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CHAPTER 1

Basic facts

1.1. What we know so far

Standard notation: Ω,G,D ∈ topC, D – a domain.

Definition 1.1.1. Let f : Ω −→ C. We say that f is holomorphic in Ω (f ∈ O(Ω)), if for

any point a ∈ Ω there exist a power series
∞∑
n=0

an(z − a)n and 0 < r ≤ R, where R is the

radius of convergence of the series, such that f(z) =
∞∑
n=0

an(z − a)n, z ∈ B(a, r) ∩Ω. Recall

that R := sup{r > 0 : the series
∞∑
n=0

an(z − a)n is convergent uniformly in B(a, r)}.
If f ∈ O(C), then we say that f is an entire function.
If f : Ω −→ G is a bijection, and f ∈ O(Ω), f−1 ∈ O(G), then we say that f is

biholomorphic (f ∈ Bih(Ω,G)). Put Aut(Ω) := Bih(Ω,Ω). A function f ∈ Aut(Ω) is called
an automorphism of Ω.

Let Ω ∈ top Ĉ be such that ∞ ∈ Ω and let R > 0 be such that Ĉ \ B(R) ⊂ Ω. We say
that a function f : Ω −→ C is holomorphic (f ∈ O(Ω)), if:

• f ∈ O(Ω \ {∞}) and
• the function B(1/R) ∋ z 7−→ f(1/z) ∈ C is holomorphic, where 1/0 := ∞.

Remark 1.1.2. Let f(z) :=
∞∑
n=0

an(z−a)n, |z−a| < R, where R is the radius of convergence.

The following results are known:
[Remark 1.1.2−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

(a) For every z ∈ B(a,R) the complex derivative f ′(z) := lim
C∋h→0

f(z+h)−f(z)
h

exists and

f ′(z) =
∞∑
n=1

nan(z − a)n−1.

(b) The radius of convergence of the above series is equal to R.

(c) f has in B(a, r) all complex derivatives f (k)(z) and f (k)(z) =
∞∑
n=k

k!
(
n
k

)
an(z − a)n−k,

z ∈ B(a,R). In particular,
• f is real analytic as a function of two real variables, f ∈ Cω(B(a,R),C),
• an = f (n)(a)

n!
, n ∈ Z+,

5
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1. Basic facts

• f(z) = Taf(z), z ∈ B(a,R), where Taf(z) :=
∞∑
n=0

f (n)(a)
n!

(z − a)n denotes the

Taylor (1) series of f at a.
(d) (Identity principle) Let D ⊂ C be a domain, f, g ∈ O(D), A := {z ∈ D : f(z) = g(z)}.

If A has an accumulation point in D, then f ≡ g. In particular, if f ∈ O(D), f ̸≡ 0,
then points of the set f−1(0) are isolated.

(e) O(Ω) is a C-algebra.
(f) If f, g ∈ O(D), where D is a domain and g ̸≡ 0, then f/g ∈ O(D\g−1(0)). In particular,

every rational function R = P/Q, where P , Q ∈ P(C,C), Q ̸≡ 0, is holomorphic in
C \Q−1(0).

(g) The composition of holomorphic functions is holomorphic.
(h) If f ∈ Bih(D1, D2), then the mapping Aut(D1) ∋ φ 7−→ f ◦φ◦f−1 ∈ Aut(D2) is a group

isomorphism.
(i) If f ∈ O(Ω) and a ∈ Ω is such that f ′(a) ̸= 0, then there exists on open neighborhood

U ⊂ Ω of a such that V := f(U) is open and f : U −→ V is biholomorphic.
(j) If f ∈ O(Ω) and f : Ω −→ G is bijective, then f ∈ Bih(Ω,G) if and only if f ′(z) ̸= 0,

z ∈ Ω (cf. Theorem 5.2.1).

Theorem 1.1.3. Let I ⊂ R be an open interval and f ∈ Cω(I,C). Then there exist a domain
D ⊂ C and a function f̃ ∈ O(D) such that D ∩ R = I and f̃ = f on I.

[Theorem 1.1.3−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

1.2. Elementary holomorphic functions

1.2.1. Homographies.

Definition 1.2.1. Let a, b, c, d ∈ C be such that det
[
a b
c d

]
̸= 0. Then the mapping h :

Ĉ −→ Ĉ, h(z) := az+b
cz+d

is called a homography (h ∈ H) (1/∞ : 0).

Remark 1.2.2 (Basic properties). [Remark 1.2.2−→ Exer . . . . . . . . . . . . . . . ]

(a) Every homography is a homeomorphism Ĉ −→ Ĉ. The inverse of a homography is a
homography. The set of all homographies is a group (with composition). H depends on
6 real parameters.

(b) Elementary homographies:
Parameters Number of real

parameters
translation z 7−→ z + b b ∈ C 2 subgroup
rotation z 7−→ az a ∈ T 1 subgroup
homothety z 7−→ tz t > 0 1 subgroup
affine mapping z 7−→ az + b a ∈ C∗, b ∈ C 4 subgroup
inversion z 7−→ 1/z 0

(
1
)

Brook Taylor (1717–1783).
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(c) Every homography is a composition of elementary homographies. Every affine mapping
is a composition of a rotation, homothety, and translation.

(d) Every homography h is a C∞-diffeomorphism on D := C ∩ h−1(C).
(e) Every homography h is a conformal mapping on D, i.e. for every point a ∈ D and for

any C1-curves γ1, γ2 : (−ε, ε) −→ D with γ1(0) = γ2(0) = a:
• h preserves the angle measure: ∡(γ′1(0), γ′2(0)) = ∡((h ◦ γ1)′(0), (h ◦ γ2)′(0));
• h preserves the orientation: O(γ′1(0), γ′2(0)) = O((h ◦ γ1)′(0), (h ◦ γ2)′(0)).

(f)

S :=
{
z ∈ C :

∣∣∣z − p

z − q

∣∣∣ = λ
}
=

{
straight line {|z − p| = |z − q|}, if p ̸= q, λ = 1

circle C(p−λ
2q

1−λ2 ,
λ|p−q|
|1−λ2|), if p ̸= q, 0 < λ ̸= 1

.

The points p and q are symmetric with respect to S. In the case of a circle C(z0, r) this
means that the points p, q are on the same half-line starting at z0 and |p−z0||q−z0| = r2.
We assume that z0 and ∞ are symmetric by definition. Moreover, for a straight line L
we say that L ∪ {∞} is an improper circle.

(g) Conversely, every circle or straight line may be represented as a set S. In the case of the
circle C(z0, r) we take arbitrary p ∈ C\({z0}∪C(z0, r)) and set q := z0+

r2

p−z0 , λ := |p−z0|
r

.
(h) Homographies map circles onto circles. The set S is mapped onto

{
w ∈ C :

∣∣∣w − h(p)

w − h(q)

∣∣∣ = λ
∣∣∣qc+ d

pc+ d

∣∣∣
}
.

Symmetric points are mapped onto symmetric points.
(i) If h is an affine mapping, then h maps every proper circle (resp. a straight line) onto a

proper circle (resp. a straight line).
(j) If h is an inversion, then the image of S is the set

{
w ∈ C :

∣∣w−1/p
w−1/q

∣∣ = λ
∣∣ q
p

∣∣}. It implies
that:

• the image of a straight line is either a straight line (if |p| = |q|) or a circle (if
|p| ≠ |q|);

• the image of a circle is either a circle (if λ|q| ≠ |p|) or a straight line (if λ|q| = |p|).
(k) Let H+ := {x+ iy ∈ C : y > 0}. For any a ∈ H+ the homography h(z) := z−a

z−a maps H+

onto the unit disc D.
(l) For any a ∈ D, ζ ∈ T, the homography h(z) := ζha(z), where ha(z) := z−a

1−az , maps D
onto D.

(m) Let AutH(D) := {h ∈ H : h(D) = D}. Then AutH(D) = {h ∈ H : h is of the form (l)}.
In particular, AutH(D) depends on 3 real parameters. Moreover, AutH(D) acts transi-
tively on D, i.e. for any a, b ∈ D there exists an h ∈ AutH(D) such that h(a) = b.

1.2.2. Special elementary mappings.

Remark 1.2.3. [Remark 1.2.3−→ Exer . . . . . . . . . . . . . . . . . . . . . . . ]

(a) (n-th root) Let f(z) := e
1
n
Log z, where Log : C \R− is the principal branch of logarithm.

Then f maps bijectively C \ R− onto {z ∈ C \ R− : |Arg z| < π/n}.



8
Marek Jarnicki, Lectures on Analytic Functions, version January 23, 2024

1. Basic facts

(b) (Zhukovsky function (2)) Z(z) := 1
2
(z+1/z), z ∈ C∗. Let f(z) = f(reit) = u+ iv. Then

u = 1
2
(r + 1/r) cos t, v = 1

2
(r − 1/r) sin t. We have:

• Z(z) = Z(1/z), z ∈ C∗;
• Z is injective on D∗ and on C \ D and maps homeomorphically each of these

domains onto C \ [−1, 1];
• the inverse mapping has the form C \ [−1, 1] ∋ w 7−→ w ±

√
w2 − 1.

• for r > 0, r ̸= 1, Z maps C(r) onto the ellipse E(r) with foci ±1 and half axes
1
2
(r ± 1/r).
• if r −→ 0, then E(r) −→ ∞;
• if r −→ 1, then E(r) −→ [−1, 1], which is twice covered by Z(T).

(c) (exp) Let u+ iv = ez = ex+iy, i.e. u = ex cos y, v = ex sin y.
• For any y0 ∈ R the horizontal strip {x + iy : x ∈ R, y0 − π < y ≤ y0 + π} is

mapped bijectively (but not homeomorphically) by exp onto C∗.
• The horizontal line y = y0 goes to the ray {(ex cos y0, ex sin y0) : x ∈ R}.
• What is the image of the open strip {x+ iy : x ∈ R, y0 − π < y < y0 + π} ?
• For any p0 ∈ R∗, q0 ∈ R, the strip {(x, p0x + q) : x ∈ R, q0 − π < q ≤ q0 + π} is

mapped bijectively onto C∗.
• The line y = p0x+ q0 goes to the spiral curve {(ex cos(p0x+ q0), e

x sin(p0x+ q0) :
x ∈ R}.

(d) (sin) sin maps homeomorphically the strip {x + iy : −π/2 < x < π/2, y ∈ R} onto
C \ ((−∞, 1] ∪ [1,+∞)).

The vertical line x = 0 is mapped onto u = 0. Every vertical line x = c ̸= 0 is
mapped bijectively onto one branch of the hyperbola u2

sin2 c
− v2

cos2 c
= 1.

1.2.3. Formal derivatives.

Definition 1.2.4. Let Ω ∈ topC and let f : Ω −→ C ≃ R2, f = u + iv, be Fréchet
differentiable (in the real sense) at a point a ∈ Ω. Let f ′

R(a) denote the real Fréchet derivative
of f at a. Then for Z = X + iY ∈ C ≃ R2 we get

f ′
R(a)(Z) =

∂f

∂x
(a)X +

∂f

∂y
(a)Y =

∂f

∂x
(a)

Z + Z

2
+
∂f

∂y
(a)

Z − Z

2i

=
1

2

(∂f
∂x

(a)− i
∂f

∂y
(a)

)
Z +

1

2

(∂f
∂x

(a) + i
∂f

∂y
(a)

)
Z =

∂f

∂z
(a)Z +

∂f

∂z
(a)Z,

where
∂f

∂z
(a) :=

1

2

(∂f
∂x

(a)− i
∂f

∂y
(a)

)
,

∂f

∂z
(a) :=

1

2

(∂f
∂x

(a) + i
∂f

∂y
(a)

)

denote the formal derivatives of f at a. Of course, to define the above formal derivatives it
suffices that the partial derivatives ∂f

∂x
(a) and ∂f

∂y
(a) exist.

Remark 1.2.5. [Remark 1.2.5−→ Exer . . . . ] The following conditions are equivalent:
(i) f ′(a) exists;
(ii) f ′

R(a) exists and is C-linear (f ′
R(a)(Z) = f ′(a)Z);

(
2
)

Nikolai Zhukovsky (1847–1921).
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(iii) f ′
R(a) exists and ∂f

∂z
(a) = 0, i.e. ∂u

∂x
(a) = ∂v

∂y
(a), ∂u

∂y
(a) = − ∂v

∂x
(a) – the Cauchy-Riemann

(3) (4) equations.
We have f ′(a) = ∂f

∂x
(a) = −i∂f

∂y
(a) = ∂f

∂z
(a).

Exercise 1.2.6. [Exercise 1.2.6−→ Exer . . . . . . . . . . . . . . . . . . . . . . . ]

(a) Let f(x + iy) :=
√
|xy|, z = x + iy ∈ C. Then ∂f

∂x
(0) = ∂f

∂y
(0) = 0, but f ′(0) does not

exist.
(b) If f ′(a) exists, then det f ′

R(a) = |f ′(a)|2.
(c) Let D ⊂ C be a domain, f = u+ iv ∈ O(D). If |f | = const, then f = const.

(
3
)

Augustin Cauchy (1789–1857).(
4
)

Bernhard Riemann (1826–1866).





CHAPTER 2

Basic properties of holomorphic functions

2.1. Basic theorems

Definition 2.1.1. Let γ : [α, β] −→ C be a path, i.e. a piecewise C1 curve, and let f =
u+ iv : γ∗ −→ C be continuous. Define

∫

γ

fdz :=

∫

γ

(u+ iv)d(x+ iy) =

∫

γ

udx− vdy + i

∫

γ

vdx+ udy =

β∫

α

f(γ(t))γ′(t)dt.

Remark 2.1.2. Observe that
∣∣ ∫
γ

f(z)dz
∣∣ ≤ ℓ(γ)∥f∥γ∗ , where ℓ(γ) =

β∫
α

|γ′(t)|dt.
[Remark 2.1.2−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

Lemma 2.1.3 (Lemma on production of holomorphic functions). Let γ : [0, 1] −→ C be a
path and let g : γ∗ −→ C be continuous. Set

f(z) :=
1

2πi

∫

γ

g(ζ)

ζ − z
dζ, z ∈ C \ γ∗.

Then f ∈ O(C \ γ∗),

f (k)(z) =
k!

2πi

∫

γ

g(ζ)

(ζ − z)k+1
dζ, z ∈ C \ γ∗, k ∈ N, and

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n, a ∈ C \ γ∗, |z − a| < dist(a, γ∗).

In particular, d(Taf) ≥ dist(a, γ∗), a ∈ C \ γ∗.
Proof. Fix an a ∈ C \ γ∗ and let r := dist(a, γ∗), 0 < ϑ. Then for z ∈ B(a, ϑr) and ζ ∈ γ∗

we get
1

ζ − z
=

1

ζ − a
· 1

1− z−a
ζ−a

=
∞∑

n=0

(z − a)n

(ζ − a)n+1
.

The series is uniformly convergent because | z−a
ζ−a | ≤ ϑ. Hence

f(z) =
∞∑

n=0

( 1

2πi

∫

γ

g(ζ)

(ζ − a)n+1
dζ

)
(z − a)n, z ∈ B(a, r). □

11
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2. Basic properties of holomorphic functions

Definition 2.1.4. We say that a bounded domain is regular ifD = D0\(D1∪· · ·∪Dp), where
D0, . . . , Dp are Jordan domains, Dj ⊂ D0, j = 1 . . . , p, Dj ⊂ extDk, j ̸= k, j, k = 1, . . . , p,
and ∂Dj is a Jordan path which has the positive orientation with respect to D (like in the
classical Green (1) theorem).

Theorem 2.1.5 (Cauchy-Green formula). Let D ⊂ C be a regular domain. Let f ∈ C1(D),
i.e. f ∈ C1(Ω), where Ω ∈ topC and D ⊂ Ω. Then

f(z) =
1

2πi

( ∫

∂D

f(ζ)

ζ − z
dζ +

∫

D

∂f

∂ζ
(ζ)

ζ − z
dζ ∧ dζ

)
, z ∈ D.

In particular, if additionally f ′(z) exists for all z ∈ D (e.g. f ∈ O(D)), then we get the
Cauchy formula

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ, z ∈ D.

Proof. Fix an a ∈ D. Applying the Green formula to the domain Dε := D \ B(a, ε),
0 < ε≪ 1, we get:

∫

∂D

f(ζ)

ζ − a
dζ −

∫

C(a,ε)

f(ζ)

ζ − a
dζ =

∫

∂Dε

f(ζ)

ζ − a
dζ =

∫

Dε

d
( f(ζ)
ζ − a

dζ
)

= −
∫

Dε

∂f

∂ζ
(ζ)

ζ − a
dζ ∧ dζ −→

ε−→0+
−
∫

D

∂f

∂ζ
(ζ)

ζ − a
dζ ∧ dζ.

On the other hand
∣∣ 1
2πi

∫
C(a,ε)

f(ζ)
ζ−adζ − f(a)

∣∣ ≤ max{|f(ζ)− f(a)| : ζ ∈ C(a, ε)} −→
ε→0+

0. □

Corollary 2.1.6. If f ∈ O(Ω), then f(z) = 1
2πi

∫
C(a,r)

f(ζ)
z−ζ dζ, z ∈ B(a, r) ⊂⊂ Ω.

Consequently, by Lemma 2.1.3, d(Taf ≥ dΩ(a), a ∈ Ω.
In particular, if f ∈ O(C), then d(Taf) = +∞, a ∈ C.

Theorem 2.1.7 (Weierstrass theorem (2)). Let (fk)∞k=1 ⊂ O(Ω) and suppose that fk −→ f0
locally uniformly in Ω. Then f0 ∈ O(Ω).

Proof. Obviously, f0 ∈ C(Ω,C) and for each disc B(a, r) ⊂⊂ Ω we have

fk(z) =
1

2πi

∫

C(a,r)

fk(ζ)

z − ζ
dζ, z ∈ B(a, r), k ∈ N.

Since fk −→ f0 uniformly on C(a, r), we get f0(z) = 1
2πi

∫
C(a,r)

f0(ζ)
z−ζ dζ, z ∈ B(a, r). It remains

to apply the production lemma. □
(
1
)

George Green (1793–1841).(
2
)

Karl Weierstrass (1815–1897).
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Theorem 2.1.8 (Maximum principle). Let D ⊂ C be a domain and f ∈ O(D), f ̸≡ const.
Then:
(a) |f | does not have local maxima in D.
(b) |f | does not have a local minimum at a point a ∈ D with f(a) ̸= 0.
(c) If D is bounded, then |f(z)| < sup{lim sup

w→ζ
|f(w)| : ζ ∈ ∂D}, z ∈ D.

(d) If D is bounded and |f | extends to an upper semicontinuous function on D, then |f(z)| <
maxD |f |, z ∈ D.

Proof. (a) Suppose that |f(z)| ≤ |f(a)|, z ∈ B(a, r) ⊂⊂ D. By the Cauchy formula we
get |f(a)| ≤ 1

πr2

∫
B(a,r)

|f |dL2 ≤ |f(a)|. Thus |f | = |f(a)| a.e. on B(a, r), which implies that

|f | = |f(a)| on B(a, r). By Exercise 1.2.6(c) f = const on B(a, r) and finally, by the identity
principle, f ≡ const on D — a contradiction.

(b) We apply (a) to 1/f .
(c) Fix a z0 ∈ D and let (Dk)

∞
k=1 be a sequence of domains such that z0 ∈ D1 ⊂ Dk ⊂

Dk+1 ⊂⊂ D, D =
∞⋃
k=1

Dk. For each k there exists a wk ∈ Dk such that |f(wk)| = maxDk
|f |.

By (a) we get |f(z0)| < |f(wk)| ≤ |f(wk+1)|. We may assume that wk −→ ζ ∈ ∂D. Then
|f(z0)| < lim sup

k→+∞
|f(wk)| ≤ lim sup

w→ζ
|f(w)|.

(d) follows from (c). □

Theorem 2.1.9 (Cauchy inequalities). (a) Let f ∈ O(B(a, r)), |f | ≤ C. Then |f (n)(a)| ≤
n!
rn
C, n ∈ N.

(b) Let f ∈ O(Ω). Then for any compact set K ⊂⊂ Ω and 0 < r < dΩ(K) we get
∥f (n)∥K ≤ n!

rn
∥f∥K(r), n ∈ N.

Proof. (a) For every 0 < s < r we get

|f (n)(a)| =
∣∣∣ n!
2πi

∫

C(a,s)

f(ζ)

(ζ − a)n+1
dζ

∣∣∣ ≤ n!

2π

2π∫

0

|f(a+ seiϑ)|
sn

dϑ ≤ n!

sn
C, n ∈ N.

(b) follows from (a). □

Corollary 2.1.10 (Weierstrass theorem II). Let (fk)∞k=1 ⊂ O(Ω) and assume that fk −→ f0
locally uniformly in Ω. Then f0 ∈ O(Ω) and f (n)

k −→ f
(n)
0 locally uniformly in Ω for every

n ∈ N.

Definition 2.1.11. For Ω ∈ topC let Lph(Ω) := Lp(Ω) ∩ O(Ω), 1 ≤ p ≤ +∞.
• H∞(Ω) := L∞

h (Ω) is the space of all bounded holomorphic functions on Ω.
• L2

h(Ω) is a unitary space with scalar product L2
h(Ω)× L2

h(Ω) ∋ (f, g) 7−→
∫
Ω

fgdL2.

Theorem 2.1.12. (a) ∥f∥K ≤ 1
πr2

∫
K(r)

|f |dL2, f ∈ O(Ω), 0 < r < dΩ(K), K ⊂⊂ Ω.
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(b) ∥f∥K ≤ 1
πr2

(L(K(r)))1/q
( ∫
K(r)

|f |pdL2
)1/p

, f ∈ O(Ω), 0 < r < dΩ(K), 1 < p < +∞,

where 1/p+ 1/q = 1.
(c) Lph(Ω) is a Banach (3) space, 1 ≤ p ≤ +∞.
(d) L2

h(Ω) is a Hilbert (4) space.

Theorem 2.1.13 (Liouville theorem (5)). Let f ∈ O(C). Then f ∈ Pd(C) if and only if
for some R,C > 0 we have |f(z)| ≤ C|z|d, |z| ≥ R, or equivalently, |f(z)| ≤ M(1 + |z|)d,
z ∈ C, for an M > 0.

Proof. It is clear that every polynomial satisfies the inequality (Exercise). Conversely,

suppose that the inequality is fulfilled. We know that f(z) =
∞∑
n=0

anz
n, z ∈ C (cf. Corollary

2.1.6). Using the Cauchy inequalities, for r ≥ R and n > d we have

|an| =
∣∣∣f

(n)(0)

n!

∣∣∣ ≤ Crd

rn
= Crd−n −→

r→+∞
0. □

Theorem 2.1.14 (Schwarz lemma (6)). (a) Let f ∈ O(B(r)), |f | ≤ C, and f(0) = 0. Then
|f(z)| ≤ C|z|/r, z ∈ D, |f ′(0)| ≤ C/r. Moreover, if |f(z0)| = C|z0|/r for a z0 ∈ B∗(r)
or |f ′(0)| = C/r, then f(z) = Ceiϑ0z/r, z ∈ B(r), for a ϑ0 ∈ R.

(b) Let f ∈ O(B(r)), |f | ≤ C, f(0) = · · · = f (k−1)(0) = 0 (k ∈ N). Then |f(z)| ≤ C(|z|/r)k,
z ∈ D, |f (k)(0)| ≤ k!C/rk. Moreover, if |f(z0)| = C(|z0|/r)k for a z0 ∈ B∗(r) or
|f (k)(0)| = k!C/rk, then f(z) = Ceiϑ0(z/r)k, z ∈ B(r), for a ϑ0 ∈ R.

Proof. (a) follows from (b).

(b) Let g(z) :=

{
f(z)
zk
, z ∈ B∗(r)

f (k)(0)
k!

, z = 0
, z ∈ B(r). Obviously, g ∈ O(B(r)) (Exercise).

Moreover, by the maximum principle, we get |g(z)| ≤ supζ∈C(r) lim sup
w→ζ

|g(w)| ≤ C/rk, z ∈
B(r), which implies the result. □

Recall that ha(z) := z−a
1−az , z ∈ C \ {1/a}. Observe that (ha)

−1 = h−a,

h′a(z) =
1− a z − (z − a)(−a)

(1− a z)2
=

1− |a|2
(1− az)2

.

In particular, h′a(a) =
1

1−|a|2 .

Theorem 2.1.15. Aut(D) = AutH(D).

Proof. Fix a g ∈ Aut(D). Then f := hg(0) ◦ g ∈ Aut(D) and f(0) = 0. Thus it suffices to
prove that the set Aut0(D) := {f ∈ Aut(D) : f(0) = 0} coincides with the group of rotations.
By the Schwarz lemma (applied to f and f−1) we conclude that |f(z)| = |z|, z ∈ D. Hence
f is a rotation. □

(
3
)

Stefan Banach (1892–1945).(
4
)

David Hilbert (1862–1943).(
5
)

Joseph Liouville (1809–1882).
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Definition 2.1.16. Set

m(z′, z′′) :=
∣∣∣ z

′ − z′′

1− z′z′′

∣∣∣ = |hz′′(z′)|, z′, z′′ ∈ D, γ(z) :=
1

1− |z|2 = h′z(z), z ∈ D.

The Schwarz lemma may be easily generalized to the following result.

Theorem 2.1.17 (Schwarz-Pick (7) lemma). Let f ∈ O(D,D). Then:
[Theorem 2.1.17−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

(a) m(f(z′), f(z′′)) ≤ m(z′, z′′), z′, z′′ ∈ D.
(b) γ(f(z))|f ′(z)| ≤ γ(z), z ∈ D.
(c) the following conditions are equivalent:

(i) f ∈ Aut(D);
(ii) m(f(z′), f(z′′)) = m(z′, z′′), z′, z′′ ∈ D;
(iii) m(f(z′0), f(z

′′
0 )) = m(z′0, z

′′
0 ) for some z′0, z′′0 ∈ D, z′0 ̸= z′′0 ;

(iv) γ(f(z))|f ′(z)| = γ(z), z ∈ D;
(v) γ(f(z0))|f ′(z0)| = γ(z0) for a z0 ∈ D.

2.2. Normal families, Montel theorem, Vitali theorem

Definition 2.2.1. Let D ⊂ C be a domain. We say that a family R ⊂ O(D) is normal
in D, if every sequence (fn)

∞
n=1 ⊂ R contains a subsequence (fnk

)∞k=1 such that fnk
−→ f

locally uniformly in D, where either f : D −→ C or f ≡ ∞. We say that R ⊂ O(D) is
locally normal if each point a ∈ D has a connected neighborhood U such that R|U is normal
in U .

Lemma 2.2.2. Every locally normal family is normal.

Proof. For any a ∈ D let Ua ⊂ D be a disc centered at a such that R|Ua is normal. By

the Lindelöf theorem there exists a sequence (ak)
∞
k=1 ⊂ D such that D =

∞⋃
k=1

Uak . We fix an

arbitrary sequence (fn)
∞
n=1 = (f0,n)

∞
n=1 ⊂ R. For k ∈ N let (fk,n)

∞
n=1 be a subsequence of

(fk−1,n)
∞
n=1 such that fk,n −→ f̂k locally uniformly on Uak . The diagonal method of selection

gives a subsequence (fnℓ
)∞ℓ=1 such fnℓ

−→ f̂k locally uniformly on Uak for every k. Since D is
a domain, we easily exclude the situation where f̂k′(Uak′ ) ⊂ C but f̂k′′ ≡ ∞ for some k′, k′′
(Exercise). □

Theorem 2.2.3 (Montel (8) theorem). Let (fk)∞k=1 ⊂ O(Ω) be locally bounded. Then there
exists a locally uniformly convergent subsequence (fkn)

∞
n=1.

Consequently, for every domain D ⊂ C, every locally bounded family R ⊂ O(D) is
normal.

(
7
)

Georg Alexander Pick (1859–1942).(
8
)

Paul Montel (1876–1975).
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Proof. First observe that the sequence (fk)∞k=1 is equicontinuous. Indeed, if B(a, 2r) ⊂⊂ Ω
and |fk(ζ)| ≤ C, ζ ∈ C(a, 2r), k ∈ N, then for z ∈ B(a, r) we have:

|fk(z)− fk(a)| =
∣∣∣ 1

2πi

∫

C(a,2r)

fk(ζ)
( 1

ζ − z
− 1

ζ − a

)
dζ

∣∣∣ =
∣∣∣ 1

2πi

∫

C(a,2r)

fk(ζ)
z − a

(ζ − z)(ζ − a)
dζ

∣∣∣

≤ 1

2π

2π∫

0

C
|z − a|

|a+ 2reiϑ − z|2r2rdϑ ≤ C

2π
|z − a|

2π∫

0

1

|a+ 2reiϑ − z|dϑ ≤ C

r
|z − a|.

Now we can argue as the Arzela-Ascoli (9) (10) theorem. (11)
Let A ⊂ Ω be an arbitrary countable dense set. Using the diagonal method of selection

we get a subsequence (fkn)
∞
n=1 that is pointwise convergent on A. Using the equicontinuity

we conclude that this subsequence is locally uniformly convergent. Indeed, let B(a, r) ⊂⊂ Ω
for an a ∈ A and let ε > 0. Then there exists a 0 < δ ≤ r such that |fkn(z)− fkn(a)| ≤ ε for
all z ∈ B(a, δ) and n ∈ N. Moreover, there exists an n0 such that for n,m ≥ n0 we obtain
|fkn(a)− fkm(a)| ≤ ε. Then for z ∈ B(a, δ) and n,m ≥ n0 we get

|fkn(z)− fkm(z)| ≤ |fkn(z)− fkn(a)|+ |fkn(a)− fkm(a)|+ |fkm(a)− fkm(z)| ≤ 3ε. □
The Montel theorem can be essentially strengthened.

Theorem* 2.2.5 (Montel theorem II). For any domain D ⊂ C, every family R ⊂ O(D)
such that there exist w1, w2 ∈ C, w1 ̸= w2, with w1, w2 /∈ f(D), f ∈ R, is normal.

Theorem 2.2.6 (Vitali (12) theorem). Let (fk)∞k=1 ⊂ O(D) be locally bounded and pointwise
convergent on a set A ⊂ D that has an accumulation point in D. Then (fk)

∞
k=1 converges

locally uniformly in D.

Proof. Suppose that for an a ∈ D we have two subsequences (fkn)
∞
n=1 and (fsn)

∞
n=1 such

that lim
n→+∞

fkn(a) ̸= lim
n→+∞

fsn(a). By the Montel theorem we may assume that fkn −→ p,

fsn −→ q locally uniformly D, where p, q ∈ O(D). We know that p = q on A. Hence, by the
identity principle, p ≡ q. In particular, p(a) = q(a). Thus the sequence (fk)

∞
k=1 is pointwise

convergent on D to a function f .
Suppose that (fk)∞k=1 is not locally uniformly convergent to f . Then there exist a compact

K ⊂ D and an ε0 > 0 such that ∀s∈N ∃ns≥s: ∥fns − f∥K ≥ ε0. By the Montel theorem
there exists a subsequence (fnst

)∞t=1 such that fnst
−→ f locally uniformly. In particular,

∀ε>0 ∃t0∈N : ∀t≥t0 : ∥fnst
− f∥K ≤ ε — a contradiction. □

(
9
)

Cesare Arzelá (1847–1912).(
10
)

Giulio Ascoli (1843–1896).(
11
)

Theorem 2.2.4 (Arzela-Ascoli theorem). Let (gn)
∞
n=1 ⊂ C(Ω,C). Assume that the sequence (gn)

∞
n=1 is

locally bounded and equicontinuous. Then there exists a subsequence (gnk
)∞k=1 such that (gnk

)∞k=1 converges
locally uniformly in Ω.

.(
12
)

Giuseppe Vitali (1875–1932).
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2.3. Complex derivatives vs. holomorphicity

Lemma 2.3.1. Let D ⊂ C be a domain and let f = u+ iv : D −→ C be continuous. Then
the following conditions are equivalent:

(i) for any a, b ∈ D, the integral
b∫
a

f(z)dz :=
∫
γ

f(z)dz is independent of the path γ joining

a and b in D;
(ii) f has a primitive function, i.e. there exists a function F : D −→ C such that F ′(z) =

f(z), z ∈ D.

Proof. (ii) =⇒ (i):
∫
γ

f(z)dz =
β∫
α

F ′(γ(t))γ′(t)dt =
β∫
α

(F ◦ γ)′(t)dt = F (γ(β))− F (γ(α)).

(i) =⇒ (ii): The integral
∫
γ

f(z)dz =
∫
γ

udx − vdy + i
∫
γ

vdx + udy is independent of the

path if and only if each of the integrals
∫
γ

udx−vdy,
∫
γ

vdx+udy is independent. Then there

exist functions φ, ψ ∈ C1(D,R) such that ∂φ
∂x

= u, ∂φ
∂y

= −v, ∂ψ
∂x

= v, ∂ψ
∂y

= u. Let F := φ+iψ.
Then F is C1 satisfies the Cauchy-Riemann equations and F ′ = φ′

x + iψ′
x = u+ iv = f . □

Theorem 2.3.2 (Characterization of holomorphic functions). Let Ω ∈ topC and f : Ω −→
C. Then the following conditions are equivalent:

(i) f ′(z) exists for each z ∈ Ω;
(ii) f ′

R(z) exists for each z ∈ Ω and ∂f
∂z
(z) = 0, z ∈ Ω;

(iii) f ∈ C(Ω,C) and
∫
∂T

f(z)dz = 0 for each triangle T ⊂⊂ Ω (the equivalence (i) ⇐⇒ (iii)

is called Morera (13) theorem);
(iv) f ∈ C(Ω,C) and for each starlike domain G ⊂ Ω there exists an F : G −→ C such that

F ′ = f in G;
(v) f ∈ C(Ω,C) and for each disc B(a, r) ⊂⊂ Ω we get

f(z) =
1

2πi

∫

C(a,r)

f(ζ)

z − ζ
dζ, z ∈ B(a, r);

(vi) for each a ∈ Ω the function has all complex derivatives f (n)(a), n ∈ N, and

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n, |z − a| < dist(a, ∂Ω);

(vii) f ∈ O(Ω).

Proof. We need a few auxiliary results.

Theorem 2.3.3 (Cauchy- Goursat (14) theorem). Let If f : Ω −→ C is such that f ′(z) exists
for each z ∈ Ω, then

∫
∂T

f(z)dz = 0 for every triangle T = conv{a, b, c} (∂T := [a, b, c, a]).

(
13
)

Giacinto Morera (1856–1909).(
14
)

Édouard Jean-Baptiste Goursat (1858–1936).
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Proof. We may assume that T0 := T is non-degenerated. Using points p := 1
2
(a + b),

q = 1
2
(b + c), and r := 1

2
(c + a), we divide T0 into four triangles T0,1 = conv{a, p, r},

T0,2 := conv{p, b, q}, T0,3 := conv{q, c, r}, and T0,4 := conv{p, q, r}. Then

∫

∂T0

f(z)dz =
4∑

j=1

∫

∂T0,j

f(z)dz.

Let T1 ∈ {T0,1, . . . , T0,4} be such that
∣∣ ∫
∂T1

f(z)dz
∣∣∣ = max

{∣∣ ∫
∂T0,j

f(z)dz
∣∣ : j = 1, 2, 3, 4

}
.

Obviously,
∣∣∣
∫

∂T0

f(z)dz
∣∣∣ ≤ 4

∣∣∣
∫

∂T1

f(z)dz
∣∣∣.

We repeat the above procedure and we get a sequence (Tj)
∞
j=1 of triangles such that for all

j ∈ N:
• Tj+1 ⊂ Tj,
• ℓ(∂Tj) =

1
2j
ℓ(∂T0),

•
∣∣ ∫
∂T0

f(z)dz
∣∣∣ ≤ 4j

∣∣∣
∫
∂Tj

f(z)dz
∣∣.

Let {a} :=
∞⋂
j=1

Tj. We have f(z) = f(a) + f ′(a)(z − a) + α(z)(z − a), where α(z) −→ 0

when z −→ a. The function z 7−→ f(a) + f ′(a)(z − a) has obviously a primitive. Thus, we
finally get

∣∣∣
∫

∂T0

f(z)dz
∣∣∣ ≤ 4j

∣∣∣
∫

∂Tj

(f(a) + f ′(a)(z − a) + α(z)(z − a))dz
∣∣∣ = 4j

∣∣∣
∫

∂Tj

α(z)(z − a)dz
∣∣∣

≤ 4jℓ(∂Tj)max{|α(z)(z − a)| : z ∈ ∂Tj} ≤ 4jℓ2(∂Tj)∥α∥∂Tj = ℓ2(∂T0)∥α∥∂Tj −→
j→+∞

0.

□

Theorem 2.3.4 (Cauchy integral formula). Let h : Ω −→ C be such that h′(z) exists for
any z ∈ Ω and let B(c, r) ⊂⊂ Ω. Then h(a) = 1

2πi

∫
C(c,r)

h(z)
z−adz, a ∈ B(c, r).

Proof. Fix an a and let g(z) :=

{
h(z)−h(a)

z−a , if z ∈ Ω \ {a}
h′(a), if z = a

. It clear that g is continuous

on Ω and g′(z) exists for z ∈ Ω \ {a}. By the Cauchy-Goursat theorem we get
∫
∂T

g(z)dz = 0

for any triangle T ⊂ Ω \ {a}. Since g is continuous, using an approximation, we see that∫
∂T

g(z)dz = 0 for any triangle T ⊂ Ω. Consequently, g has a primitive in any starlike domain
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G ⊂ Ω. Hence,

0 =

∫

C(c,r)

g(z)dz =

∫

C(c,r)

h(z)− h(a)

z − a
dz and finally

1

2πi

∫

C(c,r)

h(z)

z − a
dz =

1

2πi

∫

C(c,r)

h(a)

z − a
dz = h(a). □

The main proof will be divided into several steps.
It clear that (i) ⇐⇒ (ii) and (vi) ⇐⇒ (vii) =⇒ (i).
(v) ⇐⇒ (vii): Use the Cauchy formula (Theorem 2.3.4) and the production lemma.
(i) =⇒ (iii) follows from the Cauchy-Goursat theorem (Theorem 2.3.3.
(iii) =⇒ (iv): Suppose that G is starlike with respect to a c ∈ G. Put F (z) :=

∫
[c,z]

f(ζ)dζ,

z ∈ G. Fix an a ∈ G. Then
∣∣∣F (a+ h)− F (a)

h
− f(a)

∣∣∣ =
∣∣∣1
h

( ∫

[c,a+h]

f(z)dz −
∫

[c,a]

f(z)dz −
∫

[a,a+h]

f(a)dz
)∣∣∣

=
∣∣∣1
h

∫

[a,a+h]

(f(z)− f(a))dz
∣∣∣ ≤ max{|f(z)− f(a)| : z ∈ [a, a+ h]} −→

h→0
0. □

(iv) =⇒ (v): We apply Theorem 2.3.4 to the function F . Using the production lemma
we conclude that F ∈ O(Ω) and hence f = F ′ ∈ O(Ω).

Theorem 2.3.5. Let D ⊂ C be a starlike domain with respect to a point a ∈ D and let
f : D −→ C∗ be holomorphic. Then f has of its logarithm n D. (cf. Theorem 2.3.12).

Proof. Put h(z) :=
∫ z
a
f ′(ζ)
f(ζ)

dζ + Log f(a), z ∈ D. We know that h′ = f ′/f in D, and so
(fe−h)′ = f ′e−h − fe−hh′ ≡ 0. Thus fe−h = const = f(a)e−h(a) = f(a)e−Log f(a) = 1, i.e.
eh ≡ f . □

Remark 2.3.6. If f has a branch of its logarithm in D, then f has a branch of p-th root in
D for every p ∈ N. Indeed, let g be a branch of logarithm of f . Then f = eg = (eg/p)p.

Definition 2.3.7. Let C ⊂ C be a circle (proper or not). Then we denote by SC : C −→ C
the symmetry with respect to C (i.e. for each z ∈ C the points z and SC(z) are symmetric
with respect to C).

Theorem 2.3.8 (Riemann-Schwarz symmetry principle). Let C1, C2 ⊂ C be circles and let
D ⊂ intC1 be a domain (if Cj is a line then intCj is one of the half-planes of C \ Cj).
Assume that (∂D)∩C1 contains an open arc L ̸= ∅. Let f ∈ O(D)∩ C(D ∪L) be such that

f(L) ⊂ C2 and let f̃(z) :=

{
f(z), if z ∈ D ∪ L
SC2(f(SC1(z))), if SC1(z) ∈ D

. Then f ∈ O(D∪L∪SC1(D)).
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In particular, if C1 = C2 = R, then f̃(z) :=





f(z), if z ∈ D ∪ L

f(z), if z ∈ D

.

Proof. Using suitable homographies we reduce the problem to the case where C1 = C2 = R.
Now, it remains to apply the Morera theorem. □
Corollary 2.3.9. [Corollary 2.3.9−→ Exer . . . . . . . . . . . . . . . . . . . . ] Let
D ⊂ C be a domain such L1 ⊂ ∂D, where L1 is an open analytic arc, i.e. L1 = γ1((0, 1)),
γ1 : (0, 1) −→ C is analytic, injective, and γ′1(t) ̸= 0, t ∈ (0, 1). Let f ∈ O(D) ∩ C(D ∪ L1)
be such that f(L1) ⊂ L2, where L2 is an open analytic arc, L2 = γ2((0, 1)). Then f extends
holomorphically throught L1, i.e. there exist a domain D̃ ⊃ D ∪ L1 and f̃ ∈ O(D̃) such that
f̃ = f on D ∪ L1.

Theorem 2.3.10. Let f : D −→ C be holomorphic, let a, b ∈ D, and let γ0, γ1 : [0, 1] −→ D
be paths joining a and b, that are homotopic in D. Then

∫
γ0
f(z)dz =

∫
γ1
f(z)dz.

Proof. Let H : [0, 1]× [0, 1] −→ D be a homotopy joining γ0 and γ1. i.e. H is continuous,
H(0, ·) = γ0, H(1, ·) = γ1, H(s, 0) = a, H(s, 1) = b, s ∈ [0, 1]. Note that we do not
assume that H(s, ·) is a path. Since H is uniformly continuous, we find a δ > 0 such that if
|s′−s′′| ≤ δ and |t′−t′′| ≤ δ, then |H(s′, t′)−H(s′′, t′′)| < r := dist(H([0, 1]×[0, 1]), ∂D). Fix
an n ≥ 1/δ and let sj = tj := j/n, j = 0, . . . , n, aj,k = H(sj, tk), σj := [aj,0, . . . , ajn]. Observe
that Gj,k := B(aj,k, r) ⊂ D, Gj,k is a starlike domain and H(s, t) ∈ Gj,k for |s − sj| ≤ δ,
|t − tk| ≤ δ, j, k = 1, . . . , n. Hence

∫
γ0|[tk−1,tk]

f(z)dz =
∫
[a0,k−1,a0,k]

f(z)dz, k = 1, . . . , n

(cf. Theorem 2.3.12). Consequently,
∫
γ0
f(z)dz =

∫
σ0
f(z)dz. Analogously,

∫
γ1
f(z)dz =∫

σn
f(z)dz. It remains to show that

∫
σj−1

f(z)dz =
∫
σj
f(z)dz, j = 1, . . . , n. Put ρj,k :=

[aj−1,k−1, aj−1,k, aj,k, aj,k−1, aj−1,k−1]. We know that
∫
ρj,k

f(z)dz = 0, j, k = 1, . . . , n.

aj−1,k−1 aj−1,k

aj,k−1 aj,k

Adding the above integrals with k = 1, . . . , n we get the formula. □
Consequently, we get

Theorem 2.3.11 (Cauchy–Goursat theorem). Let D be simply connected and let f ∈ O(D).
Then

∫
γ
f(z)dz depends only on the end-points of γ.

Theorem 2.3.12. Let D be simply connected and let f ∈ O(D,C∗). Then f has a branch
of its logarithm in D.

Proof. Fix an a ∈ D and define h(z) :=
∫ z
a
f ′(ζ)
f(ζ)

dζ + Log f(a), z ∈ D (cf. Theorem 5.4.5).
We have (fe−h)′ = f ′e−h − fe−hh′ ≡ 0. This means that fe−h = const = f(a)e−h(a) =
f(a)e−Log f(a) = 1, so eh ≡ f . Thus h is a branch of the logarithm of f . □
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2.4. Complex one-dimensional manifolds

Exercise 2.4.1. (1) We say that a Hausdorff topological spaceM is a complex one-dimensional
manifold (M ∈ CODM), if M has an atlas, i.e. a family of pairs A = (Uα, φα)α∈A such
that for all α ∈ A:

• Uα ∈ topM ,
• φα : Uα −→ φα(Uα) ⊂ C is homeomorphic,
• φα(Uα) ∈ topC, and
• ⋃

α∈A Uα =M ,
• φβ ◦ φ−1

α ∈ O(φα(Uα ∩ Uβ)) for all α, β ∈ A.
Each such a pair (Uα, φα) ∈ A is called a map.

(2) Connected CODMs are called Riemann surfaces.
(3) If N ∈ top Ĉ, then N ∈ CODM. In particular, Ĉ ∈ CODM.
(4) If M ∈ CODM and M ′ ∈ topM , then M ′ ∈ CODM.
(5) We say that a map (U, ψ) is consistent with the atlas A = (Uα, φα)α∈A if A ∪ {(U, ψ)}

is an atlas.
(6) We say that atlases A = (Uα, φα)α∈A, B = (Vβ, ψβ)β∈B are equivalent if A∪B is an atlas.
(7) If M is a Lindelöf space, then for each atlas A there exists an equivalent atlas B =

(Vβ, ψβ)β∈B such that B is countable.
(8) An atlas (Uα, φα)α∈A is called maximal, if each map that is consistent with A belongs to

A.
(9) Each atlas is equivalent to an atlas contained in the maximal atlas. In fact, each atlas

is contained in the unique maximal atlas.
(10) Let M ∈ CODM with an atlas A = (Uα, φα)α∈A. We say that a mapping f : M −→ C

is holomorphic (f ∈ O(M)) if f ◦ φ−1
α ∈ O(φα(Uα)) for arbitrary α ∈ A. If M ∈ topC,

then the defintion coincides with the standard definition.
(11) Let N ∈ CODM with an atlas (Vβ, ψβ)β∈B. We say that a continuous mapping f :M −→

N is holomorphic (f ∈ O(M,N)), if ψβ ◦f ◦φ−1
α ∈ O(φα(Uα∩f−1(Vβ))), (α, β) ∈ A×B.

In the case N = C the definitions coincide.
(12) Is the assumption “f continuous” necessary?
(13) If f : M −→ N is holomorphic with respect to (Uα, φα)α∈A and (Vβ, ψβ)β∈B, then it is

holomorphic with respect to the maximal atlases.
(14) The Weierstrass theorem holds for O(M).
(15) If M is connected, then the identity principle holds on M : if f, g ∈ O(M,N) are such

that the set A := {x ∈M : f(x) = g(x)} has an accumulation point in M , then f ≡ g.
(16) If M is connected, then the maximum principle holds on M .
(17) If M is compact and connected, then O(M) ≃ C. For example, O(Ĉ) ≃ C.
(18) If M is connected and separable, then the Montel and Vitali theorem hold on M .
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2.5. Hyperbolic geometry of the unit disc

(1) Recall that m(λ′, λ′′) :=
∣∣∣ λ′−λ′′1−λ′λ̄′′

∣∣∣, λ′, λ′′ ∈ D, γ(λ) := 1
1−|λ|2 , λ ∈ D.

The function m may be extended to (C× C) \ {(λ′, λ′′) : λ′λ̄′′ = 1}.
(2) (Schwarz–Pick lemma). Let f ∈ O(D,D). Then:

(a) m(f(λ′), f(λ′′)) ≤ m(λ′, λ′′), λ′, λ′′ ∈ D.
(b) γ(f(λ))|f ′(λ)| ≤ γ(λ), λ ∈ D.
(c) The following statements are equivalent:

(i) f ∈ Aut(D);
(ii) m(f(λ′), f(λ′′)) = m(λ′, λ′′), λ′, λ′′ ∈ D;
(iii) m(f(λ′0), f(λ

′′
0)) = m(λ′0, λ

′′
0) for some λ′0, λ′′0 ∈ D with λ′0 ̸= λ′′0;

(iv) γ(f(λ))|f ′(λ)| = γ(λ), λ ∈ D;
(v) γ(f(λ0))|f ′(λ0)| = γ(λ0) for some λ0 ∈ D.

Any holomorphic function f : D −→ D is an m- and a γ-contraction. The only holo-
morphic m- or γ-isometries are the automorphisms of D.

(3) Let φ ∈ O(D,D) and let φ(z) =
∑∞

s=0 asz
s be its power series expansion. Then |ak| ≤

1− |a0|2, k ∈ N.

Fix a k ∈ N and put ωs := e
2πi
k
s, s = 1, . . . , k. Recall that

k∑
s=1

ωms = 0, 1 ≤ m < k.

Put φ̃(z) := 1
k

k∑
s=1

φ(ωsz), z ∈ D. Obviously, φ̃ ∈ O(D,D) and its power series expansion

is given by φ̃(z) = a0 + akz
k + a2kz

2k + . . . , z ∈ D. Set g := φ̃−a0
1−a0φ̃ . Then g ∈ O(D,D)

and its power series expansion is given by g(z) = bkz
k + . . . with bk = ak

1−|a0|2 . Using the
Cauchy inequality for the coefficient bk gives finally the inequality.

(4) (Higher order Schwarz–Pick lemma). Let f ∈ O(D,D) and k ∈ N. Then

|f (k)(λ)|
1− |f(λ)|2 ≤ k!(1 + |λ|)k−1 1

(1− |λ|2)k , λ ∈ D.

Fix a λ ∈ D and put φλ(z) := f
(
z+λ
1+λz

)
=

∞∑
j=0

cj(λ)z
j, z ∈ D. Then f(z) = φλ

(
z−λ
1−λz

)
=

∞∑
j=1

cj(λ)
(
z−λ
1−λz

)j
, z ∈ D. Taking the k-th derivative of f at the point λ we get f (k)(λ) =

k∑
j=1

cj(λ)
λk−j

(1−|λ|2)k
k!(k−1)!

(k−j)!(j−1)!
. Recall that c0(λ) = f(λ) and |cs(λ)| ≤ 1 − |c0(λ)|2 = 1 −

|f(λ)|2 if s ∈ N. Hence

|f (k)(λ)| ≤ k!(1− |f(λ)|2)
(1− |λ|2)k

k∑

s=1

(k − 1)!

(k − s)!(s− 1)!
|λ|k−s

= k!
1− |f(λ)|2
(1− |λ|2)k

k−1∑

m=0

(k − 1)!

m!(k −m− 1)!
|λ|m = k!

1− |f(λ)|2
(1− |λ|2)k (1 + |λ|)k−1.

(5) m ∈ C∞((D× D) \ {(λ, λ) : λ ∈ D}), m2 ∈ C∞(D× D), γ ∈ C∞(D).
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(6) For any a ∈ D, m(·, a) = |ha|. In particular, m(·, a) = 1 on T and logm(·, a) is
harmonic in D \ {a}. Since m is symmetric, the same is true for m(a, ·).

(7) lim
λ′,λ′′→a
λ′ ̸=λ′′

m(λ′,λ′′)
|λ′−λ′′| = γ(a), a ∈ D.

(8) If u := m2(a, ·), then γ2(a) = 1
4
(∆u)(a).

(9) For any a, b, c ∈ D, a ̸= b ̸= c ̸= a, we have m(a, b) < m(a, c) +m(c, b). In particular,
m : D× D −→ [0, 1) is a distance. It is called the Möbius distance.

Indeed, observe that for any a, b ∈ D, a ̸= b, there exists a unique automorphism
h = ha,b ∈ Aut(D) such that h(a) = 0 and h(b) ∈ (0, 1). The function m is invariant
under Aut(D), and therefore we may assume that a = 0, b ∈ (0, 1). Then the inequality
reduces to b < |c|+

∣∣∣ c−b1−cb

∣∣∣, c ∈ D \ {0, b}.
(10) Since m is invariant under Aut(D), Bm(a, r) = h−a(B(r)), a ∈ D, 0 < r < 1, where Bm

stands for the m-ball. In particular:
– the topology generated by m coincides with the Euclidean topology of D,
– the space (D,m) is complete.

(11) The strict triangle inequality says that the m-segment

[a, b]m := {λ ∈ D : m(a, λ) +m(λ, b) = m(a, b)}
consists only of the ends. Thus, from the geometric point of view, the space (D,m) is
trivial.

(12) Let α : [0, 1] −→ D be a path. We define its γ-length by the formula Lγ(α) :=∫ 1

0
γ(α(t))|α′(t)|dt.

(13) For any f ∈ O(D,D) we have Lγ(f ◦α) ≤ Lγ(α). In particular, the γ-length is invariant
under Aut(D).

(14) Define P(λ′, λ′′) := inf{Lγ(α) : α : [0, 1] −→ D, α is a path, λ′ = α(0), λ′′ = α(1)},
λ′, λ′′ ∈ D.

(15) P : D × D −→ R+ is a pseudodistance dominating the Euclidean distance; for any
holomorphic function f : D −→ D we have P(f(λ′), f(λ′′)) ≤ P(λ′, λ′′), λ′, λ′′ ∈ D. In
particular, P is invariant under Aut(D).

(16) For 0 < s < 1 let αs(t) := ts, 0 ≤ t ≤ 1, i.e. αs denotes the interval [0, s] regarded as a
curve. For a, b ∈ D, a ̸= b, let αa,b := h−1

a ◦ αha(b). The image Ia,b of the curve αa,b lies
on the unique circle Ca,b that passes through a and b and is orthogonal to T.

(17) For any a, b ∈ D, a ̸= b, we have P(a, b) = Lγ(αa,b) = tanh−1(m(a, b)). Moreover, αa,b is
a unique geodesic joining a and b. Recall that tanh−1(t) = 1

2
log 1+t

1−t and (tanh−1)′(t) =
1

1−t2 , 0 ≤ t < 1.
Indeed, all the objects are invariant under Aut(D) and so we may assume that a = 0,

b ∈ (0, 1), and αa,b = αb. First, observe that P(0, b) ≤ Lγ(αb) =
∫ b
0

dt
1−t2 = 1

2
log 1+b

1−b =

tanh−1(m(0, b)). On the other hand, if α = u + iv : [0, 1] −→ D is a path joining 0 and
b, then Lγ(α) ≥

∫ 1

0
u′(t)

1−u2(t)dt =
1
2
log 1+b

1−b . Thus the inequality is satisfied and, moreover,
if P(0, b) = Lγ(α), then we have equality. This implies that v ≡ 0, u : [0, 1] −→ [0, b],
and u is increasing. Finally α ≃ αb.

(18) P is a distance with m ≤ P.
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(19) For any f ∈ O(D,D) if P(f(λ′0), f(λ′′0)) = P(λ′0, λ′′0) for some λ′0, λ′′0 ∈ D, λ′0 ̸= λ′′0, then
f ∈ Aut(D).

(20) BP(a, r) = Bm(a, tanh(r)), a ∈ D, r > 0. In particular,
– the topology generated by P coincides with the standard topology of D,
– (D,P) is complete.

(21) lim
λ′,λ′′→a
λ′ ̸=λ′′

P(λ′,λ′′)
|λ′−λ′′| = γ(a), a ∈ D.

(22) [a, b]P = Ia,b, i.e. the P-segments coincide with the images of geodesics. In particular,
P(0, s) = P(0, t) + P(t, s), 0 ≤ t ≤ s < 1.

The distance P is called the Poincaré (hyperbolic) distance. Note that (D,P) is a
model of a non-Euclidean geometry (the Poincaré model).

(23) Let α : [0, 1] −→ D be a (continuous) curve. Put

LP(α) := sup
{ N∑

j=1

P(α(tj−1), α(tj)) : N ∈ N, 0 = t0 < · · · < tN = 1
}
.

The number LP(α) ∈ [0,+∞] is called the P-length of α. If LP(α) < +∞, then we say
that α is P-rectifiable. Note that LP(α) ≥ P(α(0), α(1)).

(24) (a) For any f ∈ O(D,D) we have LP(f ◦α) ≤ LP(α). In particular, LP is invariant under
Aut(D).

(b) LP(αa,b) = P(a, b).
(25) P = Pi, where Pi(a, b) := inf{LP(α) : α : [0, 1] −→ D, α is a curve joining a and b}, a, b ∈

D.
The above corollary shows that P is an inner distance.

(26) It is clear that we can repeat the same procedure for the distance m: first we define
Lm(α) and we put mi(a, b) := inf{Lm(α) : α : [0, 1] −→ D, α is a curve joining a and b},
a, b ∈ D.

(27) (a) For any curve α : [0, 1] −→ D we have Lm(α) = LP(α). In particular, mi = P.
Moreover, α is m- or P-rectifiable iff α is rectifiable in the Euclidean sense.

(b) For any path α : [0, 1] −→ D we have LP(α) = Lγ(α).
The above equality may be used as an alternative way to define P. Moreover, it

shows that m is not an inner distance.
Indeed (a) First observe that for any compact K ⊂ D there exists an M > 0 such

that 1
M
|λ′ − λ′′| ≤ m(λ′, λ′′) ≤ P(λ′, λ′′) ≤ M |λ′ − λ′′|, λ′, λ′′ ∈ K. Hence for any curve

α : [0, 1] −→ K one gets 1
M
L∥ ∥(α) ≤ Lm(α) ≤ LP(α) ≤ML∥ ∥(α), where L∥ ∥(α) denotes

the length of α in the Euclidean sense. Consequently, all the notions of rectifiability
coincide.

For any compact K ⊂ D and for any ε > 0 there exists a δ > 0 such that 0 ≤
P(λ′, λ′′)−m(λ′, λ′′) ≤ ε|λ′ − λ′′|, λ′, λ′′ ∈ K, |λ′ − λ′′| ≤ δ, which directly implies that
Lm(α) = LP(α).

(b) We may assume that α is of class C1. For any ε > 0 there exists an η > 0 such
that

∣∣P(α(t′),α(t′′))
|t′−t′′| − γ(α(t′))|α′(t′)|

∣∣ ≤ ε, 0 ≤ t′, t′′ ≤ 1, |t′ − t′′| ≤ η,
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(28) One may also ask how close is the Poincaré geometry to the holomorphic one, i.e. what
are the relations between the set Isom(P) of all P-isometries of D and the group Aut(D).
Observe that Isom(P) = Isom(m). We can also study the set Isom(γ) of all γ-isometries
of D, i.e. the set of all C1-mappings f : D −→ D such that γ(f(λ))|(dλf)(X)| =
γ(λ)|X|, λ ∈ D, X ∈ C, where dλf : C −→ C denotes the R-differential of f at λ.

(29) For any mapping f : D −→ D the following conditions are equivalent:
(i) f ∈ Isom(P),
(ii) f ∈ C1 and f ∈ Isom(γ),
(iii) either f ∈ Aut(D) or f ∈ Aut(D).
Thus, Isom(P) = Isom(γ) = Aut(D) ∪ Aut(D).

Indeed, it is clear that (iii) =⇒ (i) and (iii) =⇒ (ii).
(i) =⇒ (iii). Taking eiϑhf(0) ◦ f in place of f we may assume that f(0) = 0 and

that f(x0) = x0 for some 0 < x0 < 1. Then we have |f(λ)| = |λ| and
∣∣∣ f(λ)−x01−f(λ)x0

∣∣∣ =∣∣∣ λ−x01−λx0

∣∣∣, λ ∈ D. Hence Re f(λ) = Reλ, λ ∈ D, and consequently either f(λ) ≡ λ or

f(λ) ≡ λ.
(ii) =⇒ (iii). Since f is a γ-isometry, we have |f ′

x(λ)α+ f ′
y(λ)β| = C(λ)|α+ iβ|, λ ∈

D, α, β ∈ R, where C(λ) := γ(λ)
γ(f(λ))

> 0. Hence for each λ ∈ D there exists an
ε(λ) ∈ {−1, 1} such that f ′

x(λ) = ε(λ)if ′
y(λ) ̸= 0. Since the partial derivatives are

continuous, the function ε has to be constant, and consequently f is either holomorphic
or antiholomorphic. Hence, by the Schwarz–Pick lemma, f ∈ Aut(D) ∪ Aut(D).

(30) The Poincaré distance may also be introduced axiomatically. Let d : D× D −→ R be a
function such that

(i) d is invariant under Aut(D),
(ii) d(0, s) = d(0, t) + d(t, s), 0 ≤ t ≤ s < 1,
(iii) lim

t→0+

d(0,t)
t

= 1.
Then d = P.

Indeed, let φ(t) := d(0, t), 0 ≤ t < 1. In view of (ii) and (iii), φ(0) = 0 and φ′(0) = 1.
We shall show in the second paragraph that φ′(t) = 1

1−t2 = γ(t), 0 ≤ t < 1. Suppose for
a moment that it is true. Then φ(s) =

∫ s
0
φ′(t)dt =

∫ s
0

dt
1−t2 = 1

2
log 1+s

1−s = P(0, s), 0 ≤
s < 1, and hence by (i), d ≡ P.

Fix 0 < t0 < 1 and let t > 0 be such that t0 + t < 1. Because of (ii), we get
φ(t0 + t) − φ(t0) = d(t0, t0 + t). On the other hand, by (i) we have d(t0, t0 + t) =

d
(
ht0(t0), ht0(t0 + t)

)
= d(0, t

1−(t0+t)t0
). Finally, lim

t→0+

φ(t0+t)−φ(t0)
t

= 1
1−t20

. The proof for
the left derivative is analogous.





CHAPTER 3

Singularities

3.1. Laurent series

Definition 3.1.1. Any series of the form
∞∑

n=−∞
an(z − a)n =

∞∑

n=1

a−n(z − a)−n +
∞∑

n=0

an(z − a)n =: S(z) +R(z),

is called a Laurent (1) series centered at a ∈ C. The series S is called the singular part, the
series R — the regular part. Power series may be identified with those Laurent series for
which S ≡ 0, i.e. a−n = 0 for all n ∈ N. Define the numbers R−, R+ ∈ {−∞} ∪ [0,+∞]:

R− :=




lim sup
n→+∞

n
√
|a−n|, if ∃n∈N : a−n ̸= 0

−∞, if ∀n∈N : a−n = 0
, R+ :=

1

lim sup
n→+∞

n
√
|an|

.

Remark 3.1.2. Suppose that R− < R+.

(a) The series
∞∑

n=−∞
an(z − a)n converges locally uniformly in A(a,R−, R+).

(b) For any compact K ⊂⊂ A(a,R−, R+) there exist C > 0, ϑ ∈ (0, 1) such that

|an(z − a)n| ≤ Cϑ|n|, z ∈ K, n ∈ Z.

(c) By the Weierstrass theorem the function f(z) :=
∞∑

n=−∞
an(z − a)n, z ∈ A(a,R−, R+), is

holomorphic.

(d) 1
2πi

∫
C(a,r)

f(ζ)
(ζ−a)k+1dζ =

∞∑
n=−∞

an
1

2πi

∫
C(a,r)

(ζ − a)n−k−1dζ = ak, k ∈ Z, R− < r < R+.

Consequently, the coefficients (an)n∈Z are uniquely determined by f .

Theorem 3.1.3 (Laurent series representation). Let f ∈ O(A(a, r−, r+), 0 ≤ r− < r+ ≤
+∞. Put

an(r) :=
1

2πi

∫

C(a,r)

f(ζ)

(ζ − a)n+1
dζ, n ∈ Z, r− < r < r+.

Then an := an(r) is independent of r, the Laurent series
∞∑

n=−∞
an(z − a)n is convergent in

A(a, r−, r+), and f(z) =
∞∑

n=−∞
an(z − a)n, z ∈ A(a, r−, r+).

(
1
)

Pierre Laurent (1813–1854).
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Proof. The independence of an(r) from r follows from the Cauchy integral formula. Using
the Cauchy integral formula for z ∈ C(a, r) i r− < r1 < r < r2 < r+ we get:

f(z) =
1

2πi

( ∫

C(a,r2)

f(ζ)

ζ − z
dζ −

∫

C(a,r1)

f(ζ)

ζ − z
dζ

)

=
1

2πi

( ∫

C(a,r2)

f(ζ)
1

ζ − a+ a− z
dζ −

∫

C(a,r1)

f(ζ)
1

ζ − a+ a− z
dζ

)

=
1

2πi

( ∫

C(a,r2)

f(ζ)
1

ζ − a

1

1− z−a
ζ−a

dζ +

∫

C(a,r1)

f(ζ)
1

z − a

1

1− ζ−a
z−a

dζ
)

=
1

2πi

( ∫

C(a,r2)

f(ζ)
∞∑

n=0

(z − a)n

(ζ − a)n+1
dζ +

∫

C(a,r1)

f(ζ)
∞∑

n=0

(ζ − a)n

(z − a)n+1
dζ

)

=
∞∑

n=0

an(z − a)n +
∞∑

n=0

a−(n+1)(z − a)−(n+1). □

Example 3.1.4. [Example 3.1.4−→ Exer . . . . . . . . ] The typical problem related to
the Laurent series expansion looks as follows. We have a function f ∈ O(C \ {a1, . . . , aN}),
where |a1| ≤ · · · ≤ |aN |, and we are looking for the Laurent expansion of f in the following
annuli:

• B(|a1|) provided that a1 ̸= 0,
• A(|aj|, |aj+1|) provided that |aj| < |aj+1|, j = 1, . . . , N − 1,
• A(|aN |,+∞),
• A(aj, 0, rj), rj := min{|ak − aj| : k = 1, . . . , N, k ̸= j}, j = 1, . . . , N .
For example for the function f(z) := 1

z−1
+ 1

z−2
we get:

• in B(1): f(z) = −
∞∑
n=0

zn − 1
2

∞∑
n=0

(
z
2

)n
= −

∞∑
n=0

(1 + 1/2n+1)zn.

• in A(1, 2): f(z) = 1
z

∞∑
n=0

(
1
z

)n − 1
2

∞∑
n=0

(
z
2

)n
= −

∞∑
n=0

1/2n+1zn +
∞∑
n=1

z−n.

• in A(2,+∞): f(z) = 1
z

∞∑
n=0

(
1
z

)n
+ 1

z

∞∑
n=0

(
2
z

)n
=

∞∑
n=1

(1 + 2n−1)z−n.

• in A(1, 0, 1): f(z) = 1
z−1

− 1
1−(z−1)

= 1
z−1

−
∞∑
n=0

(z − 1)n.

• in A(2, 0, 1): f(z) = 1
1+(z−2)

+ 1
z−2

=
∞∑
n=0

(−1)n(z − 2)n + 1
z−2

.

3.2. Isolated singularities

Definition 3.2.1. We say that a point a ∈ C is an isolated singularity of a holomorphic
function f if f is holomorphic at least in A(a, 0, r) for some r > 0.

Obviously, we may also have non-isolated singularities, e.g. 0 for f(z) := 1/ sin(1/z).
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If f ∈ O(A(a, 0, r)), then we take the Laurent expansion f(z) =
∞∑

n=−∞
an(z − a)n, z ∈

A(a, 0, r), and we introduce the following classifications:
• removable singularity, if a−n = 0 for all n ∈ N; if we put f(a) := a0, then we get a

holomorphic function in the whole disc B(a, r);
• pole of order d (d ∈ N), if a−n = 0 for n > d and a−d ̸= 0; we write orda f = −d; the

rational function

g(z) :=
d∑

n=1

a−n(z − a)−n

is called the principal part of the pole; observe that g(z) = p( 1
z−a), where p is a polynomial

of degree d; obviously, lim
z→a

f(z) = ∞;
• essential singularity, if a−n ̸= 0 for infinitely many n ∈ N.
The point ∞ is an isolated singularity of f if 0 is an isolated singularity of the function

z
g7−→ f(1/z). We classify singularities of f at ∞ via the classification of singularities of g

at 0.

Theorem 3.2.2 (Riemann theorem on removable singularities). For f ∈ O(A(a, 0, r)) the
following conditions are equivalent:

(i) a is a removable singularity;
(ii) there exists a finite limit lim

z→a
f(z);

(iii) f is bounded in A(a, 0, ε) for some 0 < ε < r;
(iv) f ∈ Lph(A(a, 0, ε)) for some p ≥ 2 and 0 < ε < r.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are obvious. It remains to prove that
(iv) =⇒ (i). We may assume that a = 0. Since Lp(B∗(ε)) ⊂ L2(B∗(ε)), we may assume that

p = 2. Let f(z) =
∞∑

n=−∞
anz

n, z ∈ B∗(r). We have to show that a−n = 0 for every n ∈ N.

Fix an n ∈ N. We are going to show that

|a−n| ≤ (1/
√
2π)εn−1∥f∥L2(B∗(η)). 0 < η < ε.

Since ∥f∥L2(B∗(η)) −→ 0 when η −→ 0, the proof will be completed. For 0 < t < η < ε, using
the Hölder inequality we get:

|a−n|2 =
∣∣∣ 1

2πi

∫

C(t)

f(ζ)

ζ−n+1
dζ

∣∣∣
2

≤
( 1

2π

2π∫

0

|f(teiϑ)|tndϑ
)2

≤ 1

2π

2π∫

0

|f(teiϑ)|2dϑ t2n.

On the other hand,

1

2π
η2n−2

∫

B∗(η)

|f |2dL2 ≤ 1

2π

1

η
η2n−1

η∫

0

2π∫

0

|f(teiϑ)|2tdϑdt = |a−n|2. □

Remark 3.2.3. 1/z ∈ Lph(D∗), 1 ≤ p < 2.



30
Marek Jarnicki, Lectures on Analytic Functions, version January 23, 2024

3. Singularities

Definition 3.2.4. We say that a function f ∈ O(B(a, r)) has a zero of multiplicity (order)
dat a, if f (k)(a) = 0 for k ≤ d− 1 and f (d)(a) ̸= 0. We write orda f = d.

This means that f(z) = (z − a)dg(z), z ∈ B(a, r), where g ∈ O(B(a, r)) and g(a) ̸= 0.
If f ∈ O(Ĉ \B(r)) and g(z) := f(1/z), z ∈ A(0, 1/r), then ord∞ f =: ord0 g.

Theorem 3.2.5. For f ∈ O(A(a, 0, r)) and d ∈ N, the following conditions are equivalent:
(i) orda f = −d;
(ii) there exists a g ∈ O(B(a, r)) such that g(a) ̸= 0 and f(z) = (z−a)−dg(z), z ∈ B∗(a, r);
(iii) 1/f (defined as 0 at a) has a zero of d at a.

Proof. Exercise. □
Theorem 3.2.6 (Sochocki (2) -Casorati (3) -Weierstrass theorem). If f ∈ O(A(a, 0, r)) has
an essential singularity at a, then for every 0 < ε < r the set f(A(a, 0, ε)) is dense in C.

Proof. Suppose that f(A(a, 0, ε)) is not dense in C. Then f(A(a, 0, ε)) ∩ B(b, δ) = ∅ for
some disc B(b, δ). Thus |f(z) − b| ≥ δ, z ∈ A(a, 0, ε). Let g(z) := 1

f(z)−b , z ∈ A(a, 0, ε).
Since |g| ≤ 1/δ, the function g has a removable singularity at a. Its extension to B(a, ε) will
be denoted also by g. If g(a) ̸= 0, then we may assume that g(z) ̸= 0, z ∈ B(a, ϵ). In this
case we get f(z) = 1

g(z)
+ b, z ∈ A(a, 0, ε) and consequently, f extends holomorphically to

B(a, ϵ) — a contradiction.
If g(a) = 0, then g(z) = (z − a)dh(z), z ∈ B(a, ε), where d ∈ N, h ∈ O(B(a, ε)), and

h(a) ̸= 0. We may assume that h(z) ̸= 0, z ∈ B(a, ε). Then f(z) = (z−a)−d
(

1
h(z)

+b(z−a)d
)
,

z ∈ A(a, 0, ε), which implies that f has a pole of order d at a — a contradiction. □
In fact, the result may be strengthened.

Theorem* 3.2.7 (Big Picard (4) theorem). Let f ∈ O(A(a, 0, r)) have an essential sin-
gularity at a. Then all except at most one complex value is assumed at infinitely many
points.

Corollary 3.2.8. Let f ∈ O(A(a, 0, r)). Then:
• f has a removable singularity at a if and only if lim

z→a
f(z) exists and is finite;

• f has a pole at a if and only if lim
z→a

f(z) = ∞;
• f has an essential singularity at a if and only if a finite or infinite limit lim

z→a
f(z) does

not exist.

Definition 3.2.9. If f ∈ O(A(a, 0, r)), then the number resa f := a−1 = 1
2πi

∫
C(a,δ)

f(ζ)dζ

(0 < δ < r) is called the residuum of f at a.

Theorem 3.2.10. If an f ∈ O(A(a, 0, r)) has a pole of order d at a, then resa f =
1

(d−1)!
lim
z→a

(
(z − a)df(z)

)(d−1) (attention: here ()(d−1) denotes the (d− 1) derivative).
(
2
)

Julian Sochocki (1842–1927).(
3
)

Felice Casorati (1835–1890).(
4
)

Émile Picard (1856–1941).
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Example 3.2.11. [Example 3.2.11−→ Exer . . . . . . . . . . ] resi 1
(1+z2)n

= 1
2i

(2n−3)!!
(2n−2)!!

.





CHAPTER 4

Meromorphic functions

4.1. Meromorphic functions

Definition 4.1.1. Let D ⊂ Ĉ be a domain. We say that a function f : D −→ Ĉ is
meromorphic (f ∈ M(D)), if there exists a set S = S(f) ⊂ D such that:

• S ′ ∩D = ∅,
• f ∈ O(D \ S),
• f has a pole at each point a ∈ S.
If Ω ⊂ Ĉ is open, then we say that a function f : Ω −→ Ĉ is meromorphic (f ∈ M(Ω)),

if f |D ∈ M(D) for any connected component D of Ω.

Remark 4.1.2. (a) O(Ω) ⊂ M(Ω),
(b) M(Ω) ⊂ C(Ω, Ĉ).

Theorem 4.1.3 (Identity principle for meromorphic functions). If f, g ∈ M(D) and the set
A := {z ∈ D : f(z) = g(z)} has an accumulation point in D, then f ≡ g.

Proof. Let S := S(f) ∪ S(g). Obviously, S has no accumulation points in D. Thus
A ∩ (D \ S) has an accumulation point in D \ S. By the identity principle for holomorphic
functions, we get f = g in D \ S. Finally, using the continuity of f and g, we get f ≡ g. □

Theorem 4.1.4. M(D) is a field.

Proof. Let f, g ∈ M(D), f, g ̸≡ 0. Clearly, f + g ∈ M(D) and S(f + g) ⊂ S(f) + S(g).
If g ̸≡ 0, then the set A := g−1(0) has no accumulation points in D. Moreover, 1/g ∈
O(D \ (A ∪ S(g))). By Theorem 3.2.5 for each a ∈ A if g has a zero of multiplicity d, then
1/g has a pole of order d. Similarly, for each a ∈ S(g) if g has a pole of order d, then 1/g
has a zero of multiplicity d. Thus S(1/g) = A and 1/g ∈ M(D).

It remains to prove that f ·g ∈ M(D). Obviously, f ·g ∈ O(D\A), whereA := S(f)∪S(g).
Fix an a ∈ A ∩ C. Let f(z) = (z − a)dff1(z), g(z) = (z − a)dgg1(z), z ∈ A(a, 0, r) ⊂ D \ A,
f1, g1 ∈ O∗(B(a, r)). Hence f(z)g(z) = (z − a)df+dgf1(z)g1(z), z ∈ A(a, 0, r).

The case a = ∞ is left as an Exercise.
Now, using Theorem 3.2.5, we conclude that f · g ∈ M(D). □

Theorem 4.1.5. M(Ĉ) = R(C).

Proof. Obviously, R(C) ⊂ M(Ĉ). Let f ∈ M(Ĉ). The set S(f) must be finite. The case
S(f) = ∅ is trivial because then f ≡ const. If S(f) = {∞}, then f is an entire function.
Since f has a pole at ∞, it must be a polynomial. Otherwise, S(f) ∩ C = {a1, . . . , an}

33
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and let gk(z) = pk
(

1
z−ak

)
be the principal part of the pole of f at ak, k = 1, . . . , n. Put

g := f − (g1 + · · ·+ gn) ∈ M(Ĉ). Then S(g) ⊂ {∞}, and therefore g must be a polynomial.
□

Theorem 4.1.6. (a) Aut(C) = AutH(C) = {C ∋ z 7−→ az + b ∈ C : a ∈ C∗, b ∈ C} = G.
(b) Aut(Ĉ) = AutH(Ĉ) = H.

Aut(C) depends on 4 real parameters.

Proof. (a) Clearly, G ⊂ Aut(C). Let f ∈ Aut(C). Since f is proper, we get lim
z→∞

f(z) = ∞.
This means that f has a pole at ∞. Thus f is a polynomial of degree d (for some d ∈ N).
Since f is injective, it must be d = 1.

(b) We know that H ⊂ Aut(Ĉ). Let f ∈ Aut(Ĉ). If f(∞) = ∞, then f ∈ Aut(C), and so
(use (a)) f(z) = az + b ∈ H. If f(∞) = w0 ∈ C, then g := 1

f−w0
∈ Aut(Ĉ) and g(∞) = ∞,

which gives f ∈ H. □

4.2. Residue theorem

Theorem 4.2.1 (Residue theorem). Let D be a regular domain (cf. Theorem 2.1.5), D ⊂ Ω,
where Ω is open. Let f ∈ M(Ω) be such that S(f) ⊂ D (observe that S(f) must be finite).
Then ∫

∂D

f(ζ)dζ = 2πi
∑

a∈S(f)
resa f.

Proof. If S(f) = ∅, the result is trivial (
∑
a∈∅

· · · = 0). Suppose that S(f) = {a1, . . . , an}.

Let r > 0 be so small that B(aj, r) ⊂⊂ D and B(aj, r)∩B(ak, r) = ∅, j ̸= k. Now we apply

the Cauchy formula to the domain G := D \
n⋃
j=1

B(aj, r):

0 =

∫

∂G

f(ζ)dζ =

∫

∂D

f(ζ)dζ −
n∑

j=1

∫

C(aj ,r)

f(ζ)dζ =

∫

∂D

f(ζ)dζ −
n∑

j=1

2πi resaj f. □

Exercise 4.2.2 (Applications to integrals). [Exercise 4.2.2−→ Exer . . . . . . . . . . ]

(I) I :=
2π∫
0

W (cos t, sin t)dt, where W is a rational function of two complex variables. Then

I = 2πi
∑
a∈D

resa f , where f(z) := W (cos z, sin z).

(II) I :=
∞∫

−∞
f(x)dx, where f ∈ M(Ω), H+ ⊂ Ω, S(f) = {a1, . . . , aN} ⊂ H+. Let C+(r)

denote the upper half of C(r) identified with the curve [0, π] ∋ t 7−→ reit. By the
residue theorem applied to the domain {x + iy ∈ B(R) : y > 0} with R ≫ 1, we

have I = 2πi
N∑
j=1

res ajf − lim
R→+∞

∫
C+(R)

f(z)dz. We are interested in those cases where

lim
R→+∞

∫
C+(R)

f(z)dz = 0.
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(*) If there exists an α > 1 such that |f(z)| ≤ C/|z|α for z ∈ H+, |z| ≥
R0 (e.g. f(z) = P (z)/Q(z) is a rational function with degP ≤ degQ − 2), then
lim

R→+∞

∫
C+(R)

f(z)dz = 0.

For example
∞∫

−∞

1

(1 + x2)n
dx = 2πi resi

1

(1 + z2)n
= π

(2n− 3)!!

(2n− 2)!!
, n ∈ N.

(**) (Jordan (1) lemma) If f(z) = g(z)eiλz, z ∈ Ω, where λ > 0 and M(R) :=
sup{|g(z)| : z ∈ C+(R)} −→

R→+∞
0 (e.g g(z) = P (z)/Q(z) is a rational function with

degP ≤ degQ− 1), then lim
R→+∞

∫
C+(R)

f(z)dz = 0.

For example
∞∫

−∞

x sinx

1 + x2
dx = Im

( ∞∫

−∞

xeix

1 + x2
dx

)
= Im

(
2πi resi

zeiz

1 + z2

)
= Im

(
2πi

ie−1

2i

)
=
π

e
.

(III) I :=
∞∫
0

sinx
x
dx = 1

2
Im

( ∞∫
−∞

eix

x
dx

)
= −π

2
.

(IV) I :=
∞∫
0

cosx2dx+ i
∞∫
0

sinx2dx =
∞∫
0

eiz
2
dz = eiπ/4

√
π
2
.

(V) I :=
∞∫

−∞

eαx

1+ex
dx = π

sinαπ
, 0 < α < 1.

4.3. Holomorphic functions given by integrals

Theorem 4.3.1 (Holomorphic functions given by integrals). Let I ⊂ R, I ∈ {[a, b], [a, b)},
let D ⊂ C be a domain, and let f : D × I −→ C be such that:

(a) f(·, t) ∈ O(D), t ∈ I,
(b) f(z, ·) ∈ C(I), z ∈ D,
(c) f is locally bounded in D × I,
(c’) for every compact K ⊂⊂ D there exists an integrable function gK : [a, b) −→ R+

such that |f(z, t)| ≤ gK(t), (z, t) ∈ K× [a, b) (observe that if I = [a, b], then (c’) follows from
(c)).

Put F (z) :=
b∫
a

f(z, t)dt, z ∈ D. Then F ∈ O(D) and F (k)(z) =
b∫
a

∂kf
∂zk

(z, t)dt, z ∈ D,

k ∈ N.

An analogous result is true for I = (a, b] or I = (a, b).

(
1
)

Camille Jordan (1838–1922).
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Proof. First let I = [a, b]. Put tn,j = a+ j
n
(b− a), ξn,j ∈ [tn,j−1, tn,j], n ∈ N, j = 0, . . . , n,

Fn(z) :=
n∑

j=1

f(z, ξn,j)
b− a

n
, z ∈ D, n ∈ N.

Obviously, Fn ∈ O(D) and Fn −→ F pointwise in D. In order to prove that F ∈ O(D),
in view of the Vitali theorem, it suffices to prove that (Fn)

∞
n=1 is locally bounded. For any

compact K ⊂⊂ D let |f | ≤ C on K × [a, b]. Then |Fn| ≤ C(b− a) on K, n ∈ N.
Fix k ∈ N and z ∈ D. By the Weierstrass theorem we get F (k)

n (z) −→ F (k)(z). Observe
that

F (k)
n (z) =

n∑

j=1

∂kf

∂zk
(z, ξn,j)

b− a

n
, n ∈ N.

Hence the integral
b∫
a

∂kf
∂zk

(z, t)dt exists and we get the formula.

In the case where I = [a, b) fix bk ↗ b and let Fk(z) :=
bk∫
a

f(z, t)dt, z ∈ D, k ∈ N. It

suffices to prove that Fk −→ F locally uniformly in D. Fix a compact K ⊂⊂ D. Then for

z ∈ K and ℓ ≥ k, we obtain |Fk(z)− Fℓ(z)| =
∣∣∣
bℓ∫
bk

f(z, t)dt
∣∣∣ ≤

bℓ∫
bk

gK(t)dt −→
k→+∞

0. □

Let Hm := {z ∈ C : Re z > m}, m ∈ R.
Theorem 4.3.2 (Euler (2) Γ function). (a)

Γ (z) :=

∞∫

0

tz−1e−tdt =

∞∫

0

e(z−1) log t−tdt, z ∈ H0,

is well defined, Γ (1) = 1, and Γ (z + 1) = zΓ (z).
(b) Γ (z + n) = (z + n − 1) · · · zΓ (z), which gives Γ (z) := Γ (z+n)

(z+n−1)···z , z ∈ H−n, and permits
to extend Γ holomorphically to C \ Z−.

(c) For n ∈ Z+, Γ has a pole of order 1 at −n and res−n Γ = (−1)n

n!
.

Proof. (a), (b) Exercise.
(c) lim

z→−n
(z + n)Γ (z) = lim

z→−n
(z + n) Γ (z+n+1)

(z+n)(z+n−1)···z =
Γ (1)

(−1)···(−n) =
(−1)n

n!
. □

Exercise 4.3.3 (Laplace transform). [Exercise 4.3.3−→ Exer . . . . . . . . . . . . . ]

(a) Let D(L) denote the family of all functions f : R+ −→ C such that:
• there exist points 0 = t0 < t1 < · · · < tN for which f |(tj−1,tj) ∈ C([tj−1, tj]),

j = 1, . . . , N , and f |(tN ,+∞) ∈ C([tN ,+∞)),
• there exist M,m ≥ 0 such that |f(t)| ≤Memt, t ∈ R+.
We put m(f) := inf{m ≥ 0 : ∃M≥0 : |f(t)| ≤ Memt, t ∈ R+}. If f is bounded, then

m(f) = 0.
(b) D(L) is an algebra.
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(c) For f ∈ D(L) define the Laplace transform F (s) = L(f)(s) :=
∞∫
0

f(t)e−stdt, s ∈ Hm(f).

Observe that F is well-defined. Indeed, for any m > m(f) if |f(t)| ≤ Memt, t ∈ R+, for
some constant M ≥ 0, then |f(t)e−st| ≤ Me(m−Re s)t, t ∈ R+. Moreover, F ∈ O(Hm(f))

and |F (s)| ≤ M
Re s−m −→

Hm∋s→∞
0. The operator L is obviously linear.

(d) We have:

f(t) F (s)

1 1
s

eλt (λ ∈ C) 1
s−λ

sin t
cos t
sinh t
cosh t

f(at) (a > 0) 1
a
F ( s

a
)

f(t+ ω) = f(t), t ∈ R+ (ω > 0) 1
1−e−ωs

ω∫
0

f(t)e−stdt

f(t− b) (b > 0) e−bsF (s)

f(t+ b) (b > 0) ebs(F (s)−
b∫
0

f(t)e−stdt)

tα (α ≥ 0) Γ (α+1)
sα+1

e−λtf(t) (λ ∈ C) F (s+ λ)
ecttk−1

(k−1)!
1

(s−c)k
(−t)kf(t) F (k)(s)

f (k)(t) (f (j) ∈ D(L) ∩ C(R>0), j = 1, . . . , k) skF (s)−
k−1∑
j=0

sjf (k−j−1)(0+)

(e) For s ∈ H0 we have L(tα)(s) = Γ (α+1)
sα+1 .

(f) Consider the equation any
(n) + · · · + a1y

′ + a0y = f(t), where y ∈ D(L), y(j) ∈ D(L) ∩
C(R>0), j = 1, . . . , n, f ∈ D(L). Let L(f) = F , L(y) = Y , pj := y(j)(0+), j = 0, . . . , n,
P (s) := ans

n + · · ·+ a1s+ a0. Then

F =
n∑

k=0

akL(y(k)) =
n∑

k=0

ak

(
skY −

k−1∑

j=0

sjpk−j−1

)
= PY −Q, where Q ∈ Pn−1(C). □

4.4. Residues of the logarithmic derivative. Rouché theorem, Hurwitz theorem

Theorem 4.4.1 (Residues of the logarithmic derivative). Let D be a regular domain, D ⊂ Ω,
where Ω is open, and let f ∈ M(Ω), f ̸≡ 0 on D, be such that f−1(0) ∪ S(f) ⊂ D
(f−1(0)∪S(f) must be finite). Let α(z) := ordz f , z ∈ f−1(0), β(p) denote the order of pole
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of f at p ∈ S(f). Then, for an arbitrary function φ ∈ O(Ω) we have
1

2πi

∫

∂D

φ(ζ)
f ′(ζ)

f(ζ)
dζ =

∑

z∈f−1(0)

α(z)φ(z)−
∑

p∈S(f)
β(p)φ(p).

In particular, if φ = 1, then 1
2πi

∫
∂D

φ(ζ)f
′(ζ)
f(ζ)

dζ = Z − P, where Z (resp. P ) denotes the

number of zeros (resp. poles) of f counted with multiplicities.

Proof. By the residue theorem we obtain
1

2πi

∫

∂D

φ(ζ)
f ′(ζ)

f(ζ)
dζ =

∑

z∈f−1(0)

resz

(
φ
f ′

f

)
+

∑

p∈S(f)
resp

(
φ
f ′

f

)
=

∑

z∈f−1(0)

α(z)φ(z)−
∑

p∈S(f)
β(p)φ(p),

because if f(z) = (z − a)kg(z), z ∈ A(a, 0, r) ⊂⊂ D, where k ∈ Z and g ∈ O(B(a, r)),
g(a) ̸= 0, then

φ(z)
f ′(z)

f(z)
= φ(z)

k(z − a)k−1g(z) + (z − a)kg′(z)

(z − a)kg(z)
= φ(z)

k

z − a
+ φ(z)

g′(z)

g(z)
, z ∈ A(a, 0, r).

□

Theorem 4.4.2 (Rouché (3) theorem). Let D ⊂ C be a bounded domain and let f, g ∈
O(D)∩C(D) be such that |g(ζ)| < |f(ζ)|, ζ ∈ ∂D. Then f + g and f have the same number
of zeros in D, counted with multiplicities.

Proof. Observe that the functions f + g and f have no zeros on ∂D. Consequently, the
number of zeros in D is finite. Let G ⊂⊂ D be regular such that (f + g)−1(0) ∪ f−1(0) ⊂ G
and |g(ζ)| < |f(ζ)|, ζ ∈ ∂G. To get G we may use square nets.

Observe that for ζ ∈ ∂G and t ∈ [0, 1] we have |f(ζ) + tg(ζ)| ≥ |f(ζ)| − t|g(ζ)| ≥
|f(ζ)| − |g(ζ)| > 0. In particular, the function f + tg has no zeros on ∂G. Let Z(t) denote
the number of zeros in G of f + tg counted with multiplicities. By the theorem on residues
of the logarithmic derivative, we know that

Z(t) =
1

2πi

∫

∂G

f ′(ζ) + tg′(ζ)

f(ζ) + tg(ζ)
dζ, t ∈ [0, 1].

It remains to note that the function Z is continuous. □
Corollary 4.4.3. Every polynomial P ∈ Pn(C), degP = n ≥ 1, has exactly n roots counted
with multiplicities.

Proof. Let P (z) = anz
n + · · ·+ a1z + a0, f(z) := anz

n, g(z) := an−1z
n−1 + · · ·+ a1z + a0.

Then |g(ζ)| < |f(ζ)|, ζ ∈ C(R), for R ≫ 1. It remains to use Rouché theorem. □
Theorem 4.4.4 (Hurwitz (4) theorem). Let D ⊂ C be domain, (fk)∞k=1 ⊂ O(D), fk −→ f
locally uniformly in D, f ̸≡ 0. Then for an a ∈ D and a d ∈ Z+ the following conditions are
equivalent:

(
3
)

Eugene Rouché (1832–1910).(
4
)

Adolf Hurwitz (859–1919).
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(i) a ∈ D is a zero of f with multiplicity d
(ii) there exists an ε > 0 such that for every 0 < δ < ε there exists a k0 ∈ N such that for

k ≥ k0 the function fk has exactly d zeros in B(a, δ), counted with multiplicities.

Proof. (i) =⇒ (ii): Take an ε > 0 such that f(z) ̸= 0, z ∈ B(a, ε) \ {a}. Let 0 < δ < ε
and let η := 1

2
min{|f(z)| : z ∈ C(a, δ)} > 0. Choose k0 ∈ N such that |fk(z) − f(z)| ≤ η,

z ∈ B(a, δ), k ≥ k0. Then for z ∈ C(a, δ) and k ≥ k0 we get |fk(z)−f(z)| ≤ η < 2η ≤ |f(z)|.
Now, by the Rouché theorem the functions fk = (fk − f) + f and the same number of zeros
in B(a, δ), counted with multiplicities.

(ii) =⇒ (i): In view of the previous argument, f must have a zero of multiplicity d at
a. □
Corollary 4.4.5. Let D ⊂ C be a domain, (fk)∞k=1 ⊂ O(D), fk −→ f locally uniformly in
D, f ̸≡ const. Assume that each function fk is injective. Then f is injective.

Proof. Suppose that f(a) = f(b) =: c for some a, b ∈ D, a ̸= b. Let B(a, r) ∩B(b, r) = ∅.
By the Hurwitz theorem applied to (fk − c)∞k=1 and f − c, we conclude that there exists a
k0 ∈ N such that for every k ≥ k0 the function fk − c has at least one zero in B(a, r) and in
B(b, r), say ak, bk. Thus fk(ak) = fk(bk), k ≥ k0 — a contradiction. □

4.4.1. Multiplicity at a point.

Definition 4.4.6. Let D ⊂ C be a domain, a ∈ D, and let f ∈ O(D). We say that f
has multiplicity d at a (d ∈ N), if there exists a neighborhood U0 ⊂ D of a such that for
every neighborhood U ⊂ U0 of a there exists a neighborhood V of f(a) such that for every
w ∈ V \ {f(a)} the function f − w has exactly d zeros in U , counted with multiplicities.

Corollary 4.4.7. Let D ⊂ C be a domain, a ∈ D, and let f ∈ O(D). Then the following
conditions are equivalent:

(i) f has multiplicity d at a;
(ii) a is a zero of f − f(a) of order d.

Proof. (ii) =⇒ (i): Let r > 0 be such that the function f − f(a) has exactly one zero in
B(a, r) ⊂ D. Let 0 < δ < r and η := min{|f(z)−f(a)| : z ∈ C(a, δ)}. Let 0 < |w−f(a)| < η.
Then |f(a) − w| < |f(z) − f(a)|, z ∈ C(a, δ). Hence, by the Rouché theorem the functions
f(z)− w = (f(z)− f(a)) + (f(a)− w) and f(z)− f(a) have in B(a, δ) the same number of
zeros counted with multiplicities.

(i) =⇒ (ii): By the above proof, if a is a zero of f − f(a) of multiplicity k, then f has
multiplicity k at a. Thus k = d. □
Corollary 4.4.8. Let D ⊂ C be a domain and let f ∈ M(D), f ̸≡ const. Then f is an
open mapping.

Remark 4.4.9. If f : D −→ C is open, then |f | : D −→ R+ is open and |f | satisfies the
maximum principle.





CHAPTER 5

Biholomorphic mappings

5.1. Biholomorphic mappings

5.2. Biholomorphisms of annuli

Theorem 5.2.1. For f ∈ O(D) the following conditions are equivalent:
(i) G := f(D) is open and f ∈ Bih(D,G);
(ii) f is injective and f ′(z) ̸= 0, z ∈ D;
(iii) f is injective.

Proof. Indeed, the implications (i) ⇐⇒ (ii) =⇒ (iii) are elementary.
(iii) =⇒ (i): By Corollary 4.4.8, f is an open mapping. By Corollary 4.4.7 f satisfies

(ii). □
Theorem 5.2.2 (Hadamard (1) three circles theorem). Let f ∈ O(A(r1, r2)), 0 < r1 < r2 <
+∞, and let Mj := sup{lim sup

z→ζ
|f(z)| : ζ ∈ C(rj)}, j = 1, 2. Then

|f(z)| ≤M

log
|z|
r2

log
r1
r2

1 M

log
|z|
r1

log
r2
r1

2 , z ∈ A(r1, r2).
Proof. We may assume that M1, M2 < +∞, f ̸≡ const. Let u(z) := |z|α|f(z)|, z ∈
A(r1, r2). Observe that u is an open mapping because locally u = |eαℓf |, where ℓ is a local
branch of the logarithm. Since all open mappings satisfy the maximum principle we get
|z|α|f(z)| ≤ max{rα1M1, r

α
2M2}, z ∈ A(r1, r2). Taking α so that rα1M1 = rα2M2 we get the

result (Exercise). □

Remark 5.2.3. If f ∈ O(A(r1, r2))∩C(A(r1, r2)) and M(r) := max{|f(z)| : z ∈ C(r)}, then
the function [log r1, log r2] ∋ t 7−→ logM(et) is convex.

Theorem 5.2.4. If f ∈ Bih(A(r1, R1),A(r2, R2)), 0 < rj < Rj < +∞, j = 1, 2, then
R1/r1 = R2/r2 and f(z) = (r2/r1)z or f(z) = r1R2/z up to a rotation.

In particular, for 0 < r < R < +∞, Aut(A(r, R)) = {z 7−→ eiϑz : ϑ ∈ R} ∪ {z 7−→
eiϑrR/z : ϑ ∈ R}; the group Aut(A(r, R)) depends on one real parameter and does not act
transitively.

Proof. We may assume that r1 = r2 = 1. Let g := f−1. The mapping f is proper so

lim
dist(z,∂A(1,R1))→0

dist(f(z), ∂A(1, R2)) = 0.

(
1
)

Jacques Hadamard (1865–1963).

41
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We will show that either

lim
|z|→1

|f(z)| = 1 and lim
|z|→R1

|f(z)| = R2, (†)

or

lim
|z|→1

|f(z)| = R2 and lim
|z|→R1

|f(z)| = 1. (‡)

Suppose for a moment that (†) is true. Then, by the Hadamard theorem,

|f(z)| ≤ R
log |z|
logR1
2 = |z|

logR2
logR1 , z ∈ A(1, R1), and |g(w)| ≤ R

log |w|
logR2
1 = |w|

logR1
logR2 , w ∈ A(1, R2).

Hence |f(z)| = |z|
logR2
logR1 =: |z|α, z ∈ A(1, R1). Our aim is to show that α = 1. We have

f(z) = eiϑeαLog z, z ∈ A(1, R1) \ R− (for a ϑ ∈ R). Since f is continuous, we must have
eiϑeα(log t+iπ) = eiϑeα(log t−iπ), t ∈ (1, R1). Hence e2απi = 1, and therefore α ∈ Z. Since f is
injective we get α = ±1. The condition (†) implies that α = 1.

The case (‡) reduces to the above after the composition with the inversion

A(1, R2) ∋ w 7−→ R2/w ∈ A(1, R2). (*)

It remains to check (†), (‡). Let r :=
√
R2, B− := A(1, r), B+ := A(r, R2). Since

g(C(r)) is compact there exist 1 < s1 < s2 < R1 such that g(C(r)) ⊂ A(s1, s2). Consider
domains A+ := f(A(s2, R1)) and A− := f(A(1, s1)). Since A+∩C(r) = ∅, the domain A+ is
contained in B+ or B−. We may assume that A+ ⊂ B+ (use the inversion (*)). This means
that lim

|z|→R1

|f(z)| = R2. It remains to show that A− ⊂ B−. Suppose that A− ⊂ B+. Then

we can joint an arbitrary point a+ ∈ A+ with any a− ∈ A− by a curve γ in B+. Then the
curve g(γ) connects g(a+) ∈ A(s2, R1) and g(a−) ∈ A(1, s1) and is disjoint with g(C(r)) —
a contradiction. □
Exercise 5.2.5. Describe all biholomorphisms f : A(r1, R1) −→ A(r2, R2), 0 ≤ rj < Rj ≤
+∞, j = 1, 2, in all the cases not covered by Theorem 5.2.4.

5.3. Riemann theorem

Theorem 5.3.1 (Riemann theorem). Let D ⊂ Ĉ be a simply connected domain with #∂D ≥
2. Then there exists a biholomorphism f : D −→ D.

Proof. The case ∞ ∈ D reduces to a D ⊂ C via an inversion. Let a, b ∈ ∂D, a ̸= b. Fix a
z0 ∈ D and let R := {f ∈ O(D,D) : f(z0) = 0, f is injective}.

First we prove that R ̸= ∅. Observe that it suffices to find an injective g : D −→ C
such that B(c, r) ∩ g(D) = ∅ for some c ∈ C and r > 0. In fact, if we have g, then we put
f := r

g−c .
We move to the construction of g. We may assume that a ∈ C \D. Let g be a branch of

z 7−→ √
z − a (cf. Theorem 2.3.12). It is an injective function in D and g(D)∩(−g(D)) = ∅.

In fact, if g(z1) = −g(z2), then g2(z1) = g2(z2), so z1 = z2. Hence g(z1) = −g(z1) = 0 and
therefore z1 = z2 = a — a contradiction. Now we can take an arbitrary B(c, r) ⊂ −g(D).

Let M := sup{|f ′(z0)| : f ∈ R}. Since each f ∈ F is injective we must have M > 0. Let
(fk)

∞
k=1 ⊂ R, f ′

k(z0) −→ M . By the Montel theorem we may assume that fk −→ f0 locally
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uniformly in D. Obviously, f0 ∈ O(D,D), f ′
0(z0) = M > 0. In particular, f0 ̸≡ const. Since

f0(z0) = 0, we conclude that f ∈ O(D,D). By the Hurwitz theorem we get f0 ∈ R. We will
show that f0(D) = D and therefore f0 is the required mapping.

Suppose that G := f0(D) ⊊ D. We need the following lemma.

Lemma 5.3.2. Let G ⊊ D be a simply connected domain with 0 ∈ G. Then there exists an
injective mapping ψ ∈ O(G,D) such that ψ(0) = 0, and |ψ′(0)| > 1.

Proof. Fix a c ∈ D \G and let G1 := hc(G). Then G1 ⊂ D is a simply connected domain
with 0 /∈ G1. In particular, there exists a branch of the square root G1. Let d := g(hc(0))
and let ψ := hd ◦ g ◦ hc. Then ψ : G −→ D is injective and ψ(0) = 0. Observe that
ψ−1 = h−c ◦ (z 7−→ h2−d(z)) ∈ O(D,D) (in the sense of the extension from ψ(G) to D). The
Schwarz lemma implies that |ψ−1(w)| ≤ |w|, w ∈ D∗, |(ψ−1)′(0)| ≤ 1. The equality would
imply that ψ−1(w) = eiαw, and hence (h−d(z))2 = hc(e

iαz), z ∈ D — a contradiction. □
Now let ψ ∈ O(G,D) be as in the lemma. Put f := ψ ◦ f0. Then f ∈ R and |f ′(z0)| =

|ψ′(0)f ′
0(z0)| = |ψ′(0)|M > M – a contradiction. □

Corollary 5.3.3. Let D ⊂ Ĉ be a simply connected domain with #∂D ≥ 2. Let z0 ∈ D∩C,
ϑ ∈ R. Then there exists exactly one f ∈ Bih(D,D) such that f(z0) = 0 and ϑ ∈ arg f ′(z0).

Proof. By the Riemann theorem there exists a biholomorphic mapping f : D −→ D.
Taking hf(z0) ◦ f ∈ Aut(D) we get f(z0) = 0. Now it remains to use a suitable rotation to
get ϑ ∈ arg f ′(z0).

If f1, f2 : D −→ D are two mappings with the above property, then φ = f2◦f−1
1 ∈ Aut(D),

φ(0) = 0 and φ′(0) ∈ R>0. Hence φ = id and so f1 ≡ f2. □

5.4. Index

Definition 5.4.1. Let γ : [0, 1] −→ C be a closed path. For a ∈ C \ γ∗ the integral

Indγ(a) :=
1

2πi

∫

γ

1

z − a
dz

is called the index of a with respect to γ.

Theorem 5.4.2. Indγ(a) ∈ Z and Indγ is zero in the unbounded component of C \ γ∗.
Proof. Obviously, Indγ is continuous and | Indγ(a)| ≤ 1

2π
ℓ(γ)

dist(a,γ∗) −→
a→∞

0. It remains to

prove that Indγ(a) ∈ Z, a ∈ C \ γ∗. Fix an a and let h(x) :=
∫ x
0

γ′(t)
γ(t)−adt, 0 ≤ x ≤ 1. The

function h is continuous, differentiable in (0, 1) except a finite number of points, h(0) = 0,
h(1) = 2πi Indγ(a). Observe that (e−h(γ−a))′ = e−h(−h′(γ−a)+γ′) = 0 except for a finite
number of points. Hence e−h(γ − a) = const = γ(0) − a. Consequently, eh = γ−a

γ(0)−a , and
therefore eh(1) = 1. Thus h(1) = 2πi Indγ(a) = 2πi k for a k ∈ Z. □
Exercise 5.4.3. Let γ : [0, 1] −→ C be a Jordan path with positive orientation with respect

to int γ. Then Indγ(z) =

{
1, if z ∈ int γ

0, if z ∈ ext γ
.
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Theorem 5.4.4. Let γ : [0, 1] −→ C be a closed curve, let a ∈ C\γ∗, and let r := dist(a, γ∗).
Let σj : [0, 1] −→ C be a closed path such that ∥σj − γ∥[0,1] ≤ r/4, j = 1, 2. Then Indσ1(a) =
Indσ2(a). Consequently, the formula Indγ(a) := limσ−closed path

∥σ−γ∥[0,1]−→0

Indσ(a), a ∈ C \ γ∗, defines

Indγ : C \ γ∗ −→ Z for arbitrary closed curve γ : [0, 1] −→ C.

[Theorem 5.4.4−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

Theorem 5.4.5 (Cauchy–Goursat). Let D ⊂ C be simply connected and let f ∈ O(D).
Then ∫

γ

f(z)dz = 0 and f(a) Indγ(a) =
1

2πi

∫

γ

f(z)

z − a
dz, a ∈ D \ γ∗,

for every closed path γ : [0, 1] −→ D (cf. Theorem 2.3.12).

Theorem 5.4.6 (Cauchy–Dixon theorem). Let D be a domain and let γ be a closed path in
D. Then the following conditions are equivalent:

(i) for every f ∈ O(D) we have f(a) Indγ(a) = 1
2πi

∫
γ
f(z)
z−adz, a ∈ D \ γ∗;

(ii) for every f ∈ O(D) we have
∫
γ
f(z)dz = 0;

(iii) for Indγ(a) = 0, for every a ∈ C \D.

Proof. (i) =⇒ (ii): We apply (i) to the function z 7−→ (z − a)f .
(ii) =⇒ (iii): We apply (ii) to the function z 7−→ 1

z−a .
(iii) =⇒ (i): Fix an f . We have to check that 1

2πi

∫
γ
f(z)−f(a)

z−a dz = 0, a ∈ C \ γ∗. Define

g(z, w) :=

{
f(z)−f(w)

z−w , if z ̸= w

f ′(z), if z = w
, (z, w) ∈ D × D. We know that g is separately holo-

morphic (2). The continuity of G out of the diagonal is trivial. For (a, a) ∈ D × D and
B(a, r) ⊂⊂ D we have

g(z, w)− g(a, a) =
1

2πi

∫

C(a,r)

( 1

z − w

( f(ζ)
ζ − z

− f(ζ)

ζ − w

)
− f(ζ)

(ζ − a)2

)
dζ

=
1

2πi

∫

C(a,r)

f(ζ)
( 1

(ζ − z)(ζ − w)
− 1

(ζ − a)2

)
dζ −→

(z,w)→(a,a)
0

because the function under the integral is uniformly continuous with respect to ζ when
(z, w) −→ (a, a). Let

h(w) =

{
h1(z)

h2(z)
:=

{
1

2πi

∫
γ
g(z, w)dz, if w ∈ D

1
2πi

∫
γ
f(z)
z−wdz, if w ∈ C \D .

We are going to prove that h ∈ O(C). Since h(w) −→ 0 when w −→ ∞, the maximum
principle implies that h ≡ 0. In particular, 1

2πi

∫
γ
f(z)−f(a)

z−a dz = 0, a ∈ C \ γ∗.
By the production lemma, the function C \D ⊂ C \ γ∗ ∋ w

h07−→ 1
2πi

∫
γ
f(z)
z−wdz is holomor-

phic.
(
2
)

In fact, every separately holomorphic function is holomorphic with respect to all variables – at the
moment this result is beyond our lecture.
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The function h is continuous on D. For every triangle T ⊂⊂ D, using the Fubini (3)
theorem, we get ∫

∂T

h(w)dw =
1

2πi

∫

γ

(∫

∂T

g(z, w)dw
)
dz = 0.

Consequently, by the Morera theorem h ∈ O(D).
In view of (iii) Indγ = 0 in each connected component of C \ γ∗ that intersects C \D, i.e.

h = h0 = 0 in each connected component of C \ γ∗ that intersects C \D.
Let C := {z ∈ C \ γ∗ : Indγ(z) = 0}. We have C \D ⊂ C. Moreover, h1 = h2 on D \ C.

Hence, by the identity principle, h ∈ O(C). □

Theorem 5.4.7. The following conditions are equivalent:
(i) every f ∈ O(D) has a primitive;
(ii) every f ∈ O∗(D) has a branch of its logarithm in D;
(iii) for every f ∈ O∗(D) there exists a p = p(f) ∈ N2 such that f has a branch of its p-th

root in D;
(iv)

∫
γ
f(z)dz = 0 for every closed path γ : [0, 1] −→ D;

(v) the set Ĉ \D is connected.

Proof. (i) =⇒ (ii): Let g ∈ O(D) be such that g′ = f ′/f . We may assume that eg(a) = f(a)

for an a ∈ D. We have
(
eg

f

)′
= g′egf−egf ′

f2
= 0 and therefore eg = f (cf. Theorem 2.3.12).

(ii) =⇒ (iii): f = eg = (eg/p)p (cf. Remark 2.3.6).
(iii) =⇒ (ii): It suffices to show that f ′/f has a primitive. We already know (cf. Lemma

2.3.1) that we only need to show that that
∫
γ
f ′(z)
f(z)

dz = 0 for every closed path γ in D. Let
p1 := p(f), g1 ∈ O∗(D), gp11 = f ,
p2 := p(g1), g2 ∈ O∗(D), gp22 = g1, gp1p22 = f , . . . ,
pk := p(gk−1), gk ∈ O∗(D), gpkk = gk−1, gp1···pkk = f , . . . .

Put qk := p1 · · · pk ↗ +∞. Hence f ′

f
=

qkg
qk−1

k g′k
g
qk
k

= qk
g′k
gk
, and therefore

Indf◦γ(0) =
1

2πi

∫

γ

f ′(z)

f(z)
dz = qk

1

2πi

∫

γ

g′k(z)

gk(z)
dz = qk Indgk◦γ(0), k ∈ N.

Thus qk| Indf◦γ(0) for every k ∈ N. It is only possible if Indf◦γ(0) = 0.
(ii) =⇒ (iv): Fix an a /∈ D and let g ∈ O(D) be such that eg = z − a. Then egg′ = 1.

hence g′ = 1
z−a . Thus the function z 7−→ 1

z−a has a primitive. Now, using Lemma 2.3.1, we
get Indγ(a) = 0. –Where is f?

(iv) =⇒ (i): It follows from the Cauchy-Dixon Theorem 5.4.6 and Lemma 2.3.1.
(iv) =⇒ (v): Suppose that Ĉ \ D is not connected. Let K be a compact component

of Ĉ \ D such that U := D ∪ K is open. Let G := intQ be an open set based on a net
Qj,k := [ j

m
, j+1
m

]× [ k
m
, k+1
m

] (m≫ 1)

(
3
)

Guido Fubini (1879–1943).
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such that K ⊂ G ⊂⊂ U , Q :=
⋃

Qj,k: Qj,k⊂D,
Qj,k∩K ̸=∅

Qj,k, G is open and its boundary may be identified

with a finite number of Jordan piecewise linear curves γ1, . . . , γN . Then Indγ(a) = 1, a ∈ K.
In particular, Indγj(a) ̸= 0 for some a ∈ K ⊂ C \D and j ∈ {1, . . . , N} – a contradiction.

(v) =⇒ (iv): We know that Indγ(a) = 0, a ∈ D∞, whereD∞ is the unbounded component
of Ĉ \ γ∗ (Indγ(∞) := 0). Clearly, (Ĉ \D) ∩D∞ ̸= ∅. It remains to use the fact that Indγ
is constant on Ĉ \D. □



CHAPTER 6

Runge theorem

6.1. Runge theorem

Exercise 6.1.1. [Exercise 6.1.1−→ Exer ] For every open set Ω ⊂ Ĉ there exists a sequence
of compact sets (Kk)

∞
k=1 ⊂ Ω such that

• Kk ⊂ intKk+1,
• every connected component of Ĉ \Kk intersects Ĉ \Ω, k ∈ N,

• Ω =
∞⋃
k=1

Kk.

Theorem 6.1.2 (Runge (1) Theorem). (a) Let Ω ⊂ Ĉ be open and let f ∈ O(Ω). Then
there exists a sequence (fk)

∞
k=1 of rational functions with poles in Ĉ\Ω such that fk −→ f

locally uniformly in Ω.
Equivalently: for every compact set K ⊂⊂ Ω and ε > 0 there exists a rational

function g with poles in Ĉ \Ω such that |g − f | ≤ ε on K.
(b) Let Ω ⊂ C be an open set such that Ĉ \ Ω is connected and let f ∈ O(Ω). The there

exists a sequence (fk)
∞
k=1 ⊂ P(C) such that fk −→ f locally uniformly in Ω.

Equivalently: for every compact set K ⊂⊂ Ω and ε > 0 there exists a polynomial
g ∈ P(C) such that |g − f | ≤ ε on K.

Exercise 6.1.3. The polynomial version of the Runge theorem does not hold for Ω =
A(r, R), 0 < r < R < +∞.

[Exercise 6.1.3−→ Exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

Proof. (a) The case Ω = Ĉ is trivial because f ≡ const. If ∞ ∈ Ω ⊊ Ĉ, then fix a
point z0 ∈ C \ Ω. Define h. If g1 is a rational function with poles in Ĉ \ h(Ω) such that
|g1 − f ◦ h−1| ≤ ε on h(K), then g := g1 ◦ h solves our problem. Thus we may assume that
∞ /∈ Ω.

Let (Kk)
∞
k=1 be as in Exercise 6.1.1. We only need to approximate f on each Kk. Fix

K := Kk0 and ε. Let G be an open set based on a square net [ j
m
, j+1
m

]× [ k
m
, k+1
m

] (m≫ 1) so
that K ⊂ G ⊂⊂ Ω. The Cauchy integral formula gives

f(z) =
1

2πi

∫

∂G

f(ζ)

ζ − z
dζ =

N∑

s=1

1

2πi

∫

Ls

f(ζ)

ζ − z
dζ =:

N∑

s=1

fs(z), z ∈ G,

where each Ls is a single vertical or horizontal segment from our net. Now, it suffices to
approximate each function fs uniformly on K by rational functions with poles in Ĉ \Ω. Fix
an s.

47
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First, we will find an approximation by rational functions with poles in Ls =: [a, b]. Let
ζ(t) := a+ t(b− a), ζn,j := ζ( j

n
), n ∈ N, j = 0, . . . , n. For z ∈ K we obtain:

∣∣∣fs(z)−
1

2πi

n∑

j=1

f(ζn,j)

ζn,j − z

|b− a|
n

∣∣∣ =
∣∣∣ 1

2πi

n∑

j=1

j
n∫

j−1
n

f(ζ(t))

ζ(t)− z
(b− a)dt− 1

2πi

n∑

j=1

f(ζn,j)

ζn,j − z

b− a

n

∣∣∣

≤ |b− a|
2π

n∑

j=1

j
n∫

j−1
n

∣∣∣ f(ζ(t))
ζ(t)− z

− f(ζn,j)

ζn,j − z

∣∣∣dt.

Now, using the uniform continuity of the function K × [a, b] ∋ (z, ζ) 7−→ f(ζ)
ζ−z , we conclude

that for n≫ 1 we get

∣∣∣fs(z)−
b− a

2πi n

n∑

j=1

f(ζn,j)

ζn,j − z

∣∣∣ ≤ |b− a|
2π

ε, z ∈ K.

Thus, it remains to prove that for every c ∈ [a, b], the function 1
z−c may be approximated

uniformly on K by rational functions with poles in Ĉ \ Ω. It follows from the following
general result.

Lemma 6.1.4 (Pole transport lemma). Let K ⊂⊂ C be compact and let f = P ( 1
z−a), where

P ∈ P(C), degP ≥ 1. Let b ∈ Ĉ \K be in the same connected component of Ĉ \K as a.
Then for every ε > 0 there exists a Q ∈ P(C) such that |f−g| ≤ ε on K, where g := Q( 1

z−b).
If b = ∞, then g = Q.

Proof. Let G be a connected component of Ĉ \ K with a, b ∈ G. Note that G ∩ C is
connected. Let G0 be the set of all c ∈ G ∩ C for which for every ε > 0 there exists a
polynomial R such that |h − f | ≤ ε on K, where h = R( 1

z−c). Obviously, a ∈ G0. We will
show that G0 is open and closed in G ∩ C, which will prove that G0 = G ∩ C.

Openness: Let c ∈ G0 and let h = R( 1
z−c) be such that |f − h| ≤ ε/2 on K. Let

r := dist(c,K), d ∈ B(c, r/3) ⊂⊂ G. We only need to approximate uniformly on K the
function 1

z−c by functions of the form S( 1
z−d). It suffices to observe that for z ∈ K we get

| c−d
z−d | ≤ 1/2 and

1

z − c
=

1

z − d+ d− c
=

1

z − d

1

1− c−d
z−d

=
∞∑

n=0

(c− d)n

(z − d)n+1

and the series is uniformly convergent on K.
Closedness: Let d ∈ G′

0 ∩G∩C. Take a c ∈ G0 ∩B(d, r/2), where r := dist(d,K). Then
| c−d
z−d | ≤ 1/2 and we may repeat the above argument.
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It remains to consider the case where ∞ ∈ G. Take a c ∈ G0 \ B(2r), where K ⊂ B(r).
Then | z

c
| ≤ 1/2, z ∈ K, and

1

z − c
= −1

c

1

1− z
c

= −
∞∑

n=0

zn

cn+1

and the series is uniformly convergent on K. □
(b) follows from (a) and the lemma. □
The Runge theorem may be essentially strengthened.

Theorem* 6.1.5 (Mergeljan (2) theorem). Let K ⊂ C be a compact set such that the set
C\K is connected and let f ∈ C(K)∩O(intK). Then there exists a sequence (fk)

∞
k=1 ⊂ P(C)

such that fk −→ f uniformly on K.

Exercise 6.1.6. The assumptions in the Mergeljan theorem are also necessary.

(
2
)

Sergey Mergelyan (1928–2008).





CHAPTER 7

Mittag-Leffler theorem

7.1. Mittag-Leffler theorem

Theorem 7.1.1 (Mittag-Leffler (1) theorem). For arbitrary open set Ω ⊊ Ĉ, for arbitrary
set B ⊂ Ω without accumulation points in Ω, and for arbitrary family (Pa)a∈B ⊂ P(C) of
polynomials of degree ≥ 1 with Pa(0) = 0, a ∈ B, there exists an f ∈ M(Ω)∩O(Ω \B) such
that for each a ∈ B the function f − Pa

(
1

z−a
)

has a removable singularity at a, i.e. Pa( 1
z−a)

is the principal part of pole of f at a. If ∞ ∈ B, then we mean that P∞ is the principal part
of pole of f at ∞.

Proof. If ∞ ∈ B, B1 := B \ {∞} and f1 ∈ M(Ω)∩O(Ω \B1) is such that for each a ∈ B1

the principal part of pole of f1 at a equals Pa( 1
z−a), then f := f1 + P∞ is a solution of the

initial problem. Thus we may assume that ∞ /∈ B.
If B is finite, then we may take f :=

∑
a∈B

Pa(
1

z−a).

Assume that B is infinite. Let (Kk)
∞
k=1 be as in Remark 6.1.1 an let

fk(z) :=
∑

a∈B∩(Kk\Kk−1)

Pa

( 1

z − a

)
, k ∈ N,

where K0 := ∅ and
∑
a∈∅

· · · := 0. Each set B ∩ (Kk \ Kk−1) is finite. Thus fk is a well-

defined rational function with poles in C \Kk−1. By the pole transport lemma, there exists
a rational function gk with poles in Ĉ \Ω such that |fk − gk| ≤ 1/2k in Kk−1. In particular,

the series
∞∑
n=k

(fn − gn) is uniformly convergent in Kk−1. Let f :=
∞∑
n=1

(fn − gn). Clearly,

f ∈ M(Ω) ∩ O(Ω \B). Moreover, for a ∈ B ∩ (Kk0 \Kk0−1), we have

f−Pa
( 1

z − a

)
=

k0−1∑

n=1

(fn−gn)+
(
fk0−Pa

( 1

z − a

))
−gk0+

∞∑

n=k0+1

(fn−gn) =: A+B−gk0+C,

where
• A has poles in Kk0−1,
• B is holomorphic in a neighborhood of a,
• C has poles outside Kk0 . □

The Mittag-Leffler theorem may be also formulated in the following sheaf-theory form.

(
1
)

Magnus Mittag–Leffler (1846–1927).
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Theorem 7.1.2 (Mittag-Leffler theorem). For every open covering (Ωα)α∈A of an open set
Ω and for every family fα ∈ M(Ωα), α ∈ A such that fα − fβ ∈ O(Ωα ∩ Ωβ), α, β ∈ A,
there exists an f ∈ M(Ω) such that f − fα ∈ O(Ωα), α ∈ A.

Theorem 7.1.2 =⇒ Theorem 7.1.1. Let Ω, B, and (Pa)a∈B be as in Theorem 7.1.1. Let
ra > 0, a ∈ B, be such that B(a, ra) ∩ B(b, rb) = ∅, a ̸= b, a, b ∈ B. If ∞ ∈ B, then by
B(∞, r∞) we mean a suitable neighborhood of ∞. Set

A := {∗} ∪B, Ω∗ := Ω \B, Ωa := B(a, ra), f∗ := 0, fa := Pa

( 1

z − a

)
, a ∈ B;

if ∞ ∈ B, then f∞ := P∞. One can easily check that all the assumptions of Theorem 7.1.2
are satisfied. Let f ∈ M(Ω) be as in Theorem 7.1.2. Then

f = f − f∗ ∈ O(Ω∗) = O(Ω \B), f − Pa

( 1

z − a

)
= f − fa ∈ O(Ωa) = O(B(a, ra)), a ∈ B.

□
Theorem 7.1.1 =⇒ Theorem 7.1.2. Let Ω, (Ωα)α∈A, and (fα)α∈A be as in Theorem 7.1.2.
Set

Bα := S(fα), B :=
⋃

α∈A
Bα.

Since fα − fβ ∈ O(Ωα ∩ Ωβ) we conclude that, Bα ∩ Ωβ ⊂ Bβ, α, β ∈ A. In particular, B
has no accumulation points in Ω. For a ∈ Bα, let Pα,a ∈ P(C) be polynomial of degree ≥ 1
such that Pα,a(0) = 0 and fα − Pα,a(

1
z−a) extends holomorphically to a neighborhood of a

(i.e. Pα,a( 1
z−a) is the principal part of pole of fα at a), with the standard change if ∞ ∈ Bα.

Since fα − fβ ∈ O(Ωα ∩ Ωβ), we conclude that Pα,a is independent of α. Put Pa := Pα,a.
Let f ∈ M(Ω) be as in Theorem 7.1.1. Then S(f) = B and for any α ∈ A and a ∈ Bα, the
function

f − fα =
(
f − Pa

( 1

z − a

))
−
(
fα − Pa

( 1

z − a

))

extends holomorphically to a neighborhood of a (if ∞ ∈ B, then f − f∞ = (f −P∞)− (fα−
P∞)). □

7.2. Weierstrass theorem

Theorem 7.2.1 (Weierstrass theorem). For every open set Ω ⊊ Ĉ, for every set S ⊂ Ω
without accumulation points in Ω, and for every function k : S −→ N, there exists a function
f ∈ O(Ω) ∩ O∗(Ω \ S) such that orda f = k(a), a ∈ S.

Proof. If ∞ /∈ Ω, then we choose an arbitrary z0 ∈ Ω\S and use the transform h(z) := 1
z−z0 .

Then ∞ ∈ Ω1 := h(Ω). Let S1 := h(S). Suppose that f1 ∈ O(Ω1)∩O∗(Ω1 \S1) is such that
f1 has a zero of multiplicity k(a) at h(a), a ∈ S. then f := f1 ◦ h solves our problem. Thus
we may assume that ∞ ∈ Ω.

If S is finite, then we may take f(z) :=
∏

a∈S(z − a)k(a). Thus assume that S is infinite.
Write S = {s1, s2, . . . } and let a1, a2, . . . be the sequence obtained from (sj)

∞
j=1 by repeating

each sj k(sj) times. Let ck ∈ ∂Ω be such that |ak − ck| = dist(ak, ∂Ω), k ∈ N. Observe that
|ak − ck| −→ 0 (Exercise).
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Assume for a moment that, the following two lemmas are true.

Lemma 7.2.2. Let Ω ⊊ Ĉ be open and let fk ∈ O(Ω), k ∈ N. Assume that the series
∞∑
k=1

|fk| is convergent locally uniformly in Ω. Put In :=
∏n

k=1(1 + fk) ∈ O(Ω), n ∈ N. Then

the sequence (In)
∞
n=1 is convergent locally uniformly in Ω. Let I := lim

n→+∞
In =:

∏∞
k=1(1+fk).

Moreover for an a ∈ Ω we get I(a) = 0 ⇐⇒ ∃k∈N : 1 + fk(a) = 0.

Lemma 7.2.3. For a k ∈ N, let Ek(u) := (1−u) exp
(
u+ u2

2
+ · · ·+ uk

k

)
. Then |1−Ek(u)| ≤

|u|k+1 for u ∈ D.

First, let us finish the proof of the Weierstrass theorem. Let

f(z) :=
∞∏

k=1

Ek

(ak − ck
z − ck

)
, z ∈ Ω

By Lemma 7.2.2, it suffices to prove that for fk(z) := Ek(
ak−ck
z−ck ) − 1, the series

∞∑
k=1

|fk| is

convergent locally uniformly in Ω. Fix a compact K ⊂⊂ Ω and let k0 ∈ N be such that
2|ak − ck| ≤ dist(K, ∂Ω), k ≥ k0. Then |ak−ck

z−ck | ≤ 1/2 for z ∈ K i k ≥ k0. Now using Lemma
7.2.3, we conclude that |fk| ≤ (1/2)k+1 on K for k ≥ k0. The proof is completed. □

Proof of Lemma 7.2.2. It suffices to prove that the series
∞∑
n=2

(In − In−1) is locally uniformly

convergent. Observe that |In| ≤
∏n

k=1(1 + |fk|) ≤
∏n

k=1 e
|fk| = exp

( n∑
k=1

|fk|
)
, which shows

that the sequence (In)
∞
n=1 is locally uniformly bounded. The equality |In− In−1| = |In−1||fn|

implies now the locally uniform convergence.
To prove the second part it suffices to prove that there exists a C > 0 such that |∏n

k=k0
(1+

fk(a))| ≥ C, n≫ k0. Fix a neighborhood U ⊂⊂ Ω of a and let k0 ∈ N be such that |fk| ≤ 1/2

on U for k ≥ k0. Then for k ≥ k0 on U we have
∣∣∣ fk
1+fk

∣∣∣ ≤ |fk|
1−|fk| ≤ 2|fk|. This means that the

series
∞∑

k=k0

fk
1+fk

is convergent locally uniformly in U . Hence, by the first part of the proof,

the product
∞∏

k=k0

(
1− fk

1 + fk

)
=

∞∏

k=k0

1

1 + fk
=

1∏∞
k=k0

(1 + fk)

is convergent on U . □
Proof of Lemma 7.2.3. We have

E ′
k(u) = − exp

(
u+

u2

2
+ · · ·+ uk

k

)
+ (1− u) exp

(
u+

u2

2
+ · · ·+ uk

k

)
(1 + u+ · · ·+ uk−1)

= −uk exp
(
u+

u2

2
+ · · ·+ uk

k

)
= −uk

∞∑

j=0

cju
j.
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Observe that cj ≥ 0, j ∈ Z+. In particular, ord0(1− Ek) ≥ k + 1. Let

f(u) :=
1− Ek(u)

uk+1
=

∞∑

j=0

aju
j.

Looking at the coefficient (Exercise) we get aj =
cj

k+j+1
and hence aj ≥ 0, j ∈ Z+. Thus

for u ∈ D we obtain |f(u)| ≤ f(1) = 1. □

Corollary 7.2.4. For every domain D ⊊ Ĉ and for every function f ∈ M(D) there exist
g, h ∈ O(D) such that h ∈ O∗(D \ S(f)) and f = g/h. Consequently, M(D) is the field of
fractions of O(D).

Proof. By the Weierstrass theorem there exists h ∈ O(D) having zeros at poles of f such
that the multiplicity of zero equals to the order of pole and without zeros elsewhere. It
suffices to take g := f · h. □

Theorem 7.2.5 (Weierstrass-Mittag-Leffler theorem). For every open set Ω ⊊ Ĉ, for every
S ⊂ Ω without accumulation points in Ω. and for every function k : S −→ Z∗, there exists
an f ∈ M(Ω) ∩ O∗(Ω \ S) such that orda f = k(a), a ∈ S.

Proof. Let S± := {a ∈ S : ±h(a) > 0} and let f± be a function from the Weierstrass
theorem for S± and ±k|S± : f± ∈ O∗(Ω \ S±), f has a zero of multiplicity ±h(a) at a ∈ S±.
Now we may put f := f+/f−. □

Theorem 7.2.5 may be formulated in the sheaf theory language.

Theorem 7.2.6. For every open covering of an open set Ω ⊊ Ĉ and for every family
fα ∈ M(Ωα), α ∈ A such that fα/fβ ∈ O∗(Ωα ∩ Ωβ), α, β ∈ A, there exists an f ∈ M(Ω)
such that f/fα ∈ O∗(Ωα), α ∈ A.

Theorem 7.2.6 =⇒ Theorem 7.2.5. Let Ω, S and k : S −→ Z∗ be as in Theorem 7.2.5. Let
ra > 0, a ∈ S, be such that B(a, ra) ∩ B(b, rb) = ∅. a ̸= b, a, b ∈ S. If ∞ ∈ S, then
B(∞, r∞) is a neighborhood of ∞. Put

A := {∗} ∪ S, Ω∗ := Ω \ S, Ωa := B(a, ra), a ∈ S, f∗ := 1, fa := (z − a)k(a), a ∈ S;

if ∞ ∈ S, then f∞ := z−B(∞). It is clear that all the assumptions of Theorem 7.2.6 are
satisfied. Let f ∈ M(Ω) be as in Theorem 7.2.6. Then

f = f/f∗ ∈ O∗(Ω∗) = O∗(Ω \ S), f · (z − a)−k(a) = f/fa ∈ O∗(Ωa) = O∗(B(a, ra)), a ∈ S.
□

Theorem 7.2.5 =⇒ Theorem 7.2.6. Let Ω, (Ωα)α∈A and (fα)α∈A be as in Theorem 7.2.6. Put
Sα := S(fα)∪f−1

α (0), S :=
⋃
α∈A

Sα. Since fα/fβ ∈ O∗(Ωα∩Ωβ) we get Sα∩Ωβ ⊂ Sβ, α, β ∈ A.

In particular, S has no accumulation points in Ω. For a ∈ Sα let B(α, a) := orda fα. Since
fα/fβ ∈ O∗(Ωα ∩ Ωβ), we see that B(α, a) is independent of α. Put k(a) := B(α, a). Let
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f ∈ M(Ω) be as in Theorem 7.2.5. Then f has neither zeros nor poles outside S and for
any α ∈ A and a ∈ Sα the function

f

fα
=

f · (z − a)−k(a)

fα · (z − a)−k(a)

extends holomorphically to a. The extension has no zeros in a neighborhood of a; if ∞ ∈ Sα,
then

f

fα
=

f · zB(∞)

fα · zB(∞)
. □

Remark 7.2.7. [Remark 7.2.7−→ Exer . . . . . . . . . . . . . . . . . . . . . . . ]
(a) For (an)

∞
n=1C∗, an −→ ∞, and (αn)

∞
n=1 ⊂ N let (zk)

∞
k=1 be generated by (an)

∞
n=1 in such

a way that an is repeated αn–times. For α ∈ Z+, define

f(z) := zα
∞∏

k=1

Ek

( z
zk

)
, z ∈ C.

Then
• f ∈ O(C),
• f has a zero of multiplicity α at z = 0,
• f has a zero of multiplicity αn at z = an,
• there are no other zeros.
Indeed, the only problem is to prove that the product is locally uniformly convergent.

Let K ⊂⊂ C. Then |z/zk| ≤ 1/2, z ∈ K, k ≥ k0 ≫ 1. Hence
∣∣∣Ek

( z
zk

)
− 1

∣∣∣ ≤
(1
2

)k+1

, z ∈ K, k ≥ k0.

(b) Every entire function f ∈ O(C) having infinitely many zeros may be written in the form

f(z) = eg(z)zα
∞∏

k=1

Ek

( z
zk

)
, z ∈ C,

where g ∈ O(C).
(c) One can take in (a)

f(z) := zα
∞∏

k=1

Enk

( z
zk

)
, z ∈ C,

where the sequence (nk)
∞
k=1 is such that the series

∑∞
k=1 |z/zk|nk+1 is locally uniformly

convergent.
(d) For example zk := −k, nk := 1, α := 1, f(z) = z

∏∞
k=1

(
1 + z

k

)
exp

(
− z

k

)
, z ∈ C.

(e) sin πz = πz
∏∞

k=1

(
1− z2

k2

)
, z ∈ C.

Indeed, we know that

sin πz = eg(z)z
∞∏

k=1

(
1− z2

k2

)
, z ∈ C, (7.2.1)
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for a g ∈ O(C). We must prove that eg ≡ π. We have

π ctg πz =
(sinπz)′

sinπz
= g′(z) +

1

z
+

∞∑

k=1

( 1

z − k
+

1

z + k

)
. (7.2.2)

In particular, g′ is an odd function.

π2

sin2 πz
= g′′(z)− 1

z2
−

∞∑

k=1

( 1

(z − k)2
+

1

(z + k)2

)
= g′′(z)−

∞∑

k=−∞

1

(z − k)2
.

In particular, g′′(z+1) = g′′(z), z ∈ C. Let A := {x+iy : 0 ≤ x ≤ 1}. For z = x+iy ∈ A,
|y| ≥ 1, we get:

∣∣∣
∞∑

k=−∞

1

(z − k)2

∣∣∣ ≤
∞∑

k=−∞

1

(x− k)2 + y2
≤ 2

∞∑

k=0

1

k2 + y2
,

∣∣∣ π2

sin2 πz

∣∣∣ = 4π2

|eπiz − e−πiz|2 =
4π2

|(e−πy − eπy) cosπx+ i(e−πy + eπy) sinπx|2

=
4π2

e2πy + e−2πy − 2 cos 2πx
≤ 4π2

e2π|y| − 2
.

This means that lim
A∋z→∞

g′′(z) = 0. Thus g′′ is bounded on A. Since g′′ is periodic, we

conclude that g′′ is bounded on C. Consequently, g′ ≡ const. Since g′ is odd, we must
have g′ ≡ 0, so g ≡ const = c. By (7.2.1) we obtain π = limz→0

sinπz
z

= ec.

(f) We have π ctg πz = 1
z
+
∑∞

k=1

(
1

z−k +
1

z+k

)
, z ∈ C.

(g)

1/Γ (z) = eγzz

∞∏

k=1

(
1 +

z

k

)
exp

(
− z

k

)
, z ∈ C, where (7.2.3)

γ := lim
n→+∞

γn = lim
n→+∞

( n∑

k=1

1

k
− log n

)
= 0, 577 . . .

is the Euler constant. In particular, 1
Γ (z)Γ (−z) = − z

π
sin πz, z ∈ C.

(7.2.3) follows for the formula

Γ (z) = lim
n→+∞

n!ez logn

z(z + 1) · · · (z + n)
, z ∈ C \ Z−. (7.2.4)

Indeed, (7.2.4) implies that

1/Γ (z) = z lim
n→+∞

e−z logn(1 + z/1) · · · (1 + z/n) = z lim
n→+∞

eγnz
n∏

k=1

(
1 +

z

k

)
exp

(
− z

k

)
.

(7.2.5)
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Let Γ̂ be given by the right side of (7.2.4). Observe that Γ̂ is well defined and Γ̂ ∈
O(C \ Z−). It suffices to show that Γ̂ = Γ on (0, 1], i.e.

Γ (x)
x(x+ 1) · · · (x+ n)

n!nx
−→ 1, x ∈ (0, 1].

It is equivalent to proving that Γ (x+n+1)
n!nx −→ 1, x ∈ (0, 1]. For x ∈ (0, 1] we get

Γ (x+ n+ 1) =

∫ ∞

0

tx+ne−tdt ≤ nx
∫ n

0

tne−tdt+ nx−1

∫ ∞

n

tn+1e−tdt

= nx
∫ n

0

tne−tdt+ nx−1
(
− tn+1e−t|∞n + (n+ 1)

∫ ∞

n

tne−tdt
)

= nx
∫ ∞

0

tne−tdt+ nx−1

∫ ∞

n

tne−tdt+ nx+ne−n

= nxn! + nx−1

∫ ∞

n

tne−tdt+ nx+ne−n ≤ nxn! + nx−1n! + nx+ne−n.

Analogously,

Γ (x+ n+ 1) ≥ nx−1

∫ n

0

tn+1e−tdt+ nx
∫ ∞

n

tne−tdt

= nx−1
(
− tn+1e−t|n0 + (n+ 1)

∫ n

0

tne−tdt
)
+ nx

∫ ∞

n

tne−tdt

= nxn! + nx−1

∫ n

0

tne−tdt− nx+ne−n ≥ nxn!− nx+ne−n.

Consequently, 1 − nne−n

n!
≤ Γ (x+n+1)

n!nx ≤ 1 + 1
n
+ nne−n

n!
. It remains to use the Stirling (2)

formula n! ≈ nn+1/2
√
2π

en
.

Theorem 7.2.8 (Weierstrass-Mittag-Leffler theorem). For every open set Ω ⊊ Ĉ, for every
set S ⊂ Ω without accumulation points in Ω, and for every family of polynomials (Pa)a∈S ⊂
P(C), there exists an f ∈ O(Ω) such that for every a ∈ S the Taylor series f begins from
Pa(z − a); if ∞ ∈ S, then we mean that the Taylor series of z 7−→ f(1/z) at 0 starts from
P∞(z).

Observe that orda(f − Pa) ≥ degPa + 1, a ∈ S.

Proof. By the Weierstrass theorem there exists a g ∈ O∗(Ω \ S) such that orda g =
degPa + 1, a ∈ S. By the Mittag-Leffler theorem there exists an h ∈ M(Ω) ∩ O(Ω \ S)
such that ha := h− Pa(z−a)

g
is holomorphic in a neighborhood of a for every a ∈ S; if a = ∞,

then h∞ := h − P∞(1/z)
g

is holomorphic in a neighborhood of ∞. Define f := h · g. In a
neighborhood of each point a ∈ S we get

f − Pa(z − a) = h · g − Pa(z − a) = g
(
h− Pa(z − a)

g

)
= g · ha,

(
2
)

James Stirling (1692–1770).
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which implies that orda(f − Pa(z − a)) ≥ orda g = degPa + 1. This means that the Taylor
series of f at a starts with Pa(z − a). □

7.2.1. ζ Riemann function. Let

ζ(z) :=
∞∑

n=1

1

nz
=

∞∑

n=1

1

ez logn
, z ∈ H1 = {z ∈ R : Re z > 1}.

Since |nz| = |ez logn| = e(Re z) logn = nRe z, the series is locally uniformly convergent in H1 and
defines a holomorphic function called ζ Riemann function.

Theorem 7.2.9 (Euler theorem). Let (pk)∞k=1 ⊂ N be a sequence of all prime numbers. Then

ζ(z) =
∞∏

k=1

1

1− p−zk
, z ∈ H1.

Proof. Fix a z ∈ H1. Since |p−zk | = p−Re z
k < 1, we get

n∏

k=1

1

1− p−zk
=

n∏

k=1

∞∑

m=0

(p−zk )m =
∞∑

m1,...,mn=0

(pm1
1 · · · pmn

n )−z.

It remains to use the uniqueness of the decomposition into prime numbers. □
Theorem* 7.2.10. The function ζ extends to a meromorphic function on C \ {1} so that:

• ζ has a single pole with res1 ζ = 1 at 1,
• ζ satisfies the Riemann equation ζ(z) = 2e(z−1) log(2π)Γ (1− z)ζ(1− z) sin(π

2
z),

• ζ(−2k) = 0, k ∈ N; they are called trivial zeros;
Indeed, by the Riemann equation ζ has no zeros in H1. If z0 is a zero of ζ such that

Re z0 < 0 and sin(π
2
z0) ̸= 0 (i.e. z0 /∈ −2N), then the Riemann equation gives Γ (1− z0) = 0

— a contradiction.
• ζ has no non-trivial zeros outside {z ∈ C : 0 < Re z < 1}.
• (Riemann Conjecture) All non-trivial zeros of the Riemann function are on the line

Re z = 1
2
.



CHAPTER 8

Subharmonic functions

8.1. Harmonic functions

Definition 8.1.1. Let Ω ∈ top(R2) and let h ∈ C2(Ω,R). We say that h is harmonic on Ω
(h ∈ H(Ω)), if

∆h =
∂2h

∂x2
+
∂2h

∂y2
≡ 0 on Ω.

Remark 8.1.2. (a) H(Ω) is a vector space.
(b) ∆ = 4 ∂2

∂z∂z
.

(c) Harmonic functions may be defined in any open set Ω ⊂ Rn: we say that a function
h ∈ C2(Ω,R) is harmonic on Ω (h ∈ H(Ω)), if

∆h =
n∑

j=1

∂2h

∂x2j
≡ 0 on Ω.

(d) For n = 1, if Ω ⊂ R is a segment, then a function h ∈ C2(Ω,R) is harmonic if and only
if h is linear.

Theorem 8.1.3. Let D ⊂ C be a starlike domain and let h : D −→ R. Then h ∈ H(D) if
and only if there exists an f ∈ O(D) with h = Re f .

Proof. Let f = u+ iv ∈ O(D). Then

∆u =
∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y
=

∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0.

Now let h ∈ H(D). Then the form Pdx + Qdy := −h′ydx + h′xdy ic closed because
P ′
y−Q′

x = −h′′xx−h′′yy = −∆h = 0. Thus there exists a v ∈ C1(D,R) such that v′x = P = −h′y,
v′y = Q = h′x, which means that h+ iv ∈ O(D). □

Definition 8.1.4. Let D ⊂ C be a domain. If h ∈ H(D) and h + iv ∈ O(D), then we say
that v is a conjugate harmonic function to h.

Corollary 8.1.5. Let Ω ⊂ C be open.
((a) H(Ω) ⊂ Cω(Ω).
((b) If f ∈ O(Ω) and 0 /∈ f(Ω), then log |f | ∈ H(Ω).
((c) Let Ω, Ω′ ⊂ C be open, h ∈ H(Ω′), f ∈ O(Ω,Ω′). Then h ◦ f ∈ H(Ω).

Remark 8.1.6. The conjugate harmonic function is unique up to a constant.
59
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Theorem 8.1.7 (Identity principle). Let D ⊂ C be a domain and let h ∈ H(D) be such
that h = 0 on a non-empty open subset U ⊂ D. Then h ≡ 0 on D. Consequently, if
h1, h2 ∈ H(D) are equal on a non-empty open set, then h1 ≡ h2.

Proof. Let D0 := {a ∈ D : h = 0 in an open neighborhood U ⊂ D of a}. Obviously, D0 ̸=
∅ and D0 is open. Let b ∈ D ∩ D′

0 and let U ⊂ D be a starlike domain with b ∈ U . Let
f ∈ O(U) be such that Re f = h (Theorem 8.1.3). Then Re f = h = 0 on U ∩ D0 ̸= ∅.
Hence h = Re f = 0 na U . □
Theorem 8.1.8 (Maximum principle). Let D ⊂ C be a domain and let h ∈ H(D), h ̸≡
const. Then h does not have local maxima. Moreover, if D is bounded, then

h(z) < sup{lim sup
D∋z→ζ

h(z) : ζ ∈ ∂D}, z ∈ D.

If we substitute h by −h, we can get the minimum principle.

Proof. Suppose that h has a local maximum at a ∈ D. Let U ⊂ D be a starlike domain
with a ∈ U such that h(z) ≤ h(a), z ∈ U . Let h = Re f , where f ∈ O(U). Then |ef | = eh

has a local maximum at a. Consequently, eh = const and therefore h = const in U . Using
the identity principle we conclude we get a contradiction.

If D is bounded, then we argue as in Theorem 2.1.8. □
Remark 8.1.9. Let u : C(a, r) −→ [−∞,+∞) be a measurable function (i.e. the function

[0, 2π) ∋ ϑ 7−→ u(a+ reiϑ) is L1 measurable). Then 1
2π

2π∫
0

u(a+ reiϑ)dϑ = 1
2πi

∫
T u(a+ rζ)

dLT

ζ
.

Definition 8.1.10. Let u : C(a, r) −→ [−∞,+∞) be an upper bounded measurable func-
tion, e.g. u is upper semicontinuous. Put

P(u; a, r; z) :=
1

2π

2π∫

0

r2 − |z − a|2
|reiϑ − (z − a)|2 u(a+ reiϑ)dϑ, z ∈ B(a, r),

J(u; a, r) := P(u; a, r; a) =
1

2π

2π∫

0

u(a+ reiϑ)dϑ;

J(u; a, r) is the integral mean value of u on C(a, r). The function P (z, ζ) := |ζ|2−|z|2
|ζ−z|2 is called

the Poisson kernel (1) . Thus P(u; a, r; z) = 1
2π

2π∫
0

P (z − a, reiϑ)u(a+ reiϑ)dϑ.

Remark 8.1.11. Observe that |ζ|2−|z|2
|ζ−z|2 = Re ζ+z

ζ−z , z ∈ C \ {ζ}. Thus P (·, ζ) ∈ H(C \ {ζ})
and therefore P(u; a, r; ·) ∈ H(B(a, r)).

Theorem 8.1.12 (Poisson formula). Let h ∈ C(B(a, r))∩H(B(a, r)). Then h(z) = P(h; a, r; z),
z ∈ B(a, r). In particular,

• h(a) = J(h; a, r) (mean value theorem),
(
1
)

Siméon Poisson (1781–1840).
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• 1 = 1
2π

2π∫
0

P (z − a, reiϑ)dϑ, z ∈ B(a, r).

Proof. We may assume that a = 0. Let f ∈ O(B(r)), h = Re f . Then for |z| < s < r we get
s2/z /∈ B(s), and therefore, using the Cauchy integral formula, we have 0 = 1

2πi

∫
C(s)

f(ζ)

ζ− s2

z

dζ.

Now

h(z) = Re f(z) = Re
( 1

2πi

∫

C(s)

f(ζ)

ζ − z
dζ − 1

2πi

∫

C(s)

f(ζ)

ζ − s2

z

dζ
)

= Re
( 1

2πi

∫

C(s)

− s2

z
+ z

(ζ − z)(ζ − s2

z
)
f(ζ)dζ

)
= Re

( 1

2πi

∫

C(s)

−s2 + |z|2
(ζ − z)(ζz − s2)

f(ζ)dζ
)

= Re
( 1

2πi

∫

C(s)

s2 − |z|2
ζ|ζ − z|2f(ζ)dζ

)
= Re

( 1

2π

2π∫

0

s2 − |z|2
|seiϑ − z|2f(se

iϑ)dϑ
)

=
1

2π

2π∫

0

s2 − |z|2
|seiϑ − z|2h(se

iϑ)dϑ.

It remains to allow s↗ r. □
Corollary 8.1.13 (Schwarz formula). For h ∈ H(B(a, r)) ∩ C(B(a, r)) let

f(z) :=
1

2π

2π∫

0

reiϑ + (z − a)

reiϑ − (z − a)
h(a+ reiϑ)dϑ, z ∈ B(a, r).

Then f ∈ O(B(a, r)), Re f = h.

Corollary 8.1.14 (Poisson-Jensen (2) formula). [Corollary 8.1.14−→ Exer ] Let f ∈ M(Ω),
where Ω ⊃ D. Assume that f has neither zeros nor poles on T and let a1, . . . , ap denote the
zeros of f in D, b1, . . . , bq –the poles of f in D counted with multiplicities. Then

log

∣∣∣∣∣f(z)
∏q

j=1 hbj(z)∏p
j=1 haj(z)

∣∣∣∣∣ = P(log |f |; 0, 1; z) =
1

2π

2π∫

0

P (z, eiϑ) log |f(eiϑ)|dϑ, z ∈ D,

where
∏
∅

:= 1. In particular:

• log
∣∣∣f(0) b1···bqa1···ap

∣∣∣ = J(log |f |; 0, 1) = 1
2π

2π∫
0

log |f(eiϑ)|dϑ.

• If q = 0 then log |f(z)| ≤ P(log |f |; 0, 1; z) = 1
2π

2π∫
0

P (z, eiϑ) log |f(eiϑ)|dϑ, z ∈ D;

log |f(0)| ≤ J(log |f |; 0, 1).
(
2
)

Johan Jensen (1859–1925).
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Exercise 8.1.15. [Exercise 8.1.15−→ Exer ] What is the Poisson-Jensen formula for B(a, r)
?

Definition 8.1.16. For a bounded domain D ⊂ C and b ∈ C(∂D,R), the Dirichlet (3)
problem is to find an h ∈ H(D) ∩ C(D) such that h = b on ∂D.

Observe that the Dirichlet problem has at most one solution.

Exercise 8.1.17. Show that the Dirichlet problem for D∗ and a b may be without any
solution.

Theorem 8.1.18 (Dirichlet problem for a disc). For b ∈ C(C(a, r),R) define

h(z) :=

{
b(z), if z ∈ C(a, r)

P(b; a, r; z), if z ∈ B(a, r)
.

Then h ∈ C(B(a, r)) ∩H(B(a, r)).

Proof. We may assume that a = 0. We already know that h ∈ H(B(r)). It remains to
prove that for each ζ ∈ C(r) we have lim

z→ζ0
P(b; 0, r; z) = b(ζ0).

Let C > 0 be such that |b(z)| ≤ C, z ∈ C(r). Fix a ζ0 = reiϑ0 ∈ C(r). First, assume that
0 < ϑ0 < 2π. For ε > 0 let 0 < δ < min{ϑ0, 2π−ϑ0} be such that |b(reiϑ)− b(reiϑ0)| ≤ ε for
all |ϑ− ϑ0| ≤ δ. Then:

|P(b; 0, r; z)− b(ζ0)| =
∣∣∣ 1
2π

2π∫

0

P (z, reiϑ)b(reiϑ)dϑ− 1

2π

2π∫

0

P (z, reiϑ)b(ζ0)dϑ
∣∣∣

≤ 1

2π

( ∫

[0,2π]\[ϑ0−δ,ϑ0+δ]

P (z, reiϑ)|b(reiϑ)− b(reiϑ0)|dϑ+

∫

[ϑ0−δ,ϑ0+δ]

P (z, reiϑ)|b(reiϑ)− b(reiϑ0)|dϑ
)

≤ 1

2π

(
2C

∫

[0,2π]\[ϑ0−δ,ϑ0+δ]

P (z, reiϑ)dϑ+ ε

∫

[ϑ0−δ,ϑ0+δ]

P (z, reiϑ)dϑ
)

≤ C

π

∫

[0,2π]\[ϑ0−δ,ϑ0+δ]

r2 − |z|2
|reiϑ − z|2dϑ+ ε −→

z→ζ0
ε.

□
1.11.8, The case ζ0 = r is left as an Exercise.

Exercise 8.1.19. [Exercise 8.1.19−→ Exer . ] Prove that if b : C(a, r) −→ R is a bounded
measurable function that is continuous at a point ζ0 ∈ C(a, r), then lim

z→ζ0
P(b; a, r; z) = b(ζ0).

Corollary 8.1.20. The Dirichlet problem has the solution in any bounded Jordan domain.

Proof. Let f : D −→ D be biholomorphic that is homeomorphic D −→ D (Osgood-
Carathéodory theorem). Let h be the solution of the Dirichlet problem for D and the
function b ◦ f−1. Then h ◦ f is the solution of the initial Dirichlet problem. □

(
3
)

Peter Dirichlet (1805–1859).
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Theorem 8.1.21 (1-st Harnack’s theorem). Let Ω ⊂ C be open and let (hν)∞ν=1 ⊂ H(Ω). If
hν −→ h locally uniformly in Ω, then h ∈ H(Ω).

Proof. Fix a ∈ Ω and r > 0 such that B(a, r) ⊂ Ω. Then, by Theorem ??, we get

hν(z) = P(hν ; a, r; z), z ∈ B(a, r), ν ∈ N.
Since hν −→ h uniformly on C(a, r), we get P(hν ; a, r; z) −→ P(h; a, r; z). On the other
hand hν(z) −→ h(z). Thus

h(z) = P(h; a, r; z), z ∈ B(a, r).

Now, by Theorem ??, h ∈ H(B(a, r)). □
Theorem 8.1.22 (2-nd Harnack’s theorem). Let D be a domain in C, (hν)

∞
ν=1 ⊂ H(D),

and hν ≤ hν+1, ν ≥ 1. If there exists a ∈ D such that limν→+∞ hν(a) exists and is finite,
then (hν)

∞
ν=1 converges locally uniformly in D.

Proof. Let

D0 = {z ∈ D : (hν)
∞
ν=1 is convergent uniformly in a neighborhood of z}.

If we show that D0 is non-empty open and closed in D, then D0 = D, which will end the
proof.

The set D0 is open by definition. To prove that D0 ̸= ∅ we show that a ∈ D0. Choose
r > 0 such that B(a, r) ⊂ D. Note that

r2 − |z − a|2
|reiϑ − (z − a)|2 ≤ r2 − |z − a|2

(r − |z − a|)2 =
r + |z − a|
r − |z − a| , z ∈ B(a, r). (8.1.6)

Moreover, for z ∈ B(a, r) and ν, µ ∈ N, we have

0 ≤ hν+µ(z)− hν(z) =
1

2π

∫ 2π

0

r2 − |z − a|2
|reiϑ − (z − a)|2 (hν+µ(a+ reiϑ)− hν(a+ reiϑ)) dϑ

≤ 1

2π

∫ 2π

0

r + |z − a|
r − |z − a|(hν+µ(a+ reiϑ)− hν(a+ reiϑ)) dϑ =

r + |z − a|
r − |z − a|(hν+µ(a)− hν(a)).

For |z − a| < r/2 this last expression is not greater than 3(hν+µ(a)− hν(a)). Therefore the
sequence (hν)

∞
ν=1 satisfies the uniform Cauchy condition in B(a, r/2), and hence converges

uniformly there. Thus a ∈ D0.
Suppose now that z0 ∈ D is an accumulation point of the set D0. Choose r > 0 such that

B(z0, r) ⊂ D. There exists b ∈ D0 ∩K(z0, r/3). Hence B(b, 2r/3) ⊂ D. Since b ∈ D0, the
sequence (hν(b))

∞
ν=1 is convergent. Similarly as above we prove that (hν)

∞
ν=1 is convergent

uniformly in K(b, r/3). Hence (hν)
∞
ν=1 is convergent uniformly in a neighborhood of z0, and

so z0 ∈ D0, which proves that D0 is relatively closed. □
Theorem 8.1.23. Any annulus

A := {z ∈ C : r− < |z| < r+}, 0 < r− < r+ < +∞,

is regular with respect to the Dirichlet problem.
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Theorem 8.1.24 ([Schwartz]). Let u ∈ L1(Ω, loc) (4) be such that ∆u = 0 in the sense of
distribution, i.e. ∫

Ω

u · (∆φ) dL2 = 0, φ ∈ C∞
0 (Ω).

Then there exists h ∈ H(Ω) such that u = h L2-a.e. on Ω.

8.2. Subharmonic functions

Definition 8.2.1. Let Ω ⊂ C be open. A function u : Ω −→ [−∞,+∞) is called subhar-
monic in Ω (we write u ∈ SH(Ω)) if:

• u is upper semicontinuous in Ω (u ∈ C↑(Ω)),
• for every domain D ⊂⊂ Ω and for every function h ∈ C(D) ∩ H(D), if u ≤ h on ∂D,

then u ≤ h in D.

In particular, the function u ≡ −∞ is subharmonic.
The following properties are immediate consequences of the above definition and of the

maximum principle for harmonic functions:
H(Ω) ⊂ SH(Ω),
SH(Ω) +H(Ω) = SH(Ω),
R>0 · SH(Ω) = SH(Ω).

Theorem 8.2.2 (Mean value property). If u ∈ SH(Ω), then

u(a) ≤ J(u; a, r) = 1

2π

∫ 2π

0

u(a+ reiϑ) dϑ, a ∈ Ω, 0 < r < dΩ(a).

Proof. Fix an a ∈ Ω and 0 < r < dΩ(a). Let bν : C(a, r) −→ R, ν ∈ N, be a sequence of
continuous functions such that bν ↘ u pointwise on C(a, r). Let hν be the solution of the
Dirichlet problem for B(a, r) with hν = bν on C(a, r). Then u ≤ hν on C(a, r) and hence on
B(a, r). Consequently, we get

u(a) ≤ hν(a) = J(hν ; a, r) = J(bν ; a, r), ν ≥ 1.

Since bν ↘ u on C(a, r), the monotone convergence theorem implies that

J(bν ; a, r) −→ J(u; a, r). □

Lemma 8.2.3. Let D ⊂ C be a domain and let v ∈ C↑(D, [−∞,+∞)), v ̸≡ const. Assume
that for every a ∈ D there exists a number 0 < R(a) ≤ dD(a) such that

v(a) ≤ J(v; a, r), 0 < r < R(a).

Then v does not attain its global maximum in D.

Proof. Suppose that v(z) ≤ v(z0), z ∈ D (for some z0 ∈ D). Let D0 := v−1(v(z0)). Then
D0 ̸= ∅. Note that for every accumulation point a ∈ D of D0 we have

v(z0) = lim sup
D0∋z→a

v(z) ≤ lim sup
D∋z→a

v(z) = v(a) ≤ v(z0).

(
4
)
L1(Ω, loc) := {u : ∀K⊂⊂Ω : u|K ∈ L1(K,L2)}.
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Hence a ∈ D0, which means that D0 is relatively closed in D. On the other hand, if a ∈ D0,
then

v(z0) = v(a) ≤ J(v; a, r) ≤ v(z0), 0 < r < R(a).

Now, since v is upper semicontinuous, we conclude that v = v(z0) on C(a, r) with 0 < r <
R(a). This implies that B(a,R(a)) ⊂ D0, and therefore D0 is open. Since D is connected,
we have D0 = D, which shows that v ≡ v(z0); contradiction. □

From Theorem 8.2.2 and Lemma 8.2.3 we immediately obtain

Corollary 8.2.4 (Maximum principle). Let D ⊂ C be a domain and let u ∈ SH(D),
u ̸≡ const. Then u does not attain its global maximum in D. Moreover, if D is bounded,
then

u(z) < sup
ζ∈∂D

{lim sup
D∋w→ζ

u(w)}, z ∈ D.

Notice that a subharmonic function can attain its global minimum.

Theorem 8.2.5. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for every
a ∈ Ω there exists an R(a), 0 < R(a) ≤ dΩ(a), such that

u(a) ≤ J(u; a, r), 0 < r < R(a). (8.2.7)

Proof. The implication =⇒ follows from Theorem 8.2.2.
To prove the opposite, fix a domain D ⊂⊂ Ω and a function h ∈ C(D)∩H(D) such that

u ≤ h on ∂D. Put v(z) := u(z)− h(z), z ∈ D. By Theorem ?? and (8.2.7) we have

v(a) ≤ J(v; a, r), 0 < r < min{R(a), dD(a)}, a ∈ D.

Using Lemma 8.2.3, we conclude that v ≤ 0 in D, which shows that u ≤ h in D. □
Corollary 8.2.6. (a) Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff every point a ∈ Ω ad-
mits an open neighborhood Ua ⊂ Ω such that u|Ua ∈ SH(Ua). In other words, subharmonicity
is a local property.
(b) SH(Ω) + SH(Ω) = SH(Ω).

Theorem 8.2.7. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for any
a ∈ Ω, 0 < r < dΩ(a), and p ∈ P(C), if u ≤ Re p on C(a, r), then u ≤ Re p in B(a, r).

Proof. Since the function Re p is harmonic, the implication =⇒ is obvious.
We prove now the opposite. Fix a ∈ Ω and 0 < r < dΩ(a). In virtue of Theorem 8.2.5

and the proof of Theorem 8.2.2, it is sufficient to prove that for every continuous function
b : C(a, r) −→ R such that u ≤ b we have u(a) ≤ J(b; a, r). Fix a function b and let
φν : R −→ R, ν ≥ 1, be a sequence of trigonometric polynomials (5) such that

|b(a+ reiϑ) +
1

ν
− φν(ϑ)| <

1

ν
, ϑ ∈ R

(
5
)

Recall that φ : R −→ R is a trigonometric polynomial if

φ(ϑ) = α0 +

k∑

j=1

(αj cos jϑ+ βj sin jϑ), ϑ ∈ R,
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(cf. [Rudin], the Fejèr theorem). Let pν ∈ P(C) be such that φν(ϑ) = Re pν(a+ reiϑ), ϑ ∈ R,
ν ≥ 1. Then u ≤ Re pν on C(a, r) and hence

u(a) ≤ Re pν(a) = J(Re pν ; a, r) ≤ J(b; a, r) +
2

ν
, ν ≥ 1.

(the first equality follows from the fact that the function Re pν is harmonic). Letting ν −→
+∞, we end the proof. □

Theorem 8.2.8. If f ∈ O(Ω), then log |f | ∈ SH(Ω).

Proof. Let u := log |f |. Then u ∈ C↑(Ω). By Theorem 8.2.5, it is enough to check that
u(a) ≤ J(u; a, r), a ∈ Ω, 0 < r < R(a). This is evident if f(a) = 0. If f(a) ̸= 0, then
u ∈ H(B(a,R(a))), where R(a) := dΩ\f−1(0)(a) (cf. Remark 8.1.2(e)). □

Theorem 8.2.9. (a) If SH(Ω) ∋ uν ↘ u, then u ∈ SH(Ω).
(b) If SH(Ω) ∋ uν −→ u locally uniformly in Ω, then u ∈ SH(Ω).

Proof. It is clear that in both cases u ∈ C↑(Ω). For each ν we have

uν(a) ≤ J(uν ; a, r), a ∈ Ω, 0 < r < dΩ(a).

Letting ν −→ +∞ proves that u satisfies (8.2.7). □

Theorem 8.2.10. If a family (uι)ι∈I ⊂ SH(Ω) is locally bounded from above (6) , then the
function

u := (sup
ι∈I

uι)
∗,

is subharmonic, where ∗ denotes the upper regularization. (7)
In particular, max{u1, . . . , uN} ∈ SH(Ω) for any u1, . . . , uN ∈ SH(Ω).

Proof. It is clear that u is upper semicontinuous. Let D ⊂⊂ Ω, h ∈ C(D) ∩ H(D), u ≤ h
on ∂D. Then uι ≤ h on ∂D for every ι ∈ I, and hence supι∈I uι ≤ h in D. Finally, since h
is continuous, we get u ≤ h in D. □

Theorem 8.2.11. Let G ⊂ Ω ⊂ C be open and let v ∈ SH(G), u ∈ SH(Ω). Assume that

lim sup
G∋z→ζ

v(z) ≤ u(ζ), ζ ∈ (∂G) ∩Ω.

for some α0, . . . , αk, β1, . . . , βk ∈ R. Observe that φ(ϑ) = Re p(a+ reiϑ), where

p(z) := q(
z − a

r
), q(z) := α0 +

k∑

j=1

(αj − iβj)z
j .

(
6
)

Note that in general the function supι∈I uι need not be upper semicontinuous.(
7
)

If v : Ω −→ [−∞,+∞) is locally bounded from above, then (cf. [Lojasiewicz])

v∗(z) := lim sup
z′→z

v(z′) = inf{φ(z) : φ ∈ C(Ω,R), v ≤ φ}, z ∈ Ω.
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Let

ũ(z) :=

{
max{v(z), u(z)}, z ∈ G

u(z), z ∈ Ω \G .

Then ũ ∈ SH(Ω).

Proof. It is evident that ũ ∈ C↑(Ω) and ũ ∈ SH(Ω \ ∂G). For a ∈ Ω ∩ ∂G we have

ũ(a) = u(a) ≤ J(u; a, r) ≤ J(ũ; a, r), 0 < r < dΩ(a). □

Theorem 8.2.12. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for every
a ∈ Ω there exists an R(a), 0 < R(a) ≤ dΩ(a), such that

u(z) ≤ P(u; a, r; z) = 1

2π

∫ 2π

0

r2 − |z − a|2
|reiϑ − (z − a)|2u(a+ reiϑ) dϑ, 0 < r < R(a), z ∈ B(a, r).

(8.2.8)

Proof. Since P(u; a, r; a) = J(u; a; r), the implication ⇐= follows from Theorem 8.2.5.
To prove the opposite, it is sufficient to argue as in the proof of Theorem 8.2.2 and use

the Poisson formula

u(z) ≤ hν(z) = P(hν ; a, r; z) = P(bν ; a, r; z) ↘ P(u; a, r, z). □
By Theorems ?? and 8.2.12 we get

Corollary 8.2.13. SH(Ω) ∩ (−SH(Ω)) = H(Ω).

Theorem 8.2.14. If a sequence (uν)
∞
ν=1 ⊂ SH(Ω) is locally bounded from above, then the

function
u := (lim sup

ν→+∞
uν)

∗.

is subharmonic. (8)

Proof. Of course, the function u is upper semicontinuous. Fix a ∈ Ω and 0 < r < dΩ(a).
By Theorem 8.2.12 and Fatou’s lemma we get

lim sup
ν→+∞

uν(z) ≤ lim sup
ν→+∞

P(uν ; a, r; z) ≤ P(lim sup
ν→+∞

uν ; a, r; z) ≤ P(u; a, r; z), z ∈ B(a, r).

Since the right–hand side is a continuous function of z, we get u(z) ≤ P(u; a, r; z), z ∈
B(a, r). □

Let u : B(a, r) −→ [−∞,+∞) be bounded from above and measurable. Define

A(u; a, r) :=
1

πr2

∫

B(a,r)

u dL2;

A(u; a, r) is the mean value of u on the disc B(a, r).

Theorem 8.2.15 (Mean value property). Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff
u ∈ C↑(Ω) and for every a ∈ D there exists an R(a), 0 < R(a) ≤ dD(a), such that

u(a) ≤ A(u; a, r), 0 < r < R(a).
(
8
)

Note that in general the function lim supν→+∞ uν need not be upper semicontinuous.
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Proof. Let u ∈ SH(Ω). Using polar coordinates, we have by Theorem 8.2.2

A(u; a, r) =
1

πr2

∫ r

0

∫ 2π

0

u(a+ τeiϑ)τ dϑ dτ

=
2

r2

∫ r

0

J(u; a, τ)τ dτ ≥ 2

r2

∫ r

0

u(a)τ dτ = u(a), a ∈ Ω, 0 < r < dΩ(a).

To prove the opposite we check first that u does not attain its maximum (like in the
proof of Lemma 8.2.3), and then we proceed as in the proof of Theorem 8.2.5. □

Theorem 8.2.16. Let D ⊂ C be a domain and let u ∈ SH(D), u ̸≡ −∞. Then u ∈
L1(D, loc). In particular, L2(u−1(−∞)) = 0.

Proof. Suppose that for some z0 ∈ D we have
∫
U
u dL2 = −∞ for any neighborhood U of

z0. Let 2r := dD(z0). By Theorem 8.2.15

u(z) ≤ A(u; z, r) = −∞, z ∈ K(z0, r).

Let D0 := {z ∈ D : u = −∞ in a neighborhood of z}. The set D0 is clearly open. We have
already shown that it is non-empty (z0 ∈ D0). To obtain a contradiction, it is sufficient to
note that proceeding exactly as above, we can prove that D0 is relatively closed in D. □

Theorem 8.2.17 (Removable singularities). Let D ⊂ C be a domain and let M ⊂ D be a
relatively closed subset of D such that for every point a ∈ M there exist a connected open
neighborhood Ua ⊂ D of a and a function va ∈ SH(Ua), va ̸≡ −∞, such that M ∩ Ua =
v−1
a (−∞). Let u ∈ SH(D \M) be locally bounded from above in D (9) . Define

ũ(z) := lim sup
D\M∋z′→z

u(z′), z ∈ D.

Then ũ ∈ SH(D). In particular, the set D \M is connected.

Proof. By Theorem 8.2.16 the set M is nowhere dense and hence the function ũ is well
defined for every z ∈ D. Note that ũ = (u0)

∗, where u0 := u on D \M and u0 := −∞ on
M . In particular, ũ ∈ C↑(D). Moreover, ũ = u on D \M .

It remains to prove that ũ is subharmonic. We may assume that M = v−1(−∞), where
v ∈ SH(D), v ̸≡ −∞ and v ≤ 0 in D. For ε > 0 let

uε(z) :=

{
u(z) + εv(z), z ∈ D \M
−∞, z ∈M

.

It is easy to see that uε ∈ SH(D) and that the family (uε)ε>0 is locally bounded from above
in D. Observe that u0 = supε>0 uε. Hence, by Theorem 8.2.10, ũ = (u0)

∗ ∈ SH(D).
To prove that D \M is connected, suppose that D \M = U1 ∪ U2, where U1 and U2 are

disjoint and non–empty open sets. Then the function u(z) := j for z ∈ Uj would extend to
a subharmonic function on D; contradiction. □

(
9
)

That is, every point a ∈ D admits an open neighborhood Va ⊂ D such that u is bounded from above
in Va \M .
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The above result can be generalized in the following way:
We say that a set M ⊂ C is polar if for every point a ∈ M there exist a connected open

neighborhood Ua and a function va ∈ SH(Ua), va ̸≡ −∞, such that M ∩ Ua ⊂ v−1
a (−∞).

Note that the set M from Theorem 8.2.17 is polar. Every polar set has measure zero (by
Theorem 8.2.16).

Lemma 8.2.18. Let M ⊂ C be a polar set. Then for every a ∈ C there exists an R(a) > 0 such
that

L1({ϑ ∈ [0, 2π) : a+ reiϑ ∈M}) = 0, 0 < r < R(a).

Proof. Suppose that for some a ∈ C it is not the case. Fix a disc B(a,R) and a function
v ∈ SH(B(a,R)), v ̸≡ −∞, such that M ∩B(a,R) ⊂ v−1(−∞). Let 0 < r < R be such that

L1({ϑ ∈ [0, 2π) : a+ reiϑ ∈M}) > 0.

This means that v(a + reiϑ) = −∞ for ϑ in a set of positive measure. In particular, v(z) ≤
P(v; a, r; z) = −∞ for z ∈ B(a, r), and so v ≡ −∞ in B(a, r); contradiction. □

Theorem 8.2.19 (Removable singularities). Let D ⊂ C be a domain and let M ⊂ D be a polar
set. Assume that u ∈ C↑(D \M) is locally bounded from above in D and for arbitrary a ∈ D \M
there exists an R(a), 0 < R(a) ≤ dD(a), such that

u(a) ≤ J(u; a, r), 0 < r < R(a).
(
10
)

Put
ũ(z) := lim sup

D\M∋z′→z
u(z′), z ∈ D.

Then ũ ∈ SH(D). In particular, if M is closed in D, then D \M is a domain.

Proof. The function ũ is upper semicontinuous and ũ = u in D \M . Let G ⊂⊂ D be an arbitrary
domain and let h ∈ H(G) ∩ C(G) be such that ũ ≤ h on ∂G. It is sufficient to check that ũ ≤ h in
G \M . Fix an a ∈ G \M . One can prove (see for instance [Hay-Ken], Th. 5.11), that there exists
a function v subharmonic in the neighborhood of G and such that M ∩G ⊂ v−1(−∞), v ≤ 0, and
v(a) > −∞. Define hε := ũ + εv − h, ε > 0. Then hε ∈ C↑(G) and hε ≤ 0 on ∂G. One can easily
check that hε ∈ SH(G)

(
11
)
. By the maximum principle (Corollary 8.2.4) it follows that hε ≤ 0 in

G, ε > 0. In particular, ũ(a)− h(a) = supε>0{hε(a)} ≤ 0.
□

Theorem 8.2.20 (Hartogs lemma). Let (uν)
∞
ν=1 ⊂ SH(Ω) be locally bounded from above.

Assume that for some m ∈ R
lim sup
ν→+∞

uν ≤ m.

Then for any compact K ⊂ Ω and ε > 0 there exists a ν0 such that

max
K

uν ≤ m+ ε, ν ≥ ν0; cf. Lemma ??.

(
10
)

Note that if M is a closed subset of D, then every function u ∈ SH(D \M) satisfies this condition
(with R(a) := dD\M (a)). Moreover, by Lemma 8.2.18, the integral J(u; a, r) is well defined for small r.(

11
)

We apply for instance Theorem 8.2.5: since hε = −∞ on M , it is sufficient to observe that hε(z0) ≤
J(hε; z0, r) for z0 ∈ G \M .
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Proof. It is sufficient to show that for every a ∈ Ω the assertion holds for K := K(a, δ(a)),
where δ(a) > 0 is sufficiently small. Fix a and 0 < R < dΩ(a)/2. We may assume that
uν ≤ 0 in K(a, 2R), ν ≥ 1, and m < 0. By Fatou’s lemma we have

lim sup
ν→+∞

A(uν ; a,R) ≤ A(lim sup
ν→+∞

uν ; a,R) ≤ A(m; a,R) = m.

Let 0 < δ < R/2. By the above inequality, since uν ≤ 0 on K(a, 2R), we get

lim sup
ν→+∞

max
z∈K(a,δ)

uν(z) ≤ lim sup
ν→+∞

sup
z∈K(a,δ)

A(uν ; z,R+δ) ≤ lim sup
ν→+∞

R2

(R + δ)2
A(uν ; a,R) ≤

R2

(R + δ)2
m.

Now it is sufficient to take a δ = δ(a) so small that the last term is smaller than m+ ε. □

Theorem 8.2.21. Let I ⊂ R be an open interval and let φ : I −→ R be non-decreasing and
convex. Then φ ◦ u ∈ SH(Ω) for any subharmonic function u : Ω −→ I. In particular,

eu ∈ SH(Ω) for any function u ∈ SH(Ω) (12) ,
up ∈ SH(Ω) for any subharmonic function u : Ω −→ R+ and p ≥ 1 (13) .

Proof. Since φ is convex, it is continuous (cf. [Schwartz:Analiza]), and therefore φ◦u ∈ C↑(Ω).
Fix a ∈ Ω and 0 < r < dΩ(a). By the monotonicity and convexity of φ and by Jensen’s
inequality (cf. [Rudin]), we obtain

φ(u(a)) ≤ φ(J(u; a, r)) ≤ J(φ ◦ u; a, r). □

Theorem 8.2.22. Let u ∈ SH(Ω), a ∈ Ω. Then the functions

(−∞, log dΩ(a)) ∋ t 7−→ J(u; a, et), (−∞, log dΩ(a)) ∋ t 7−→ A(u; a, et)

are non–decreasing and convex. Moreover,

J(u; a, r) ↘ u(a) when r ↘ 0, A(u; a, r) ↘ u(a) when r ↘ 0.

Proof. We show first that it is sufficient to consider only the function J. Note that if the
function J(u; a, ·) is convex with respect to log r, then it is continuous, and therefore we have

A(u; a, r) =
2

r2

∫ r

0

J(u; a, τ)τ dτ = lim
N→+∞

2

N2

N∑

j=1

jJ(u; a,
jr

N
) =: lim

N→+∞
φN(r).

If the function J(u; a, ·) is non–decreasing and convex with respect to log r, then the same
properties has every function φN , and so also the limit function A(u; a, .). Moreover,

u(a) ≤ A(u; a, r) = 2

r2

∫ r

0

J(u; a, τ)τ dτ ≤ sup
0<τ<r

J(u; a, τ) ≤ J(u; a, r).

Therefore, if J(u; a, r) −→ u(a), then the same property has the function A.
(
12
)

First we consider u : Ω −→ R and next we observe that in the general case we have emax{u,−ν} ↘ eu

when ν ↗ +∞.(
13
)

First we consider u : Ω −→ R>0 and next we observe that in the general case we have (u+ε)p ↘ up

when ε↘ 0.
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Now consider the function J. Let 0 < r1 < r2 < dΩ(a), let bν ∈ C(C(a, r2),R), bν ↘ u,
and denote by hν the solution of the Dirichlet problem for B(a, r2) with boundary condition
bν (cf. Theorem ??). Then

J(u; a, r1) ≤ J(hν ; a, r1) = hν(a) = J(hν ; a, r2) = J(bν ; a, r2).
The last integral converges to J(u; a, r2) when ν −→ +∞. Letting ν −→ +∞ we get the
monotonicity of the function J(u; a, ·).

Note that by Fatou’s lemma we have

u(a) ≤ lim
r→0

J(u; a, r) ≤ 1

2π

∫ 2π

0

lim sup
r→0

u(a+ reiϑ) dϑ ≤ u(a).

This proves that J(u; a, r) ↘ u(a) when r ↘ 0.
It remains to check the convexity with respect to log r, i.e. we want to prove the inequality

J(u; a, r) ≤ J(u; a, r1) +
J(u; a, r2)− J(u; a, r1)

log r2
r1

log
r

r1
, 0 < r1 < r < r2 < dΩ(a).

Fix 0 < r1 < r2 < dΩ(a). Let A := {z ∈ C : r1 < |z| < r2}, let bν ∈ C(∂A,R), bν ↘ u, and
let hν be the solution of the Dirichlet problem for the annulus A with boundary condition
bν (cf. Theorem ??). Differentiating under the integral sign, we obtain

d

dt
J(hν ; a, et) =

d

dt

1

2π

∫ 2π

0

hν(a+e
teiϑ) dϑ =

1

2π

∫ 2π

0

(∂hν
∂x

(a+eteiϑ)et cosϑ+
∂hν
∂y

(a+eteiϑ)et sinϑ
)
dϑ

=
1

2π

∫

C(a,et)

−∂hν
∂y

dx+
∂hν
∂x

dy = const(ν).

The last equality follows from the fact that the form

−∂hν
∂y

dx+
∂hν
∂x

dy

is closed. Consequently, there exist αν , βν ∈ R such that
J(hν ; a, r) = αν log r + βν , r1 < r < r2.

Finally,

J(u; a, r) ≤ J(hν ; a, r) = J(hν ; a, r1) +
J(hν ; a, r2)− J(hν ; a, r1)

log r2
r1

log
r

r1

= J(bν ; a, r1) +
J(bν ; a, r2)− J(bν ; a, r1)

log r2
r1

log
r

r1
, r1 < r < r2.

Letting ν −→ +∞ we end the proof. □
Corollary 8.2.23. Let u1, u2 ∈ SH(Ω). If u1 = u2 L2-almost everywhere in Ω, then u1 ≡ u2
in Ω.

Corollary 8.2.24. Let D and M be as in Theorem 8.2.17 or 8.2.19. Then for every function
u ∈ SH(D) we have

u(z) = lim sup
D\M∋z′→z

u(z′), z ∈ D.
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Fix a function Ψ ∈ C∞
0 (C,R+) such that

• suppΨ = D,
• Ψ(z) = Ψ(|z|), z ∈ C,
•
∫
Ψ dL2 = 1.

Let
Ψε(z) :=

1

ε2
Ψ(
z

ε
), z ∈ C, ε > 0.

For every function u ∈ L1(Ω, loc), we put

uε(z) :=

∫

Ω

u(w)Ψε(z−w) dL2(w) =

∫

D
u(z+εw)Ψ(w) dL2(w), z ∈ Ωε := {z ∈ Ω : dΩ(z) > ε}.

The function uε is called the ε-regularization of u.

Theorem 8.2.25. If u ∈ SH(Ω) ∩ L1(Ω, loc), then uε ∈ SH(Ωε) ∩ C∞(Ωε) and uε ↘ u
when ε↘ 0.

Proof. Since we can differentiate under the integral sign in the first integral above, it is
clear that uε ∈ C∞(Ωε). For a ∈ Ωε and 0 < r < dΩε(a) we have

J(uε; a, r) =
1

2π

∫ 2π

0

∫

D
u(a+ reiϑ + εw)Ψ(w) dL2(w) dϑ

=

∫

D
J(u; a+ εw, r)Ψ(w) dL2(w) ≥

∫

D
u(a+ εw)Ψ(w) dL2(w) = uε(a),

which shows that uε ∈ SH(Ωε). Note that

uε(a) =

∫

D
u(a+εw)Ψ(w) dL2(w) =

∫ 1

0

∫ 2π

0

u(a+ετeiϑ)Ψ(τ)τ dϑ dτ = 2π

∫ 1

0

J(u; a, ετ)Ψ(τ)τ dτ.

Now, by Theorem 8.2.22 and monotone convergence theorem, we get uε(a) ↘ u(a) when
ε↘ 0 for every a ∈ Ω. □
Remark 8.2.26. It follows from the proof of Theorem 8.2.25 that for an arbitrary function
Ψ ∈ C∞

0 (C,R+) such that suppΨ = D and for every function u ∈ SH(Ω), the functions

uε(z) :=

∫

D
u(z + εw)Ψ(w) dL2(w), z ∈ Ωε, ε > 0,

are subharmonic.

Theorem 8.2.27. Let u ∈ C2(Ω,R). Then u ∈ SH(Ω) iff ∆u ≥ 0 in Ω.

Proof. ⇐=. Assume first that ∆u > 0 in Ω. Let D ⊂⊂ Ω, h ∈ C(D) ∩ H(D), u ≤ h on
∂D. Put v := u − h and let z0 ∈ D be such that v(z0) = maxD v. Suppose that v(z0) > 0
(in particular, z0 ∈ D). Then (∆u)(z0) ≤ 0; contradiction.

For arbitrary u, take the sequence vε(z) := u(z) + ε|z|2, z ∈ Ω, ε > 0, and note that
∆vε = ∆u+ 4ε > 0 and vε ↘ u.

=⇒. Suppose that ∆u < 0 on some domain D ⊂ Ω. Then, by the previous part of the
proof, −u ∈ SH(D). Hence u ∈ H(D); contradiction. □
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Theorem 8.2.28. If u ∈ SH(D) (D is a domain in C), u ̸≡ −∞, then ∆u ≥ 0 in D in the
distribution sense, i.e. for every function φ ∈ C∞

0 (D,R+) we have
∫

D

u · (∆φ) dL2 ≥ 0.

Conversely, if u ∈ L1(D, loc) is such that ∆u ≥ 0 in D in the distribution sense, then there
exists a function v ∈ SH(D) such that u = v L2-almost everywhere in D; cf. Theorem ??.

Proof. Note first that if u ∈ C2(D), then, by the Stokes theorem, ∆u ≥ 0 in D in the
distribution sense iff ∆u ≥ 0 in D in the usual sense.

=⇒. Let uε denote the regularization of the function u (as in Theorem 8.2.25). By
Theorems 8.2.25 and 8.2.27, ∆uε ≥ 0 in Dε in the distribution sense, i.e.

∫

Dε

uε · (∆φ) dL2 ≥ 0

for every test function φ ∈ C∞
0 (Dε,R+). Since uε ↘ u (Theorem 8.2.25), we get

∫

D

u · (∆φ) dL2 ≥ 0, φ ∈ C∞
0 (D,R+).

⇐=. For every function φ ∈ C∞
0 (Dε,R+) we have

∫

Dε

uε · (∆φ) dL2 =

∫

Dε

(∆uε)φ dL2 =

∫

Dε

(∫

D

u(w)(∆Ψε)(z − w) dL2(w)
)
φ(z) dL2(z)

=

∫

Dε

(∫

D

u(w)(∆(Ψε(z − ·)))(w) dL2(w)
)
φ(z) dL2(z) ≥ 0.

This proves that uε ∈ SH(Dε).
We show now that uε ↘ when ε ↘ 0. Let 0 < ε1 < ε2. By Theorem 8.2.25 applied for

z ∈ Dε2 we have

uε2(z) = lim
ε→0

(uε2)ε(z) = lim
ε→0

∫

D

∫

D
u(z + εw + ε2ξ)Ψ(ξ) dL2(ξ)Ψ(w) dL2(w)

= lim
ε→0

∫

D

∫

D
u(z + εw + ε2ξ)Ψ(w) dL2(w)Ψ(ξ) dL2(ξ)

= lim
ε→0

(uε)ε2(z) ≥ lim
ε→0

(uε)ε1(z) = lim
ε→0

(uε1)ε(z) = uε1(z).

Let v := limε→0 uε. Then v ∈ SH(D). On the other hand, it is well known (cf. [Rudin]) that
uε −→ u in L1(D, loc). In particular, uε −→ u L2-almost everywhere in D. Hence u = v
L2-almost everywhere D.

□
Theorem 8.2.29. For every f ∈ O(Ω,G) (G is an open subset of C) and u ∈ SH(G) we
have u ◦ f ∈ SH(Ω).

Proof. If u ∈ C2(G) it is sufficient to note that

∆(u ◦ f) = ((∆u) ◦ f) · |f ′|2,
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and use Theorem 8.2.27. For the general case we use the regularizations (uε)ε>0, cf. Theo-
rem 8.2.25. Let vε := uε ◦ f . Then vε ∈ SH(f−1(Gε)), and vε ↘ u ◦ f in G, and so, by
Theorem 8.2.9(a), u ◦ f ∈ SH(Ω). □
Theorem 8.2.30 (Liouville type theorem). If u ∈ SH(C) is bounded from above, then
u ≡ const.

Proof. Let v(z) := u(1/z), z ∈ C∗. Then, by Theorem 8.2.29, v ∈ SH(C∗) and v is
bounded from above. Hence, by Theorem 8.2.17, v extends to a function ṽ ∈ SH(C). Now,
by the maximum principle, for arbitrary z ∈ C, we have

u(z) ≤ max{max
T

u,max
T

v} = u(z0)

for some z0 ∈ T. Using once again the maximum principle we conclude that u ≡ const. □
Theorem 8.2.31 (Oka theorem). For every function u ∈ SH(Ω), and for every R-analytic
curve γ : [0, 1] −→ Ω it holds

u(γ(0)) = lim sup
t→0+

u(γ(t)).

Proof. Since the curve γ is R-analytic, there exists a function f ∈ O(G), where G ⊂ C is
an open neighborhood of the interval [0, 1], such that f = γ on [0, 1] and f(G) ⊂ Ω. Put
u1 := u ◦ f . To prove the assertion, it is sufficient to show that lim supx→0+ u1(x) = u1(0).
Moreover, we may assume that u1 ≤ 0.

Suppose that lim supx→0+ u1(x) < C < u1(0). Let

u2 := − 1

C
max{u1, C}+ 1.

Then u2 ∈ SH(G), 0 ≤ u2 ≤ 1, u2(0) > 0, and u2 = 0 on (0, δ] for some 0 < δ ≪ 1. We may
assume that δD ⊂ G. Define v(z) := u2(δz), z ∈ D. Then v ∈ SH, 0 ≤ v ≤ 1, v(0) > 0, and
v = 0 on (0, 1]. Let

Sν := {reiϑ : 0 < r < 1, 0 < ϑ <
2π

ν
},

vν(z) :=

{
v(zν), for z ∈ Sν
0, for z ∈ D∗ \ Sν

, ν ∈ N.

It is not difficult to check that vν ∈ SH(D∗) (cf. Theorem 8.2.11). Since vν ≤ 1, the function
vν extends to a subharmonic function on D; denote the extension also by vν . Observe that

vν(0) = lim sup
D∗∋z→0

vν(z) = lim sup
Sν∋z→0

v(zν) = lim sup
D∗∋z→0

v(z) = v(0).

Finally, for any 0 < r < 1, we have

v(0) = vν(0) ≤ J(vν ; 0, r) =
1

2π

∫ 2π/ν

0

v(rνeiνϑ) dϑ =
1

2π

∫ 2π

0

v(rνeiϑ)
1

ν
dϑ ≤ 1

ν
.

Letting ν −→ +∞ we obtain v(0) = 0; contradiction. □
The above result can be generalized as follows:
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Theorem 8.2.32 (Oka theorem). For any u ∈ SH(Ω) and a curve γ : [0, 1] −→ Ω we have

u(γ(0)) = lim sup
t→0+

u(γ(t)).

Proof. Cf. [Vla]. We may assume that γ(0) = 0 ∈ Ω. Suppose that

u(0) > A > lim sup
t→0+

u(γ(t)).

Take r > 0 and 0 < t0 ≤ 1 such that:
• K(r) ⊂⊂ Ω,
• |γ(t)| < r for 0 ≤ t < t0,
• |γ(t0)| = r,
• u(γ(t)) < A for 0 < t ≤ t0.
We may assume that t0 = 1. Let Ω0 := {z ∈ Ω : u(z) < A}. Observe that Ω0 is open and

γ((0, 1]) ⊂ Ω0. Let G denote the connected component of Ω0 that contains γ((0, 1]). For 0 < ρ < r
let 0 < tρ < 1 be such that |γ(tρ)| = ρ. Take a Jordan arc σρ : [0, 1] −→ G such that σρ(0) = γ(tρ),
σρ(1) = γ(1). There exist 0 ≤ τ0 < τ1 ≤ 1 such that

• |σρ(τ0)| = ρ,
• ρ < |σρ(t)| < r for τ0 < t < τ1,
• |σρ(τ1)| = r.
We may assume that τ0 = 0, τ1 = 1. Let Lρ := σρ([0, 1]), Dρ := K(r) \ Lρ. One can prove

that Dρ is simply connected (Exercise). Let φρ : D −→ Dρ be a biholomorphic mapping (from the
Riemann theorem) with φρ(0) = 0 and φ′

ρ(0) ∈ R>0. By the Carathéodory theorem (cf. [Vla]), the
mapping φρ extends continuously to D (we denote this extension also by φρ) and φρ(T) ⊂ ∂Dρ. Let

Tρ := {ϑ ∈ [0, 2π) : φρ(e
iϑ) ∈ Lρ}

(observe that Tρ is relatively closed in [0, 2π)) and let mρ := L1(Tρ)/(2π). Notice that |φρ(eiϑ)| = r
for ϑ ∈ T ′

ρ := [0, 2π) \ Tρ. The function

ψρ(z) :=

{
φρ(z)/z, z ̸= 0

φ′
ρ(0), z = 0

is holomorphic in D and continuous on D. Moreover, ψρ(z) ̸= 0, z ∈ D. In particular, log |ψρ| is
harmonic in D and continuous on D and, therefore,

logφ′
ρ(0) = log |ψρ(0)| = J(log |ψρ|; 0, 1) = J(log |φρ|; 0, 1)

=
1

2π

(∫

Tρ

log |φρ(eiϑ)| dϑ+

∫

T ′
ρ

log |φρ(eiϑ)| dϑ
)
≥ mρ log ρ+ (1−mρ) log r.

On the other hand, by the Koebe theorem (cf. [Vla]), since K(ρ) ̸⊂ φρ(D), we get φ′
ρ(0) ≤ 4ρ. Hence

4ρ1−mρ ≥ r1−mρ ,

and, consequently, limρ→0mρ = 1.
Since u ◦ φρ is subharmonic in D and upper semicontinuous in D, we get

u(0) ≤ J(u ◦ φρ; 0, 1) =
1

2π

(∫

Tρ

u(φρ(e
iϑ)) dϑ+

∫

T ′
ρ

u(φρ(e
iϑ)) dϑ

)
≤ mρA+ (1−mρ)c,

where c := supK(r) u. Letting ρ −→ 0 gives u(0) ≤ A; contradiction □
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Theorem 8.2.33. Let u ∈ C↑(Ω,R+). Then log u ∈ SH(Ω) (14) iff for every polynomial
p ∈ P(C) the function |ep|u is subharmonic. In particular, if log u1, log u2 ∈ SH(Ω), then
log(u1 + u2) ∈ SH(Ω).

Proof. =⇒. Let v(z) := |ep(z)|u(z), z ∈ Ω. Then log v = Re p + log u and hence log v ∈
SH(Ω); therefore also v ∈ SH(Ω).

⇐=. We use Theorem 8.2.7. Let a ∈ Ω, 0 < r < dΩ(a) and let p ∈ P(C) be such
that log u ≤ Re p on C(a, r). Then v := |e−p|u ≤ 1 on C(a, r). Since the function v is
subharmonic, it follows from the maximum principle that v ≤ 1 in K(a, r), which means
that log u ≤ Re p in K(a, r). □

Theorem 8.2.33 can be generalized in the following way:

Theorem 8.2.34. Let u ∈ C↑(Ω,R+). Then log u ∈ SH(Ω) iff for every a ∈ C the function
|eaz|u(z) is subharmonic.

Proof. It is clear that the problem is to prove ⇐=. Suppose first that u ∈ C2(Ω,R>0). It
is sufficient to check that ∆ log u ≥ 0 in Ω. Note that

∆ log u =
1

u

(
∆u−

(∂u
∂x
)2 + (∂u

∂y
)2

u

)
.

Let a = α + iβ and put va := |eaz|u. Then

0 ≤ ∆va = |eaz|
(
∆u+ |a|2u+ 2(α

∂u

∂x
− β

∂u

∂y
)
)
.

Fix a z0 ∈ Ω and put

α := −
∂u
∂x
(z0)

u(z0)
, β :=

∂u
∂y
(z0)

u(z0)
.

Then

(∆ log u)(z0) =
|e−az0|
u(z0)

∆va(z0) ≥ 0.

Now consider the general case. Note that the function u is subharmonic (because u =
|e0z|u). Let (uε)ε>0 denote the regularizations of the function u. Since uε+ ε↘ u, it suffices
to show that log(uε + ε) ∈ SH(Ωε), ε > 0. Fix an ε > 0. In virtue of the first part of the
proof it remains to show that |eaz|uε ∈ SH(Ωε) for every a ∈ C. Fix an a ∈ C. Then

|eaz|uε(z) =
∫

D
|ea(z+εw)|u(z + εw)Ψ(w)|e−aεw| dL2(w), z ∈ Ωε.

Now we apply Corollary 8.2.26. □
Theorem 8.2.35 (Schwarz type lemma). Let u : D −→ [0, 1] be such that log u ∈ SH(D),
u(0) = 0, and

lim sup
D∗∋z→0

u(z)

|z| < +∞.

(
14
)

That is u is logarithmically subharmonic.
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Then
u(z) ≤ |z|, z ∈ D, and lim sup

D∗∋z→0

u(z)

|z| ≤ 1.

Moreover, if

∃z0∈D∗ : u(z0) = |z0| or lim sup
D∗∋z→0

u(z)

|z| = 1,

then u(z) = |z| for all z ∈ D.

Proof. Let v(z) := u(z)/|z|, z ∈ D∗. Since log v = log u − log |z|, it follows that log v ∈
SH(D∗), and hence v ∈ SH(D∗). By the assumption we conclude that the function v is
locally bounded in D. Hence, putting v(0) := lim supD∗∋z→0 v(z), and using Theorem 8.2.17,
we obtain a function subharmonic in D. By the maximum principle we get v ≤ 1, which
gives the required inequalities.

Moreover, if v(z0) = 1 for some z0 ∈ D, then v ≡ 1. □
Theorem 8.2.36. Let D ⊂ C be a convex domain and let u : D −→ R be a convex function
Then u ∈ SH(D).

Proof. Since u is convex, it is also continuous (cf. [Schwartz:Analiza]). Fix an a ∈ D and
0 < r < dD(a). Then we have

J(u; a, r) = lim
N→+∞

N∑

j=1

1

N
u(a+ rei

2πj
N ) ≥ lim

N→+∞
u
( N∑

j=1

1

N
(a+ rei

2πj
N )

)
= u(a).

It remains to apply Theorem 8.2.5. □
Theorem 8.2.37 (Hadamard’s three circles theorem). Let

A := {z ∈ C : r1 < |z| < r2}
(0 < r1 < r2 < +∞) and let log u ∈ SH(A). Assume that

lim sup
|z|→rj

u(z) ≤Mj, j = 1, 2.

Then

u(z) ≤M

log
r2
|z|

log
r2
r1

1 M

log
|z|
r1

log
r2
r1

2 , z ∈ A.

Proof. For α ∈ R put uα(z) := |z|αu(z), z ∈ A. Observe that uα is logarithmically
subharmonic on A. Now, by the maximum principle (Corollary 8.2.4), we get

|z|αu(z) = uα(z) ≤ max{rα1M1, r
α
2M2}, z ∈ A.

Taking α ∈ R so that rα1M1 = rα2M2, we get the required estimate. □


