is a Weighted Value at Risk, if

ρν(X) :=

∫ 1

0
ρα(X)ν(dα), (4.18)

where ν is a probability measure on (0, 1] and {ρα}α∈(0,1] is a family of TV@Rs.

To omit various technical problems, we will generalise (4.18) to the dynamic case using robust
representation. One could show (see e.g. [41]), that the map defined in (4.18) could be rewritten
as

ρν(X) = − inf
Q∈Dν

EQ[X]

7Take a 2-step discrete dynamics with 3 paths in each step and consider F1 = σ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}),
F = F2 = σ({1}, . . . , {9}), X(ω) = −ω, for ω ∈ {1, 2, . . . , 9}. Then −8 = ϕ

1/3
0 (X) ≥ ϕ1/3

0 (ϕ
1/3
1 (X)) = −9.
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for

Dν := {Q� P | E[(
dQ
dP
− x)+] ≤ Φν(x), ∀x ∈ R+}, (4.19)

where

Φν(x) := sup
y∈[0,1]

[ ∫ y

0

∫
[z,1]

λ−1ν(dλ) dz − xy
]
.

We are now ready to provide the definition of Dynamic Weighted Value at Risk.

Definition 4.1.13. We will call {ρνt }t∈T a Dynamic Weighted Value at Risk if

ρνt (X) = − ess inf
Q∈Dνt

EQ[X|Ft], (4.20)

where ν is a probability measure on (0, 1] and

Dνt := {Q ∈ Q1
t | E[(

dQ
dP
− x)+|Ft] ≤ Φν(x), ∀x ∈ R+}. (4.21)

As always we will use notation {ϕνt }t∈T to denote the negative of a dynamic Weighted Value
at Risk. We also know that the static TV@R is law invariant (LI), so there exists a functional ϕ̃ν ,
defined on distributions, such that ϕν(X) = ϕ̃ν(Law(X)). Let us now recall some basic properties
of this class of maps.

Proposition 4.1.14. Let ν be a probability measure on [0, 1). Then

1. For any X ∈ L0 and t ∈ T we get ϕνt (X) = ϕ̃ν(Law(X|Ft)).

2. {ϕνt }t∈T is weakly rejection time consistent in L0.

3. {ϕνt }t∈T is not weakly acceptance time consistent in L0.

For the proof of 1), see [43, Lemma 2.2]. The proof of 2) is a straightforward implication of the
fact that for s > t, we get Dνs ⊆ Dνt and the fact that {ϕνt }t∈T is local, i.e. Q could be defined locally
in (4.20). The counterexample for 3) could be constructed using the idea from [7, Section 5.2].

4.2 Dynamic acceptability indices

The family of Acceptability Indices was introduced in [45], and studied (also for the dynamic case)
e.g. in [126, 15, 20]. Let us introduce a family of regular acceptability indices, which will allow us
to show the tight connection between coherent RMs and acceptability indices.

Definition 4.2.1 (Regular acceptability index). Let α be an acceptability index.8 We will say
that α is regular if it satisfies:

1) Nonnegativity, i.e. α(X) ≥ 0 for all X ∈ X ;

2) Non-degeneracy, i.e.

8i.e. α is adapted (A), translation invariant (TI), monotone increasing (MI), scale invariant (SI) and quasi-concave
(QCC). See page 13.



63

(a) α(X) = 0, for some X ∈ X ;

(b) α(X) =∞, for some X ∈ X ;

Similarly, if α = {αt}t∈T is a dynamic acceptability index, then we will say, that α is regular if for
any t ∈ T, the map αt satisfies 1) and 2).

Let us recall now the duality theorem from [45] for random variables on L∞.

Theorem 4.2.2. Let X = L∞. A map α : X → [0,∞] is a regular acceptability index satisfying
Fatou property (FP) if and only if there exists a family of subsets {Dx}x∈R+ of M1(P) such that
Dx ⊆ Dy for x ≤ y and9

α(X) = sup
{
x ∈ R+ | inf

Q∈Dx
EQ[X] ≥ 0

}
. (4.22)

For the proof of Theorem 4.2.2 see [45, Theorem 1].
One could easily see that for each x ∈ R+ in Theorem 4.2.2, the map ϕx(X) := infQ∈Dx EQ[X]

corresponds to negative of a representable coherent RM. Moreover, as for x ≤ y, we get Dx ⊆ Dy, we
know that the family {ϕx}x∈R+ should be decreasing, i.e. ϕx(X) ≥ ϕy(X) for any X ∈ X and x ≤ y.
Theorem 4.2.2 could be generalized to conditional case [15] as well as to the space of stochastic
processes [20]. We don’t present the results here, as they require many technical assumptions and
are not the main topic of this thesis. Let us alone mention that for any decreasing10 family of dUMs
{ϕxt }t∈T (indexed by x ∈ R+; typically coherent dRMs) satisfying certain technical properties and

X := {(xn)n∈N | xn ∈ R+, x0 = 0, xn+1 > xn},

the dynamic map α = {αt}t∈T, where αt : X → L̄0
t given by

αt(X) = ess sup
(xn)∈X

{
∞∑
n=0

1{ϕxnt (X)≥0}(xn+1 − xn)} (X ∈ X ), (4.23)

is a dynamic acceptability index11 (see [15, 20] for details). With slight abuse of notation, we could
also write that α is such that

αt(X) = sup{x ∈ R+ : ϕxt (X) ≥ 0} (X ∈ X ), (4.24)

understanding (4.24) ω-by-ω, and taking it’s Ft-measurable version (see [20] for details). Conversly,
if α is a dynamic acceptability index, then we could recover the decreasing family of dUMs defining
for each x ∈ R+ the map ϕt : X → L̄0

t by

ϕxt (X) = inf{c ∈ R : αt(X − c1{t}) ≤ x} (X ∈ X ), (4.25)

where (4.25) is understood in the same way as (4.24) (again, see [20] for details).
Now, let us show, how transformations (4.24) and (4.25) preserve time consistency. The next

two results will give an important (dual) connection between cash additive measures and scale
invariant measures.

9If (for a given x ∈ R+) the set Dx is empty, we will write infQ∈Dx EQ[X] =∞. On the other hand if (for a given
X ∈ X ), there exists no x ∈ R+, for which the inequality in (4.22) is attained, we will write α(X) = 0. In other
words, we use convention inf ∅ =∞ and sup ∅ = 0.

10i.e. ϕxt (X) ≤ ϕyt (X) for all X ∈ X , t ∈ T and x, y ∈ R+, such that x ≤ y.
11Please note that for any X ∈ X and x ∈ R+, we get {ϕxt (X) ≥ 0} ∈ Ft so αt(X) ∈ L̄0

t . Moreover, αt(X) ≥ 0 for
any X ∈ X , due to the convention inf ∅ =∞ and sup ∅ = 0, similar to the one in (4.22).
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Proposition 4.2.3. For x ∈ R+, let {ϕxt }t∈T be a decreasing family of dUMs. Moreover, let us
assume that for each x ∈ R+, {ϕxt }t∈T is weakly acceptance (resp. weakly rejection) time consistent.
Then the family {αt}t∈T of maps αt : X → L̄0

t defined in (4.24) is a semi-weakly acceptance (resp.
semi-weakly rejection) time consistent dUM.

Proof. The proof of locality and monotonicity of (4.24) is straightforward (see [20] for details). Let
us assume that {ϕxt }t∈T is weakly acceptance time consistent. Using Proposition 3.1.8 we get

1{Vt≥0}αt(V ) = 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}ϕ

x
t (V ) ≥ 0}

)
≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}[ess inft ϕ

x
t+1(V ) + Vt] ≥ 0}

)
≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0} ess inft ϕ

x
t+1(V ) ≥ 0}

)
= 1{Vt≥0} ess inft

(
sup{x ∈ R+ : 1{Vt≥0}ϕ

x
t+1(V ) ≥ 0}

)
= 1{Vt≥0} ess inft αt+1(V )

This leads to inequality

αt(V ) ≥ 1{Vt≥0} ess inft αt+1(V ) + 1{Vt<0}(−∞),

which, by Proposition 3.1.8, is equivalent to semi-weak rejection time consistency. The proof of
weak acceptance time consistency is similar.

Proposition 4.2.4. Let {αt}t∈T be a dUM, which is independent of the past and translation invari-
ant. Moreover, let us assume that {αt}t∈T is semi-weakly acceptance (resp. semi-weakly rejection)
time consistent. Then for any x ∈ R+ the family {ϕxt }t∈T defined in (4.25) is a weakly rejection
(resp. weakly acceptance) time consistent dUM.

Proof. The proof of locality and monotonicity of (4.25) is straightforward (see [20] for details). Let
us prove weak acceptance time consistency. Let us assume that {αt}t∈T is semi-weakly acceptance
time consistent. Using Proposition 3.1.8 we get

ϕxt (V ) = inf{c ∈ R : αt(V − c1{t}) ≤ x}
= inf{c ∈ R : αt(V − c1{t+1}) ≤ x}
= inf{c ∈ R : αt(V − c1{t+1} − Vt1{t}) ≤ x}+ Vt

≥ inf{c ∈ R : 1{0≥0} ess inft αt+1(V − c1{t+1} − Vt1{t}) + 1{0<0}(−∞) ≤ x}+ Vt

= inf{c ∈ R : ess inft αt+1(V − c1{t+1}) ≤ x}+ Vt

= ess inft
(

inf{c ∈ R : αt+1(V − c1{t+1}) ≤ x}
)

+ Vt

= ess inft ϕ
x
t+1(V ) + Vt

Which, using Proposition 3.1.8, is equivalent to weak acceptance time consistency. The proof of
rejection time consistency is similar.

This type of dual representation, i.e. (4.24)–(4.25), first appeared in [45] where the authors
studied static (one period of time) scale invariant measures. Subsequently, in [20], the authors
extended these results to the case of stochastic processes with special emphasis on time consistency
property. In contrast to [20], we consider an arbitrary probability space, not just a finite one.
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4.2.1 Dynamic TV@R Acceptability Index for Processes

Tail Value at Risk Acceptability Index was introduced in [45], as a scale invariance measure of
performance for the case of random variables. Using [20], we extend this notion to the case of
stochastic processes. Let X = V0, and for a fixed α ∈ (0, 1] we consider the sets {Dαt }t∈T defined
as in (4.12).

Definition 4.2.5. A Dynamic Tail Value at Risk Acceptability Index (Dynamic TV@R Accept-
ability Index) is a family {αt}t∈T of mappings αt : X → L̄0

t , given by

αt(V ) = sup{x ∈ R+ : ρxt (V ) ≥ 0}, (4.26)

where for x ∈ R+, we define ρx = {ρxt }t∈T as

ρxt (V ) = ess inf
Z∈Dg(x)t

E[Z

T∑
i=t

Vi|Ft], V ∈ V, t ∈ T , (4.27)

for (a distortion function) g(x) = 1
1+x , x ∈ R+.

Proposition 4.2.6. Let X = V0 and let {αt}t∈T denote a Dynamic TV@R Accep. Index. Then

1. {αt}t∈T is a regular dynamic acceptability index.

2. {αt}t∈T is semi-weakly rejection time consistent.

For the proof of 1) one could notice that it is easy to show that ρx is an increasing (with respect
to x) family of (negatives of) dynamic coherent risk measures for processes (see [45] and [20] for
details). Hence, the map {αt}t∈T given by (4.26) is an acceptability index for processes (again,
see [45] and [20]). For the proof of 2), we can use similar arguments as in Section 4.1.2, to conclude
that ρx is weakly rejection time consistent, for any fixed x ∈ R+. Hence, by Proposition 4.2.3 we
obtain that α is semi-weakly acceptance time consistent.

On the other hand {αt}t∈T is not semi-weakly acceptance time consistent. Indeed, following
similar reasoning as in the proof of duality from [20] and using Proposition 4.2.4, we get that if
α is semi-weakly acceptance time consistent, then {ρxt }t∈T is weakly acceptance time consistency,
for any x ∈ R+. This leads to a contradiction, since these maps are not weakly acceptance time
consistent, as stated in Example 4.1.2.

4.2.2 Dynamic RAROC for processes

Risk Adjusted Return On Capital (RAROC) is a popular measure of scale invariant measure of
performance equal (see for instance [45] for static RAROC, and [20] for its extension to dynamic
setup). We consider the space X = V1, we fix α ∈ (0, 1) and set T = {0, 1, . . . , T}.

Definition 4.2.7. A Dynamic Coherent Risk-Adjusted Return on Capital (Dynamic RAROC) is a
family {αt}t∈T of mappings αt : X → L̄0

t , given by

αt(V ) :=

{
E[
∑T
i=t Vi|Ft]
ραt (V ) if E[

∑T
i=t Vi|Ft] > 0,

0 otherwise,
(4.28)

where ρt(V ) = − ess inf
Q∈Dt

EQ[(
∑T

i=t Vi)|Ft] for some family {Dt}t∈T, such that Dt ⊆ Q1
t . We use the

convention αt(V ) = +∞, if ρt(V ) ≤ 0.
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Proposition 4.2.8. Let X = V1 and let {αt}t∈T denote a Dynamic RAROC, where the corre-
sponding family {Dt}t∈T is such that Ds ⊆ Dt for s > t. Then

1) {αt}t∈T is a regular dynamic acceptability index.

2) {αt}t∈T admits representation αt(V ) = sup{x ∈ R+ : ϕxt (V ) ≥ 0}, where {ϕxt }t∈T is given by

ϕxt (V ) = ess inf
Q∈Bxt

EQ[(
T∑
i=t

Vi)|Ft],

for family Bxt = {Q ∈ Q1
t : Q = 1

1+xP + x
1+xQ1, for some Q1 ∈ Dt}.

3) {αt}t∈T is semi-weakly acceptance time consistent.

The proof of 1) and 2) for the static case could be found in [45, Section 3.4] and could be easily
converted to the dynamic case (see [20, 15] for the idea of the proof). The proof of 3) follows
from Proposition 4.2.3. It is enough to note that for any x ∈ R+, the map {φxt }t∈T is a weakly
acceptance time consistent dUM.12 It is worth mentioning that {αt}t∈T might be not semi-weakly
rejection time consistent, see [20, Example 6.5] for a simple counterexample.

4.2.3 Dynamic GLR for processess

Dynamic Gain Loss Ratio (dynamic GLR) is another popular measure of performance, which
essentially overcomes the deficiencies of Sharpe Ratio by penalizing for positive returns, and is equal
to the ratio of expected return over expected losses. For various properties and dual representations
of dynamic GLR see for instance [20, 17]. Let T = {0, 1, . . . , T} and X = V1.

Definition 4.2.9. A Dynamic Gain Loss Ratio (Dynamic GLR) is a family {αt}t∈T of mappings
αt : X → L̄0

t , given by

αt(V ) :=

{
E[
∑T
i=t Vi|Ft]

E[(
∑T
i=t Vi)

−|Ft]
if E[

∑T
i=t Vi|Ft] > 0,

0 otherwise.
(4.29)

Proposition 4.2.10. Let X = V1 and let {αt}t∈T denote a Dynamic GLR. Then

1) {αt}t∈T is a regular dynamic acceptability index.

2) {αt}t∈T is semi-weakly acceptance time consistent.

3) {αt}t∈T is semi-weakly rejection time consistent.

The proof of 1) could be found in [20]. To prove 2), we notice that due to Proposition 3.1.8, we
only need to prove that

αt(V ) ≥ 1{Vt≥0} ess inft(αt+1(V )) + 1{Vt<0}(−∞). (4.30)

12See 3) from Proposition 4.1.11, for the idea of the proof of weak acceptance time consistency.
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Next, on the set {Vt < 0} the inequality (4.30) is trivial. Because αt is non-negative and local,
without loss of generality we could assume that ess inft(αt+1(V )) > 0. Moreover,

αt+1(V ) ≥ ess inft(αt+1(V )),

which implies

E[
T∑

i=t+1

Vi|Ft+1] ≥ ess inft(αt+1(V )) · E[(
T∑

i=t+1

Vi)
−|Ft+1]. (4.31)

Using (4.31) we obtain

1{Vt≥0}E[
T∑
i=t

Vi|Ft] ≥ 1{Vt≥0}E[E[
T∑

i=t+1

Vi|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(αt+1(V )) · E[1{Vt≥0}E[(
T∑

i=t+1

Vi)
−|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(αt+1(V )) · E[(
T∑
i=t

Vi)
−|Ft]. (4.32)

Combining (4.32) with the fact that from ess inft(αt+1(V )) > 0, we get 1{Vt≥0}E[
∑T

i=t Vt|Ft] > 0,
we get 2). The proof of 3) will analogous. See also [20] for more detailed proof of 2) and 3).

4.3 Dynamic limit growth indices

This section is based on [18]. If not stated otherwise, in this subsection we will assume that X = Vpτ
for p ∈ {0} ∪ [1,∞]. One should look at X as the cumulative value process of some portfolio. Let
us present a main object of study in this subsection, which we will name Dynamic Limit Growth
Indices.

Definition 4.3.1. A Dynamic Limit Growth Index (dLGI) is a family {ϕt}t∈T of maps ϕt : X → L̄0
t

such that

ϕt(V ) = lim inf
T→∞

µt(ln
VT
Vt

)

T
, (4.33)

where µt : L̂0 → L̄0
t , and {µt}t∈T is local (dL) and monotone (dMI). Additionally, we will say that

dLGI is risk seeking, if {µt}t∈T is such that µt(X) = µt(X
+) for t ∈ T and X ∈ L̂0.

We will often refer to {µt}t∈T as a family of mappings that defines dLGI. The maps introduced
in Definition 4.33 have a natural financial interpretation. The cumulative log-return over the period
(t, T ) is a common way to measure the process growth. Because it is a random variable, we use
a tUM, say µt, which represents our preferences (at time t). Finally we divide the outcome by T
to normalize it in time. Taking the liminf as T goes to infinity allows us to measure the long-time
efficiency of our value process. We use liminf because we want to measure the actual (worst case)
efficiency of our portfolio. It also makes this measure more robust (at least to losses). Also, note
that risk seeking dLGI ignores the losses in the sense that it substitutes all losses (negative log
returns) by 0.
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We want to use dLGI to assess performance of value processes: the greater the value of dLGI the
better the performance of the portfolio. This is in line with the theory of performance measures. In
particular, we are interested in identifying conditions under which dLGIs are quasi-concave dPMs.
Towards this end, we provide Proposition 4.3.2 that give sufficient and necessary conditions for
dLGI to be quasi-concave dPM.

Proposition 4.3.2. Let {ϕt}t∈T be a dLGI defined in terms of {µt}t∈T. Then, {ϕt}t∈T is quasi-
concave dPM if and only if for any t ∈ T, and any V ∈ X ,

lim inf
T→∞

µt(ln
VT
Vt

)

T
= lim inf

T→∞

µt(lnVT )

T
. (4.34)

Proof. Let {ϕt}t∈T be dLGI generated by {µt}t∈T. We know that {µt}t∈T is (dL) and (dMI).

(⇐) Let {µt}t∈T satisfy (4.34), and we will show that {ϕt}t∈T is a quasi-concave dPM.
(dMI) is straightforward. Let V, V ′ ∈ X , such that V ≥ V ′. We will show that ϕt(V ) ≥ ϕt(V ′)

for any t ∈ T. Consider t, T ∈ T, such that T ≥ t. Since VT ≥ V ′T , we have that lnVT ≥ lnV ′T , and

consequently µt(lnVT )
T ≥ µt(lnV ′T )

T , for any T ≥ t. Hence,

lim inf
T→∞

µt(lnVT )

T
≥ lim inf

T→∞

µt(lnV
′
T )

T
.

Next we prove (dL). Let us fix t ∈ T and A ∈ Ft. For T ≥ t, using (tL) of µt and the convention
0 · ∞ = 0, we deduce

1Aϕt(1A ·t V ) = 1A lim inf
T→∞

µt(ln 1AVT )

T
= lim inf

T→∞

1Aµt(ln 1AVT )

T

= lim inf
T→∞

1Aµt(1A ln 1AVT )

T
= lim inf

T→∞

1Aµt(1A lnVT + 1A ln 1A)

T

= lim inf
T→∞

1Aµt(1A lnVT )

T
= lim inf

T→∞

1Aµt(lnVT )

T
= 1Aϕt(V ).

Finally, let us prove (dQCC). Let t ∈ T, V, V ′ ∈ X and λ ∈ Xt, 0 ≤ λ ≤ 1. Without loss of
generality, using the fact that µt is (tL), we assume that 0 < λ < 1. Since log is monotone, and
V, V ′ ≥ 0, we get

ϕt(λ ·t V + (1− λ) ·t V ′) = lim inf
T→∞

µt(ln[λVT + (1− λ)V ′T ])

T

≥ lim inf
T→∞

[
min

{µt(lnλVT )

T
,
µt(ln(1− λ)V ′T )

T

}]
= min

(
lim inf
T→∞

µt(lnVT )

T
, lim inf
T→∞

µt(lnV
′
T )

T

)
= ϕt(V ) ∧ ϕt(V ′),

which completes this part of the proof.

(⇒) Assume that {ϕt}t∈T is a quasi-concave dPM. Let t ∈ T, V ∈ X , and define V ′s = Vs for s 6= t,
and V ′t = min (1, Vt). Note that V ′ ∈ X , and V ≥ V ′. As ϕt is (MI), we get

lim inf
T→∞

µt(ln
VT
Vt

)

T
≥ lim inf

T→∞

µt(ln
V ′T
V ′t

)

T
,
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using (tL) of µt, we continue

1{Vt≥1} lim inf
T→∞

µt(ln
VT
Vt

)

T
≥ 1{Vt≥1} lim inf

T→∞

µt(1{Vt≥1} ln
V ′T
V ′t

)

T
.

Next, since V ′t = 1 on the set {Vt ≥ 1}, we have

1{Vt≥1} lim inf
T→∞

µt(ln
VT
Vt

)

T
≥ 1{Vt≥1} lim inf

T→∞

µt(1{Vt≥1} lnV ′T )

T
,

and since VT = V ′T for T > t, we finally conclude

1{Vt≥1} lim inf
T→∞

µt(ln
VT
Vt

)

T
≥ 1{Vt≥1} lim inf

T→∞

µt(lnVT )

T
.

Note that 1{Vt≥1} ln VT
Vt
≤ 1{Vt≥1} lnVT for T > t. By (MI) of µt, we get

1{Vt≥1} lim inf
T→∞

µt(ln
VT
Vt

)

T
≤ 1{Vt≥1} lim inf

T→∞

µt(lnVT )

T
.

Combining the above inequalities, we have that equality (4.34) holds true on set {Vt ≥ 1}. The
proof for the set {Vt < 1} is similar.

Relation (4.34) says that the value of the dLGI at time t is independent of the value of the
process V at time t. As mentioned above, the purpose of dLGI is to measure the long term growth
of V , which intuitively should not depend on the current state.

Remark 4.3.3. For X = V0
τ , an equivalent formulation of condition (4.34) is to require that for any

t ∈ T, m ∈ L0
t and {XT }T∈N such that XT ∈ L̂0, we have that

lim inf
T→∞

µt(XT +m)

T
= lim inf

T→∞

µt(XT )

T
.

In particular, this will be satisfied if there exists a family of maps ft : L0
t → L0

t such that for all
X ∈ L̂0, |µt(X + m) − µt(X)| ≤ ft(m) on the set {µt(X) 6= ±∞}, and µt(X + m) = µt(X) on
{µt(X) = ±∞}. For example, if µt is cash additive (tCA) then ft(m) = |m| (see also Proposi-
tion 4.3.6).

Corollary 4.3.4. Let {µt}t∈T be local (dL) and monotone (dMI), and let ϕ = {ϕt}t∈T be a dLGI
generated by {µt}t∈T. Then

1) The family ϕ is adapted (dA), local (dL), scale invariant (dSI) and independent of the past
(dIP).

2) If {µt}t∈T satisfies (4.34), then ϕ is quasi-concave dPM, i.e. ϕ is monotone (dMI), quasi-
concave (dQCC) and translation invariant (dTI).
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Remark 4.3.5. By Corollary 4.3.4, any dLGI that is generated by {µt}t∈T which admits represen-
tation (4.34) fulfils all core conditions of dPMs introduced in [20] (except of time consistency and
positiveness), and for static case introduced in [45], which were the object of study in the previous
subsection (See Subsection 4.2). Thus, dLGI can be seen as a dynamic measure of performance of
a given value process and in fact a dynamic acceptability index. Similar remark applies to dLGIs
defined as [ϕt(V )]+.Nevertheless, it should be mentioned that this class of maps is not normalized
in the sense of [45].13

Next we will show that dLGIs that are also quasi-concave dPMs could be easily generated
through dRMs or dCEs, as shown in the next two propositions.

Proposition 4.3.6. For any dRM {ρt}t∈T defined on L̂0, the family {−ρt}t∈T is local (dL), mono-
tone (dMI) (hence generates a dLGI) and satisfies condition (4.34). Moreover, let {ρ̃t}t∈T be given
by ρ̃t(X) = ρt(X

+). Then {−ρ̃t}t∈T is also local, monotone and satisfies condition (4.34).

Proof. Let {ρt}t∈T be dRM defined on L̂0. (MI) and (tL) of {−ρt}t∈T follow directly from the
definition of dRM. Let us fix t ∈ T. First we will prove that condition (4.34) is satisfied by
{−ρt}t∈T. For V ∈ X , we have

lim inf
T→∞

−ρt(ln VT
Vt

)

T
= lim inf

T→∞

−ρt(lnVT )− lnVt
T

= lim inf
T→∞

−ρt(lnVT )

T
.

The above equality is straightforward on set {Vt > 0}, since lnVt
T → 0, T →∞. On the set {Vt = 0},

we have that 1{Vt=0}VT = 0, and by (tL) and (N) of −ρt, we get that both sides are equal to (−∞).
Next we will show that (4.34) also holds true for ρ̃, given by ρ̃t(X) = ρt(X

+). Let V ∈ X . On
the Ft-measurable set {Vt = 0} both sides of (4.34) are equal to 0. Due to this, and (tL) of ρt, we
can assume that P[Vt > 0] = 1. Then, it is easy to note that

lim inf
T→∞

−ρt([ln VT
Vt

]+)

T
= lim inf

T→∞

−ρt(1{VT>Vt} ln VT
Vt

)

T

= lim inf
T→∞

−ρt(1{VT>Vt} lnVT − 1{VT>Vt} lnVt)

T
.

Also, one can easily deduce the following inequalities

1{VT>1} lnVT − 2| lnVt| ≤ 1{VT>Vt} lnVT − 1{VT>Vt} lnVt ≤ 1{VT>1} lnVT + | lnVt|.

From the above, and monotonicity of dRM, we get

lim inf
T→∞

−ρt([lnVT ]+ − 2| lnVt|)
T

≤ lim inf
T→∞

−ρt([ln VT
Vt

]+)

T
≤ lim inf

T→∞

−ρt([lnVT ]+ + 2| lnVt|)
T

.

Since −ρt is (tCA), continue

lim inf
T→∞

−ρt([lnVT ]+ ± 2| lnVt|)
T

= lim inf
T→∞

−ρt([lnVT ]+)± 2| lnVt|
T

= lim inf
T→∞

−ρt([lnVT ]+)

T
,

which concludes the proof.
13i.e. ϕt(V ) =∞, if V ≥ 0 and ϕt(V ) = 0, if V < 0.
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Proposition 4.3.7. Let {µt}t∈T be dCE defined on L̂0. Then, {µt}t∈T is local (dL) and monotone
(dMI) (and hence generates a dLGI). Moreover, if additionally u from (2.9) is bi-Lipschitz on R
(i.e. u and u−1 are Lipschitz), then {µt}t∈T satisfies (4.34).

Proof. Let {µt}t∈T be a dCE, with u being a continuous an increasing function. Clearly {µt}t∈T is
(dA).

(dMI) is straightforward. Let us fix t ∈ T. Let X,Y ∈ L̂0, X ≥ Y . Because u is increasing
transform we get u(X) ≥ u(Y ), and E[u(X)|Ft] ≥ E[u(Y )|Ft]. Now, u−1 is also an increasing
function, so u−1(E[u(X)|Ft]) ≥ u−1(E[u(Y )|Ft]).

Next we prove (dL). Note that any deterministic function, in particular u and u−1, is local.
Thus, for any t ∈ T and A ∈ Ft, we have

1Aµt(X) = 1Au
−1(E[u(X)|Ft]) = 1Au

−1(1AE[u(X)|Ft])
= 1Au

−1(E[1Au(X)|Ft]) = 1Au
−1(E[u(1AX)|Ft])

= 1Aµt(1AX),

which proves that µt satisfies (tL).
Finally we will prove the second part of the Proposition 4.3.7. Let u be a bi-Lipschitz function

with Lu ∈ R and Lu−1 ∈ R being the corresponding Lipschitz constants. Consider t ∈ T and
V ∈ X . On Ft-measurable set {Vt = 0}, 1{Vt=0}VT = 0, and hence both sides of (4.34) are equal
to −∞.

From now on we make a (reasonable) assumption that P[Vt > 0] > 0, which due to (tL) of µt,
allows us to assume that P[Vt > 0] = 1.

First we prove that for a fixed T ∈ T, we get

{u−1(E[u(lnVT )|Ft]) = −∞} = {u−1(E[u(ln
VT
Vt

)|Ft]) = −∞}. (4.35)

As u is strictly increasing we know that (4.35) is equivalent to

{E[u(lnVT )|Ft] = u(−∞)} = {E[u(ln
VT
Vt

)|Ft] = u(−∞)}. (4.36)

Next we consider two cases: a) u(−∞) > −∞ and b) u(−∞) = −∞.

Case a) It is clear that the set {E[1{VT=0}|Ft] = 1} is the subset of both sets in (4.36). Thus, it is
sufficient to show that

P
[
{E[u(lnVT )|Ft] = u(−∞)} ∩ {E[1{VT>0}|Ft] > 0}

]
= 0 (4.37)

and

P
[
{E[u(ln

VT
Vt

)|Ft] = u(−∞)} ∩ {E[1{VT>0}|Ft] > 0}
]

= 0. (4.38)

Let us prove (4.37). Let

B := {E[u(lnVT )|Ft] = u(−∞)} ∩ {E[1{VT>0}|Ft] > 0}.

Note that B ∈ Ft. On the contrary let us assume that P[B] > 0. Then

P[{VT > 0} ∩B] = E[1BE[1{VT>0}|Ft]] > 0.
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Because {VT > 0} ∩ B =
⋃
n∈N {VT >

1
n} ∩ B, we know that there exists n0 ∈ N, such that

P[{VT > 1
n0
} ∩B] > 0. Using that we obtain

E[1BE[u(lnVT )|Ft]] = E[1BE[1{VT> 1
n0
}u(lnVT ) + 1{VT≤ 1

n0
}u(lnVT )|Ft]]

≥ E[1BE[1{VT> 1
n0
}u(ln

1

n0
) + 1{VT≤ 1

n0
}u(−∞)|Ft]]

= E[1B∩{VT> 1
n0
}u(ln

1

n0
) + 1B∩{VT≤ 1

n0
}u(−∞)]

> E[1Bu(−∞)]. (4.39)

Inequality (4.39) jointly with the definition of B leads to contradiction with the assumption that
P (B) > 0, which verifies that (4.37) is true. The proof of (4.38) is analogous, since P (Vt > 0) = 1.

Case b) It is enough to show that

{E[u(lnVT )|Ft] = −∞} = {E[u(ln
VT
Vt

)|Ft] = −∞}. (4.40)

Now, because u is Lipschitz and Vt > 0, then, on the set {VT > 0} we get

u(lnVT )− Lu| lnVt| ≤ u(ln
VT
Vt

) ≤ u(lnVT ) + Lu| lnVt|. (4.41)

In addition, the above inequalities obviously hold true on the set {VT = 0}, as on this set we have
u(lnVT ) = u(ln VT

Vt
) = u(−∞) = −∞. Consequently,

E[u(lnVT )|Ft]− Lu| lnVt| ≤ E[u(ln
VT
Vt

)|Ft] ≤ E[u(lnVT )|Ft] + Lu| lnVt|. (4.42)

Analogously, we obtain

E[u(ln
VT
Vt

)|Ft]− Lu| lnVt| ≤ E[u(lnVT )|Ft] ≤ E[u(ln
VT
Vt

)|Ft] + Lu| lnVt|. (4.43)

Combining (4.42) and (4.43), we obtain equality (4.40). So, (4.35) has been demonstrated.
Next, noting that VT < ∞, and applying similar reasoning as in the proof of (4.35), one can

show that

{u−1(E[u(lnVT )|Ft]) = +∞} = {u−1(E[u(ln
VT
Vt

)|Ft]) = +∞}. (4.44)

Now, let

K−T := {u−1(E[u(lnVT )|Ft]) = −∞}, K+
T := {u−1(E[u(lnVT )|Ft]) =∞}, T ∈ T.

Combining (4.35) and (4.44) we obtain µt(lnVT ) = µt(ln
VT
Vt

), on Ft-measurable set K−T ∪K
+
T . On

the set (K−T ∪ K
+
T )c we get |µt(lnVT )| < ∞ and |µt(ln VT

Vt
)| < ∞. Moreover, since u is strictly

increasing we also get |E[u(lnVT )|Ft]| <∞ and |E[u(ln VT
Vt

)|Ft]| <∞. Thus, using the fact that u

is bi-Lipschitz, then, on set (K−T ∪K
+
T )c, we get

|u−1(E[u(ln
VT
Vt

)|Ft])− u−1(E[u(lnVT )|Ft])| ≤ Lu−1 |E[u(ln
VT
Vt

)|Ft]− E[u(lnVT )|Ft]|

≤ Lu−1Lu| lnVt|. (4.45)
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We are now finally ready to prove the main statement. Let

K− := {ω ∈ Ω :
∑
T∈T

1K−T
(ω) <∞}, K+ := {ω ∈ Ω :

∑
T∈T

1(K+
T )c(ω) =∞}.

Using (4.45), on the set K− ∩K+ we obtain

lim inf
T→∞

|µt(ln VT
Vt

)− µt(lnVT )|
T

≤ lim inf
T→∞

LuLu−1 | lnVt|
T

= 0.

which proves the equality (4.34) on this set. Using (4.35) we get the equality (4.34) on (K−)c;
similarly, using (4.44) we get (4.34) on (K+)c. This completes the proof.

Corollary 4.3.8. By Proposition 4.3.6 and Proposition 4.3.2, any dLGI generated by µt = −ρt,
t ∈ T, with {ρt}t∈T being dRM, is quasi-concave dPM (for processes).

4.3.1 Dynamic Risk Sensitive Criterion

Dynamic analog of Risk Sensitive Criterion [21], that we study in this section, is one of the most
notable examples of dLGI. For simplicity we will assume that X = V0

τ .

Definition 4.3.9. A Dynamic Risk Sensitive Criterion is a family {ϕγt }t∈T of maps ϕγt : X → L̄0
t ,

indexed by γ ∈ R, and defined by

ϕγt (V ) =

{
lim infT→∞

1
T

1
γ lnE[V γ

T |Ft] if γ 6= 0,

lim infT→∞
1
TE[lnVT |Ft] if γ = 0.

(4.46)

Remark 4.3.10. It is well known (cf. [61], and references therein) that for some processes V that
are Markovian, the value of ϕγt (V ) is constant (independent of t in particular). In such cases of
course, the analysis carried below trivialises. For example, let V ∈ X be such that V0 > 0 and
Vt = V0 exp(

∑t
i=1Xi), where {Xt}t∈T is adapted, Xt is independent of Ft−1 and Xt ∼ N (0, 1). In

this case, ϕγt (V ) ≡ 0. See also Subsection 5.1. Nevertheless, the class of processes V , for which
ϕγt (V ) is a non-constant process, is quite rich; see e.g. (4.66) and (4.65).

We say that the Dynamic Risk Sensitive Criterion is risk-averse if γ < 0, risk neutral if γ = 0, and
risk-seeking if γ > 0. Please note that with t = 0 we get the standard definition of (static) Risk
Sensitive Criterion [21]; in particular, when γ = 0, the Risk Sensitive Criterion is called the Kelly
criterion. We are now ready to present the main result of this Subsection. Arguably, properties 5)
and 6) stated in Theorem 4.3.11 are the most interesting ones.

Theorem 4.3.11. Let γ ∈ R and let {ϕγt }t∈T be a Dynamic Risk Sensitive Criterion. Then

1) {ϕγt }t∈T is dLGI generated by {−ργt }t∈T14;

2) {ϕγt }t∈T is dPM, which admits (QCC);

3)
[
ϕγt (V )

]+
is a risk-seeking dLGI if and only if γ > 0;

4) {ϕγt }t∈T is increasing with γ, in V1
ln;

14{ργt }t∈T denotes dynamic entropic risk measure with parameter γ ∈ R, see Subsection 4.1.1 for details.
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5) {ϕγt }t∈T is supermartingale time consistent in V1
ln if and only if γ > 0;

6) {ϕγt }t∈T is submartingale time consistent in V1
ln if and only if γ < 0.

Proof. For a fixed γ ∈ R, let {ϕγt }t∈T be a Dynamic Risk Sensitive Criterion.

1) It is enough to show that

ϕγt (V ) = lim inf
T→∞

−ργt (ln VT
Vt

)

T
, t ∈ T, V ∈ X . (4.47)

Note that on Ft-measurable set {Vt = 0}, 1{Vt=0}VT = 0, and hence both sides of (4.47) are equal
to −∞. Thus, due to (tL) of µt, it is enough to consider the case P[Vt > 0] = 1.

For fixed V ∈ X and t ∈ T we have

lim inf
T→∞

−ργt (ln VT
Vt

)

T
= lim inf

T→∞

lnE[exp(γ ln VT
Vt

)|Ft]
γT

= lim inf
T→∞

[ 1

T

1

γ
lnE[V γ

T |Ft]−
1

T
lnVt

]
= ϕγt (V ).

For γ = 0, we immediately get

lim inf
T→∞

−ρ0
t (ln

VT
Vt

)

T
= lim inf

T→∞

[E[lnVT |Ft]
T

− lnVt
T

]
= lim inf

T→∞

1

T
E[lnVT |Ft] = ϕ0

t (V ).

2) It is an immediate result of Corollary 4.3.8 and 1), since {ργt }t∈T is dRM.

3) (⇐) It is enough to show that for γ > 0 we have (see Proposition 4.3.6)

[
ϕγt (V )

]+
= lim inf

T→∞

−ργt ([ln VT
Vt

]+)

T
. (4.48)

As in the previous case, without loss of generality, we can assume that P[Vt > 0] = 1. For every
t ∈ T and V ∈ X , we deduce

lim inf
T→∞

−ργt ([ln VT
Vt

]+)

T
= lim inf

T→∞

lnE[exp(γ[ln VT
Vt

]+)|Ft]
γT

= lim inf
T→∞

1

T

1

γ
lnE

[
max (

VT
Vt
, 1)

γ

|Ft
]

= lim inf
T→∞

1

T

1

γ
lnE

[max (VT , Vt)
γ

V γ
t

|Ft
]

= lim inf
T→∞

[ 1

T

1

γ
lnE[max (VT , Vt)

γ |Ft]−
1

T
lnVt

]
= lim inf

T→∞

1

T

1

γ
lnE[max (VT , Vt)

γ |Ft]. (4.49)

Using the above, and the fact that VT ≤ max (VT , Vt), and −ργt ([ln VT
Vt

]+) ≥ 0, for all V ∈ X , we
have the following inequality[

lim inf
T→∞

1

T

1

γ
lnE[V γ

T |Ft]
]+
≤ lim inf

T→∞

−ργt ([ln VT
Vt

]+)

T
. (4.50)

Next, we will prove the converse inequality. Without loss of generality, using locality, and the fact
that the function [·]+ is non-negative, we could assume that

lim inf
T→∞

−ργt ([ln VT
Vt

]+)

T
> 0. (4.51)
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Let XT := E[1{VT>Vt}V
γ
T |Ft]. Using (4.50), (4.49), and because E[1{VT≤Vt}V

γ
t |Ft] ≤ V

γ
t , we get

lim inf
T→∞

1

T

1

γ
lnXT ≤

[
lim inf
T→∞

1

T

1

γ
lnE[V γ

T |Ft]
]+
≤ lim inf

T→∞

−ργt ([ln VT
Vt

]+)

T

= lim inf
T→∞

1

T

1

γ
lnE[max (VT , Vt)

γ |Ft] ≤ lim inf
T→∞

1

T

1

γ
ln(XT + V γ

t ). (4.52)

Due to (4.51), and the fact that γ > 0, we have (XT +V γ
t )

T→∞−→ ∞, and consequently XT
T→∞−→ ∞.

Thus,
| ln(XT + V γ

t )− ln(XT )| → 0, T →∞.

Using (4.52) we conclude the proof.

3) (⇒) For γ = −1 it is enough to consider a simple example

V̂T (ω) =

{
e−T ω ∈ [0, e−T ],
eT ω ∈ [e−T , 1].

This example could be easily modified for any γ < 0. For γ = 0 it is enough to consider

V̂ ′T (ω) =

{
e−T

2
ω ∈ [0, 1

T ],
eT ω ∈ [ 1

T , 1].

4) This is a direct result of the analogous property for negative of the dynamic entropic risk measure.
See Proposition 4.1.3.

5) (⇐) Let s ≥ t ≥ 0 ∈ T, V ∈ V1
ln, and ms ∈ L̄0

s. It is enough to prove that

eϕ
γ
s (V ) ≥ ems ⇒ eϕ

γ
t (V ) ≥ eE[ms|Ft]. (4.53)

It is easy to note, that

eϕ
γ
s (V ) = e

lim infT→∞
1
T

1
γ

lnE[V γT |Fs] = elim infT→∞ ln
[
E[V γT |Fs]

1
γT
]

= lim inf
T→∞

eln
[
E[V γT |Fs]

1
γT
]

= lim inf
T→∞

E[V γ
T |Fs]

1
γT .

Using this, we conclude that (4.53) is equivalent to the following

lim inf
T→∞

E[V γ
T |Fs]

1
γT ≥ ems ⇒ lim inf

T→∞
E[V γ

T |Ft]
1
γT ≥ eE[ms|Ft]. (4.54)

Assume that lim infT→∞E[V γ
T |Fs]

1
γT ≥ ems . Due to the tower property we have

lim inf
T→∞

E[V γ
T |Ft]

1
γT = lim inf

T→∞
E
[
E[V γ

T |Fs]|Ft
] 1
γT .

Since, 0 < 1
γT < 1, for T large enough, we get that the function f(x) = x

1
γT , x > 0, is concave.

Consequently, by Jensen’s inequality, we continue

lim inf
T→∞

E
[
E[V γ

T |Fs]|Ft
] 1
γT ≥ lim inf

T→∞
E
[
E[V γ

T |Fs]
1
γT |Ft

]
.
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Since, E[V γ
T |Fs]

1
γT is non-negative for every T ∈ T, by Fatou lemma, we conclude

lim inf
T→∞

E
[
E[V γ

T |Fs]
1
γT |Ft

]
≥ E

[
lim inf
T→∞

E[V γ
T |Fs]

1
γT |Ft

]
.

Finally, using the fact that lim infT→∞E[V γ
T |Fs]

1
γT ≥ ems , and by Jensen’s inequality for f(x) = ex,

we get

E
[

lim inf
T→∞

E[V γ
T |Fs]

1
γT |Ft

]
≥ E[ems |Ft] ≥ eE[ms|Ft],

which completes the proof.

5) (⇒) Let γ = 1, and let {V̂T }T∈N be defined by

V̂T (ω) =

{
1
T ω ∈ [0, 1

T ],
eT ω ∈ [ 1

T , 1].
(4.55)

For ω 6= 0, we have

ϕ−1
1 (V̂T )(ω) = lim inf

T→∞

−1

T
ln

1

V̂T (ω)
= lim inf

T→∞
[(− lnT

T
) · 1[0, 1

T
](ω) + 1 · 1[ 1

T
,1](ω)] = 1.

On the other hand

ϕ−1
0 (V̂T ) = lim inf

T→∞

−1

T
lnE(

1

V̂T
) = lim inf

T→∞

−1

T
ln(1 +

T − 1

T
e−T ) ≤ lim inf

T→∞

− ln 1

T
= 0.

Thus, with m1 = 1, we get

ϕ−1
1 (V̂ ) ≥ m1 6⇒ ϕ−1

0 (V̂ ) ≥ E[m1|F0],

which contradicts acceptance consistency. This counterexample can be easily adjusted for any
γ < 0.

Similarly, for γ = 0, we consider

V̂ ′T (ω) :=

{
e−T

2
ω ∈ [0, 1

T ],
eT ω ∈ [ 1

T , 1].

6) (⇐) Let t ∈ T, V ∈ V1
ln and γ < 0. We want to prove that for s ∈ T, s > t, and ms ∈ L̄0

s, we
have

ϕγs (V ) ≤ ms ⇒ ϕγt (V ) ≤ E[ms|Ft]. (4.56)

Doing similar operations as in 5), we deduce that (4.56) is equivalent to

lim inf
T→∞

E[V γ
T |Fs]

1
γT ≤ ems ⇒ lim inf

T→∞
E[V γ

T |Ft]
1
γT ≤ eE[ms|Ft]. (4.57)

Since for γ < 0 and nonnegative x the function f(x) = xγ is decreasing, we have that (4.57) is
equivalent to [

lim inf
T→∞

E[V γ
T |Fs]

1
γT

]γ
≥ eγms ⇒

[
lim inf
T→∞

E[V γ
T |Ft]

1
γT

]γ
≥ eγE[ms|Ft]
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which is consequently equivalent to

lim sup
T→∞

[
E[V γ

T |Fs]
1
γT

]γ
≥ eγms ⇒ lim sup

T→∞

[
E[V γ

T |Ft]
1
γT

]γ
≥ eγE[ms|Ft],

From here, we conclude that (4.53) is equivalent to

lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ eγms ⇒ lim sup

T→∞
E[V γ

T |Ft]
1
T ≥ eγE[ms|Ft], (4.58)

and thus we will verify this implication.
To give a better intuition of the proof of (4.58), first we will consider t = 0, i.e we will show

that that for any ms ∈ L̄0
s, we have that

lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ eγms ⇒ lim sup

T→∞
E[V γ

T ]
1
T ≥ eγE[ms]. (4.59)

Assume that s > 0, ms ∈ L̄0
s, and such that

lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ eγms .

Note that, there exists a set C ∈ Fs, such that P[C] > 0 and 1Ce
γms ≥ 1CE[eγms ]. Hence,

1C lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ 1CE[eγms ].

By Jensen’s inequality, we continue

1C lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ 1Ce

γE[ms]. (4.60)

Let ε > 0, and put Bε
T := {ω ∈ Ω : E[V γ

T |Fs]
1
T (ω) ≥ eγE[ms]−ε

}
. Notice that

C ⊂ lim sup
T→∞

Bε
T ,

which consequently implies that

P
[

lim sup
T→∞

Bε
T

]
> 0. (4.61)

From here, by Borel-Cantelli Lemma, we get that
∑∞

T=1 P[Bε
T ] = ∞. Since the last series is

divergent, there exists a subsequence {T εk}(k=1,2,...) such that

P[Bε
T εk

] ≥ 1

(T εk)2
.

Using this, we have the following chain of inequalities

lim sup
T→∞

E[V γ
T ]

1
T = lim sup

T→∞
E[E[V γ

T |Fs]]
1
T ≥ lim sup

T→∞
E[1BεTE[V γ

T |Fs]]
1
T

≥ lim sup
T→∞

E[1BεT e
(γE[ms]−ε)T ]

1
T ≥ eγE[ms]−ε lim sup

T→∞
P[Bε

T ]
1
T

≥ eγE[ms]−ε lim sup
T εk→∞

P[Bε
T εk

]
1
Tε
k ≥ eγE[ms]−ε lim sup

T εk→∞

[ 1

(T εk)2

] 1
Tε
k

= eγE[ms]−ε.
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Hence, taking into account that ε > 0 was arbitrary chosen, implication (4.59) follows immediately.

The proof for t > 0 follows similar line of ideas as for t = 0, although it is a bit more technical.
For sake of completeness we will present the proof here too. The proof is done by contradiction:
assume that (4.56) is not true for some s ∈ T, s > t . Then, since (4.56) is equivalent to (4.58),
there exists V ∈ Ṽ, ms ∈ L̄0

s and A ∈ Ft, P[A] > 0 such that for

lim sup
T→∞

E[V γ
T |Fs]

1
T ≥ eγms and lim sup

T→∞
E[V γ

T |Ft]
1
T < eγE[ms|Ft]. (4.62)

almost surely on A. Note that there exists ε > 0 and A2 ∈ Ft, A2 ⊂ A, P[A2] > 0, such that

1A2 lim sup
T→∞

E[V γ
T |Ft]

1
T ≤ 1A2e

γE[ms|Ft]−2ε. (4.63)

Let us consider the following sets

Bε
T := {ω ∈ A2 : E[V γ

T |Fs]
1
T (ω) ≥ eγE[ms|Ft](ω)−ε},

Dα := {ω ∈ A2 :
∞∑
T=1

E[1BεT |Ft] < α}, α ∈ N ∪ {+∞}.

Note that Dn ∈ Ft for any n ∈ N, Dn ⊂ Dm for n ≤ m, and D∞ = ∪n∈NDn ∈ Ft. Next we consider
two cases: a) P[D∞] > 0 and b) P[D∞] = 0.

Case a) Since P[D∞] = P[limn→∞Dn] = limn→∞ P[Dn] > 0, there exists n0 > 0 such that
P[Dn0 ] > 0. Consequently,

∞∑
T=1

P[Bε
T ∩Dn0 ] < n0.

From here, by Borel-Cantelli Lemma, we get

P
[

lim sup
T→∞

[Bε
T ∩Dn0 ]

]
= 0,

which implies that

1Dn0 lim sup
T→∞

E[V γ
T |Fs]

1
T ≤ 1Dn0e

γE[ms|Ft]−ε.

that contradicts (4.62) on some set of positive measure.

Case b) Let P[D∞] = 0. First note that,

lim sup
T→∞

E[V γ
T |Ft]

1
T = lim sup

T→∞
E[E[V γ

T |Fs]|Ft]
1
T ≥ lim sup

T→∞
E[1BεTE[V γ

T |Fs]|Ft]
1
T

≥ lim sup
T→∞

E[1BεT e
(γE[ms|Ft]−ε)T |Ft]

1
T ≥ eγE[ms|Ft]−ε lim sup

T→∞
E[1BεT |Ft]

1
T . (4.64)

Since D∞ ⊂ A2, and P[D∞] = 0, we have that for (almost) every ω ∈ A2 there exists a subsequence
{T ε,ωk }k∈N such that

E
[
1Bε

T
ε,ω
k

|Ft
]
(ω) ≥ 1

(T ε,ωk )2
.
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Using this, and (4.64), we conclude that for (almost) every ω ∈ A2

lim sup
T→∞

E[1BεT |Ft]
1
T (ω) ≥ lim sup

T ε,ωk →∞
E[1Bε

T
ε,ω
k

|Ft]
1

T
ε,ω
k (ω) ≥ lim sup

T ε,ωk →∞

[ 1

(T ε,ωk )2

] 1

T
ε,ω
k = 1.

Thus, almost everywhere on A2

lim sup
T→∞

E[V γ
T |Ft]

1
T ≥ eγE[ms|Ft]−ε.

Combining the last inequality with (4.63), we get

1A2e
γE[ms|Ft]−2ε ≥ 1A2 lim sup

T→∞
E[V γ

T |Ft]
1
T ≥ 1A2e

γE[ms|Ft]−ε,

which leads to contradiction, as P[A2] > 0.

6) (⇒) As in the previous case we will consider only γ = 1 and γ = 0. For γ = 1, we take {V̂T }T∈N
defined by

V̂T (ω) =

{
TeT ω ∈ [0, 1

T ],
1 ω ∈ [ 1

T , 1].
(4.65)

Then, we have

ϕ1
1(V̂T )(ω) = lim inf

T→∞

1

T
ln V̂T (ω) = lim inf

T→∞
[(1 +

lnT

T
) · 1[0, 1

T
](ω) + 0 · 1[ 1

T
,1](ω)] = 0, ω 6= 0.

On the other hand

ϕ1
0(V̂T ) = lim inf

T→∞

1

T
lnE(V̂T ) = lim inf

T→∞

1

T
ln(eT +

T − 1

T
) ≥ lim inf

T→∞

T

T
= 1.

Thus, with m1 = 0, we get

ϕ1
1(V̂ ) ≤ m1 6⇒ ϕ1

0(V̂ ) ≤ E[m1|F0],

which contradicts rejection consistency.

Similarly, for γ = 0, we consider

V̂ ′T (ω) =

{
eT

2
ω ∈ [0, 1

T ],
1 ω ∈ [ 1

T , 1].

We conclude this section by presenting an example that is related to properties 4), 5) and 6).

Example 4.3.12. Let ([0, 1],B([0, 1]), {Ft}t∈N0 ,P) be a filtered probability space, where P is the
standard Lebesgue measure, B(A) denotes the σ-algebra of Borel measurable sets of A, F0 is trivial

and Ft = σ(K1
t , . . . ,K

2t
t ), where Ki

t := [2(i−1)
2t+1 ,

2i
2t+1 ]. Let X(ω) = ω for ω ∈ [0, 1], and let {V̂T }T∈N0

be defined by

V̂T (ω) = eTE[X|FT ](ω). (4.66)
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We will derive explicit formula for the dynamic risk sensitive criterion ϕγt . We start with the case
of γ = −1. For fixed t ∈ N0, we get

ϕ−1
t (V̂ ) = lim inf

T→∞

−1

T
lnE[e−TE[X|FT ]|Ft] = lim inf

T→∞
(−1) lnE[(e−E[X|FT ])T |Ft]1/T .

Next for ω ∈ Ki
t and T ∈ T, noting that E[(e−E[X|FT ])T |Ft]1/T (ω) is in fact a power mean, we

obtain

lim sup
T→∞

E[(e−E[X|FT ])T |Ft]1/T (ω) ≤ lim sup
T→∞

[ess sup
ω∈Ki

t

(e−E[X|FT ](ω))] ≤ ess sup
ω∈Ki

t

e−X(ω) = e−
2(i−1)

2t+1 .

(4.67)
On the other hand using Jensen inequality, for any T0 ∈ T, such that T0 > t, we get

lim sup
T→∞

E[(e−E[X|FT ])T |Ft]1/T (ω) = lim sup
T→∞

E[E[e−TE[X|FT ]|FT0 ]|Ft]1/T (ω)

≥ lim sup
T→∞

E[e−TE[E[X|FT ]|FT0 ]|Ft]1/T (ω)

= lim sup
T→∞

E[(e−E[X|FT0 ])T |Ft]1/T (ω)

= ess sup
ω∈Ki

t

e−E[X|FT0 ] = e
−(

2(i−1)

2t+1 + 1

2T0+1 )
. (4.68)

Letting T0 →∞, and combining (4.67) with (4.68), we conclude that for ω ∈ Ki
t ,

ϕ−1
t (V̂ )(ω) = (−1) ln e−

2(i−1)

2t+1 =
2(i− 1)

2t+1
.

Using similar computations, it is easy to show that, for γ ∈ R and ω ∈ Ki
t , we have

ϕγt (V̂ )(ω) =


2(i−1)
2t+1 γ < 0,

2(i−1)+2i
2t+2 γ = 0,

2i
2t+1 γ > 0.

Now, it clear from the above formula that ϕγt (V̂ ) is increasing in γ, so that property 4) is fulfilled.
In addition, one can easily check that process ϕγt (V̂ ) is a submartingale (resp. supermartingale),
with respect to the filtration {Ft}t∈N0 , when γ < 0 (resp. γ > 0).

It is interesting to note that the values of ϕγt (V̂ ) are separated into three regimes: risk-seeking
(γ > 0), risk-neutral (γ = 0) and risk-averse (γ < 0).

4.3.2 Dynamic Limit log-V@R

Let X = V0
τ .

Definition 4.3.13. A Dynamic limit logarithmic Value at Risk (Dynamic limit log-V@R) is a
family {ϕαt }t∈T of mappings ϕαt : X → L̄0

t , indexed by α ∈ (0, 1), and defined by

ϕαt (V ) = lim inf
T→∞

qαt (lnVT )

T
(4.69)

where qαt (X) denotes Ft-conditional (upper) α quantile of X.15

15i.e. qαt (X) = ess sup{Y ∈ L̄0
t | E[1{X≤Y }|Ft] ≤ α}.
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Proposition 4.3.14. Let X = V1 and let {ϕαt }t∈T denote a dynamic limit log-V@R. Then

1) {ϕαt }t∈T is a dynamic acceptability index.

2) {ϕαt }t∈T is increasing with α.

The proof of 1) is a direct result of Proposition 4.3.6. The proof of 2) is straightforward

Remark 4.3.15. We have introduced this mapping to show one interesting observation. The mapping
ρ(X) = −qαt (X) corresponds to the conditional version of a standard Value at Risk (V@R). It is well
known that V@R in general is not quasi-convex (QCV), see e.g. [77, Example 4.41]. Nevertheless,
the corresponding dynamic limit growth index defined in (4.69) is quasi-concave (QCC) due to
Proposition 4.3.6.
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Chapter 5

Selected stochastic control problems

This chapter is devoted to the study of selected (financial) dynamic stochastic control problems
in discrete-time. We will show, how one can use dynamic risk and performance measures both as
value functions and as constraints in various optimisation problems. We have focused only on three
representative problems, which could provide a general overview in this area. In particular we hope
they will justify the need for further studies of time consistency property. For a general good survey
about dynamic stochastic control and problems which arise in this area, please see [119]. Please
also see e.g. [3, 109, 120, 136] and references therein for more problems, which involve stochastic
control and (dynamic) risk and performance measures.

This chapter is organized as follows. The first example will be connected to dynamic limit
growth indices, and will show how to solve infinite time horizon control problem for risk sensitive
criterion, under certain ergodic assumptions on the underlying dynamics.

The second example will show how to solve a finite-time, multistep dynamic portfolio selection
problem, when risk constraint is described by a strongly time consistent (coherent) dynamic risk
measure.

Finally, the last example will show how to solve an optimal stopping problem for american
options and explain why the least-square numerical approach to this problem is valid, even if the
underlyings follow a non-Markovian dynamics and the problem is multidimensional.

5.1 Risk sensitive criterion for Markov decision processess

Many stochastic control methods are used in theoretical studies of portfolio management (cf. [120]
and references therein). Among them, Risk Sensitive Criterion (RSC), introduced in Section 4.3.1
is one of the most recognised one. It has many advantages over the standard theoretical methods,
which are usually based on expected utility criterion. Let us alone mention difficulties associated
with the estimation of model parameters or traceable difficulties which arise when we try to compute
optimal trading strategies for the realistic security market models. Moreover, following [22] we
would like to stress out the fact, that risk sensitive criterion could be seen as a risk-to-reward
criterion. Applying Taylor expansion around γ = 0, we get that the static version of RSC with
parameter γ, denoted by ϕγ , could be presented as

ϕγ(V ) = lim inf
T→∞

1

T

1

γ
lnE[V γ

T ] = lim inf
T→∞

1

T

[
E[lnVT ] +

γ

2
V ar(lnVT ) +O(γ2, t)

]
. (5.1)
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This shows, that RSC could be seen as a measure of performance, which penalise expected growth
rate with asymptotic variance multiplied by risk-averse parameter γ (for γ < 0). Of course this only
appiles for problems, for which the last term (i.e. O(γ2, T )/T ) vanishes, when T goes to infinity.
Nevertheless, this assumption is satisfied for a lot of standard dynamics, as explained in [22, Section
5], so (5.1) brings out the motivation, which led to this class of maps. Also, RSC is a Limit growth
index, with gives its financial interpretation (see Section 4.3 for details). We refer to [22] for a
further discussion about economic properties of RSC.

The study of RSC is connected to the optimal control literature, mostly to Markov controlled
decision processes (see [91, 90, 58]) for infinite time horizon. The connection to portfolio optimi-
sation was showed in [21], when RSC was applied to continuous time infinite time horizon, when a
version of Merton’s intertemporal capital asset pricing model was considered [111]. The analogous
result for discrete-time market model was shown in [136].

There are many sophisticated methods used in the control theory, which guarantee the existence
of the solution to Bellman equation associated with RSC. Let us alone mention the vanishing
discount approach [89] or fixed point approach [58]. The assumptions under which the existence of
the solutions is guaranteed are related to ergodic properties of the considered process [58, 101, 90,
89]. The most recent results relate to Doeblin’s conditions [31] or Markov splitting techniques [59].
The theory of RSC is also strictly connected to Multiplicative Poisson equations [59] and Issacs
equations for ergodic cost stochastic dynamic games (cf. [89, 72, 51] and references therein).

In this example we will focus on the infinite discrete time horizon, and follow the standard fixed
point approach (also called span-contraction approach) used in [136]. We will also adapt some of
the ideas used in [60, 58, 59, 61, 51, 90]. In particular we will consider problems of the form (2.20),
with various (ergodic) assumptions imposed on set Z, which describe all admissible portfolios, and
RSC will be used as optimality criterion.

This Section is organized in follows. Subsection 5.1.1 will be devoted to the general setup in
which we will introduce the problem and make all assumptions (e.g. on dynamics, control, etc.).
Next, in Subsection 5.1.2 we will introduce the Bellman equation which naturally arise when we
study problem introduces in the previous section. We will also solve the stochastic control problem
stated before in general framework. Finally, in Subsection 5.1.3 we will show exemplary dynamics,
commonly used in practise, that could be fit to our model.

As mentioned before, most of the methods and ideas of proofs in this section is taken from [136],
and fitted to dynamic risk measurement framework.

5.1.1 General setup

In this subsection let X = V0 and let T = N. For a fixed −1 < γ < 0, let ϕγ denote the
unconditional version of dynamic risk sensitive criterion introduced in (4.3.9), i.e.

ϕγ(V ) := lim inf
T→∞

1

T

1

γ
lnE[V γ

T ]. V ∈ X (5.2)

Let µγ denote the negative of unconditional version of the entropic risk measure for random variables
introduced in (4.1.2), i.e.

µγ(X) =
1

γ
lnE[exp(γX)], X ∈ L0. (5.3)



85

Given the set A and dynamics of V H ∈ X for any H ∈ A, we want to solve the optimal
stochastic control problem

sup
H∈A

ϕγ(V H). (5.4)

We will now present the specification of the set A and the dynamics of VH (for any H ∈ A) which
we will consider in this subsection.

We will assume that the market consist of m risky assets (e.g. stocks, bonds, derivative secu-
rities) and k economical factors (e.g. rates of inflation, short term interest rates, dividend yields).
Prices of m risky assets will be denoted by Si = (Sit)t∈T ∈ X for (i = 1, . . . ,m) and levels of k
economical factors will be denoted by Xj = (Xj

t )t∈T ∈ X for (j = 1, . . . , k). We will use nota-
tion S := (S1, . . . , Sm) and X := (X1, . . . , Xk). We will use A to denote the set of all U -valued
predictable processes1, where U is a compact subset of Rm. Elements of A will correspond to all
admissible portfolio strategies H, where H = (H1, . . . ,Hm) and H i = (H i

t)t∈T ∈ X is a part of
capital invested in i-th risky asset (for i = 1, . . . ,m). We will use notation V H = (V H

t )t∈T ∈ X
to denote the portfolio value process, corresponding to strategy H. We will make the following
assumptions:

(A.1) The filtration {F}t∈T will be generated by a sequence of k +m stochastic processes W i ∈ X
for (i = 1, . . . , k+m) and W := (W 1, . . . ,W k+m) will form a sequence of i.i.d random vectors2

with law η (we will also use this symbol to denote the corresponding measure).

(A.2) The factor process X will be of the form

Xt+1 = G(Xt,Wt) := (G1(Xt,Wt), . . . , G
k(Xt,Wt)),

where Gi : Rk ×Rk+m → Rk is a W -continuous3 Borel measurable function (for i = 1, . . . , k).
Moreover we will assume that {Xt}t∈T is a Markov chain4, which is uniformly ergodic, i.e.

sup
A∈B(Rk)

sup
x,y∈Rk

|P[G(x,W1) ∈ A]− P[G(y,W1) ∈ A]| < 1. (5.5)

(A.3) For any H ∈ A, we will assume that the portfolio dynamics will be of the form

V H
0 = v0, ln

V H
t

V H
t−1

= F (Xt, Ht,Wt), (5.6)

where F : Rk ×U ×Rk+m → R is a Borel measurable function and v0 > 05. Moreover we will
assume that F is W -continuous.6

1i.e. Vt is Ft−1-measurable (V ∈ X )
2i.e. Wt = (W 1

t , . . . ,W
k+m
t ) is independent of Ft−1 and Law(Wt) = Law(Wt−1), for t− 1 ∈ T.

3i.e. G(xn,Wt)
a.s.−→ G(x,Wt) as xn → x (xn, x ∈ Rk).

4Note that Law(Wt) = Law(W1) for any t ∈ T, so {P[G(x,W1) ∈ A]}A∈B(Rk) generates transition probability of
Markov chain {Xt}t∈T.

5Note that the portfolio value process V H must be always non-negative. Also t ≥ 1 in (5.6).
6i.e. F (xn, hn,Wt)

a.s.−→ F (x, h,Wt) as xn → x and hn → h (xn, x ∈ Rk, hn, h ∈ U).
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(A.4) We will assume that there exist sequences of i.i.d. random variables {K+
t }t∈T and {K−t }t∈T

(K±t ∈ L0
t ), such that for any t ∈ T, we have

−∞ < µ−1(K±t ) ≤ µγ(K±t ) ≤ µ1(K±t ) <∞, µγ(K±t lnK±t ) ∈ R (5.7)

and for any x ∈ Rk, h ∈ U , and t ∈ T, we have

K−t ≤ F (x, h,Wt) ≤ K+
t . (5.8)

Remark 5.1.1. The upper and lower constraints introduced in (A.4) have a financial interpretation.
They say that the utility (or risk) measured by µγ must be finite for any simple trade (in any
state) and in fact it is jointly bounded by sequences K−t and K+

t . As we consider the infinite-time
horizon problem, this assumption relates to ergodicity conditions. Please note, that this assumption
is rather weak, and fulfilled by standard models, which describe log-returns as processes of the form

F (x, h,Wt) = a(x, h,Wt) +
k+m∑
i=1

b(x, h)W i
t ,

where Wt is a random vector with multidimensional normal distribution and functions a and b
are uniformly bounded. Then, random variables K−t and K+

t could be constructed using random
variables min(W 1

t , . . . ,W
k+m
t ) and max(W 1

t , . . . ,W
k+m
t ), respectively. This is due to the fact that

for any h ∈ U , we get

min
i∈{1,...,m}

F (x, gi,Wt) ≤ F (x, h,Wt) ≤ max
i∈{1,...,m}

F (x, gi,Wt),

where gi are strategies such that we invest everything in the i-th asset. Intuitively speaking, our
growth could be bounded by maximum and minimum of n-portfolios, for which the investment is
made only in one asset. Of course when we make the investment, we don’t know which of them
will underperform/outperform us, so this bounds are theoretical.

Using the entropic representation of ϕγ and (5.6), for any H ∈ A, we get

ϕγ(V H) = lim inf
t→∞

µγ
(∑t

i=1 ln
V Hi
V Hi−1

)
+ ln v0

t
= lim inf

t→∞

µγ(
∑t

i=1 F (Xi, Hi,Wi))

t
. (5.9)

Under the above assumptions, from (5.9), it is not difficult to see, that the optimal value of the
problem (5.4) will be finite, which is in fact the statement of Proposition 5.1.2.

Proposition 5.1.2. Under assumption (A.3) and (A.4), we get

−∞ < sup
H∈A

ϕγ(V H) <∞.

Proof. Using (A.3) and (A.4), for any H ∈ A and t ∈ T, we get F (Xt, Ht,Wt) ≤ K+
t . As the

entropic risk measure µγ is strongly time consistent and law invariant, we know that µγ is additive
for any two independent random variables [103]. Thus, for any t ∈ T, we get

µγ(

t∑
i=1

K+
i ) =

t∑
i=1

µγ(K+
i ) = tµγ(K+

1 ).
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Consequently, using (5.9) and monotonicity of µγ for any H ∈ A, we get

ϕγ(V H) =
[

lim inf
t→∞

µγ(
∑t−1

i=0 F (Xi, Hi,Wi))

t

]
≤ lim inf

t→∞

µγ(
∑t

i=1K
+
i )

t
= µγ(K+

1 ).

Consequently, by (5.7)

sup
H∈A

ϕγ(V H) ≤ µγ(K+
1 ) <∞.

The proof of the other inequality is analogous.

Next, we will prove that under assumptions (A.1)-(A.4) there exists a Markov solution to
problem (5.4).

5.1.2 Bellman equation

Using representation (5.9), it is not hard to see that the Bellman equation corresponding to (5.4)
is of the form

v(x) + λ = sup
h∈U

µγ(F (x, h,W1) + v(G(x,W1))), (5.10)

where λ ∈ R, v ∈ C(Rk)7, x ∈ Rk. To prove the existence of the solution to Bellman equation
(5.10) we will adapt here the span contraction approach used e.g. in [136].

Remark 5.1.3. Bellman equation (5.10) is strictly connected to the Multiplicative Poisson Equation
(MPE) defined for corresponding γ (cf. [59] and references therein). Sufficient general conditions
for which there exists a solution to MPE in the classic case (i.e. using ergodicity conditions and span
norm or vanishing discount approach) could be found e.g. in [58, 101, 90, 89]. For a more general
conditions (obtained using splitting Markov techniques or Doeblin’s condition) see e.g. [59, 31].
Also using robust representation (4.1.5) of the risk measure, one could notice that equation (5.10)
corresponds to the Isaacs equation for ergodic cost stochastic dynamic game (cf. [89, 72] and
references therein).

We will also make use of the span (semi-)norm of f ∈ C(Rk), which is given by8

‖f‖span := sup
x
f(x)− inf

y
f(y).

Moreover the operator Tγ corresponding to Bellman equation (5.10) is given by

Tγf(x) := sup
h∈U

µγ(F (x, h,W1) + f(G(x,W1))), f ∈ C(Rk). (5.11)

The operator defined in (5.11) plays a crucial role in the proof of the existence of the solution to
Bellman equation (5.10) and it is strictly connected with the problem (5.4). We will now show
some of it’s properties.

Proposition 5.1.4. Under assumptions (A.1)–(A.4), operator Tγ is Feller.9

7C(Rk) denotes the set of bounded and continuous functions f : Rk → Rk.
8Notation of span norm is strictly connected to so called ω-norm and in particular to the Hilbert norm (cf. [133]

and references therein).
9i.e. operator T transforms the set C(Rk) of continuous bounded functions into itself.
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Proof. Let f ∈ C(Rk). Using (A.4) and the fact that µγ is cash-additive we know that for any
x ∈ Rk, we get

µγ(K−1 ) + inf
y
f(y) ≤ Tγf(x) ≤ µγ(K+

1 ) + sup
y
f(y),

which imply boundedness of Tγf(x). Next, let {(xn, hn)}n∈N be a sequence such that xn ∈ Rk,
hn ∈ U and (xn, hn) → (x, h) (where x ∈ Rk, h ∈ U). By assumptions (A.2) and (A.3) we know
that

eγ[F (xn,hn,W1)+f(G(xn,W1))] a.s.−→ eγ[F (x,h,W1)+f(G(x,W1))].

Moreover using (A.4) we know that

0 ≤ eγ[F (xn,hn,W1)+f(G(xn,W1))] ≤ eγ[K−1 +infy f(y)] and eγ[K−1 +infy f(y)] ∈ L1

Thus, using dominated convergence theorem

E[eγ[F (xn,hn,W1)+f(G(xn,W1))]]→ E[eγ[F (x,h,W1)+f(G(x,W1))]],

and consequently

µγ(F (xn, hn,W1) + f(G(xn,W1)))→ µγ(F (x, h,W1) + f(G(x,W1))).

Let hz := arg maxh∈U µ
γ(F (z, h,W1) + f(G(z,W1))), for any z ∈ U (note that U is compact). Due

to continuity of the function (x, h) 7→ µγ(F (x, h,W1) + f(G(x,W1))), we also know that

µγ(F (xn, hxn ,W1) + f(G(xn,W1)))→ µγ(F (x, hx,W1) + f(G(x,W1))),

which imply continuity of Tγ .

Proposition 5.1.5. For any t ∈ T, the value T tγ0(X1) correspond to the optimal value of the
problem (5.4) for a planning horizon of length t, i.e.

T tγ0(X1)

t
= sup

H∈A

µγ(
∑t

i=1 F (Xt, Hi,Wi))

t
. (5.12)

Proof. Before we prove (5.12) let us give some comments about operator Tγ and it’s connection to
problem (5.4). We know that Law(W1) = Law(Wt), for any t ∈ N and µγ is law-invariant, so we
know that for any f ∈ C(Rk) we get

Tγf(x) := sup
h∈U

µγ(F (x, h,Wt) + f(G(x,Wt))). (5.13)

Moreover, as Wt is independent of Ft−1, we could write

Tγf(x) := sup
h∈U

µγt−1(F (x, h,Wt) + f(G(x,Wt))). (5.14)

where {µγt }t∈T corresponds to dUM defined in (4.5). For t ∈ T, let At correspond to the set of all
Ft−1-measurable random variables, which take values in u (they could be interpreted as admissible
strategies for time step t). Using (5.14) we could then write

Tγf(Z) := ess sup
Ht∈At

µγt−1(F (Z,Ht,Wt) + f(G(Z,Wt))). (5.15)
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for any Ft−1-measurable random vector Z, which takes values in Rk.
Thus, for any fixed t ∈ T, using (5.14), (5.15), strong time consistency of dynamic entropic risk

measure and Bellman principle of optimality, we get

T 1
γ 0(Xt) = sup

Ht∈At
µγt−1(F (Xt, Ht,Wt))

= sup
H∈A

µγt−1(F (Xt, Ht,Wt)),

T 2
γ 0(Xt−1) = sup

Ht−1∈At−1

µγt−2(F (Xt−1, Ht−1,Wt−1) + sup
Ht∈At

µγt−1(F (G(Xt−1,Wt−1), Ht,Wt)))

= sup
Ht−1∈At−1

µγt−2( sup
Ht∈At

µγt−1(F (Xt−1, Ht−1,Wt−1) + F (Xt, Ht,Wt)))

= sup
Ht−1∈At−1

sup
Ht∈At

µγt−2(µγt−1(F (Xt−1, Ht−1,Wt−1) + F (Xt, Ht,Wt))).

= sup
H∈A

µγt−2(F (Xt−1, Ht−1,Wt−1) + F (Xt, Ht,Wt)),

T 3
γ 0(Xt−2) = sup

H∈A
µγt−3(F (Xt−2, Ht−2,Wt−2) + F (Xt−1, Ht−1,Wt−1) + F (Xt, Ht,Wt)),

. . . = . . .

T tγ0(X1) = sup
H∈A

µγ0(

t∑
i=1

F (Xi, Hi,Wi)),

which completes the proof of (5.12).

Proposition 5.1.6. Under assumptions (A.1)–(A.4), operator Tγ is a local contraction under
‖ · ‖span, i.e. there exists L : R+ → (0, 1), such that

‖Tγf1 − Tγf2‖span ≤ L(M)‖f1 − f2‖span,

for M > 0, f1, f2 ∈ C(Rk), such that ‖f1‖span ≤M and ‖f2‖span ≤M . Moreover the function L is
independent of γ.

Proof. Let M > 0 and let γ ∈ (−1, 0). Let (Ω,F1, η), be a probability space which corresponds to
random variable W1. For any f ∈ C(Rk), such that ‖f‖span ≤ M , x ∈ Rk and h ∈ U we will use
the following notation

h(x,f) := arg max
h∈U

µγ(F (x, h,W1) + f(G(x,W1))), (5.16)

Q(x,f,h) := arg min
Q∈M1(η)

[
EQ[F (x, h,W1) + f(G(x,W1)]− 1

γ
H[Q‖η]

]
(5.17)

The measure Q(x,f,h) corresponds to the minimizing scenario in the robust representation (4.1.5)
of µγ . To have a unique representation of Q(x,f,h) we will define it through Esscher transformation
[85] introduced in (4.8) and given by

Q(x,f,h)(dw) =
eγ[F (x,h,w)+f(G(x,w))]η(dw)

E[eγ[F (x,h,W1)+f(G(x,W1))]]
. (5.18)
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Using Proposition 4.1.7 and noticing that

[F (x, h,W1) + f(G(x,W1))]eF (x,h,W1)+f(G(x,W1))] ∈ L1,

due to assumption (A.4), we know that indeed (5.18) is the minimizer of (5.17). Moreover, we will
define the measure Q̄(x,f,h) on Rk, by

Q̄(x,f,h)(A) =
E
[
1{G(x,W1)∈A}e

γ[F (x,h,W1)+f(G(x,W1))]
]

E[eγ[F (x,h,W1)+f(G(x,W1))]]
, A ∈ B(Rk). (5.19)

Step 1. Let M > 0 and f, g ∈ C(Rk) be such that ‖f‖span ≤ M and ‖g‖span ≤ M . Using (5.16)
we get

Tγf(x) = sup
h∈U

µγ(F (x, h,W1) + f(G(x,W1)))

= µγ(F (x, h(x,f),W1) + f(G(x,W1)))

= inf
Q∈M1(η)

[
EQ[F (x, h(x,f),W1) + f(G(x,W1)]− 1

γ
H[Q‖η]

]
≤ EQ(x,g,h(x,f))

[F (x, h(x,f),W1) + f(G(x,W1)]− 1

γ
H[Q(x,g,h(x,f))‖η] (5.20)

Now, using (5.17) we get

Tγg(x) = sup
h∈U

µγ(F (x, h,W1) + g(G(x,W1)))

≥ µγ(F (x, h(x,f),W1) + g(G(x,W1)))

= inf
Q∈M1(η)

[
EQ[F (x, h(x,f),W1) + g(G(x,W1)]− 1

γ
H[Q‖η]

]
= EQ(x,g,h(x,f))

[F (x, h(x,f),W1) + g(G(x,W1)]− 1

γ
H[Q(x,g,h(x,f))‖η] (5.21)

Combining (5.20) and (5.21) we get

Tγf(x)− Tγg(x) ≤ EQ(x,g,h(x,f))
[f(G(x,W1))− g(G(x,W1))]

≤
∫
Rk

[f(z)− g(z)]Q̄(x,g,h(x,f))(dz). (5.22)

Switching f with g in (5.22), for a fixed y ∈ Rk, we get

Tγg(y)− Tγf(y) ≤
∫
Rk

[g(z)− f(z)]Q̄(y,f,h(y,g))(dz) (5.23)

Combining (5.22) and (5.23) we get

Tγf(x)− Tγg(x)− (Tγf(y)− Tγg(y)) ≤
∫
Rk

[
f(z)− g(z)

]
[Q̄(x,g,h(x,f)) − Q̄(y,f,h(y,g))](dz)

≤ 1

2
‖f − g‖span‖Q̄(x,g,h(x,f)) − Q̄(y,f,h(y,g))‖var. (5.24)
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where ‖ · ‖var is a variation norm of a measure10. The last inequality is a result of the fact, that we
can decompose the finite signed measure Q̄(x,g,h(x,f)) − Q̄(y,f,h(y,g)) into positive and negative part

(e.g. using Hahn-Jordan decomposition).

Step 2. We will now show that for any γ ∈ (−1, 0), there exists function Lγ : R+ → (0, 1),
such that for any x, y ∈ Rk and f, g ∈ C(Rk) such that ‖f‖span ≤M and ‖g‖span ≤M , we get

‖Q̄(x,g,h(x,f)) − Q̄(y,f,h(y,g))‖var < 2Lγ(M). (5.25)

On the contrary, let us assume that (5.25) is false. There exists γ ∈ (−1, 0) and a sequence

(xn, yn, fn, gn, An)n∈N,

where xn, yn ∈ Rk, fn, gn ∈ C(Rk) (‖fn‖span ≤M , ‖gn‖span ≤M) and An ∈ B(Rk), such that

Q̄(xn,gn,h(xn,fn))(An)− Q̄(yn,fn,h(yn,gn))(An)→ 1. (5.26)

Due to (5.26) we know that

Q̄(xn,gn,h(xn,fn))(A
c
n)→ 0 and Q̄(yn,fn,h(yn,gn))(An)→ 0 (5.27)

Next, for any x ∈ Rk, h ∈ U , f ∈ C(Rk) (‖f‖span ≤ M) and A ∈ B(Rk), using Schwarz inequality,
we get

Q̄(x,f,h)(A) =
E
[
1{G(x,W1)∈A}e

γ[F (x,h,W1)+f(G(x,W1))]
]

E[eγ[F (x,h,W1)+f(G(x,W1))]]

≥
eγ‖f‖spanE

[
1{G(x,W1)∈A}e

γ[F (x,h,W1)]
]

e−γ‖f‖spanE[eγ[F (x,h,W1)]]

E[e−γ[F (x,h,W1)]]

E[e−γ[F (x,h,W1)]]

≥ e2γ‖f‖spanE
[
1{G(x,W1)∈A}e

γ[F (x,h,W1)]e−γ[F (x,h,W1)]
]

E[eγ[F (x,h,W1)]]E[e−γ[F (x,h,W1)]]

= e2γ‖f‖span E
[
1{G(x,W1)∈A}

]
E[eγ[F (x,h,W1)]]E[e−γ[F (x,h,W1)]]

. (5.28)

Next, using assumption (A.4), monotonicity of µγ and the fact that µγ is increasing with γ, we get

e2γ‖f‖span E
[
1{G(x,W1)∈A}

]
E[eγ[F (x,h,W1)]]E[e−γ[F (x,h,W1)]]

≥ e2γ‖f‖span E
[
1{G(x,W1)∈A}

]
eγµ

γ(K+
1 )eγµ

γ(−K−1 )
≥ αE

[
1{G(x,W1)∈A}

]
,

(5.29)

where α := e−2‖f‖span · max{e2|µ−1(K+
1 )|, e2|µ0(K+

1 )|, e2|µ−1(−K−1 )|, e2|µ0(−K−1 )|}−1. Note that due to
assumption (A.4), the value α is finite and in fact independent of γ. Combining (5.28) and (5.29)
with (5.27) we get that

E
[
1{G(xn,W1)∈Acn}

]
→ 0 and E

[
1{G(yn,W1)∈An}

]
→ 0.

10For the general definition of total variation norm see e.g. [91]. In our framework, for two probability measures µ
and ν on Rk with Borel sigma algebra, we get ‖µ− ν‖var = 2 supA∈B(Rk) |µ(A)− ν(A)| (again, see [91] for details).
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Because of that
P[G(xn,W1) ∈ An]− P[G(yn,W1) ∈ An]→ 1,

which contradicts assumption (A.2), i.e. uniform ergodicity of {Xt}t∈T. Moreover, as the value α
in (5.29) is independent of γ, and due to uniform ergodicity of {Xt}t∈T, we know that there will
exists L : R+ → (0, 1), independent of γ, such that for any γ ∈ (−1, 0), we get

‖Q̄(x,g,h(x,f)) − Q̄(y,f,h(y,g))‖var < L(M),

for M > 0, x, y ∈ Rk and f, g ∈ C(Rk) (‖f‖span ≤M , ‖g‖span ≤M), which concludes the proof.

Propositions 5.1.4 and 5.1.6 allow us to show that there exists a solution to Bellman equation
(5.10), while Proposition 5.1.5 tell us that the solution could be used to generate the Markov
strategy, which is optimal for (5.4) as well as give the explicit value of (5.4).

Proposition 5.1.7. Under assumptions (A.1)–(A.4) for sufficiently big γ ∈ (−1, 0), there exist a
unique (up to an additive constant) vγ ∈ C(Rk) and λγ ∈ R, such that vγ and λγ are solutions to
Bellman equation (5.10).

Proof. Using Propositions 5.1.4 and 5.1.6 it is easy to note that for any fixed γ ∈ (−1, 0) the
operator

T̃γf(x) := γTγ
f(x)

γ
,

is local contraction and Feller continuous. Indeed, for f1, f2 ∈ C(Rk) (‖f1‖span ≤M , ‖f2‖span ≤M),
we get

‖T̃γf1 − T̃γf2‖span = |γ| · ‖Tγ
f1

γ
− Tγ

f2

γ
‖span ≤ |γ|L(

1

|γ|
M)‖f1 − f2

γ
‖span = L(

1

|γ|
M)‖f1 − f2‖span.

Moreover, repeating the proof of Proposition 5.1.6 (see also [136, 137] for the exact proof), we get
that

‖T̃γf1 − T̃γf2‖span ≤ L̃(M)‖f1 − f2‖span,

where L̃ : R+ → (0, 1) is independent of γ.
As T̃γ is a contraction, using Banach’s fixed point theorem (see e.g. [90, Appendix A]), we know

that there exists at most one fixed point of operator T̃γ in C(Rk) endowed with the span norm. The
same applies to operator T .

Let γ ∈ (−1, 0) be such that |γ| < 1− L̃(M)11, where M := µ0(K+
t )− µ−1(K−t ). Using (A.4),

due to monotonicity of µγ , it is easy to notice that

‖T̃γ0‖span ≤ |γ|(µγ(K+
t )− µγ(K−t )) ≤ |γ|(µ0(K+

t )− µ−1(K−t )) = |γ|M ≤M, (5.30)

Moreover, as |γ| < 1− L(M), for any n ∈ N, we get the following two inequalities:

‖T̃nγ 0‖span ≤
[ n−1∑
k=0

L(M)k
]
‖T̃γ0‖span ≤

|γ|M
1− L(M)

< M,

‖T̃n+1
γ 0− T̃nγ 0‖span ≤ L(M)n‖T̃γ0‖span. (5.31)

11Note that the set {γ ∈ (−1, 0) : |γ| < 1− L̃(M)} is nonempty, as L̃(M) < 1
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Let us proof this statement using induction. For n = 1, using (5.30) we get

‖T̃ 2
γ 0‖span ≤ ‖T̃ 2

γ 0− T̃γ0‖span + ‖T̃γ0‖span ≤ ‖T̃γ0‖span(1 + L(M)) ≤ |γ|M
1− L(M)

< M,

which implies

‖T̃γ0‖span ≤ L(M)0‖T̃γ0‖span < M

‖T̃ 2
γ 0− T̃γ0‖span ≤ L(M)‖T̃γ0‖span.

Next, let us assume that (5.31) holds for a fixed n ∈ N. Then, we get

‖T̃n+1
γ 0‖span ≤ ‖T̃n+1

γ 0− T̃nγ 0‖span + ‖T̃nγ 0‖span ≤
[ n∑
k=0

L(M)k
]
‖T̃γ0‖span < M,

‖T̃n+2
γ 0− T̃n+1

γ 0‖span ≤ L(M)‖T̃n+1
γ 0− T̃nγ ‖span ≤ L(M)n+1‖T̃γ0‖span.

which concludes the proof of (5.31).
Thus, by (5.31) we know that there exists a unique ṽγ ∈ C(Rk) (up to an additive constant),

such that
‖T ṽγ − ṽγ‖span = 0.

Moreover, vγ(x) :=
ṽγ(x)
γ is a span norm fixed point of operator Tγ , as

‖Tγvγ − vγ‖span = ‖1

γ
T̃γ ṽγ −

ṽγ
γ
‖span = 0. (5.32)

Thus, there exists λγ ∈ R12, such that vγ(x) and λγ are solutions to Bellman equation (5.10) for a
fixed γ ∈ (−1, 1− L(m)).

Proposition 5.1.8. Under assumptions (A.1)–(A.4) for sufficiently big γ ∈ (−1, 0), there exist
(Markov) solution to problem (5.4). Moreover, the optimal value is equal to λγ, and the optimal
strategy is defined through vγ.

Proof. The proof of Proposition 5.1.8 for γ ∈ (−1, 1 − L(M)) is in fact a direct implication of
Proposition 5.1.7 and classical results (i.e. verification theorems) from the theory of Risk-sensitive
control (see e.g. [89, Theorem 2.2]). Nevertheless, we will show the proof based on properties of
dUM to show how the dynamic version of risk measure is connected to the optimal solution, and
also give some comment on the relation between infinite and finite time horizon optimal control
problems.

Let us fix γ ∈ (−1, 1 − L(M))13. Let vγ ∈ C(Rk) and λγ ∈ R be a solution to Bellman
equation (5.10). Following the proof of Proposition 5.1.7, it is easy to note that ‖vγ‖span ≤ M

|γ| and

‖T tγ0‖span ≤ M
|γ| for any t ∈ T, where M := µ0(K+

t )− µ−1(K−t ). Indeed for any t ∈ T, we get

γT tγ0 = γTγ(T t−1
γ 0) = γ

1

γ
T̃γ(γT t−1

γ 0) = T̃ 2
γ (γT t−2

γ 0) = . . . = T̃ tγ(γ0) = T̃ tγ(0),

12i.e. λγ := Tγvγ(0)− vγ(0)
13this bound correspond to the one in Proposition 5.1.7
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and we have shown in Proposition 5.1.7, that ‖T̃ tγ(0)‖span ≤M . Thus, we get

‖T tγ0− T tγvγ‖span ≤ L(|γ|M)‖T t−1
γ 0− T t−1

γ vγ + λγ‖span = L(|γ|M)‖T t−1
γ 0− T t−1

γ vγ‖span

≤ L(|γ|M)2‖T t−2
γ 0− T t−2

γ vγ + λγ‖span = L(|γ|M)2‖T t−2
γ 0− T t−2

γ vγ‖span

≤ L(|γ|M)t‖vγ‖span. (5.33)

Combining (5.12) and (5.33) we get

sup
H∈A

ϕγ(V H) = sup
H∈A

lim inf
t→∞

µγ(V H)

t
≤ lim inf

t→∞
sup
H∈A

µγ(V H)

t
= lim inf

t→∞

T tγ0(X1)

t

= lim inf
t→∞

T tγvγ(X1)

t
≤ lim inf

t→∞

λγt+ ‖vγ‖span

t
= λγ

On the other hand, the value λγ is obtained for the optimal Markov strategy H∗ given by

H∗t (x) = arg max
h∈U

µγ(F (x, h,W1) + vγ(G(x,W1)))14,

which implies that λγ is optimal value for the problem (5.4) and optimal strategy is defined in
terms of vγ .

5.1.3 Examplery dynamics

In this subsection let us present examples of dynamics for which assumptions (A.1)-(A.2) are
fulfilled.

Example 5.1.9. In this example we will assume that time T = R+ is continuous, but we can only
reshape our portfolio in discrete time moments n ∈ N. For n ∈ N and (z = 1, . . . , k + m), let us
assume that W z

n denotes the trajectory of wz(t) − wz(n) (n ≤ t ≤ n + 1), where {wz(t)}k+m
z=1 are

independent Brownian motions (which generates the filtration). Let us assume that the dynamics
of the risky assets and factors is given by

Xj
n = bj(Xn−1) +

k+m∑
z=1

δjz[wz(n)− wz(n− 1)], n ∈ N

dSit
Sit

= ai(Xn) dt+

k+m∑
z=1

σiz dwz(t), t ∈ [n, n+ 1)

where for (i = 1, . . . ,m), (j = 1, . . . , k) and (z = 1, . . . , k + m): ai, bi : Rk → R are measurable
and bounded functions, bi is continuous, δjz ∈ R, σiz ∈ R and rank((σiz)z=1,...,k+m) = k. Let hi(t)
denote the part of the capital invested at time t in the i-th risky asset and let15

U = {(h1, . . . , hm) ∈ [0, 1]m :
m∑
i=1

hi = 1}.

14The exact strategy is given by H∗t = arg maxHt∈At
µγt−1(F (Xt, Ht,Wt) + vγ(Xt+1)).

15Note that we do not allow short selling, nor short borrowing.
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Moreover, let H i
n = hi(n). Using Ito’s Lemma (see [136] for details) we get function F of the form

F (Xn, Hn,Wn) =
m∑
i=1

∫ n+1

n
ai(Xn)hi(s) ds− 1

2

k+m∑
z=1

∫ n+1

n

( m∑
i=1

hi(s)σiz

)2
ds

+

∫ n+1

n

m∑
i=1

hi(s)

k+m∑
z=1

σiz dwz(s).

One can check that assumptions (A.1)-(A.4) will hold in this framework. See [136], where in fact
equivalents of all Propositions from Section 5.1.2 are directly proved. For clarity, let us show the
existence of the upper bound in (A.4). Following similar arguments as in Remark 5.1.1, we get

F (Xn, Hn,Wn) = ln
Vn+1

Vn
= ln

m∑
i=1

H i
n

Sin+1

Sin
= ln

m∑
i=1

H i
ne
ai(Xn)+

∑k+m
z=1 σiz [wz(n+1)−wz(n)]

≤
m∑
i=1

H i
n

(
ai(Xn) +

k+m∑
z=1

σiz[wz(n+ 1)− wz(n)]
)

≤ ‖a‖sup + max
1≤z≤k+m

σiz[wz(n+ 1)− wz(n)]).

Thus, K+
n := ‖a‖sup + max1≤z≤k+m σiz[wz(n+ 1)− wz(n)]) will satisfy (5.8). Moreover, it is easy

to check that K+
n will satisfy (5.7), as for a Gaussian X, we get e|X| ∈ L1.

Example 5.1.10. Let us assume that assumptions (A.1) and (A.2) hold and the dynamics of risky
assets is given by

Sit+1

Sit
= ξi(Xt,Wt),

for t ∈ N, where for (i = 1, . . . ,m), ξt is a measurable vector function. Moreover the set u will be
of the form {(h1, . . . , hm) ∈ [0, 1]m :

∑m
i=1 hi ≤ 1}. Then we could define F explicitly, as

F (Xn, Hn,Wn) =
m∑
i=1

H i
nξi(Xn,Wn) + (1−

m∑
i=1

H i
n).

To get assumptions (A.3) and (A.4) we need to impose additional assumptions on W and ξi. In
particular we can consider the discretized version of Example 5.1.9 by setting W i

n = wi(n+1)−wi(n)
and

ξi(Xn,Wn) = exp
{
ai(Xn)− 1

2

k+m∑
z=1

σ2
iz +

k+m∑
z=1

σizW
j
n

}
. (5.34)

See [137] for details in general case and [60] for the case when (5.34) holds.

5.2 Portfolio optimisation with WV@R constrains

The stochastic control problems related to portfolio optimisation have a long history and have been
studied intensively over the last 60 years. A major contribution, which could be regarded as the
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birth of modern portfolio analysis was done by H. Markowitz in 1952 [108]. Markowitz introduced
the mean-variance optimisation problem

E[X]→ max
V ar(X) ≤ c
X ∈ A

(5.35)

where the random variable X is related to the (final) return of some financial portfolio, V ar(X) is
it’s variance, c ∈ R+ denotes the risk constraint and the set A describes all admissible values of X.
One could also reformulate this problem, using portfolio Profits and losses instead of returns. The
problem (5.35) was reformulated in many ways [79, 3, 120], mostly due to the fact that variance is
not a good risk measure, as it penalizes profits in exactly the same way as losses.

We will focus on the problem, which substitutes the classical variance, with different dUM,
namely a strongly time consistent coherent dynamic risk measure (on finite time horizon). We
will use a family of dynamic WV@R as building blocks, due to their high analytical traceability.
See [44] for a more detailed description for this class of maps.

Quasi-convex and coherent risk measures are used commonly in portfolio selection problems
[3, 109], as they allow the use of many methods from the convex analysis and dynamic stochastic
control. While the methods for static (one step) case are well studied, the dynamic selection model
often cause a lot of problems. Bellman’s principle of optimality is a crucial property, when we
consider problems in a dynamic framework. Thus, a strong time consistency is a desired property,
as explained in [7]. Moreover, the assumption about coherence of risk measure is very convenient as
it often allows to reshape the problem in such a way, that we only need to maximize one objective
function, instead of dealing with risk constraints (in a standard framework, one might say that
Sharpe Ratio [66] could be used to solve problem 5.35).

This section is organized as follows. Subection 5.2.1 will be devoted to the general setup in
which we will introduce the problem and make all assumptions (e.g. on dynamics, control, etc.).
Next, in Subection 5.2.2 we will use the dynamic programming approach to completely solve prob-
lem introduces before.

This section is based on [44], written by A. Cherny. While we tried to shed some new light
into problem presented in this paper, all results in this Section could be considered as counterparts
of results from [44].

5.2.1 General setup

In this Section we will assume that the time horizon is finite, i.e. T = {0, 1, . . . , T} for a fixed T ∈ T
and X = V0. Let ν be a fixed probability measure on (0, 1] and let ρν denote a corresponding static
WV@R (for random variables on L0) defined in (4.18), i.e.

ρν(X) :=

∫ 1

0
ρα(X)ν(dα) = − inf

Q∈Dν
EQ[X], X ∈ L0, (5.36)

where ρα is TV@R defined in (4.10) and Dν is defined in (4.19). Moreover let {ρνt }t∈T denote
the Dν-composite dRM for stochastic processes defined in (5.37), where Dν denote the family of
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measures defining dWV@R in (4.21), i.e. for (t = T − 1, . . . , 1) we define recursively

ρνT (V ) := −VT
ρνt (V ) := − ess inf

Q∈Dνt
EQ[Vt − ϕνt+1(V )|Ft]. (5.37)

Given the set A and dynamics of V H ∈ X for any H ∈ A, we want to solve the optimal
stochastic control problem 

E
[∑T

i=1 V
H
i

]
→ max

ρν0(V H) ≤ c
H ∈ A

(5.38)

for a fixed c ∈ R+. Process V H will correspond to the stream of dividend payoffs related to
portfolio strategy, so the cumulated value at time t is given by

∑t
i=1 V

H
i . As we will work in

concave framework, we will use ϕν to denote the negative of ρν and {ϕνt }t∈T to denote the negative
of {ρνt }t∈T, and deal with constraints ϕν0(V H) ≥ −c, rather than ρν0(V H) ≤ c.

We will now present the specification of the set A and the dynamics of VH (for any H ∈ A)
which we will consider in this Section.

Similarly as in Subsection 5.1.2, prices of d risky assets will be denoted by Si = (Sit)t∈T ∈ X
for (i = 1, . . . , d) and we will use notation S := (S1, . . . , Sd). We will use A to denote the set of
all R-valued, d-dimensional predictable processes. Elements of A will correspond to all admissible
portfolio strategies H, where H = (H1, . . . ,Hd) and H i = (H i

t)t∈T ∈ X is a part of capital invested
in i-th risky asset (for i = 1, . . . , d). We will use notation V H = (V H

t )t∈T ∈ X to denote the
portfolio cash-flows, corresponding to strategy H. We will make the following assumptions:

(A.1) The filtration {Ft}t∈T will be generated by a sequence of d stochastic processes W i ∈ X for
(i = 1, . . . , d) and W := (W 1, . . . ,W d) will form a sequence of i.i.d integrable random vectors
with continuous distribution. Moreover, we will assume that E[W1] ≥ 0.16

(A.2) The price process S = {St}t=0,...,T will be of the form

S0 ∈ Rd+, St = S0 +
t∑
i=1

σiWi, (5.39)

where σt is a non-degenerate Ft−1-measurable d × d matrix for t ∈ T. Moreover, we will
assume that E[Xt] 6= 017, where Xt := (St−St−1) denotes the stream of cash-flows associated
with S.

(A.3) For any H ∈ A, we will assume that the portfolio dynamics will be of the form

V H
0 = 0, V H

t = 〈Ht, Xt〉, (5.40)

where 〈·, ·〉 denotes a standard scalar product and t ∈ T (t > 0).

16We will use the notation E[W1] = (E[W 1
1 ], . . . , E[W d

1 ]).
17i.e. (E[X1

t ], . . . , E[Xd
t ]) 6= (0, 0, . . . , 0).
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(A.4) We will assume that for any h ∈ Rd \ {0} and t ∈ T we get

−∞ < ϕν(〈h,Xt〉) < 0, (5.41)

where ϕν is negative of a map given in (5.36).

Remark 5.2.1. In (A.2) the assumption E[Xt] 6= 0 ensures that there exists a trade with strictly
positive reward. On the other hand in (A.3), the inequality (5.41) tell us that any simple trade has
finite, strictly positive risk (negative utility). This assumption relates to no-arbitrage property (see
e.g. [42, 44] for so called no good deal bounds) and is strictly related to the space L1

s(Dν) defined in
(3.39), as for the family of dWV@Rs, we get L1

s(Dν) = L1
w(Dν) (see [42, Proposition 2.6]). Please

also note that (5.41) implies that the probability of 〈Ht, Xt〉 being negative is always positive (for
all t ∈ T and Ht 6= 0).

Remark 5.2.2. It is worth mentioning that the dynamics introduced in (5.39) cover the class of
multidimensional GARCH models, which are a common tool used by practitioners to model prices
(or log-returns) of assets [11].

5.2.2 Dynamic programming equations

In this Subsection we will consider the simplified problem (5.38). We will assume that c = 1 and
σt = Id for any t ∈ T, where Id denotes the d-dimensional unit matrix, i.e. we will consider the
problem 

E
[∑T

i=1〈Hi,Wi〉
]
→ max

ϕν0(〈H,W 〉) ≥ −1
H ∈ A

(5.42)

Let us note that the problem (5.42) is scalable, in the sense, that if we consider cH instead of H
(for c ∈ R+) in (5.42), then both the risk and the reward will be rescaled linearly. Because of that
we can use normalized notation, which will be convenient, when we will define Bellman equations.

Remark 5.2.3. It is worth mentioning that because (5.42) is scalable, we might consider the related
problem18

sup
H∈A

E
[∑T

i=1〈Hi,Wi〉
]

−ϕν0(〈H,W 〉)
, (5.43)

for which the optimal value will be the same as in problem (5.42). The map introduced in (5.43)
is in fact a RAROC PM, which we have introduced in Section 4.2.2. For more information about
general risk-reward ratios, see [39].

As we know {ϕνt }t∈T is a strongly time consistent dUM. Because of that we might want to use
Bellman’s principle of optimality to define the corresponding Bellman equation and then decompose
problem (5.38) into a series of conditional problems. We will use here the ’forward’ approach. Let
us define recursively the sequence of real numbers (for t ∈ N)

U0 := 0,

Ut := sup
h∈H

E[〈h,W1〉+ Ut−1(〈h,W1〉 − a(h))+], (5.44)

18Note that ϕν0(〈H,X〉) ≤ 0, due to assumption (A.4), as will be proved later.
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where

a(h) := inf{x ∈ R : ϕν(〈h,W1〉 ∧ x) ≥ −1}, (5.45)

H := {h ∈ Rd : ϕν(〈h,W1, 〉) ≥ −1}. (5.46)

The value Ut will correspond to the optimal value in problem (5.42) for time horizon of length
t. Let us now present some heuristics which will give insight on the financial and mathematical
interpretation of (5.44).

Remark 5.2.4. In the proof of Proposition 5.2.5 we will exploit the fact, that {ϕνt }t∈T is strongly
time consistent dUMs.19 Note that the conditional expectation also admits tower property, which
is a form of strong time consistency. Indeed, the inequality (5.47) is a direct result of the Bellman
principle of optimality together with scale-invariance nature of the problem. Those properties allow
us to consider the conditional problem at time 1 and bound it by the optimal solution computed
at time 0, for time horizon T − 1 (which is expressed by Ut−1). From strong time consistency we
also get that this bound is attained, and the optimal solution exists, as will be proved later.

Proposition 5.2.5. The optimal value for the problem (5.42) with time horizon T is equal to UT .

Proof. For clarity, we will present only the general overview of the proof of Proposition 5.2.5, which
will explain, why the optimal value is expressed through (5.44). For more details see [44, Theorem
3.1], where the detailed proof is provided for the general problem (5.38).20

We know that for 0-step problem, the optimal value U0 equals to 0 , as V H
0 = 0 for any H. We

will use induction to prove the thesis. Let us assume that the optimal value of the problem (5.42)
for (t− 1)-time horizon equals to Ut−1 and consider problem (5.42) for time horizon of length t.

Using Bellman’s principle of optimality and looking at the problem (5.42) at time 1 (i.e. for
a fixed first step), it is easy to notice, that the remaining strategy (and thus the optimal value)
should be the same (up to a non-negative constant21) as the strategy for the problem (5.42) with
time horizon t− 1. In other words, as the problem is scalable, assuming Ut−1 is optimal value for
(t− 1)-step problem, and knowing that ϕν1(〈H,X〉)− 〈H1,W1〉 ≤ 0 (due to assumption (A.4), see
[44, Lemma 3.3] for the proof), we should have the property

E
[∑T

i=1〈Hi,Wi〉|F1

]
− 〈H1,W1〉

−[ϕν1(〈H,W 〉)− 〈H1,W1〉]
≤ Ut−1, (5.47)

where the interpretation of risk-reward ratio in (5.47) could be found in Remark 5.2.3. The detailed
proof of (5.47) could be found in [44, Lemma 3.5]. Next, inequality (5.47) could be rewritten as

E
[ T∑
i=1

〈Hi,Wi〉|F1

]
≤ 〈H1,W1〉+ Ut−1(〈H1,W1〉 − ϕν1(〈H,W 〉)).

19On the space of stochastic processes described by all admissible strategies, defined in (5.40).
20The definition of the Dν-composite dUM in [44] is slightly different, i.e. the map {ϕ̃νt }t∈T of the form

ϕ̃νt (V ) = ϕνt (V )− Vt is considered. Nevertheless, all the results could be translated directly.
21This non-negative constant will be responsible for the risk control (amount of risk we can take), as the problem

is scalable. We will show that it is indeed equal to (〈h,W1〉 − a(h))+ later.
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Taking expectation on both sides we get

E
[ T∑
i=1

〈Hi,Wi〉
]
≤ E

[
〈H1,W1〉+ Ut−1(〈H1,W1〉)− ϕν1(〈H,W 〉)

]
. (5.48)

Thus, the good candidate for the optimal value Ut (with fixed control H1) could be computed
solving the problem 

E[Z + Ut−1(Z − Y (H))]→ max
Z − Y (H) ≥ 0
ϕν(Y (H)) ≥ −1
Y (H) ∈ L0

(5.49)

where Z = 〈H1,W1〉 is fixed and Y (H) = ϕν1(〈H,W 〉) is a function of H.22 The first constraint
in problem (5.49) is the result of assumption (A.4), while the second follows from the fact that
{ϕνt }t∈T is constructed recursively as in (5.37) and due to the initial risk constraints, i.e. we get

ϕν(ϕν1(〈H,X〉) = sup
Q∈Dν0

EQ

[
0 + ϕν1(〈H,W 〉)

]
= ϕν0(〈H,W 〉) ≥ −1.

Moreover, please note that we are only interested in Zs, such that ϕν(Z) ≥ −1 (otherwise, the first
constraint will not be fulfilled, due to monotonicity of ϕν). For such random variables, problem
(5.49) could be solved explicitly using Proposition 5.2.6.

Proposition 5.2.6. Let Z ∈ L0 be such that ϕν(Z) ≥ −1. Then the optimal value in problem
(5.49) is attained for Y (H) = Z ∧ a, where a = inf{x ∈ R : ϕν(Z ∧ x) ≥ −1}.

The proof of Proposition 5.2.6 could be found in [44, Lemma 3.2]. Using this Proposition for any
Z = 〈H1,W1〉 such that ϕν(Z) ≥ −1,23 and taking the supremum, we get the formula for the global
optimal value Ut (formally it is only the global upper bound, the proof that it is indeed attained
could be found in [41, Lemma 3.7]), which will take the form

Ut = sup
h∈H

E[〈h,W1〉+ Ut−1(〈h,W1〉 − 〈h,W1〉 ∧ a(h))]

= sup
h∈H

E[〈h,W1〉+ Ut−1(〈h,W1〉 − a(h))+],

which is precisely the optimal value Ut defined in (5.44). Moreover, due to the fact that the set H is
convex compact, which easily follows from (A.4), we know that the supremum in (5.44) is attained
and can be substituted by maximum.

Using similar arguments as before, one could also find the optimal control for problem (5.42).
Indeed, It has been proven in [41, Theorem 3.1] that the optimal strategy H∗ for problem (5.42)
will be given by

H∗t = Ct−1h
∗(UT−t+1), (5.50)

22This problem is related to the maximisation of the right side in inequality (5.48). We assume that H1 in H is
fixed as well.

23The space of all such Zs coincide with the space H, defined in (5.46).
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where h∗ : R+ → Rd is defined as

h∗(x) := arg max
h∈H

E[〈h,W1〉+ x(〈h,W1〉 − a(h))+],

and the adapted process {Cn}t∈T is defined recursively, setting C0 = 1 and

Ct = Ct−1(〈h∗(UT−t+1),Wn〉 − a(h∗(UT−t+1)))+.

One could interpret the value Ct as the amount of risk (in particular scenario) we can take at time
t ∈ T for the problem considered over the period (t+ 1, T ).

Let us now go back to the original problem (5.38). We know that this problem could be easily
transformed to problem (5.42) using simple change of variables. Thus, let us now provide the
formulas for optimal value and optimal control for general problem (5.42).

Proposition 5.2.7. The optimal value for the problem (5.38) with time horizon T equals cUT and
the optimal strategy H∗ is given by

H∗t = cCt−1

[
(σ∗t )

−1 · h∗(UT−t+1)
]
, (5.51)

for t ∈ T, where σ∗t is the transpose of σt.

The exact proof of Proposition 5.2.7 could be found in [41, Theorem 3.1]. It also follows easily
from Proposition 5.2.5. As for any t, the matrix σt is non-degenerate (and thus invertible). The set
A consists of all predictable processes, so we know that by setting H̃ = c[(σ∗t )

−1H] for any H ∈ A,
we can transform problem (5.38) into problem (5.42). The optimal strategy in (5.51) is exactly
such transformation of optimal strategy introduced in (5.50).

5.3 American option pricing – the least square approach

For over a decade several variants of the so called least-squares method of American option pricing
have been widely used by financial practitioners and at the same time studied by researchers. The
origins of the method can be found in the work of Carriere [30], Tsitsiklis, Van Roy [139] (see also
[138]), Longstaff, Schwartz [106] and Clément, Lamberton, Protter [48]. Basically the method seeks
a way of approximating conditional expectations needed in the valuation process either directly as
in [106] and [48], or indirectly through the value function as in [139].

While the problem of optimal stopping for american options has been completely solved from
the mathematical point of view with the help of Snell envelopes [104], the practical implementa-
tions still cause a lot of problems. The main reason is essentially the fact that the information
space for conditional expectation, or in other words its range, is in many interesting cases infinite
dimensional. Inevitably, in these cases any approximation of conditional expectations, or value
functions depending on conditional expectations, has to involve significantly restrictive extrinsic
assumptions to make practical computations possible. Due to this fact, one has to look for various
algorithms, which approximate the optimal value.

In this Section we will extend the methods proposed by Clément, Lamberton and Protter [48],
so that they cover the case of American style options with path dependent pay-offs, with a non-
Markovian multidimensional underlying and with a very general approach to regression.



102

For possible practical applications of the results proposed in this Section, please see [99], where
three computational examples are provided. First example concerns the pricing of a one year
Eurodollar American put and call options, which (under the standard risk-neutral measure) are
based on non-Markovian dynamics. The second example focuses on multidimensional options.
Finally, the last example shows how to numerically price american options, when the underlying
instruments follow the Heston-Nandi GARCH(1,1) model (see [99] for more details).

This Section is organized as follows. In the end of the introduction we provide more detailed
discussion about least-square method, to connect our result with the existing literature. Subsec-
tion 5.3.1 is devoted to the short review of consequences of the classic Dobrushin-Minlos theorem,
which can lead to viable numerical approximations of conditional expectations. Next, in Subsec-
tion 5.3.2 we give a short overview of Snell envelopes and comment on the relation to American-style
option pricing. Finally, in Subsection 5.3.3 we extend the methods proposed by Clément, Lamber-
ton and Protter [48] for American style options.

This Section will be based on [99].

Additional remarks

Let us now provide some more detailed insight about the least square approach to american option
pricing. Several papers on this subject have been published — we will mention just a few of them.

A modification of the algorithm from [106] was studied in [48] from the point of view of the
convergence of the method.

Glasserman and Yu [87] investigated in 2004 the convergence of the least-squares like methods,
where — basically — the necessary conditional expectations are approximated by finite linear com-
binations of approximating functions. More specifically they look into the problem of accuracy of
estimations when the number of approximating functions and the number of simulated trajectories
increase. They assume that the underlying is a multidimensional Markov process. The rather
pessimistic outcome, from the practical point of view, is that for polynomials as the approximating
functions and for conventional (resp. geometric) Brownian motion as the underlying, the num-
ber of required paths may grow exponentially in the degree (resp. the square of the degree) of
the polynomials. Glasserman and Yu remark that similar property may hold also for more gen-
eral approximating functions (with the number of approximating functions replacing the maximal
degree).

Also in 2004 Stentoft [135] analyzed and extended the convergence results presented in [48]. In
particular he has considered the problem of choosing the optimal number of regressors in relation
to the number of simulated trajectories.

In 2005 Egloff [64] proposed an extension to the original Longstaff-Schwartz [106] as well as
Tsitsiklis – Van Roy ([138], [139]) algorithms by treating the optimal stopping problem for multidi-
mensional discrete time Markov processes as a generalized statistical learning problem. His results
also improve those from [48]. Egloff comments that despite very good performance of least-squares
algorithms in some practical calculations, precise estimates of the statistical quantities involved in
these procedures may be difficult, leading to some less impressive performance in other cases.

Zanger [144] proposed in 2009 another extension to the least-squares method by considering
fairly arbitrary subsets of information spaces as the approximating sets. He has also produced
some new and interesting convergence results showing in particular that sometimes the exponential
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dependence on the number of time steps can be avoided.

Two features seem to be common to the articles mentioned above. Firstly, the underlying is
assumed to be Markovian. Secondly, the convergence rates of the method, in all its incarnations, are
not encouraging from the computational point of view. In the present paper, we extend the Clément,
Lamberton, Protter approach [48] to show that the method converges even if the underlying is not a
Markov process and if the pay-offs are path-dependent, with a fairly general setting for the regression
approximating conditional expectations. Obviously by giving up the Markov property and aiming at
better approximation of conditional expectation, the potential computational complexity increases
considerably. However, the main advantage of relaxation of the assumptions is the increase in
freedom to customize the method. Moreover, we would like to argue that the least-squares methods
should be seen as a general framework leading to a variety of specific implementations.

The main reason is essentially the fact that the information space for conditional expectation,
or in other words its range, is in many interesting cases infinite dimensional. Inevitably, in these
cases any approximation of conditional expectations, or value functions depending on conditional
expectations, has to involve significantly restrictive extrinsic assumptions to make practical compu-
tations possible. While general convergence results are necessary to motivate the overall approach
and some computational complexity may be addressed along the lines of [128], it is most likely that
the future developments will evolve closer to simplified time-series models. It is quite conceivable
that an alternative source of realism and numerical efficiency could exploit the advances in both
time-series analysis and frame theory (see e.g. [98]). The empirical basis for such speculations
comes from the fact, that in many real problems even taking only a few non-linear regressors, and
sometimes ignoring lack of the Markov property, often leads to satisfactory results from the prac-
tical point of view. There seem to be much anecdotal evidence coming from the financial industry
supporting the last statement.

It should be mentioned that the least squares approach can be also seen as part of the stochastic
mesh framework proposed by Broadie and Glasserman ([27], [28]; see also [105] and [86]).

5.3.1 Approximation of conditional expectation

In the L2 framework, dealing only with random variables of finite variance, we can rely on the
Hilbert space geometry in addressing the issues of interest (see [134]). A closed subspace S ⊂ L2

is said to be probabilistic if it contains constants and is closed with respect to taking the maximum
of two of its elements, i.e. if X,Y ∈ S, then X ∨ Y ∈ S. For any non-empty set X ⊂ L2, its lattice
envelope Latt(X) is defined as the smallest probabilistic subspace of L2 containing X. Obviously,
even if X consists of just one random variable, Latt(X) can be infinite-dimensional. Moreover, if
X = {X1, . . . , Xn} and Bn denotes the σ-algebra of Borel sets in Rn, then it is not difficult to prove
that

Latt(X) = L2(σ(X)) = L2((X1, . . . , Xn)−1(Bn)).

The latter will be referred to as the information space generated by X1, . . . , Xn. Since this is also the
range of the orthogonal projection E[· |X1, . . . , Xn], it would be desirable from the numerical stand-
point to be able to approximate such projections, with projections onto smaller finite-dimensional
vector spaces using available least-squares algorithms.

To this end one could use the following theorem, which is a slight reformulation of a result of
Dobrushin and Minlos [62].
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Theorem 5.3.1. Let α > 0. Let Pn denote the space of all polynomials of n real variables. If
X1, . . . , Xn are random variables such that e|Xj | ∈ Lα for j = 1, . . . , n, then:

(a) P (X1, . . . , Xn) ∈ Lp for any polynomial P ∈ Pn and p ∈ [1,∞);

(b) the vector space {P (X1, . . . , Xn) : P ∈ Pn} is dense in Lp for every p ∈ [1,∞).24

It should be noted that the converse to part (a) is false as shown in the following example.

Example 5.3.2. Let n = 1 and let F = σ(X1). Define an atomic probability measure P on the
real axis via its probability mass function

f(x) = P[X1 = m] =

∑∞
m=1

δ(x−m)
mlnm∑∞

m=1
1

mlnm

,

where δ(z) = 1{z=0}. If q ≥ 1, then
∑∞

m=1
mq

mlnm < ∞. On the other hand, for any α > 0, we get∑∞
m=1

eαm

mlnm =∞.

If the probability measure P has a bounded support, in Rn, then the assumption of the
Dobrushin-Minlos theorem 5.3.1 is trivially satisfied. In fact, in this special case the conclusion of
the theorem follows directly from the Stone-Weierstrass Theorem. It is also easy to see that if X
is Gaussian, then e|X| ∈ L1. However, if X is lognormal, then its moment generating function does
not exist in the interval (0,∞) and hence eα|X| 6∈ Lα for all α > 0.

In concrete applications, the condition e|X| ∈ Lα can sometimes be achieved by changing the
probability distribution of “very large” values of |X|. For instance, this can be accomplished by
truncation of probability distribution or some direct attenuation of the random variable X. Another
possibility is the use of suitable weight functions. In this context the Dubrushin-Minlos theorem
5.3.1 can be used to justify the density part in the construction of several classic polynomial bases in
spaces of square integrable functions, associated with the names of Jacobi, Gagenbauer, Legendre,
Chebyshev, Laguerre and Hermite (see e.g. [47]).

Let V be an information space generated by random variables X1, . . . , Xn. Suppose that
one can furnish a sequence of Borel functions qm : Rn −→ R, with m ∈ N, such that the set
{qm(X1, . . . , Xn) : m ∈ N} is linearly dense in V (e.g. with the help of the Dobrushin-Minlos
theorem). Then the conditional expectation operator E[· |X1, . . . , Xn] is the pointwise limit of the
sequence of projections onto linear spaces V m = {qk(X1, . . . , Xn) : 1 ≤ k ≤ m} as m ↗ ∞. This
observation leads to an auxiliary concept of admissible projection systems.

Given a discrete time filtration {∅,Ω} = F0 ⊂ F1 ⊂ . . . ⊂ FT ⊂ F in the probability space
(Ω,F ,P), we define an admissible projection system as a family of orthogonal projections{

Pmt : L2(Ω,F ,P) −→ L2(Ω,F ,P)
}
t = 1, . . . , T
m ∈ N

(5.52)

with ranges V m
t = Pmt

(
L2(Ω,F ,P)

)
, such that for all t = 1, . . . , T and m ∈ N we have

V m
t ⊂ V m+1

t

24Note that we assume F = σ(X1, . . . , Xn) in Lp = Lp(Ω,F ,P).
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and ⋃
k∈N

V k
t = L2(Ω,Ft,P).

Note that for any such system and for any fixed t, we get pointwise convergence of the projections
Pmt to E[· | Ft]. However, this is not a norm convergence unless the underlying sequence of subspaces
becomes constant after finitely many steps.

5.3.2 Approximation of Snell envelope

We consider the optimal stopping problem (2.22) for a fixed Z = (Zt)
T
t=1 ∈ V1, i.e.

sup
ν∈CT0

ϕ(Zν) (5.53)

where CT0 denote the set of all stopping times with values in T = {0, 1, . . . , T}. As we have
mentioned in the introduction (see Theorem 2.3.2), the dynamic programming principle for the
problem (5.53) could be also rewritten in terms of the series of stopping times (τt), defined by
recursion

τT = T,

τt = t1{Zt≥E[Zτt+1 | Ft]} + τt+11{Zt<E[Zτt+1 | Ft]}, t = 1, . . . , T − 1.

In particular, we get Ut = E[Zτt |Ft] and consequently, τ0 is optimal for (Zt).

The key element in any numerical implementation of Snell envelopes is the ability to approximate
the conditional expectation operator. Except for the finite case, one has to deal with infinite-
dimensional spaces of random variables. Some elucidation seems to be in order here.

Given an admissible projection system (Pmt ), as in (5.52), for a fixed m ∈ N we define the

stopping times τ
[m]
t by recursion:

τ
[m]
T = T,

τ
[m]
t = t1{Zt≥Pmt (Z

τ
[m]
t+1

)} + τ
[m]
t+11{Zt<Pmt (Z

τ
[m]
t+1

)}, t = 1, . . . , T − 1. (5.54)

The following theorem generalizes a result due to Clément, Lamberton and Protter (see Theorem
3.1 in [48]):

Theorem 5.3.3. If (Pmt ) is an admissible projection system, then

lim
m→∞

E
[
Z
τ
[m]
t
| Ft

]
= E[Zτt | Ft]

for t = 1, . . . , T , where the convergence is in L2. In particular

lim
m→∞

E
[
Z
τ
[m]
t

]
= E[Zτt ]

in L2.
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Proof. Despite a much more general setting we have adopted here and slightly different notation,
we can proceed as in [48]. Since the case t = T is obvious, we can use induction on t. Assume that
the formula is true for t+ 1. Let Et[ · ] = E[ · | Ft]. Define five subsets of Ω as collections of points
satisfying the following inequalities:

C1 = {Zt ≥ Pmt (Z
τ
[m]
t+1

)} , C2 = Ω \ C1,

C3 = { Zt ≥ Et[Zτt+1 ] } , C4 = Ω \ C3,

C5 =
{ ∣∣Zt − Et[Zτt+1 ]

∣∣ ≤ ∣∣∣∣Et[Zτt+1 ]− Pmt (Z
τ
[m]
t+1

)

∣∣∣∣ }.
Obviously, for t < T we have the formulas

τ
[m]
t = t1C1 + τ

[m]
t+11C2 ,

τt = t1C3 + τt+11C4 .

Observe that

Et

[
Z
τ
[m]
t
− Zτt

]
= Et

[
Zt1C1 + Z

τ
[m]
t+1

1C2 − Zt1C3 − Zτt+11C4

]
= Zt(1C1 − 1C3) + Et

[
Z
τ
[m]
t+1

]
1C2 − Et

[
Zτt+1

]
1C4

= Zt(1C1 − 1C3) + Et

[
Z
τ
[m]
t+1

]
1C2 − Et[Zτt+1 ](1C1 + 1C2 − 1C3)

= Et

[
Z
τ
[m]
t+1

− Zτt+1

]
1C2 +

(
Zt − Et

[
Zτt+1

])
(1C1 − 1C3)

= Et

[
Z
τ
[m]
t+1

− Zτt+1

]
1C2 + Lmt .

The first component of the sum in the last equality goes to zero by the induction hypothesis and
the fact that EtEt+1 = Et. We need to estimate the last term. To this end note that

|1C1 − 1C3 | ≤ |1C1∩C4 − 1C2∩C3 | ≤ 1C5 ,

because (C1 ∩ C4) ∪ (C2 ∩ C3) ⊂ C5. Hence

Lmt ≤
∣∣Zt − Et

[
Zτt+1

]∣∣1C5

≤
∣∣∣∣Et[Zτt+1 ]− Pmt (Z

τ
[m]
t+1

)

∣∣∣∣ , by the definition of C5,

≤
∣∣Et[Zτt+1 ]− Pmt

(
Et[Zτt+1 ]

)∣∣+

∣∣∣∣Pmt (Et[Zτt+1 ]
)
− Pmt (Z

τ
[m]
t+1

)

∣∣∣∣
=

∣∣Et[Zτt+1 ]− Pmt
(
Et[Zτt+1 ]

)∣∣+

∣∣∣∣Pmt (Et[Zτt+1 ]
)
− Pmt (Et[Zτ [m]

t+1

])

∣∣∣∣
≤

∣∣Et[Zτt+1 ]− Pmt
(
Et[Zτt+1 ]

)∣∣+

∣∣∣∣Et [Zτt+1 − Zτ [m]
t+1

]∣∣∣∣ ,
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because of the tower property of projections and the fact that the norm of a projection is at most
one. The last term goes to zero by the induction hypothesis. The second last one because of the
L2 density of the union of ranges of the projection forming the admissible projection system.

It is straightforward to check, that Theorem 5.3.3 is also true for vector valued stochastic
processes.

5.3.3 The general case of the least squares method of option pricing

In what follows we will denote the set of all real (m×n)-matrices by Rm×n with the convention that
Rm = R1×m. Throughout the section we will use notation and methods similar to those introduced
in [48] but adapted to our less restrictive assumptions.

Suppose that (Xt)
T
t=0 is a discrete time d-dimensional stochastic process, with X0 being a

constant. This process is meant to represent the prices of the underlying assets for an American
style option we wish to valuate.

Let

X = (X1, . . . , XT ) : Ω −→ Rd×T

and let Ft = σ (X0, . . . , Xt) = σ (X1, . . . , Xt) for t = 1, . . . , T . Given a family of Borel functions

ft : Rd×(t+1) −→ R+, t = 0, . . . , T,

we define

Zt = ft(X0, . . . , Xt), t = 0, . . . , T.

This sequence represents suitably discounted intrinsic prices of the option we want to consider.
Such a general choice of functions ft, expands the potential applicability well beyond American put
options.

Our goal is to to calculate U0, where Ut is the Snell envelope of Zt and since U0 = max(Z0,E[Zτ1 ]),
we basically want to approximate numerically E[Zτ1 ]. Let us now give some comments on the al-
gorithm which does that and present the corresponding notation.

Step 1 - The setup

First of all, to use Theorem 5.3.3 we need to chose an admissible projection system for the filtration
associated with X. This is equivalent to choosing for each t ∈ {1, . . . , T} a suitable sequence of
Borel functions

qkt : Rd×T −→ R, k ∈ N,

which depend only on the first t column variables, and are such that the sequence {qkt (X)}k∈N is
linearly dense and linearly independent in the space L2(Ω, σ(X1, . . . , Xt),P). Then, we can select
an increasing sequence of integers (km)m∈N, such that the spaces

V m
t = Lin{qkt (X) : k = 1, . . . , km},

and the orthogonal projections Pmt : L2(Ω, σ(X),P) −→ V m
t have all the right properties. The

symbol “Lin” denotes the linear envelope of the given set of vectors.
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If the stopping times τ [m] are defined as in (5.54), then for some αmt ∈ Rkm×1 we have

Pmt

(
Z
τ
[m]
t+1

)
= emt (X)αmt ,

where the mapping emt is given by the formula

emt : Rd×T 3 x 7→
(
q1
t (x), . . . , qkmt (x)

)
∈ Rkm .

In view of our assumptions, the Gram matrix of the components of emt (X) (with respect to the
inner product (Y1, Y2) 7→ E[Y1Y2]), that is the matrix

Amt =
[
E
[
qit(X)qjt (X)

] ]
1≤i,j≤km

∈ Rkm×km ,

is invertible and hence

αmt = (Amt )−1


E

[
Z
τ
[m]
t+1

q1
t (X)

]
...

E

[
Z
τ
[m]
t+1

qkmt (X)

]
 .

Next, we want to use Monte-Carlo simulation, to approximate αmt and τ
[m]
t . To do so we need

to introduce the notation for the sample handling (i.e. independent trajectories) and to all the
corresponding estimates of the functions.

Step 2 - Monte-Carlo simulation

Given a number N , let

X(n) =
(
X

(n)
1 , . . . , X

(n)
T

)
∈ Rd×T

denote independent trajectories of the process X, for n = 1, 2, . . . , N . Each simulation has the

fixed starting point X
(n)
0 = X0 ∈ Rd×1. Define

Z
(n)
t := ft

(
X

(n)
0 , . . . , X

(n)
t

)
and let

Ẑt =

 Z
(1)
t
...

Z
(N)
t

 ∈ RN×1.

This column vector consists simply of the values at time t of all simulated trajectories of the process
Z. Define also

V
(m,N)
t = Lin


 qkt (X(1))

...

qkt (X(N))

 : k = 1, . . . , km

 ⊂ RN×1

and
P

(m,N)
t = Proj

V
(m,N)
t

: RN×1 −→ RN×1
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with respect to the inner product 〈x,y〉N , where 〈x, y〉 denotes the standard scalar product. Note
that  emt (X(1))

...

emt (X(N))

 ∈ RN×km

and

V
(m,N)
t = Lin

the columns of

 emt (X(1))
...

emt (X(N))


 ⊂ RN×1.

Next, we want to approximate stopping times τ
[m]
t defined similarly as in (5.54). To do so, we

define the approximative stopping times, τn,m,Nt by the formula

τn,m,NT = T,

τn,m,Nt = t1{
Z

(n)
t ≥

∏
n

[
P

(m,N)
t (Ẑ

τ
n,m,N
t+1

)

]} + τn,m,Nt+1 1{
Z

(n)
t <

∏
n

[
P

(m,N)
t (Ẑ

τ
n,m,N
t+1

)

]},
for t = 1, . . . , T − 1,

where ∏
n

: RN×1 3

 x1
...
xN

 7→ xn ∈ R.

Then, for some α
(m,N)
t ∈ Rkm×1 we have

P
(m,N)
t



Z

(1)

τ1,m,Nt+1

...

Z
(N)

τN,m,Nt+1


 =

 emt (X(1))
...

emt (X(N))

α(m,N)
t .

Let A
(m,N)
t be the (km × km)-Gram matrix associated with the columns of the matrix emt (X(1))

...

emt (X(N))

 ,
that is

A
(m,N)
t =

1

N

 emt (X(1))
...

emt (X(N))


∗  emt (X(1))

...

emt (X(N))

 .
This is simply the Gram matrix estimator for the given sample.
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We know that α
(m,N)
t is a solution of the equation

A
(m,N)
t α

(m,N)
t =

1

N

 emt (X(1))
...

emt (X(N))


∗

Z

(1)

τ1,m,Nt+1

...

Z
(N)

τN,m,Nt+1

 .
By the Law of Large Numbers A

(m,N)
t

a.s.−→ Amt as N → ∞, and hence for sufficiently large N the

matrix A
(m,N)
t is invertible (almost surely). In this case

α
(m,N)
t =

1

N

(
A

(m,N)
t

)−1

 emt (X(1))
...

emt (X(N))


∗

Z

(1)

τ1,m,Nt+1

...

Z
(N)

τN,m,Nt+1

 .
For convenience we shall write

αm =
(
αm1 , . . . , α

m
T−1

)
, α(m,N) =

(
α

(m,N)
1 , . . . , α

(m,N)
T−1

)
.

Both objects are km × (T − 1)-matrices.

Step 3 - Showing the convergence

Before showing that α
(m,N)
t converges to αmt and consequently, 1

N

∑N
n=1 Z

(n)

τn,m,Nt

converges to

E
[
Z
τ
[m]
t

]
, we will introduce some additional notation. Let

Bt := {(am, z, x) : zt < emt (x)amt } ⊂ Rkm×(T−1) × RT × Rd×T

for t = 1, . . . , T − 1, where am = (am1 , . . . , a
m
T−1), z = (z1, . . . , zT ), and x = (x1, . . . , xT ). By Bc

t we
will denote the complement of Bt. We define an auxiliary function

Ft : Rkm×(T−1) × RT × Rd×T −→ R,

by recursion:

FT (am, z, x) = zT ,

Ft(a
m, z, x) = zt1Bct + Ft+1(am, z, x)1Bt , t = 1, . . . , T − 1.

Since 1C∩D = 1C1D for any two sets C and D, it is easy to see that

Ft(a
m, z, x) = zt1Bct +

T−1∑
s=t+1

zs1Bt∩...∩Bs−1∩Bcs + zT1Bt∩...∩BT−1

for t = 1, . . . , T − 1. Moreover

Ft(a
m, z, x) is independent of am1 , . . . , a

m
t−1;

Ft(α
m, Z,X) = Z

τ
[m]
t

;

Ft(α
(m,N), Z(n), X(n)) = Z

(n)

τn,m,Nt

.
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For t = 2, . . . , T , we define also three other auxiliary functions:

Gt(a
m, z, x) = Ft(a

m, z, x)emt−1(x);

φt(a
m) = E[Ft(a

m, Z,X)];

ψt(a
m) = E[Gt(a

m, Z,X)].

Using this notation one can see that for t = 1, . . . , T − 1:

αmt = (Amt )−1ψt+1(αm); (5.55)

α
(m,N)
t = (A

(m,N)
t )−1 1

N

N∑
n=1

Gt+1(α(m,N), Z(n), X(n)). (5.56)

The following estimate is a higher-dimensional counterpart of Lemma 3.1 in [48].

Lemma 5.3.4. With the above notation, we get

|Ft(a, z, x)− Ft(ã, z, x)| ≤
T∑
s=t

|zs|

[
T−1∑
s=t

1{|zs−ems (x)ãs|≤|ems (x)|‖ãs−as‖}

]
, (5.57)

where 1 ≤ t ≤ T − 1, a = (a1, . . . , aT−1) ∈ Rkm×(T−1), ã = (ã1, . . . , ãT−1) ∈ Rkm×(T−1), z ∈ RT
and x ∈ Rd×T .

Proof. Let B̃t = {zt < emt (x)ãt}. Note first that

|1Bt − 1B̃t | = 1Bct∩B̃t
+ 1Bt∩B̃ct

≤ 1{|zt−emt (x)ãt|≤|emt (x)|‖ãt−at‖}.

Moreover

|1A1∩A2 − 1C1∩C2 | = |1A11A2 − 1C11C2 |
= |1A11A2 − 1A11C2 + 1A11C2 − 1C11C2 |
≤ 1A1 |1A2 − 1C2 |+ 1C2 |1A1 − 1C1 |
≤ |1A1 − 1C1 |+ |1A2 − 1C2 |,

for any A1, A2, C1, C2. Consequently

|1Bt∩...∩Bs−1∩Bcs − 1B̃t∩...∩B̃s−1∩B̃cs
| ≤

s−1∑
u=t

|1Bu − 1B̃u |+ |1Bcs − 1B̃cs
|

=
s∑
u=t

|1Bu − 1B̃u |,

because |1Bcs − 1B̃cs
| = 1Bcs∆B̃cs

= 1Bs∆B̃s = |1Bu − 1B̃u |, where ∆ denotes the symmetric difference
of sets. Similarly

|1Bt∩...∩BT−1
− 1B̃t∩...∩B̃T−1

| ≤
T−1∑
u=t

|1Bu − 1B̃u |,
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Therefore

|Ft(a, z, x)− Ft(ã, z, x)| =
∣∣∣zt(1Bt − 1B̃t)

+
T−1∑
s=t+1

zs(1Bt∩...∩Bs−1∩Bcs − 1B̃t∩...∩B̃s−1∩B̃cs
)

+zT (1Bt∩...∩BT−1
− 1B̃t∩...∩B̃T−1

)
∣∣∣

≤

(
T∑
s=t

|zs|

)(
T−1∑
s=t

|1Bs − 1B̃s |

)
,

as needed.

The next lemma is a direct extension of Lemma 3.2 from [48].

Lemma 5.3.5. Let P[emt (X)αmt = Zt] = 0, for t ∈ {1, . . . , T − 1}. With the above notations and
assumptions

lim
N→∞

α
(m,N)
t

a.s.
= αmt ,

for t ∈ {1, . . . , T − 1}.

Proof. We know that A
(m,N)
t

a.s.−→ A
(m)
t because of the Law of Large Numbers. Hence, in view of

(5.55) and (5.56), we need to prove that:

1

N

N∑
n=1

Gt(α
(m,N), Z(n), X(n))

a.s.−→ ψt(α
(m)).

We use induction on t starting at T − 1. For t = T − 1, we have Gt+1(am, z, x) = zT e
m
T−1(x), so the

statement is true as the Law of Large Numbers implies that

1

N

N∑
n=1

Z
(n)
T emt (X(n))

a.s.−→ E[ZT e
m
T (X)],

which is what we need. Assume that the statement is true for t. The Law of Large Numbers implies
that

1

N

N∑
n=1

Gt(α
m, Z(n), X(n))

a.s.−→ ψt(α
m),

so it suffices to prove that limN→∞GN = 0, where

GN =
1

N

N∑
n=1

(
Gt(α

(m,N), Z(n), X(n))−Gt(αm, Z(n), X(n))
)
.

We have

|GN | ≤
1

N

N∑
n=1

|emt−1(X(n))||Ft(α(m,N), Z(n), X(n))− Ft(αm, Z(n), X(n))|

≤ 1

N

N∑
n=1

|emt−1(X(n))|

(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WI(s,N)

)
,
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where

WI(s,N) = {|Z(n)
s − αms ems (X(n))| ≤ |α(m,N)

s − αms ||ems (X(n))|}.

For s = t, . . . , T − 1

α(m,N)
s

a.s.−→ αms , N →∞.

Let

WII(s, ε) = {{|Z(n)
s − αms ems (X(n))| ≤ ε|ems (X(n))|}},

WIII(s, ε) = {|Zs − αms ems (X)| ≤ ε|ems (X)|}.

So ∀ ε > 0

lim sup |GN |
a.s.
≤ lim sup

1

N

N∑
n=1

[
|emt−1(X(n))|

(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WII(s,ε)

)]
a.s.
= E

[
|emt−1(X)|

(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WIII(s,ε)

)]
,

The last equality follows from the Law of Large Numbers. If ε → 0, we get convergence to zero,
because of the probability assumption: if A,B, Y ≥ 0 and P(A = 0) = 0, then as ε↘ 0∫

{A≤εB}
Y dP↘

∫
⋂
ε>0{A≤εB}

Y dP =

∫
{A=0}

Y dP = 0.

Finally, we are ready to present Theorem 5.3.6, which is a direct extension of Theorem 3.2 from
[48].

Theorem 5.3.6. Let P[emt (X)αmt = Zt] = 0, for t ∈ {1, . . . , T − 1}. With the above notations and
assumptions

1

N

N∑
n=1

Z
(n)

τn,m,Nt

a.s.−→ E
[
Z
τ
[m]
t

]
, as N →∞,

for t = 1, . . . , T, provided that

P(emt (X)αmt = Zt) = 0.

Proof. The thesis is equivalent to the statement

1

N

N∑
n=1

Ft(α
(m,N), Z(n), X(n))

a.s.−→ φt(α
(m)).

As before we use induction on t starting at T − 1. For t = T − 1, we have Ft+1(am, z, x) = zT ,
so the statement is true as the the Law of Large Numbers implies that

1

N

N∑
n=1

Z
(n)
T

a.s.−→ E[ZT ],
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which is what we need. Assume that the statement is true for t. The Law of Large Numbers implies
that

1

N

N∑
n=1

Ft(α
m, Z(n), X(n))

a.s.−→ φt(α
m),

so it suffices to prove that limN→∞ FN = 0, where

FN =
1

N

N∑
n=1

(
Ft(α

(m,N), Z(n), X(n))− Ft(αm, Z(n), X(n))
)
.

We have

|FN | ≤
1

N

N∑
n=1

|Ft(α(m,N), Z(n), X(n))− Ft(αm, Z(n), X(n))|

≤ 1

N

N∑
n=1

(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WI(s,N)

)
.

Now for any ε > 0

lim sup |FN |
a.s.
≤ lim sup

1

N

N∑
n=1

[(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WII(s,ε)

)]
a.s.
= E

[(
T∑
s=t

|Z(n)
s |

)(
T−1∑
s=t

1WIII(s,ε)

)]
,

The last equality follows from the Law of Large Numbers. If ε → 0, we get convergence to zero,
which is precisely what the conclusion of the theorem asserts.

Theorems 5.3.3 and 5.3.6 provide a recipe for approximation of E[Zτ1 ] and hence also

U0 = max (Z0,E[Zτ1 ]) ,

as required.



Appendix A

Appendix

A.1 Proofs deferred to the Appendix

Proof of Proposition 2.1.3. Let s, t ∈ T, s > t. Using the convention 0 · ±∞ = 0 and by
Beppo-Levi monotone convergence theorem for X,Y ∈ L̄0 such that X,Y ≥ 0 and λ ∈ L0

t such
that λ ≥ 0 we get

E[λX|Ft] = λE[X|Ft]; (A.1)

E[X|Ft] = E[E[X|Fs]|Ft]; (A.2)

E[X|Ft] + E[Y |Ft] = E[X + Y |Ft]. (A.3)

Moreover we know that for any A ∈ Ft and X ∈ L̄0 we get

E[X|Ft] = 1AE[X|Ft] + 1AcE[X|Ft] and E[−X|Ft] ≤ −E[X|Ft]. (A.4)

The last inequality is the result of the convention ∞−∞ = −∞.1 Now let X,Y ∈ L̄0.

1) Let λ ∈ L0
t . If λ ≥ 0 then using (A.1) we get

E[λX|Ft] = E[(λX)+|Ft]− E[(λX)−|Ft] = E[λX+|Ft]− E[λX−|Ft] =

= λE[X+|Ft]− λE[X−|Ft] = λE[X|Ft].

Now for general λ ∈ L0
t using (A.4) we get

E[λX|Ft] = E[1{λ≥0}λX + 1{λ<0}λX|Ft] = 1{λ≥0}λE[X|Ft] + 1{λ<0}(−λ)E[−X|Ft] ≤
≤ 1{λ≥0}λE[X|Ft] + 1{λ<0}λE[X|Ft] = λE[X|Ft].

3) On the set {E[X|Ft] = −∞} ∪ {E[Y |Ft] = −∞} the inequality is trivial due to the convention
∞−∞ = −∞. On the other hand the set {E[X|Ft] > −∞}∩{E[Y |Ft] > −∞} could be represented
as the union of the sets {E[X|Ft] > n}∩{E[Y |Ft] > n} for n ∈ Z on which the inequality becomes
the equality.

1We know that ∞ ≤ −(−∞) and on the set {E[−X|Ft] 6=∞} inequality in (A.4) is trivial.
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2) Using 1) and 3) we get

E[E[X|Fs]|Ft] = E[E[X+|Fs]− E[X−|Fs]|Ft]
≥ E[E[X+|Fs]|Ft] + E[−E[X−|Fs]|Ft]
= E[X+|Ft]− E[X−|Ft]
= E[X|Ft].

The proof for X ∈ L0, could also be found in [44, Lemma 3.4].

Proof of Proposition 2.2.4. Let X = L∞ and f : X → L̄0.

1) Let X,Y ∈ X , λ ∈ Xt (0 ≤ λ ≤ 1). We get

f(λX + (1− λ)Y ) ≥ f(λX) + f((1− λ)Y ) = λf(X) + (1− λ)f(Y ).

2) Let λ = 1
2 . We get

f(X + Y ) = 2
1

2
f(X + Y ) = 2f(

X

2
+
Y

2
) ≤ f(X) + f(Y ).

3) From (MI), (tCA) and (tA), for any X ∈ L∞, we get f(X) ∈ Xt, so

f(λX + (1− λ)Y ) = λf(X) + (1− λ)f(Y ) + f(λ(X − f(X)) + (1− λ)(Y − f(Y ))

≤ λf(X) + (1− λ)f(Y ) + [f(X − f(X)) ∨ f(Y − f(Y ))]

= λf(X) + (1− λ)f(Y ).

4) Let A ∈ Ft. We get

1Af(1AX) = 1Af(1AX + 1Ac ess inf X) ≤ 1Af(X) ≤ 1Af(1AX + 1Ac ess supX) = 1Af(1AX).

5) Let A ∈ Ft and X ∈ X . We get

1Af(X) = 1A(1Af(X) + 1Acf(0)) ≥ 1Af(1AX + 1Ac0) = 1Af(1AX)

1Af(X) = 1Af(1A(1AX) + 1AcX) ≤ 1Af(1AX) + 1A∩Acf(X) = 1Af(1AX).

Proof of Proposition 2.2.13. We will show the proof for ϕ+. Let t ∈ T.

(Adaptivity) It is easy to note that for any X ∈ L̄0 and A ∈ Ft we get[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]
∈ L̄0

t . (A.5)

Indeed, for any X ∈ L̄0, ess inf of the set of Ft-measurable random variables {ϕt(Y )}Y ∈Y+
A (X) is

Ft-measurable (see [97, Appendix A]), which implies (A.5) for any A ∈ Ft. Thus, ϕ+
t (X) ∈ L̄0

t .

(Monotonicity) If X ≥ X ′ then for any A ∈ Ft we get Y+
A (X) ⊆ Y+

A (X ′). Thus, for any A ∈ Ft we
get

1A ess inf
Y ∈Y+

A (X)
ϕt(Y ) ≥ 1A ess inf

Y ∈Y+
A (X′)

ϕt(Y ),
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which implies ϕ+
t (X) ≥ ϕ+

t (X ′).

(Locality) Let B ∈ Ft and X ∈ L̄0. In (2.10) it is enough to consider A ∈ Ft, such that Y+
A (X) 6= ∅,

as otherwise we get ϕ+
t (X) ≡ ∞. For any such A ∈ Ft, we get

1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ) = 1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ). (A.6)

Indeed, let us assume that Y+
A (X) 6= ∅. As Y+

A (X) ⊆ Y+
A∩B(X), we get

1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ) ≥ 1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ).

On the other hand for any Y ∈ Y+
A∩B(X) and any fixed Z ∈ Y+

A (X) (note that Y+
A (X) 6= ∅), we

get
1BY + 1BcZ ∈ Y+

A (X).

Thus, using locality of ϕt, we get

1A∩B ess inf
Y ∈Y+

A∩B(X)
ϕt(Y ) = 1A∩B ess inf

Y ∈Y+
A∩B(X)

1Bϕt(1BY + 1BcZ) ≥ 1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ),

which proves (A.6). Next, it is easy to see that Y+
A∩B(X) = Y+

A∩B(1BX) and thus

1A ess inf
Y ∈Y+

A∩B(X)
ϕt(Y ) = 1A ess inf

Y ∈Y+
A∩B(1BX)

ϕt(Y ). (A.7)

Combining (A.6), (A.7) and the fact that Y+
A (X) 6= ∅ implies Y+

A (1BX) 6= ∅, we get

1Bϕ
+
t (X) = 1B ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A∩B(1BX)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A ess inf

Y ∈Y+
A (1BX)

ϕt(Y ) + 1Ac(∞)
]

= 1Bϕ
+
t (1BX).

(Extension) If X ∈ X , then for any A ∈ Ft, we get X ∈ Y+
A (X). Thus,

ϕ+
t (X) = ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= ess inf
A∈Ft

[
1Aϕt(X) + 1Ac(∞)

]
= ϕt(X).

As above results are true for any t ∈ T, we have proved that ϕ+ is an extension of ϕ. The proof
for ϕ− is analogous. Let us now show (2.12) for ϕ+.
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Let ϕ̂ be an extension of ϕ. Let X ∈ L̄0 and t ∈ T. Due to monotonicity and locality of ϕ̂t, for
any A ∈ Ft and Y ∈ Y+

A (X) we get 1Aϕ̂t(X) ≤ 1Aϕ̂t(Y ). Thus, recalling that ess inf ∅ = ∞, we
get

ϕ̂t(X) ≤ 1A ess inf
Y ∈Y+

A (X)
ϕ̂t(Y ) + 1Ac(∞) = 1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞). (A.8)

As (A.8) is true for any A ∈ Ft, we get

ϕ̂t(X) ≤ ess inf
A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= ϕ+
t (X).

The proof of the second inequality is analogous.

Proof of Proposition 2.2.15. Let ϕt : L0 → L̄0
t be tUM. We will show 1) and 2) just for ϕ̂t.

The proof for ϕ̄t is analogous, knowing that ϕ̂t satisfies 1) and 2).

1) For any X ∈ X̂ and n ∈ Z, we get X ∨ n ∈ X , so the map is properly defined. The properties
(tTI) and (tIP) are always satisfied, as X ⊆ L̄0. (tA) and (MI) follows immediately. Let us prove
(tL). Let A ∈ Ft. Without loss of generality, we could assume that n < 0. We get

1Aϕ̂t(1AX) = 1A lim
n→−∞

ϕt

(
(1AX) ∨ n

)
= 1A lim

n→∞
ϕt

(
1A(X ∨ n)

)
= lim

n→−∞
1Aϕt

(
1A(X ∨ n)

)
= lim

n→−∞
1Aϕt

(
X ∨ n

)
= 1A lim

n→−∞
ϕt

(
X ∨ n

)
= 1Aϕ̂t(X),

where we use appropriately the convention (2.4), if needed.

2) Assume that ϕt is (tCA) and let X ∈ X̂ . First, we will prove cash additivity of ϕ̂t for m ∈ Xt.
Without loss of generality, we could assume that n < 0. We know that

ϕ̂t(X +m) = lim
n→−∞

ϕt

(
(X +m) ∨ n

)
= lim

n→−∞
ϕt

(
X ∨ (n−m) +m

)
= lim

n→−∞
ϕt

(
X ∨ (n−m)

)
+m.

Thus, it is enough to show that

ϕ̂t(X) = lim
n→−∞

ϕt

(
X ∨ (n−m)

)
. (A.9)

For any k ∈ N, we have that

1{−k<m<k}

[
X ∨ (n− k)

]
≤ 1{−k<m<k}

[
X ∨ (n−m)

]
≤ 1{−k<m<k}

[
X ∨ (n+ k)

]
.

Thus, using the fact that ϕt is (tL), we get

1{−k<m<k}ϕ̂t(X) = 1{−k<m<k} lim
n→∞

ϕt

(
X ∨ (n−m)

)
.

Since m ∈ Xt and X ⊆ L0, we have that P[{−k < m < k}]→ 1 as k →∞ which proves the equality
(A.9).
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Now, let m ∈ X̂ . Using the above result, the fact that ϕ̂t is (tL) and because for any k ∈ Z we
get 1{m>k}m ∈ Xt, we deduce that

1{m>−∞}ϕ̂t(X +m) = 1{m>−∞}(ϕ̂t(X) +m).

On the other hand

1{m=−∞}ϕ̂t(X +m) = 1{m=−∞} lim
n→−∞

ϕt((−∞) ∨ n) = 1{m=−∞} lim
n→−∞

(ϕt(0) + n)

= 1{m=−∞}(−∞) = 1{m=−∞}(ϕ̂t(X) +m).

Combining those above two equalities, (tCA) of ϕ̂t follows immediately.

3) We know that L∞ ⊆ X . IfX ∈ L∞, then there exists n,m ∈ Z such thatm∧(X∨n) = m∧X = X
which concludes the proof both for ϕ̂t and ϕ̄t. Now, let X ∈ X and let us assume that ϕt satisfies
(FP). Put Xn := X ∨ n for n ∈ Z. The sequence {X}n∈Z is X -dominated by X. Moreover
Xn

a.s.−−→ X. Hence, we have that

ϕ̂t(X) = lim
n→−∞

ϕt(Xn) ≤ lim sup
n→−∞

ϕt(Xn) ≤ ϕt(X) ≤ lim
n→−∞

ϕt(Xn) = ϕ̂t(X),

where the last inequality is the consequence of the fact that for any n ∈ N we have X ≤ Xn, which
implies ϕt(X) ≤ ϕt(Xn).

Now, let us assume that ϕt satisfies (LP). We know that (LP) implies (FP), so for X ∈ X we
could write

ϕ̄t(X) = lim
m→∞

ϕt(X ∧m).

Put Xm := X ∧m, for m ∈ N. The sequence {Xm}m∈N is X -dominated by X and Xm
a.s.−−→ X,

which implies ϕ̄t(X) = ϕt(X).

A.2 Classical definition of time-consistency

The unifying approach of time consistency for dynamic monetary risk measures, based on so called
benchmark set, was suggested in [140] and used e.g. in [2, 7, 36, 57]. The reformulation for processes
can be found e.g. in [1, 36, 17]. For simplicity, in this subsection (if not stated otherwise) we will
assume that X = L∞. Before introducing time-consistency, we need to recall the definition of
benchmark set, which will define a specific subset of financial positions (test set) to which we could
compare our position (see [2] for more details).

Definition A.2.1. We will call Y = {Yt}t∈T (Yt ⊆ X ) a benchmark set if for any t ∈ T we get

0 ∈ Yt and Yt + R = Yt.

We are now ready to present the definition of (benchmark) time consistency.

Definition A.2.2. Let ϕ be dUM and let Y be a benchmark set. We will say that ϕ is acceptance
(resp. rejection) time consistent with respect to the benchmark set Y, if

ϕs(X) ≥ ϕs(Y ) (resp. ≤) =⇒ ϕt(X) ≥ ϕt(Y ) (resp. ≤), (A.10)

for all X ∈ X and Y ∈ Ys.
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Similar definition could be obtained for the space of adapted stochastic processes with additional
assumptions that values of X and Y must coincide up to time t (see [1] for details).

Intuitively, the more elements in the family {Ys}s∈T the stronger the degree of time consistency
of ϕ. Let us now introduce various types of time-consistency, which were studied in the literature:

Definition A.2.3. Let ϕ be dUM. We say that ϕ is:

• Weakly acceptance (resp. rejection) benchmark time consistent, if it it acceptance (resp.
rejection) time consistent with respect to Y = {Yt}t∈T, where Yt = R.

• Middle acceptance (resp. rejection) benchmark time consistent, if it it acceptance (resp. re-
jection) time consistent with respect to Y = {Yt}t∈T, where Yt = Xt.

• Strongly benchmark time consistent, if it is acceptance (or rejection) time consistent with
respect to Y = {Yt}t∈T, where Yt = X .2

In L∞ framework, there are many equivalent reformulations for time consistency. Let us mention
those, which are connected to the dynamic programming.

Proposition A.2.4. Let ϕ be a monetary dRM and let X = L∞. Then ϕ is

• Weakly acceptance (resp. rejection) benchmark time consistent, if and only if for s, t ∈ T,
s > t, X ∈ X ,

ϕs(X) ≥ 0 (resp. ≤) =⇒ ϕt(X) ≥ 0 (resp. ≤);

• Middle acceptance (resp. rejection) benchmark time consistent, if and only if for s, t ∈ T,
s > t, X ∈ X .

ϕt(−ϕs(X)) ≥ ϕt(X) (resp. ≤);

• Strongly benchmark time consistent, if and only if for s, t ∈ T, s > t, X ∈ X .

ϕt(−ϕs(X)) = ϕt(X);

for s, t ∈ T, s > t, X ∈ X .

A.3 Some results from convex analysis

We will present here some results from a functional (and convex) analysis. For a good general sur-
vey about Lp-spaces, definition of locally convex topological spaces, Banach spaces, Hahn-Banach
theorem, etc., see [77, Appendix A.7]. Moreover, we will also present here results for a static case,
i.e. we will consider maps of the form f : X → R̄. For the Ft-conditional equivalents of results
from this section, cf. [68, 67, 82] and references therein.

Definition A.3.1. Let X be a topological vector space (on R). We will call

X ∗ := {l : X → R | l is continuous and linear}

a (topological) dual space of X .

2Note that in this case, the inequality is symmetric, so acceptance and rejection time consistency are the same.
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Remark A.3.2. In Definition A.3.1 we have assumed that X is embedded with a certain topology
and the dual space is defined wrt. to this topology. Note that with different topologies, we could
obtain different dual spaces of X . For example L∞ (with topology induced by ‖ · ‖∞ norm) is
the dual of L1, but the converse is generally not true. However, if we endow L∞ with the weak*
topology3, then L1 is the dual of L∞ [77].

Remark A.3.3. For p ∈ [1,∞), the dual of Lp space embedded with ‖ · ‖p norm is the Lq space
(with ‖ · ‖q norm), where q denotes the conjugate index of p (i.e. 1

p + 1
q = 1).

Definition A.3.4. The Fenchel-Legendre transform of a function f : X → R∪{+∞} is the function
f∗ on X ∗, defined as

f∗(l) = sup
X∈X

(l(X)− f(X))

Remark A.3.5. The function f∗ is proper (P2), convex (CV) and lower semi-continuous (LSC) as
the supremum of affine functions. Moreover, if f is (CV) and (P2), then we call f∗ the conjugate
of f . Note that in concave framework, for −f we obtain the similar result.

Theorem A.3.6. [Fenchel-Moreau Theorem] Let X be a locally convex vector space. Let f be
adapted (A), proper (P2), convex (CV) and lower semi-continuous (LSC) wrt. weak* topology.
Then f = f∗∗, where f∗∗ denote biconjugate of f .

Again, we refer to [77, Appendix A.7] and references therein for more classical results about
dual spaces, etc. (Banach Alaoglu Theorem, James Theorem, Dunford-Pettis Theorem, etc.)

A.4 Subsidiary results

Example A.4.1 (Construction of X̃ -extension for any tUM and dUM defined on X ). Let X , X̃ ⊆ L̄0

be such that X ⊂ X̃ . Let ϕt : X → L̄0 be tUM. We will show, how to construct the exemplary
L̄0-extension of ϕt.

Proof. We will show, how, for a given ϕt : X → L̄0
t tUM, construct the exemplary L̄0-extension of

ϕt (note, that such extension will be valid for any X̃ ⊆ L̄0). In fact we will show how to construct
two L̄0-extensions, which usually do not coincide. For X ∈ L̄0, let

At(X) := {A ∈ Ft | 1AX ∈ X , P[A] > 0}.

First, let us show that If At(X) 6= ∅, then for any X ∈ X and n ∈ N, there exists An ∈ At, such
that

sup
A∈At(X)

P[A \An] ≤ 1

n
. (A.11)

On the contrary let us assume that (A.11) is not true for some n ∈ N. Let A0
n ∈ At (any element

from At). There exists A ∈ At(X) such that P[A\A0
n] > 1

n . We put A1
n = A0

n∪A. It is easy to note
that A1

n ∈ At(X). Again, There exists A′ ∈ At such that P[A′ \ A1
n] > 1

n . We put A2
n = A1

n ∪ A′

3i.e. σ(L∞, L1), the initial topology with respect to the dual space X ∗ see [77] for details
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and again note that A2
n ∈ At(X). Doing similar operations we could obtain the set An+1

n ∈ At(X).
Because the family {Ain}n+1

i=1 is ascending, we get

P[An+1
n ] = P[An+1

n \Ann] + P[Ann] = . . . =
n+1∑
i=1

P[Ain \Ai−1
n ] + P[A0

n] > 1.

This contradicts the assumption that P is a probability measure. Thus, (A.11) must by true.
Now let {An}n∈N be a family of sets An ∈ At(X) satisfying (A.11). It is easy to see that

sup
A∈At(X)

P[A \
⋃
n∈N

An] = 0. (A.12)

Let A′1 := A1 and A′n := (An \
⋃
m≤n−1Am) for n ≥ 2. Let K = {n ∈ N | P[A′n] > 0}. For any

k ∈ K, we get Ak ∈ At(X) and for any k1, k2 ∈ K, such that k1 6= k2, we get P[Ak1 ∩ Ak2 ] = 0.
Moreover, if At(X) 6= ∅, then 1 ∈ K and consequently, using (A.12), we get

sup
A∈At(X)

P[A \
⋃
k∈K

A′k] = 0. (A.13)

Thus, we have shown that for any X ∈ L̄0, such that At(X) 6= ∅, there exists a family {AXi }
NX
i=1,

where NX ∈ N ∪ {∞}, such that for i, j ∈ N, i < j ≤ NX , we get

AXi ∈ At(X), AXi ∩AXj = ∅, sup
A∈At(X)

P[A \
NX⋃
k=1

AXk ] = 0. (A.14)

Moreover, for X ∈ L̄0, such that At(X) = ∅, we put NX = 1 and AX1 = ∅. Let

BX
t :=

NX⋃
i=1

AXi . (A.15)

We know that for any X ∈ L̄0, the set BX
t is Ft measurable (note that we might get BX

t 6∈ At).
Let ϕ1

t : L̄0 → L̄0
t and ϕ2

t : L̄0 → L̄0
t be defined by

ϕ1
t (X)(ω) =


∑NX

i=1 1AXi
ϕ(1AXi

X)(ω) if ω ∈ BX
t

−∞ if ω ∈ BX+

t \BX
t ,

∞ otherwise,

(A.16)

ϕ2
t (X)(ω) =


∑NX

i=1 1AXi
ϕ(1AXi

X)(ω) if ω ∈ BX
t

∞ if ω ∈ BX−
t \BX

t ,
−∞ otherwise,

(A.17)

Let us show that ϕ1 is an L̄0-extension of ϕ.

(Monotonicity) Let t ∈ T and X,Y ∈ L̄0, be such that X ≥ Y . We will prove that

ϕ1
t (X) ≥ ϕ1

t (Y ) (A.18)
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First of all, it is easy to see4, that for any Z1, Z2 ∈ L̄0

At(Z1) ⊆ At(Z2)⇒ BZ1
t ⊆ B

Z2
t (A.19)

Indeed, using (A.15), if At(Z1) ⊆ At(Z2), then for i = 1, 2, . . . , NZ1 , we get AZ1
i ∈ At(Z2). Now,

by (A.14) we get P[AZ1
i \B

Z2
t ] = 0 for any i = 1, 2, . . . , NZ1 , so P[BZ1

t \B
Z2
t ] = 0.

Due to locality of ϕ we get (A.18) on BX
t ∩ BY

t . Next, it is easy to see that At(X) ⊆ At(X+)
(note that Lp is the Frechet lattice [13] for p ∈ {0, 1,∞} and 0 ∈ X ). Thus, using (A.19), we
get BX

t ⊆ BX+

t . Moreover, using the same arguments, we get BX+

t ⊆ BY +

t , and consequently
BX
t ⊆ BY +

t . Because of that, and the fact that inequality (A.18) is trivial on the set BY +

t \ BY
t ,

we get (A.18) on BX
t \BY

t , and consequently on BX
t .

Next, is is easy to note, that for any i ≤ NX+
and j ≤ NX , using the fact that X ≥ Y , we get

1
AX

+
i \AXj

X 6∈ X ⇒ 1
AX

+
i \AXj

Y 6∈ X .

Thus, BX+

t \BX
t ⊆ BY +

t \BY
t , and consequently (A.18) is true on BX+

t .
Combining it with the fact, that (A.18) is trivial on Ω \BX+

t , we obtain monotonicity.

(Locality) Let t ∈ T, A ∈ Ft and X ∈ L̄0. It is easy to note that At(X) ⊆ At(1AX). Using (A.19),
we get BX

t ⊆ B1AX
t . On the other hand if only P[A ∩ A1AX

i ] > 0, then A ∩ A1AX
i ∈ At(X), so we

could state that A ∩A1AX
i ⊆ Bt(X). Combining those observations, we get

A ∩BX
t =

NX⋃
i=1

A ∩AXi =

N(1AX)⋃
j=1

NX⋃
i=1

A ∩AXi ∩A
1AX
j =

N(1AX)⋃
j=1

A ∩A1AX
j = A ∩B1AX

t (A.20)

Thus, using the fact that ϕ is local and (A.20), we get

1A∩BXt ϕ
1
t (X) =

NX∑
i=1

1A∩AXi
ϕ(1AXi

X) =

N(1AX)∑
j=1

NX∑
i=1

1
A∩AXi ∩A

(1AX)
j

ϕ(1AXi
X)

=

N(1AX)∑
j=1

1
A∩A(1AX)

j

ϕ(1
A

(1AX)
j

X) = 1A∩BXt ϕ
1
t (1AX). (A.21)

We also get

1A∩(Ω\BXt )ϕ
1
t (X) = 1

A∩(BX
+

t \BXt )
(−∞) + 1

A∩(Ω\BX+
t )

(∞)

= 1
A∩(B

(1AX)+

t \B(1AX)
t )

(−∞) + 1
A∩(Ω\B(1AX)+

t )
(∞)

= 1A∩(Ω\BXt )ϕ
1
t (1AX). (A.22)

Combining (A.21) and (A.22), we obtain locality.

(Extension) Of course if X ∈ Lp, then we get BX
t = Ω and in fact it is enough to consider AX1 = Ω.

Thus, we get ϕ1
t (X) = ϕt(1ΩX) = ϕt(X). This concludes the proof, that ϕ1 is the extension of ϕ.

The proof for ϕ2 is analogous.

4We shall write A ⊆ B, if P[A \B] = 0.
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List of symbols

(t·), t· The prefix t denotes the Ft-conditional version of the property, family, etc. (see e.g. page 10)
(d·), d· The prefix d denotes the dynamic version of the property, family, etc. (see e.g. page 14)

Acronyms - properties

(A) 10 Adapted
(SBA) 10 Subadditive
(SPA) 10 Superadditive
(AD) 10 Additive
(N) 10 Normalized
(M) 10 Monotone
(MI) 10 Monotone increasing
(MD) 10 Monotone decreasing
(P) 10 Proper
(P1) 10 Proper (in concave framework)
(P2) 10 Proper (in convex framework)
(F) 10 Finite
(L) 10 Local
(IP) 10 Independent of the past
(TI) 10 Translation invariant
(CA) 10 Cash additive
(CCA) 10 Counter cash additive
(QCC) 10 Quasi-concave
(CC) 10 Concave
(QCV) 10 Quasi-convex
(CV) 10 Convex
(SI) 10 Scale invariant
(PH) 10 Positively homogeneous
(LP) 12 Lebesgue Property
(FP) 12 Fatou property
(LI) 12 Law-invariant
(USC) 10 Upper semi-continous
(LSC) 10 Lower semi-continous
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Acronyms - families of maps

UM 13 Utility measure
RM 13 Risk measure
PM 13 Performance Index
AI 13 Acceptability Index
LGI 67 Limit Growth Index
CE 13 Certainty Equivalent

Mathematical notation

ess inftX 8 Ft-condiitonal essential infimum of X
ess infi∈I Xi 8 essential upper bound (essential infimum) of family {Xi}i∈I
ess infω∈AX 8 unconditional essential infimum of X on set A
X ∨ Y 6 max(X,Y )
X ∧ Y 6 min(X,Y )
L0(Ω,G,P) 6 the set of all G measurable RVs with values in (−∞,∞)
L̄0(Ω,G,P) 6 the set of all G measurable RVs with values in [−∞,∞]

L̂p(Ω,G,P) 6 {X ∈ L̄0(Ω,G,P) | (X ∧ 0) ∈ Lp(Ω,G,P)}
Lp(G) 6 Lp(Ω,G,P); the same applies to L̄p(G) and L̂p(G)

Lpt 6 Lp(Ω,Ft,P); the same applies to L̄pt and L̂pt
Vp 6 {(Vt)t∈T | Vt ∈ Lpt , t ∈ T}
Vpln 6 {(Vt)t∈T | lnVt ∈ Lpt , Vt > 0, t ∈ T}
Vpτ 6 {(Vt)t∈T | Vt ∈ Lpt , Vt ≥ 0, and Vt = Vt∧τV , t ∈ T}, τV := inf{t ∈ T | Vt = 0}
f̂(X) 15 lim infn→−∞ f(X ∨ n)

f̄(X) 16 lim infm→∞ f̂(X ∧m)
ϕ+ 15 upper L̄0-extension of ϕ
ϕ− 15 lower L̄0-extension of ϕ
Lin{Z} 107 linear envelope of Z
〈x, y〉 109 standard scalar product
ProjV 108 projection into V
Latt(X) 103 lattice envelope of X
B(A) 6 σ-algebra of Borel measurable sets of A
C(A) 87 the set of all bounded and continuous functions f : A→ A.
‖f‖span 87 span norm of function f
‖µ‖var 91 total variation norm of measure µ
H(µ‖ν) 58 relative entropy of measures µ and ν
Ht(µ‖ν) 58 Ft-cond. relative entropy of measures µ and ν
Ac 6 closure of set A
M1 17 M1(Ω,F); the set of all probability measures on (Ω,F).
M1(P) 17 M1(Ω,F , P ); the set of all pr. meas. on (Ω,F), which are abs. cont. wrt. P

Mq
1(P ) 17 {Q ∈M1(P) | dQ

dP ∈ L
q}

M1,f (P ) 17 {Q ∈M1(P) | Q ∈ ba(F)}
ba(F) 17 the set of all finitely additive signed measures on σ-algebra F .
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