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CHAPTER 1

Basic facts

1.1. What we know so far
Standard notation: .G, D € topC, D — a domain.

Definition 1.1.1. Let f : 2 — C. We say that f is holomorphic in 2 (f € O(S2)), if for

any point a € (2 there exist a power series > a,(z —a)” and 0 < r < R, where R is the
n=0

radius of convergence of the series, such that f(z) = > a,(z —a)", z € B(a,r) N {2. Recall
n=0

that R := sup{r > 0 : the series > a,(z — a)" is convergent uniformly in B(a,r)}.
n=0

If f € O(C), then we say that f is an entire function.

If f: 2 — G is a bijection, and f € O(2), f~' € O(G), then we say that f is
biholomorphic (f € Bih(§2, G)). Put Aut({2) := Bih({2, £2). A function f € Aut({2) is called
an automorphism of 12. R

Let 2 € top C be such that oo € £2 and let R > 0 be such that C \ B(R) C £2. We say
that a function f : 2 — C is holomorphic (f € O(2)), if:

o feO(2)\{o0}) and

e the function B(1/R) 3 z — f(1/z) € C is holomorphic, where 1/0 := co.

Remark 1.1.2. Let f(z) :== > a,(2—a)", |z—a| < R, where R is the radius of convergence.
n=0
The following results are known:

[Remark 1.1.2— Exer . . . . . . . . . . ... |

(a) For every z € B(a, R) the complex derivative f'(z):= lim

f'(z) = 32 nan(z —a)" .
n=1
(b) The radius of convergence of the above series is equal to R.

(c) f has in B(a,r) all complex derivatives f¥)(z) and f®)(z) = 3 kI(})an(z — a)" ",
n=~k

z € B(a, R). In particular,
e fisreal analytic as a function of two real variables, f € C¥(B(a, R),C),

()
° an:fT!(“),neZJr,
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o f(z) = T.f(2), z € B(a,R), where T,f(z) == >, %(z — a)™ denotes the
n=0
Taylor (1) series of f at a.

(d) (Identity principle) Let D C C be a domain, f,g € O(D), A:={z€ D: f(z) = g(2)}.
If A has an accumulation point in D, then f = ¢. In particular, if f € O(D), f # 0,
then points of the set f~1(0) are isolated.

(e) O(12) is a C-algebra.

(f) If f,g € O(D), where D is a domain and g # 0, then f/g € O(D\ g~*(0)). In particular,
every rational function R = P/Q, where P, Q € P(C,C), Q@ # 0, is holomorphic in
C\Q7(0).

(g) The composition of holomorphic functions is holomorphic.

(h) If f € Bih(Dy, Ds), then the mapping Aut(D;) 2 ¢ — fogpo f~! € Aut(D,) is a group
isomorphism.

(i) If f € O(£2) and a € §2 is such that f’(a) # 0, then there exists on open neighborhood
U C 2 of a such that V := f(U) is open and f : U — V is biholomorphic.

(j) If f € O(2) and f : 2 — G is bijective, then f € Bih({2, G) if and only if f'(z) # 0,
z € §2 (cf. Theorem 5.2.1).

Theorem 1.1.3. Let I C R be an open interval and f € C¥(I,C). Then there exist a domain

D c C and a function fve O(D) such that DNR =1 and f: fonl.
[Theorem 1.1.3— Exer . . . . . . . . . . . . |

1.2. Elementary holomorphic functions

1.2.1. Homographies.

Definition 1.2.1. Let a,b,¢,d € C be such that det [(é Z} # 0. Then the mapping h :

C —C, h(z) = “zis is called a homography (h € H) (1/00 : 0).

Remark 1.2.2 (Basic properties). [Remark 1.2.2— Exer . . . . . . . . . . . . . .. |

(a) Every homography is a homeomorphism C — C. The inverse of a homography is a
homography. The set of all homographies is a group (with composition). H depends on
6 real parameters.

(b) Elementary homographies:

Parameters Number of real
parameters
translation z—z+0b [ beC 2 subgroup
rotation Z—>az aeT 1 subgroup
homothety z—tz t>0 1 subgroup
affine mapping | z——>az+blacC,, beC 4 subgroup
inversion z—1/2 0

(*) Brook Taylor (1717-1783).
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(c¢) Every homography is a composition of elementary homographies. Every affine mapping
is a composition of a rotation, homothety, and translation.
(d) Every homography h is a C*°-diffeomorphism on D := C N A~ !(C).
(e) Every homography h is a conformal mapping on D, i.e. for every point a € D and for
any Cl-curves 71, 72 : (—¢,6) — D with 7;(0) = 12(0) = a:
e h preserves the angle measure: £(7,(0),75(0)) = £L((h o)'(0), (ho~2)'(0));
e h preserves the orientation: O(71(0),75(0)) = O((h o ~1)'(0), (h o)’ (0)).

(f)

g . {Zecz‘z—p’:)\}:{straightline{|z—p|:|z—q|}, iftp£qg, A=1

Z—q circle C(pl__’\;gq, ﬁ'{;g}), ifp#£qg 0<ANA1"

The points p and ¢ are symmetric with respect to S. In the case of a circle C'(zg,r) this
means that the points p, ¢ are on the same half-line starting at z and |p—zo||q¢— 20| = 7%
We assume that zg and oo are symmetric by definition. Moreover, for a straight line L
we say that L U {oo} is an improper circle.

(g) Conversely, every circle or straight line may be represented as a set S. In the case of the

circle C(zg, r) we take arbitrary p € C\ ({20}UC (20, 7)) and set ¢ := 29+ ==, X := @.

p—20’

(h) Homographies map circles onto circles. The set S is mapped onto

w—h@w_
w — h(q)

Symmetric points are mapped onto symmetric points.

(i) If A is an affine mapping, then h maps every proper circle (resp. a straight line) onto a
proper circle (resp. a straight line).

(j) If h is an inversion, then the image of S is the set {w eC: |w_—1/p = )\‘%|}. It implies

aeren

{wGC: o

w—1/q
that:
e the image of a straight line is either a straight line (if |p| = |g|) or a circle (if
[l # lal);

e the image of a circle is either a circle (if A|q| # |p|) or a straight line (if A|g| = |p|).
(k) Let H" := {z +14y € C:y > 0}. For any a € H" the homography h(z) := =2 maps H"
onto the unit disc D.
(1) For any a € D, ¢ € T, the homography h(z) := (ha(2), where hy(z) := =%, maps D
onto D.
(m) Let Auty(D) :={h € H : h(D) = D}. Then Auty(D) = {h € H : h is of the form (1)}.
In particular, Auty (D) depends on 3 real parameters. Moreover, Auty (D) acts transi-
tively on D, i.e. for any a,b € D there exists an h € Auty (D) such that h(a) = b.

1.2.2. Special elementary mappings.

Remark 1.2.3. [Remark 1.2.3— Exer . . . . . . . . . . . . . . ... |

(a) (n-th root) Let f(z) := en 8% where Log : C\ R_ is the principal branch of logarithm.
Then f maps bijectively C\ R_ onto {z € C\R_ : |Arg z| < 7/n}.
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(b) (Zhukovsky function (?)) Z(z) := 3(2+1/z2), z € C,. Let f(z) = f(re) = u+iv. Then
u=3(r+1/r)cost, v =21(r —1/r)sint. We have:
o 7(z2)=27Z(1/z), z € Cy;
e Z is injective on D, and on C\ D and maps homeomorphically each of these
domains onto C\ [—1, 1];
e the inverse mapping has the form C\ [-1,1] > w — w + Vw? — 1.
e forr >0,r# 1, Z maps C(r) onto the ellipse £(r) with foci +1 and half axes
s(r+1/r).
o if r — 0, then £(r) — oc;
o if r — 1, then &(r) — [—1, 1], which is twice covered by Z(T).
(c) (exp) Let u +iv = €* = e*™% ie. u = e%cosy, v =e"siny.
e For any yo € R the horizontal strip {z +iy : v € R, yo— 7 <y < yo+ 7w} is
mapped bijectively (but not homeomorphically) by exp onto C,.
e The horizontal line y = yo goes to the ray {(e” cosyo, e*sinyp) : x € R}.
e What is the image of the open strip {z +iy:z € R, yo—7 <y <yo+ 7} ?
e For any py € Ry, qo € R, the strip {(z,por +¢q) 2 €R, qo—71 < q < qo+ 7} is
mapped bijectively onto C,.
e The line y = poz + qo goes to the spiral curve {(e” cos(pox + qo), €* sin(pox + qo) :
r € R}.
(d) (sin) sin maps homeomorphically the strip {z + iy : —7/2 < z < 7/2, y € R} onto
C\ ((—00,1JU[1,4+00)).
The vertical line x = 0 is mapped onto u = 0. Every vegtical line x = ¢ # 0 is
=1.

8

coszc
1.2.3. Formal derivatives.
Definition 1.2.4. Let 2 € topC and let f : 2 — C ~ R2, f = u + iv, be Fréchet

differentiable (in the real sense) at a point a € (2. Let fg(a) denote the real Fréchet derivative
of f at a. Then for Z = X +iY € C ~ R? Weget

-3 (G- 55t >>Z+2<2£< )+ a—;% 2=+ Loz
where
af 8f .af af af f
5, (@) = <8x( ) — za—y(a)>, = (a) = <(9x< )i a_y( )>

denote the formal derivatives of f at a. Of course, to define the above formal derivatives it
suffices that the partial derivatives %(a) and %(a) exist.

Remark 1.2.5. [Remark 1.2.5— Exer . . . . | The following conditions are equivalent:

(i) f'(a) exists;
(i) fg(a) exists and is C-linear (fg(a)(Z) = f'(a)Z);

(?) Nikolai Zhukovsky (1847-1921).
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(iii) fg(a) exists and %(a) =0, ie. %(a) = g—;(a), g—;(a) = —%(a) — the Cauchy-Riemann
(®) (*) equations.
We have f'(a) = 5 (a) = ~ig;(@) = 5 (o)

9

Exercise 1.2.6. [Exercise 1.2.6— Exer . . . . . . . . . . . . .. ... |

(a) Let f(z +1iy) == /|vy|, 2 = 2 + iy € C. Then 2L(0) = %(O) = 0, but f/(0) does not
exist.

(b) If f'(a) exists, then det fg(a) = | f'(a)|?.

(c¢) Let D C C be a domain, f =u+iv € O(D). If |f| = const, then f = const.

(*) Augustin Cauchy (1789-1857).
(*) Bernhard Riemann (1826-1866).






CHAPTER 2

Basic properties of holomorphic functions

2.1. Basic theorems

Definition 2.1.1. Let v : [, 3] — C be a path, i.e. a piecewise C! curve, and let f =
u + v : v* — C be continuous. Define

/fdz = /ﬂy(u—kiv)d(x—kiy) :/udz—vdy+i/vdx+udy:/ﬂf(v(t))v'(t)dt.

v v

o+, where £(y) = ['|7/(t)|dt.

g
[Remark 2.1.2— Exer . . . . . . . . . ... |

Remark 2.1.2. Observe that | [ f(2)dz| < £(7)]|f

Lemma 2.1.3 (Lemma on production of holomorphic functions). Let vy : [0,1] — C be a
path and let g : v* — C be continuous. Set

e '2m/< aQ, zeC\y.
Then f € O(C\ v*),

f(k)(z):k—!,/(cf(—g)kﬂdc, z€ C\~v", keN, and

271

Z

In particular, d(T,f) > dlst(a 7*), a € C\ v*.

(z—a)", a€C\~", |z—a| <dist(a,v").
PROOF. Fix an a € C\ v* and let r := dist(a,v*), 0 < J. Then for z € B(a,Vr) and ¢ € ~*

we get
1 1 & (z—a)n
(—z (—a Z’“_Z(C—a)”“'

(—a n=0

i <2m / C—(C))n-i,-l dC) (z—a)", ze€ Bla,r). 0

n=0

11
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2. Basic properties of holomorphic functions
Definition 2.1.4. We say that a bounded domain is regular if D = Dy\(D,U---UD,), where
Dy, ..., D, are Jordan domains, D; C Dy, j =1...,p, D; CextDy, j # k, jk=1,...,p,
and 0D; is a Jordan path which has the positive orientation with respect to D (like in the
classical Green (') theorem).

12

Theorem 2.1.5 (Cauchy-Green formila). Let D C C be a reqular domain. Let f € CY(D),
i.e. f€CHQ), where 2 € topC and D C 2. Then

= omi /c— o /

In particular, if additionally f’ (z) exists for all z € D (e.g. f € O(D)), then we get the
Cauchy formula

z€D.

eD.

Tomi ) (=2
oD

PROOF. Fix an a € D. Applying the Green formula to the domain D, := D\ B(a,¢),
0 <e<x 1, we get:

aécf(— /c— ic= [ Foac /G@)CZC)

0D,
(<) = _
= ] = F—dC N dC = /C_adg/\dg.
On the other hand |- f Jg— — f(a)] < max{|f(¢) — f(a)| : ¢ € C(a,e)} _>—0J>r0 O
Corollary 2.1.6. If f € O(R2), then f(z 27” f H8dc, z € Bla,r) CcC 2.

Consequently, by Lemma 2.1.3, d(T,f > dp(a ), a 6 Q.
In particular, if f € O(C), then d(T,f) = +o0, a € C.

Theorem 2.1.7 (Weierstrass theorem (?)). Let (f3,)52, C O(82) and suppose that fi, — fo
locally uniformly in 2. Then fo € O(£2).

PROOF. Obviously, f, € C(£2,C) and for each disc B(a,r) CC {2 we have

fulz) = 1 fk(C)

T om —¢
C(a,r)

d¢, ze€ B(a,r), keN.

Since fi, — fo uniformly on C(a,r), we get fo(z) = 5= [ ’;()T(?d(’, z € B(a,r). It remains
C(a,r)
to apply the production lemma. O

(') George Green (1793-1841).
(*) Karl Weierstrass (1815-1897).
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Theorem 2.1.8 (Maximum principle). Let D C C be a domain and f € O(D), f # const.
Then:

(a) |f] does not have local maxima in D.
(b) | f| does not have a local minimum at a point a € D with f(a) # 0.
(c) If D is bounded, then |f(z)| < sup{limsup |f(w)|: ( € D}, z € D.
w—(¢
)

13

(d) If D is bounded and | f| extends to an upper semicontinuous function on D, then |f(2)| <
maxy | f], z € D.

PROOF. (a) Suppose that |f(z)] < |f(a)|, z € B(a,r) CC D. By the Cauchy formula we
get |f(a)| < 2% [ |fldL* < |f(a)|. Thus |f| = |f(a)| a.c. on B(a,r), which implies that
B(a,r)
|f| =1f(a)| on B(a,r). By Exercise 1.2.6(c) f = const on B(a,r) and finally, by the identity
principle, f = const on D — a contradiction.
(b) We apply (a) to 1/f.
(c) Fix a zp € D and let (Dy)52; be a sequence of domains such that zp € D; C Dy C

Dyy1 CC D, D = |J Dy. For each k there exists a wy, € Dy, such that |f(w;)| = maxp, | f].

k=1
By (a) we get |f(20)| < |f(wk)] < |f(wis1)]. We may assume that wy, — ¢ € 0D. Then
|f(20)] <limsup |f(wy)| < limsup [f(w)].

k—+o0 w—C

(d) follows from (c). O

Theorem 2.1.9 (Cauchy inequalities). (a) Let f € O(B(a,7)), |f| < C. Then |f™(a)] <
T”—T!LC’, n € N.

(b) Let f € O(§2). Then for any compact set K CC §2 and 0 < r < do(K) we get
1F Nk < Ellfllxe), n € N.

— rn

PROOF. (a) For every 0 < s < r we get

|fa+se n!
— < = )
a)| = ‘27”/ ! n+1 g‘_%/ dﬁ_SnC, neN

(b) follows from (a). d

Corollary 2.1.10 (Weierstrass theorem II). Let (fx)72, C O(£2) and assume that fr, — fo
locally uniformly in (2. Then fy € O(£2) and f,gn) — fén) locally uniformly in 2 for every
n € N.

Definition 2.1.11. For 2 € top C let L} (£2) := LP(2) N O(£2), 1 < p < 4o0.
o H>®((2):= L(£2) is the space of all bounded holomorphic functions on (2.
e L7(£2) is a unitary space with scalar product Lj (£2) x L}(£2) 5 (f,g) — [ fgdL>.
Q

Theorem 2.1.12. (a) | fllx < =% [ |f|dL?, fe O(R2), 0 <r <do(K), K CC (2.
K(m)
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b) Ifllx < Mz(ﬁ(K(”))l/q( (f) |f|Pd£2>1/p, feo), 0<r <do(K), 1<p< +o0,
K

14

where 1/p+1/q = 1.
(c) LE(£2) is a Banach (*) space, 1 < p < +oo.
(d) L3(92) is a Hilbert (*) space.
Theorem 2.1.13 (Liouville theorem (°)). Let f € O(C). Then f € P4(C) if and only if

for some R,C > 0 we have |f(2)| < C|z|%, |z| > R, or equivalently, |f(z)] < M(1 + |z])?,
z € C, for an M > 0.

PROOF. 1t is clear that every polynomial satisfies the inequality (EXERCISE). Conversely,
suppose that the inequality is fulfilled. We know that f(z) = Z a,z", z € C (cf. Corollary

2.1.6). Using the Cauchy inequalities, for r > R and n > d we have

d
|an|:’f ' ‘S Z =Crtm — 0. O
n! r

T—+00

Theorem 2.1.14 (Schwarz lemma (°)). (a) Let f € O(B(r)), |f| < C, and f(0) = 0. Then
f(2)] < Clz|/r, z € D, |f(0)| < C/r. Moreover, if |f(z0)] = C|zo|/r for a zo € B.(r)
or |f(0)] = C/r, then f(z) = Ce®z/r, 2 € B(r), for a9y € R.

(b) Let | € O(B(r), || < C, [(0) =+ = [¥D(0) =0 (k € N). Then |f(2)| < C(|2|/r)",
z €D, |[f®0)| < KC/rk. Moreover, if |f(z0)] = C(|z|/r)* for a zp € B.(r) or
|f®(0)| = KIC/rk, then f(2) = Ce®o(z/r)*, z € B(r), for a ¥y € R.

PROOF. (a) follows from (b).
f(z)
19 .eB,
(b) Let g(z) := {;(Z)(O) : 0 (r) , z € B(r). Obviously, g € O(B(r)) (EXERCISE).
B T
Moreover, by the maximum principle, we get [g(z)| < sup;ce ) limsup [g(w)| < C/rF, 2 €
w—(

B(r), which implies the result. 0
Recall that h,(z) := £=%, z € C\ {1/a}. Observe that (h,)™' = h_,,

, l—az—(z—a)(—a) 1—]al?
ha(2) = L =0 o)

In particular, b (a) =

Theorem 2.1.15. Aut( = Auty(D).

PROOF. Fix a g € Aut(D). Then f := hye) 0 g € Aut(D) and f(0) = 0. Thus it suffices to
prove that the set Auty(D) := {f € Aut(D) : f (0) = 0} coincides with the group of rotations.
By the Schwarz lemma (applied to f and f~1) we conclude that |f(z)| = |z|, 2 € D. Hence
f is a rotation. O

(*) Stefan Banach (1892-1945).
(*) David Hilbert (1862-1943).
(°) Joseph Liouville (1809-1882).
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Definition 2.1.16. Set
2 =2 1
/ " / / " /
m(z,z ) = W :‘hzll(2)|, VANV ED, ’7(2) ::1_—|Z|2:hz(2), z ED

The Schwarz lemma may be easily generalized to the following result.

Theorem 2.1.17 (Schwarz-Pick (") lemma). Let f € O(D,D). Then:
[Theorem 2.1.17— Exer . . . . . . . . . . . . . . . . |

(a) m(f(2), f(z") <m(,2"), 2, 2" € D.
(b) Y(f(DIf'(2)] <v(2), 2 € D.

(c) the following conditions are equivalent:
(i) f € Aut(D);
(ii) m(f(2), f(z")) =m(2,2"), 2/, 2" € D;
(iil) m(f (=), f(2))) = m(z}, 2} )for some z,, 2y € D, 2y # 2{;
(iv) y(f ()] f'(= )! =7(2), z €
(v) ¥(f(20))|f(z0)] = ¥(20) for a z € D.

2.2. Normal families, Montel theorem, Vitali theorem

Definition 2.2.1. Let D C C be a domain. We say that a family R C O(D) is normal
in D, if every sequence (f,)32, C R contains a subsequence (f,, )%, such that f,, — f
locally uniformly in D, where either f : D — C or f = co. We say that R C O(D) is
locally normal if each point a € D has a connected neighborhood U such that R|y is normal
in U.

Lemma 2.2.2. Fvery locally normal family is normal.

PROOF. For any a € D let U, C D be a disc centered at a such that R|y, is normal. By

the Lindel6f theorem there exists a sequence (a)>,; C D such that D = |J U,,. We fix an
k=1
arbitrary sequence (f,)32, = (fo n)oly C R. For k € Nlet (frn)r, be a subsequence of

(fi—1.)22, such that fi, — fk locally umformly on U,,. The dlagonal method of selection
gives a subsequence (f,,)2, such f,, — fk locally uniformly on Uak for every k. Since D is

a domain, we easily exclude the situation where fk/( Ua,,) C C but fkn = oo for some &, k"
(EXERCISE). O

Theorem 2.2.3 (Montel (%) theorem). Let (f;)52, C O(£2) be locally bounded. Then there
exists a locally uniformly convergent subsequence (f, )22 .

Consequently, for every domain D C C, every locally bounded family R C O(D) is
normal.

(") Georg Alexander Pick (1859-1942).
(®) Paul Montel (1876-1975).
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PROOF. First observe that the sequence (fi)52, is equicontinuous. Indeed, if B(a,2r) CC 2
and |fx(Q)| < C, ¢ € C(a,2r), k € N, then for z € B(a,r) we have:

|fk(z)—fk(a)\—‘% / fk(C)(CiZ —a> C‘_‘2m / FulC Zig a)d(

C(a,2r) (a,2r)

1 - C 1 C
_/ 12— al 2d19§—|z—a|/ . dy < —|z —a.
2 la + 2re® — z|2r 27 la + 2re® — z| r

0

Now we can argue as the Arzela-Ascoli (?) (*°) theorem. ()

Let A C (2 be an arbitrary countable dense set. Using the diagonal method of selection
we get a subsequence (f,)>2, that is pointwise convergent on A. Using the equicontinuity
we conclude that this subsequence is locally uniformly convergent. Indeed, let B(a,r) CC 2
for an a € A and let € > 0. Then there exists a 0 < 6 < r such that |fy, (z) — fx,(a)| < € for
all z € B(a,d) and n € N. Moreover, there exists an ny such that for n,m > ny we obtain
| fr, (@) = fr,.(a)] <e. Then for z € B(a,d) and n,m > ny we get

i (2) = frn (D) < 1 fk (2) = fin(@)] + [ SR (@) = S ()| + | i (@) = fi(2)] <3e. O

The Montel theorem can be essentially strengthened.

16

Theorem* 2.2.5 (Montel theorem II). For any domain D C C, every family R C O(D)
such that there exist wy, ws € C, wy # we, with wy,wy ¢ f(D), f € R, is normal.

Theorem 2.2.6 (Vitali (*?) theorem). Let (f3)52, C O(D) be locally bounded and pointwise
convergent on a set A C D that has an accumulation point in D. Then (fx)72, converges
locally uniformly in D.

PROOF. Suppose that for an a € D we have two subsequences (f,)>2; and (fs,)22; such
that lnf fr, (@) # luil fs,(a). By the Montel theorem we may assume that fy, — p,
n—-+0oo n—-+0oo

fs, — q locally uniformly D, where p,q € O(D). We know that p = ¢ on A. Hence, by the
identity principle, p = ¢. In particular, p(a) = ¢(a). Thus the sequence (f;)52, is pointwise
convergent on D to a function f.

Suppose that (fx)72; is not locally uniformly convergent to f. Then there exist a compact
K C D and an gy > 0 such that Veny Jn.>s0 || fo. — fllx = €0. By the Montel theorem
there exists a subsequence (f,,, )2, such that f, ~— f locally uniformly. In particular,
Ves0 Jten & Vist || ., — fllx < € — a contradiction. O

(?) Cesare Arzels (1847-1912).
1) Giulio Ascoli (1843-1896).
11
Theorem 2.2.4 (Arzela-Ascoli theorem). Let (g,)5%, C C(£2,C). Assume that the sequence (gn)o2, i

locally bounded and equicontinuous. Then there exists a subsequence (gn, )72, such that (gn, )72, converges
locally uniformly in §2.

(2) Giuseppe Vitali (1875-1932).
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2.3. Complex derivatives vs. holomorphicity

Lemma 2.3.1. Let D C C be a domain and let f = u+iv: D — C be continuous. Then
the following conditions are equivalent:

b
(i) for any a,b € D, the integral [ f(z)dz := [ f(z)dz is independent of the path ~ joining
a v

a and b i D;
(ii) f has a primitive function, i.e. there exists a function F : D — C such that F'(z) =
f(2), z€ D.
B
PROOF. (ii) f f(z)dz = fF’ )Y (t)dt = [(Fo~)(t)dt = F(v(8)) — F(v()).

«

(i) = (ii): The mtegral f f(z)dz = fudx — vdy + zfvda: + udy is independent of the

path if and only if each of the integrals i udx —vdy, [ vdx +udy is independent. Then there

v v
exist functions ¢, € C'(D,R) such that g—‘i = u, g—‘; = —0, gi’ v, g—¢ =u. Let F := p+i1).
Then F is C! satisfies the Cauchy-Riemann equations and F' = ¢/, + i), = u+iv = f. O

Theorem 2.3.2 (Characterization of holomorphic functions). Let 2 € topC and f : 2 —
C. Then the following conditions are equivalent:

(i) f'(z) exists for each z € §2;

(i) fi(2) exists for each z € 2 and 2L ( ) =0, z € 2;

(iii) f € C(£2,C) and f f(z)dz=0 for each triangle T CC 2 (the equivalence (i) <= (iii)

is called Morera ( %) theorem );
(iv) f € C(12,C) and for each starlike domain G C (2 there exists an F' : G — C such that

=finG;
(v) f€C(£2,C) and for each disc B(a,r) CC 2 we get
f(2) :2%” Zf(_ocdg, z € B(a,r);
C(a,r)

(vi) for each a € 2 the function has all complex derivatives f™(a), n € N, and

©_ £ (g
f(z) = Z LA )(z —a)", |z —al <dist(a,02);

(vii) f e O(£).
PROOF. We need a few auxiliary results.

Theorem 2.3.3 (Cauchy- Goursat (1) theorem). Let If f : 2 — C is such that f'(z) exists
for each z € (2, then f f(2)dz =0 for every triangle T' = conv{a,b,c} (0T :=[a,b,c,al).

(13) Giacinto Morera (1856-1909).
(*4) Edouard Jean-Baptiste Goursat (1858-1936).
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PrROOF. We may assume that 7y := T is non-degenerated. Using points p := %(a +b),
g = 3(b+c), and r := I(c+ a), we divide T} into four triangles Tp; = conv{a,p,r},
To2 := conv{p, b, q}, To 3 := conv{q,c,r}, and Tp 4 := conv{p, q,r}. Then

[ 163 Z/f

Ty J= 1dTO
Let 71 € {To4,...,Tp4} be such that | f f(z dz‘ = maX{| )dz} D j = 1,2,3,4}.
oy ;
Obviously,
’/f(z)dz‘gél‘/f(z)dz‘.
9Ty oTy

We repeat the above procedure and we get a sequence (7})%2, of triangles such that for all

JjeN:
b T|j+1 C 7}7
o L(3T;) = 5£(9Ty),
o | [ 1z dz’<4ﬂ‘ ff )dz|.
Ty
Let {a} := ﬂ T;. We have f(z) = f(a) + f'(a)(z — a) + a(2)(z — a), where a(z) — 0
j=1
when z — a. The function z — f(a) + f'(a)(z — a) has obviously a primitive. Thus, we
finally get

‘ /f dz‘ <4 / a)+ f'(a)(z —a) + a(z)(z — a))dz‘ =4 /a(z)(z — a)dz
9Ty ary
< PUOT) maxlla(:)(z — )] s 2 € OT5) < PVEQTallor, = E@Tollor, — .
0

Theorem 2.3.4 (Cauchy integral formula). Let h : £2 — C be such that h'(z) ezists for
any z € £2 and let B(c,r) CC 2. Then h(a) = 5= [ %dz, a € B(c,r).

2ms
C(er)

h(z)—h(a) it 0
PROOF. Fix an a and let g(z) := {h’(z )a_v %f z € 2\ {a}
1II 2 =aqa

on 2 and ¢'(z) exists for z € 2\ {a}. By the Cauchy-Goursat theorem we get [ g(z)dz =0
oT
for any triangle T C 2\ {a}. Since g is continuous, using an approximation, we see that

[ g(z)dz = 0 for any triangle T' C 2. Consequently, ¢ has a primitive in any starlike domain

. It clear that g is continuous
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G C 2. Hence,

0= / g(2)dz = / hz) = ha) . ana finally

L / Mdz:i_/ M9 1. Z ). O

211 zZ—a 21
Cle,r) Clc,r)

Cle,r) C(e,r)

The main proof will be divided into several steps.

It clear that (i) <= (ii) and (vi) <= (vii) = (i).

(v) <= (vii): Use the Cauchy formula (Theorem 2.3.4) and the production lemma.
(i) = (iii) follows from the Cauchy-Goursat theorem (Theorem 2.3.3.

(iif) = (iv): Suppose that G is starlike with respect to a ¢ € G. Put F(z) :== [ f(C

[c,2]

z€ @. Fixan a € G. Then

F(a+h})l ’_‘ /f dz_/f s — / Fla)dz)

[c,a+h] [e,a] [a,a+h]

-1 / <f<z>—f<a>>dz\Smax{wz)—f(a)r:ze[a»ﬁh”mo' -
la,a+h]

(iv) = (v): We apply Theorem 2.3.4 to the function F. Using the production lemma
we conclude that F' € O(f2) and hence f = F' € O(£2).

Theorem 2.3.5. Let D C C be a starlike domain with respect to a point a € D and let
f: D — C, be holomorphic. Then f has of its logarithm n D. (cf. Theorem 2.3.12).

PROOF. Put h(z) := fz £e) ¥ dC + Log f(a ), z € D. We know that " = f'/f in D, and so

a

(fe™) = fle™® — fe="h' = 0. Thus fe " = const = f(a)e ™™ = f(a)e~tef(@) = 1 ie.
e = f. U

Remark 2.3.6. If f has a branch of its logarithm in D, then f has a branch of p-th root in
D for every p € N. Indeed, let g be a branch of logarithm of f. Then f = e9 = (e9/7)P.

Definition 2.3.7. Let C' C C be a circle (proper or not). Then we denote by Sg: C — C
the symmetry with respect to C' (i.e. for each z € C the points z and S¢(z) are symmetric
with respect to C).

Theorem 2.3.8 (Riemann-Schwarz symmetry principle). Let Cy,Cy C C be circles and let
D C intCy be a domain (if C; is a line then int C; is one of the half-planes of C\ C;).
Assume that (0D) N Cy contains an open arc L # &. Let f € O(D)NC(D U L) be such that

f(L) € Cy and let f(2) = {f(z)’ ifz€ DUL

S, (f(Se,(2),  if Sey(2) € D’ Then f € O(DULUSe, (D)).
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f(z), ifzeDUL

20

In particular, if C1 = Cy = R, then f(z) =

f(z), ifzeD
PRrROOF. Using suitable homographies we reduce the problem to the case where C)} = Cy, =R
Now, it remains to apply the Morera theorem. Il
Corollary 2.3.9. [Corollary 2.3.9— Exer . . . . . . . . . . . . . . .. .. .. | Let

D C C be a domain such Ly C 0D, where Ly is an open analytic arc, i.e. Ly = v1((0,1)),

: (0,1) — C is analytic, injective, and ~{(t) # 0, t € (0,1). Let f € O(D)NC(D U Ly)
be such that f(L1) C Lo, where Ly is an open analytic arc, Ly = 75((0,1)). Then f extends
holomorphically throught Ly, i.e. there exist a domain D> DUL, and f € O(D ) such that
f fonDUL;.

Theorem 2.3.10. Let f : D — C be holomorphic, let a,b € D, and let vy, v : [0,1] — D
be paths joining a and b, that are homotopic in D. Then f% f(z)dz = f% f(z)dz

PROOF. Let H : [0,1] x [0,1] — D be a homotopy joining vy and 7;. i.e. H is continuous,
H(,) = v, H(1,") = m1, H(s,0) = a, H(s,1) = b, s € [0,1]. Note that we do not
assume that H(s,-) is a path. Since H is uniformly continuous, we find a 6 > 0 such that if
|s'—s"] < dand |t —t"| <0, then |H(s',t")—H(s",t")| < r:=dist(H([0,1] x [0, 1]),0D). Fix
ann > 1/0andlets; =t;:=j/n,j=0,...,n,a;r = H(sj,tx), 0; := [ajp,...,a;,]. Observe
that G, := B(ajk,7) C D, Gjj is a starlike domain and H(s,t) € Gjj for |s — s;| < 6,
[t —t| < 0, j,k = 1,...,n. Hence fO'[k " f(z)dz = f[ao’k_hao,k]f(z)dz, E=1,....n
(cf. Theorem 2.3.12). Consequently, f f(z)dz = f f(z)dz. Analogously, f% f(z)dz =
[, f(z)dz. Tt remains to show that f f(z)dz = f f(z)dz, 7 =1,...,n. Put pj; :=

[aj_Lk 1y Q1 ks Qjkey G k-1, Qj—1 k—1]. We know that fpjk f 2)dz =0, j, k= 1, ..M.
Aj—1 k-1 — 7 Qj—1k
Ajk—1 — Qjk
Adding the above integrals with k = 1,...,n we get the formula. O
Consequently, we get

Theorem 2.3.11 (Cauchy—Goursat theorem). Let D be simply connected and let f € O(D).
Then fv f(2)dz depends only on the end-points of 7.

Theorem 2.3.12. Let D be simply connected and let f € O(D,C,). Then f has a branch
of its logarithm in D.
PROOF. Fix an a € D and define h(z) := fa f(C) ¢ + Log f(a), z € D (cf. Theorem 5.4.5).

We have (fe ™) = fle " — fe="h’ = 0. This means that fe™® = const = f(a)e " =
f(a)e~t&/(@) =1 g0 e" = f. Thus h is a branch of the logarithm of f. O
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2.4. Complex one-dimensional manifolds

Exercise 2.4.1. (1) We say that a Hausdorff topological space M is a complex one-dimensional
manifold (M € CODM), if M has an atlas, i.e. a family of pairs A = (Uy,, ¥a)aca such
that for all o € A:

U, € top M,

Yo 1 Uy — pa(U,) C C is homeomorphic,

©0a(Uy) € top C, and

UaGA UCV - M7

oLt € O(pa(U, NUpg)) for all o, § € A.

Each such a pair (U,, ¢,) € A is called a map.

) Connected CODMs are called Riemann surfaces.

3) If N € top C, then N € CODM. In particular, C € CODM.

4) If M € CODM and M’ € top M, then M’ € CODM.

5) We say that a map (U, ) is consistent with the atlas A = (Uy, Ya)aca if AU{(U, )}

is an atlas.

(6) We say that atlases A = (Uy, 0a)aca, B = (Vs,13)sep are equivalent if AUB is an atlas.

(7) If M is a Lindel6f space, then for each atlas A there exists an equivalent atlas B =
(Vs,%5)sep such that B is countable.

(8) An atlas (Uy, ¥a)aca is called mazimal, if each map that is consistent with A belongs to
A.

(9) Each atlas is equivalent to an atlas contained in the maximal atlas. In fact, each atlas
is contained in the unique maximal atlas.

(10) Let M € CODM with an atlas A = (Uy, @a)aca. We say that a mapping f: M — C
is holomorphic (f € O(M)) if fop ' € O(pa(U,)) for arbitrary o € A. If M € topC,
then the defintion coincides with the standard definition.

(11) Let N € CODM with an atlas (Vjs,¥5)sep. We say that a continuous mapping f : M —
N is holomorphic (f € O(M, N)), if Ygo foprt € O(pa(UsNf1(V3))), (a,8) € Ax B.
In the case N = C the definitions coincide.

(12) Is the assumption “f continuous” necessary?

(13) If f : M — N is holomorphic with respect to (U, ¥a)aca and (Vs,9g)sep, then it is
holomorphic with respect to the maximal atlases.

(14) The Weierstrass theorem holds for O(M).

(15) If M is connected, then the identity principle holds on M: if f,g € O(M, N) are such
that the set A :={z € M : f(z) = g(z)} has an accumulation point in M, then f = g.

(16) If M is connected, then the maximum principle holds on M.

(17) If M is compact and connected, then O(M) ~ C. For example, O(C) ~ C.

(18) If M is connected and separable, then the Montel and Vitali theorem hold on M.

(2
(
(
(
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2.5. Hyperbolic geometry of the unit disc

(1) Recall that m(X,\") := | 2557 |, X, A" €D, ¥(A) = —hp, A€D.

The function m may be extended to (C x C)\ {(N,\") : N\ =1}
(2) (Schwarz-Pick lemma). Let f € O(D, D). Then:
(a) m(F(V), F(V)) < m(X, V), X, X' € D.
(b) Y(fFODLF N <~(A), A € D.

(
(c¢) The following statements are equivalent:

(i) f € Aut(D);

(i) m(f(N), f(X")) = m(N, X)), X', A" € D;

(iii) m(f(Ny), f(AG)) = ()\6,)\8) for some (), A\j € D with Aj # AJ;
(V) Y(FODIF N =~v(A), A € D;

(V) Y(f Qo) |f' (M) = v(No) for some Ay € D.
Any holomorphic function f : D — D is an m- and a ~-contraction. The only holo-
morphic m- or «-isometries are the automorphisms of .
(3) Let o € O(D, D) and let p(z) = > "2, as2° be its power series expansion. Then |az| <
1-— |CLO|27 k € N.

2wzs

k
Fix a k € Nand put wy, :==e* * s =1,... k. Recall that Y W =0,1<m < k.

s=1

k
Put §(z) := 1 3" ¢(wsz), z € D. Obviously, ¢ € O(D, D) and its power series expansion
s=1
is given by p(2) = ag + ap2® + anp2® + ..., z€D. Set g := 1“’ =.5- Then g € O(D, D)
and its power series expansion is given by g(z) = bpz® + ... with b, = T | Tagl? Using the
Cauchy inequality for the coefficient by gives finally the inequality.

(4) (Higher order Schwarz—Pick lemma). Let f € O(D,D) and k& € N. Then
fP)] o1

< KA+ M) ——e, AeD.
T-ooF =M
Fixa A € D and put ¢, (2) := f(lzj/\’\z) i ¢j(A\)z?, z € D. Then f(z) = 90/\(1Z:X/\z) =

7=0

Z (A )( =2 )j, z € D. Taking the k-th derivative of f at the point A we get f*)()\) =
e
¢

—Az

> () e gy Recall that ¢o(A) = () and |e()] < 1= Jeo()fF = 1
f(N)]? if s € N. Hence

J
|

k

FP O] < (i:K’ Z Tyt

s=1

’)\|k s

L L L 1—|fON)? -
(1 —|J|C)\| k Z m!( k m —1)! |/\|m =K (1 —|]|c/<\|2))|’“ (1+ A
(5) m € C®((D x D)\ {(AA): A e D}), m? € C>(D x D), v € C*(D).
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(6) For any a € D, m(-,a) = |h,|. In particular, m(-,a) = 1 on T and logm(-,a) is
harmonic in D\ {a}. Since m is symmetric, the same is true for m(a,-).

(7) Alixg% = ~(a), a €D,
N AN

(8) If u :== m?(a,-), then v*(a) = (Au)(a).

(9) For any a, b, c € D, a # b # ¢ # a, we have m(a,b) < m(a,c) + m(c,b). In particular,
m:DxD—[0,1) is a distance. It is called the Mdbius distance.

Indeed, observe that for any a, b € D, a # b, there exists a unique automorphism

h = hyp, € Aut(D) such that h(a) = 0 and h(b) € (0,1). The function m is invariant

under Aut(D), and therefore we may assume that a =0, b € (0,1). Then the inequality
reduces to b < |c| + ’ —|, ce D\ {0,b}.

(10) Since m is invariant under Aut(ID), By, (a,7) = h_o(B(r)),a € D, 0 < r < 1, where B,
stands for the m-ball. In particular:
— the topology generated by m coincides with the Fuclidean topology of D,
— the space (D, m) is complete.

(11) The strict triangle inequality says that the m-segment

[a,b]m == {A € D:m(a,\) + m(\,b) = m(a,b)}

consists only of the ends. Thus, from the geometric point of view, the space (D, m) is
trivial.

(12) Let a [ ,1] — D be a path. We define its ~-length by the formula L.(a) :=
fo )| (t)|dt.

(13) For any f € O(D,D) we have L,(foa) < Ly(a). In particular, the «-length is invariant
under Aut(D).

(14) Define P(X, ") :=inf{L,(a) : @ : [0,1] — D, a is a path, X = a(0), \" = a(1)},

N, N e D.

(15) P : D x D — R, is a pseudodistance dominating the Euclidean distance; for any
holomorphic function f : D — D we have P(f(X), f(\")) < PN, \), X, A" € D. In
particular, P is invariant under Aut(DD).

(16) For 0 < s < 1let as(t) :==ts, 0 <t <1, ie. as denotes the interval [0, s|] regarded as a
curve. For a, b € D, a # b, let ayy = hlo ap,v)- The image I, of the curve oy lies
on the unique circle C,; that passes through a and b and is orthogonal to T.

(17) For any a, b € D, a # b, we have P(a,b) = L,(aqp) = tanh™' (m(a, b)). Moreover, a,y, is
a unique geodesic joining a and b. Recall that tanh™'(t) = Llog £ and (tanh™')'(t) =

t2’ 0<t<1.
Indeed, all the objects are invariant under Aut(D) and so we may assume that a = 0,

be (0,1), and o = . First, observe that P(0,0) < Ly(ap) = Ob A = Llog 12 =
tanh ™' (m(0,b)). On the other hand, if @ = u +4v : [0,1] — D is a path joining 0 and
b, then L,(a) > fol #(Qt)(t)dt = %log }—J_“Z Thus the inequality is satisfied and, moreover,
if P(0,b) = L,(«), then we have equality. This implies that v = 0, w : [0,1] — [0, b],
and v is increasing. Finally o ~ .

(18) P is a distance with m < P.
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(19) For any f € O(D,D) if P(f(A), f(A7)) = PN, Aj) for some Ay, Ay € D, A\j # Aj, then
f € Aut(D).
(20) Bg(a,r) = Bp(a,tanh(r)), a € D, r > 0. In particular,
— the topology generated by P coincides with the standard topology of I,
— (D, P) is complete.
(21) )\’,1)\1’1/11)(1 % =~(a), a € D.
NN
(22) [a,blp = I,p, i.e. the P-segments coincide with the images of geodesics. In particular,
P(0,s) =P(0,t) + P(t,s), 0 <t < s < 1.
The distance P is called the Poincaré (hyperbolic) distance. Note that (D,P) is a
model of a non-Euclidean geometry (the Poincaré model).
(23) Let a: [0,1] — D be a (continuous) curve. Put

24

Le(a) := sup { S Pt alty) s N €N,0=tfg < - <ty = 1}.

Jj=1

The number Lp(a) € [0, 400] is called the P-length of a. If Lp(a) < 400, then we say
that « is P-rectifiable. Note that Lp(a) > P(«(0), a(1)).
(24) (a) For any f € O(D,D) we have Lp(foa) < Lp(«). In particular, Lp is invariant under

Aut(DD).

(b) Le(aap) =P(a,b).
(25) P =P, where P*(a, b) := inf{Lp(c) : a : [0,1] — D, « is a curve joining a and b}, a,b €
D.

The above corollary shows that P is an nner distance.

(26) It is clear that we can repeat the same procedure for the distance m: first we define
Lm(a) and we put m'(a, b) := inf{Ly,(a) : @ : [0,1] — D, « is a curve joining a and b},
a,b e D.

(27) (a) For any curve « : [0,1] — D we have L,,(a) = Lp(a). In particular, m’ = P.

Moreover, « is m- or P-rectifiable iff « is rectifiable in the Euclidean sense.

(b) For any path « : [0,1] — D we have Lp(a) = L ().

The above equality may be used as an alternative way to define P. Moreover, it
shows that m is not an inner distance.

Indeed (a) First observe that for any compact K C D there exists an M > 0 such
that =[N — X'| <m(N,\) < PN, \") < MIXN —X'|, N,\" € K. Hence for any curve
a:[0,1] — K one gets 17 Ly (@) < L () < Lp(a) < MLy (a), where L () denotes
the length of « in the Euclidean sense. Consequently, all the notions of rectifiability
coincide.

For any compact K C D and for any € > 0 there exists a § > 0 such that 0 <
PN, X)) —m (N, \) < el =XN|, N\, N € K, N —\'| <9, which directly implies that
Ly, (o) = Lp(av).

(b) We may assume that « is of class C'. For any € > 0 there exists an 1 > 0 such
that |HAE2EE) — y(a())o/ ()| <& 0 <H,#7 <1, |t =t <,

|t/_t// ‘



(28)

(29)

(30)
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One may also ask how close is the Poincaré geometry to the holomorphic one, i.e. what
are the relations between the set Isom(IP) of all P-isometries of D and the group Aut(DD).
Observe that Isom(P) = Isom(m). We can also study the set Isom(7y) of all y-isometries
of D, ie. the set of all C'-mappings f : D — D such that ~(f(\)|(drf)(X)] =
Y(A)|X], A € D, X € C, where dyf : C — C denotes the R-differential of f at .
For any mapping f : D — D the following conditions are equivalent:
(i) f € Isom(P),
(ii) f €C! and f € Isom(v),
(iii) either f € Aut(D) or f € Aut(D).
Thus, Isom(P) = Isom(v) = Aut(D) U W
Indeed, it is clear that (iii) = (i) and (iii)) = (ii).
(i) = (iii). Taking e”hy() o f in place of f we may assume that f(0) = 0 and
f

that f(zo) = zo for some 0 < zy < 1. Then we have |f(\)] = |A| and |L3=

(A)u’v

A—To

1-f
5|, A € D. Hence Re f(A) = ReA, A € D, and consequently either f(\) =

fA) = A
(ii) = (iii). Since f is a y-isometry, we have ]f;()\)oz+fé()\)ﬂ| =C(\)|a+if|, A€
D, a,8 € R, where C(\) = % > 0. Hence for each A € D there exists an
e(A) € {=1,1} such that f;(\) = e(\)if,(\) # 0. Since the partial derivatives are
continuous, the function € has to be constant, and consequently f is either holomorphic
or antiholomorphic. Hence, by the Schwarz—Pick lemma, f € Aut(D) U Aut(DD).
The Poincaré distance may also be introduced axiomatically. Let d : D x D — R be a
function such that
(i) d is invariant under Aut(DD),
(i) d(0,s) =d(0,t) +d(t,s),0 <t <s <1,
(iii) lim 490 — 1.
t—0+

¢
Then d = P.

Indeed, let p(t) := d(0,t), 0 <t < 1. In view of (11) and (iii), ¢(0) = 0 and ¢'(0) = 1.
We shall show in the second paragraph that <,0 ( ) = ~(t), 0 <t < 1. Suppose for
log 125 = P(0,5), 0 <

= t2 -
a moment that it is true. Then ¢(s) = [; ¢'( STy =1
s < 1, and hence by (i), d = P.

le 0 <ty < 1andlet ¢t > 0 be such that ¢y +t < 1. Because of (ii), we get
o(ty +t) — @(ty) = d(to,to + t). On the other hand, by (i) we have d(to,to +t) =

d<ht0(t0),ht0(t0 +t)) A0, =(rrryg;)- Fimally, lim ellot—elto) - The proof for
the left derivative is analogous.







CHAPTER 3
Singularities

3.1. Laurent series

Definition 3.1.1. Any series of the form

Zanz—a Zanz—a —l—Zanz—a 1 S(2) + R(2),

n=—oo

is called a Laurent (') series centered at a € C. The series S is called the singular part, the
series R — the regular part. Power series may be identified with those Laurent series for
which S =0, i.e. a_, = 0 for all n € N. Define the numbers R_, R, € {—o0} U [0, +00]:

limsup {/|a_p|, if Fpen:a_, #0
R, = n—-+0o0 , R+ =—
—0Q, if VneN LAy = 0 lim sup n\/ |an|

n—-+o0o

Remark 3.1.2. Suppose that R_ < R,.

(a) The series > a,(z —a)" converges locally uniformly in A(a, R_, R.).

(b) For any compact K CC A(a, R_, R;) there exist C' > 0, ¥ € (0, 1) such that
lan(z —a)"| < CO", e K, nelk

o0

(c) By the Weierstrass theorem the function f(z2) :== >  a,(2 —a)", z € Ala, R_,Ry), is

holomorphic. o
(@) 5 [ Z9d¢ = Y anss [ C—a)dC = ay, k € Z, R- < r < Ry
C(a,r) n=-—00 C(a,r)

Consequently, the coefficients (a,)nez are uniquely determined by f.

Theorem 3.1.3 (Laurent series representation). Let f € O(A(a,r_,ry), 0 < r_ <ry <

co. Put 10
1 ¢
an<7") :2—7” Wdc, nEZ, o <r<ryg.
C(a,r)
Then ay, := a,(r) is independent of r, the Laurent series Y an(z — a)" is convergent in
A(CL, T—Jr“r)? and f(Z) = Z an(Z - a)n; KAS A(CL,T_,T+).

(') Pierre Laurent (1813-1854).
27
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PROOF. The independence of a,(r) from r follows from the Cauchy integral formula. Using
the Cauchy integral formula for z € C(a,r) ir_ <r; <r <ry <r, we get:

() =55 / 2% /g dg
(Lf —a+a /f —a—i—a—zdg)

C(a,r1)
1
N — @)
il | 1O = [ R0
C(a,r2) C(a,r1) z-a
1 — (z—a)" — (C—a)
- d )
(] St [ O
C(a,r2) n= C(a,r1) "=
_Zan z—a”+Za (nH)(z—a)_("“). O
n=0
Example 3.1.4. [Example 3.1.4— Exer . . . . . . . . | The typical problem related to
the Laurent series expansion looks as follows. We have a function f € O(C\ {ay,...,an}),
where |a;] < -+ < |ay|, and we are looking for the Laurent expansion of f in the following
annuli:
e DB(|ay|) provided that a; # 0,

(
o A(laj|,|aj11]) provided that |a;| < |aj4q], j=1,...,N —1,
d A(|G’N|7+OO)7

o A(a;,0,7;), r; := min{|ay — a;] : k—l N, k#3},7=1,...,N.

For example for the function f(z) :== - —i— ﬁ we get:

o in B(1): f(z) = — f;ozn—gf;o(g "o 20 (14 1/2m+1)2n

o inA(L2): f(z ):%io(i) _%io(;) _— 201/2n+12n+ zz .
o inA(2,+00): f(z) = %i}o( )" +§§_ojo(§) 2_3(1+2”—1)z—

o inA(L01): f(z) = 2 — o = 2 - §O<z — 1y

o mA(201): f(2) =g+ 5 = é(—l)”(z -2+

3.2. Isolated singularities

Definition 3.2.1. We say that a point a € C is an isolated singularity of a holomorphic
function f if f is holomorphic at least in A(a,0,r) for some r > 0.
Obviously, we may also have non-isolated singularities, e.g. 0 for f(z) := 1/sin(1/2).



Marek Jarnicki, Lectures on Analytic Functions, version January 23, 2024

3.2. Isolated singularities 29

If f € O(A(a,0,7)), then we take the Laurent expansion f(z) = > an(z —a)", z €
A(a,0,r), and we introduce the following classifications: B

e removable singularity, if a_, = 0 for all n € N; if we put f(a) := ag, then we get a
holomorphic function in the whole disc B(a,r);

e pole of order d (d € N), if a_, =0 for n > d and a_4 # 0; we write ord, f = —d; the

rational function

—n

M&

a_ nZ—CL
n=1

1

—), where p is a polynomial

is called the principal part of the pole; observe that g(z) = p(
of degree d; obviously, lim f(z) = oc;
zZ—a

o essential singularity, if a_, # 0 for infinitely many n € N.
The point oo is an isolated singularity of f if 0 is an isolated singularity of the function

2l f (1/z). We classify singularities of f at oo via the classification of singularities of g
at 0.

Theorem 3.2.2 (Riemann theorem on removable singularities). For f € O(A(a,0,7)) the
following conditions are equivalent:
(i) a is a removable singularity;
(i) there exists a finite limit lim f(z);
zZ—a
(iii) f is bounded in A(a,0,¢) for some 0 < e <r;
(iv) f € LY (A(a,0,¢)) for somep>2 and 0 < e <r.

PRrROOF. The implications (i) = (ii) = (iii) = (iv) are obvious. It remains to prove that
(iv) = (i). We may assume that a = 0. Since LP(B,(g)) C L*(B.(g)), we may assume that

p=2. Let f(z) = > anz", z € Bi(r). We have to show that a_,, = 0 for every n € N.

n=—oo

Fix an n € N. We are going to show that
|a,n| S (1/\/ 27‘(’)8“71”]0”[/2(3*(77)). 0< n < €.

Since || f{|L2(B. () — 0 when n — 0, the proof will be completed. For 0 < ¢ <7 < ¢, using
the Holder inequality we get:

2 2

1 ) ‘2 1 / : 2_ 1 / :
2 _ < (= W | 4n < |2 2n.
oal = [5ms [ D] < (57 [1rtenieas) < 5 [ ity
C(t) 0 0
On the other hand,

1
2—172"_2 / |f|?dL? < 0 1//\f (te™) Ptdidt = |a_,|*. O
T

B (n)

Remark 3.2.3. 1/z € LY(D,), 1 <p < 2.
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3. Singularities
Definition 3.2.4. We say that a function f € O(B(a,r)) has a zero of multiplicity (order)
dat a, if f*)(a) =0for k <d—1 and f¥(a) # 0. We write ord, f = d.
This means that f(2) = (2 — a)g(z), z € B(a,r), where g € O(B(a,r)) and g(a) # 0.
If f € O(C\ B(r)) and g(z) := f(1/2), z € A(0,1/r), then ords, f =: ordy g.

Theorem 3.2.5. For f € O(A(a,0,7)) and d € N, the following conditions are equivalent:
(i) ord, f = —d;
(ii) there exists a g € O(B(a,r)) such that g(a) # 0 and f(z) = (2 —a) " %g(2), 2 € B.(a,r);
(iii) 1/f (defined as 0 at a) has a zero of d at a.

PROOF. EXERCISE. O

Theorem 3.2.6 (Sochocki (?)-Casorati (*)-Weierstrass theorem). If f € O(A(a,0,7)) has
an essential singularity at a, then for every 0 < e <r the set f(A(a,0,¢)) is dense in C.

PROOF. Suppose that f(A(a,0,¢)) is not dense in C. Then f(A(a,0,¢)) N B(b,d) = & for
some disc B(b,d). Thus |f(z) —b] > d, z € A(a,0,e). Let g(z) := m, z € A(a,0,¢).
Since |g| < 1/6, the function ¢ has a removable singularity at a. Its extension to B(a,¢) will
be denoted also by ¢g. If g(a) # 0, then we may assume that g(z) # 0, z € B(a,€). In this
case we get f(z) = ﬁ + b, z € A(a,0,¢) and consequently, f extends holomorphically to
B(a, €) — a contradiction.

If g(a) = 0, then g(z) = (z — a)?h(z), z € B(a,¢), where d € N, h € O(B(a,¢)), and

h(a) # 0. We may assume that h(z) # 0, z € B(a, ). Then f(z) = (z—a)‘%ﬁ—i—b(z—a)d),
z € A(a,0,¢), which implies that f has a pole of order d at a — a contradiction. O

30

In fact, the result may be strengthened.

Theorem* 3.2.7 (Big Picard (*) theorem). Let f € O(A(a,0,7)) have an essential sin-
gularity at a. Then all except at most one complex value is assumed at infinitely many
points.

Corollary 3.2.8. Let f € O(A(a,0,7)). Then:
e f has a removable singularity at a if and only if im f(z) exists and is finite;
zZ—a
e [ has a pole at a if and only if lim f(z) = oo;
zZ—a
e [ has an essential singularity at a if and only if a finite or infinite limit lim f(z) does

i zZ—a
not exist.

Definition 3.2.9. If f € O(A(a,0,r)), then the number res, f := a—y = 5= [ f({)d¢
C(a,d)

(0 < § < r) is called the residuum of f at a.

Theorem 3.2.10. If an f € O(A(a,0,7)) has a pole of order d at a, then res, f =
ﬁ llircll ((z— a)df(z))(d_l) (attention: here ()(4=V) denotes the (d — 1) derivative).
Ezg Julian Sochocki (1842-1927).

3) Felice Casorati (1835-1890).
() Emile Picard (1856-1941).
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Example 3.2.11. [Example 3.2.11— Exer . . . . . . . . . . ]resim—%%.






CHAPTER 4

Meromorphic functions

4.1. Meromorphic functions

Definition 4.1.1. Let D C C be a domain. We say that a function f : D — C is
meromorphic (f € M(D)), if there exists a set S = S(f) C D such that:

e SND =g,

e fEO(D\YS),

e f has a pole at each point a € S.

If2cCis open, then we say that a function f: 2 — Cis meromorphic (f € M(£2)),
if f|p € M(D) for any connected component D of (2.

Remark 4.1.2. (a) O(£2) C M(12),
(b) M(£2) c ¢(£2,C).

Theorem 4.1.3 (Identity principle for meromorphic functions). If f,g € M(D) and the set
A:={z€ D: f(z) =g(2)} has an accumulation point in D, then f = g.

PROOF. Let S := S(f) U S(g). Obviously, S has no accumulation points in D. Thus
AN (D\ S) has an accumulation point in D \ S. By the identity principle for holomorphic
functions, we get f = g in D \ S. Finally, using the continuity of f and g, we get f =g. O

Theorem 4.1.4. M(D) is a field.

PROOF. Let f,g € M(D), f,g # 0. Clearly, f +¢ € M(D) and S(f +g) C S(f) + S(g).
If g # 0, then the set A := ¢g~'(0) has no accumulation points in D. Moreover, 1/g €
O(D\ (AU S(g))). By Theorem 3.2.5 for each a € A if g has a zero of multiplicity d, then
1/g has a pole of order d. Similarly, for each a € S(g) if g has a pole of order d, then 1/g
has a zero of multiplicity d. Thus S(1/g) = A and 1/g € M(D).

It remains to prove that f-g € M(D). Obviously, f-g € O(D\A), where A := S(f)US(g).
Fix ana € ANC. Let f(2) = (z — a)¥ f1(2), 9(2) = (z — a)¥g1(2), 2 € A(a,0,7) C D\ A,
fi,g1 € O*(B(a,r)). Hence f(2)g(2) = (z — a)*® fi(2)g1(2), = € Aa,0,7).

The case a = oo is left as an EXERCISE.

Now, using Theorem 3.2.5, we conclude that f-g € M(D). O

Theorem 4.1.5. M(C) = R(C).

PROOF. Obviously, R(C) € M(C). Let f € M(C). The set S(f) must be finite. The case
S(f) = @ is trivial because then f = const. If S(f) = {oo}, then f is an entire function.
Since f has a pole at oo, it must be a polynomial. Otherwise, S(f) N C = {ay,...,a,}

33
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and let g(z) = pk( ) be the principal part of the pole of f at ax, £k = 1,...,n. Put

g=f—(g1+- —l—gn) € M(C). Then S(g) C {oc}, and therefore g must be a polynomial.
O

Theorem 4.1.6. (a) Aut(C) = Auty(C) ={C>z2z+—az+becC:aecC,, beC}=4g.
(b) Aut(C) = Auty(C) =H.

Aut(C) depends on 4 real parameters.
PROOF. (a) Clearly, G C Aut(C). Let f € Aut(C). Since f is proper, we get lim f(z) = oo.

Z—00

This means that f has a pole at co. Thus f is a polynomial of degree d (for some d € N).
Since f is injective, it must be d=1.

(b) We know that H C Aut(C) Let f € Aut( ). If f(o0) = o0, then f € Aut(C), and so
(use (a)) f(z) =az+beH. If f(oo) =wp € C, then g := 7 L (C) and g(o0) = o0,
which gives f € H. O

2. Residue theorem

Theorem 4.2.1 (Residue theorem). Let D be a regular domain (cf. Theorem 2.1.5), D C {2,
where §2 is open. Let f € M(£2) be such that S(f) C D (observe that S(f) must be finite).

Then
/f )d¢ = 2mi Z res, f
acS(f)
PRrooF. If S(f) = @, the result is trivial () --- = 0). Suppose that S(f) = {a1,...,a,}.
acd

Let r > 0 be so small that B(a;,r) CC D and E(a], )N B(ay,r) = @, j # k. Now we apply
the Cauchy formula to the domain G := D\ U Blaj,):

0_/f )d¢ = /f ng/f )d¢ = /f )d¢ — ZereSa. O
Claz,r)

Exercise 4.2.2 (Applications to integrals). [Exercise 4.2.2— Exer . . . . . . . . . . |
2
(I) I:= [ W(cost,sint)dt, where W is a rational function of two complex variables. Then

0
I =27i ) res, f, where f(z) := W (cos z,sin z).

a€D

— | f(e)de, where f € M(2), " € 2, S(f) = {a,...,an} C H*. Let C*(r)

denote the upper half of C(r) identified with the curve [0,7] 3 ¢t — re”. By the
residue theorem applied to the domain {x + iy € B(R) : y > 0} with R > 1, we

N
have I = 27mi Y resa;f — lim [ f(z)dz. We are interested in those cases where
j=1

lim [ f(z)dz=0.

R—)+ooc+(R)
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(*) If there exists an a > 1 such that [f(z)] < C/|z|* for z € HT, |z] >
Ry (e.g. f(2) = P(2)/Q(2) is a rational function with deg P < deg@ — 2), then

lim z)dz = 0.
R%Jrooc_,_j(“R) f( )

35

For example

o

1 , 1 (2n — 3)!!
—  dr =97 ; = 7 e N.
/ (1—1—302)” v Lres (1+z2)” (2n—2)!! neN

—0o0

(**) (Jordan (') lemma) If f(2) = g(2)e**, 2 € 2, where A\ > 0 and M(R) :=
sup{|g(z)| : z € CT(R)} o 0 (e.g g(z) = P(2)/Q(z) is a rational function with

deg P < deg@ —1), then lim [ f(z)dz=0.
R_H_OOC*(R)

For example

rsinx rei® , ze® _de ! 7r
/ 1 +x2d1’ = Im ( / 1 —i—gj2d$> =Im (27TZYGSZ' m) =Im (271'2 7) = g
(1) 1= [ st = S ([ Fdr) = -3
(IV) I := [ cos :c%lx—l—zfsma?dx = fe’z 2= e/
0
V) I:= [ fode=5"—, 0<a<l.

4.3. Holomorphic functions given by integrals

Theorem 4.3.1 (Holomorphic functions given by integrals). Let I C R, I € {[a,b], [a,b)},
let D C C be a domain, and let f: D x I — C be such that:

(a) f(+t) €O(D), t e I,

(b) (2, €C(l), z € D,

(c) f is locally bounded in D x I,

(¢) for every compact K CC D there exists an integrable function gx : [a,b) — R,
such that | f(z,t)| < gk(t), (z,t) € K x[a,b) (observe that if I = [a,b], then (c’) follows from

(c))- b
Put F(z) == [ f(z,t)dt, = € D. Then F € O(D) and F®(z) =

k e N.

‘%{(Z,lf)dt, z €D,

8=

An analogous result is true for I = (a,b] or I = (a,b).

(*) Camille Jordan (1838-1922).
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PROOF. First let I = [a,b]. Put ¢, =a+ %(b —a), &nj € [tnj-1,tnjl,meN, j=0,...,n,

36

n b—
= Zf(,z,gn’j)—na, ze€ D, neN,
j=1

Obviously, F,, € O(D) and F,, — F pointwise in D. In order to prove that F' € O(D),
in view of the Vitali theorem, it suffices to prove that (F,,)22, is locally bounded. For any

compact K CC D let |f| < C on K X [a,b]. Then |F,| < C(b—a) on K, n e N.
Fix k£ € N and z € D. By the Weierstrass theorem we get Fék)(z) — F®)(2). Observe
that

"L OFf b—a
ak(z{’n]) — n € N.

7=1

F(k)(z)

n

Hence the integral f 8—f (z,t)dt exists and we get the formula.

In the case where I = [a,b) fix by b and let Fy(z ffztdt ze€ D, ke N It
suffices to prove that F, — F locally uniformly in D. Fix a compact K cc D. Then for

b,
z € K and £ > k, we obtain |F},(z) — Fy(z)| = ‘ff(z,t)dt) < ng t)dt e 0. O
bk

Let H,, :={2 € C:Rez >m}, m € R.
Theorem 4.3.2 (Euler (?) I' function). (a)

r'z):= /t“"_le—tdt = /e(z_l)logt_tdt, z € Hy,
0 0

is well defined, I'(1) =1, and I'(z+ 1) = z['(2).
b) I'(z+n)=(z+n—1)---2(2), which gives I'(z) := w, z € H_,, and permits
(z4n—1)-2
to extend I' holomorphically to C\ Z_.

(¢) Form € Z,, I' has a pole of order 1 at —n and res_,, I' = iy

n!

PROOF. (a), (b) EXERCISE.

. . I'(z4n+1 I(1 -H"
(¢) Jim (z+n)I'(z) = lim (2 +n) gf B = iyt = S -

Exercise 4.3.3 (Laplace transform). |Exercise 4.3.3— Exer . . . . . . . . . . . .. |

(a) Let D(L) denote the family of all functions f : R, — C such that:
e there exist points 0 = ty < t; < --- < ty for which f|q,_, ) € C([tj-1,;]),
j = 1a s 7N7 and f|(tN,+OO) € C([tNa +OO))7
e there exist M, m > 0 such that |f(¢)] < Me™, ¢t € R,.
We put m(f) :=inf{m > 0: Jpy>o: |f(t)] < Me™, t € Ry}, If f is bounded, then
m(f) = 0.
(b) D(L) is an algebra.
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(c) For f € D(L) define the Laplace transform F(s) = L(f)(s) := Tf(t)e‘“dt, s € Hppy.

0
Observe that F' is well-defined. Indeed, for any m > m(f) if |f(¢)| < Me™, t € R, for
some constant M > 0, then |f(t)e=*!| < Me™~Res)t ¢ ¢ R,. Moreover, F' € O(H,y,(;))

and |F(s)| < 52— e 0. The operator L is obviously linear.
(d) We have: "
| ft) | F(s)
1 I
M (A eC) -
sint
cost
sinh ¢
cosht
f(at) (a > 0) G
ft+w)=f(t), teRy (w>0) — [ f(t)e*dt
0
ft—=10) (b>0) e P F(s)
ft+0) (b>0) e (F(s) — ff(t)e‘“dt)
0
(@ >0) s
e Mf(t) (A eC) F(s+\)
6(Ict—l)! (s—lc)k
(=)"f(t) F®(s)
fO) (fP € DLYNCR=0), j=1,.... k) | " F(s) — kfsjf(k’j’”(oﬂ
j=0

(e) For s € Hy we have L(t%)(s) = Llat])

satl o+
(f) Consider the equation a,y™ + --- + a1y’ + agy = f(t), where y € D(L), y) € D(L) N
C(Roo), j = 1,....m, | € D(L). Let £(f) = F, L{y) = Y, p; = y@(04), j = 0,....m,
P(s) :=a,s"+ -+ a5+ ap. Then

n n k—1
F= Z arL(y™) = Zak (skY — Z Sjpk_j_1> = PY — @, where Q € P,_1(C). O
k=0 k=0 =0

4.4. Residues of the logarithmic derivative. Rouché theorem, Hurwitz theorem

Theorem 4.4.1 (Residues of the logarithmic derivative). Let D be a regular domain, D C {2,
where (2 is open, and let f € M(2), f # 0 on D, be such that f~1(0) U S(f) € D
(f~H0) U S(f) must be finite). Let a(z) :=ord, f, 2 € f71(0), B(p) denote the order of pole
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of f at p € S(f). Then, for an arbitrary function ¢ € O(£2) we have

1 !
e W(C)ff((g))dg— Z a(2)p(z) — Z B(p)e(p).

oD zef~1(0) peS(f)

In particular, if p = 1, then =~ [ cp(()%d( = Z — P, where Z (resp. P) denotes the
oD

38

27rz

number of zeros (resp. poles) of f counted with multiplicities.
PROOF. By the residue theorem we obtain
o [0 Fac =3 wes (1)1 Y we (o) = X0 atdet- X s0etr)
2mi f(©) = A —~ ’
oD z€ peS(f) z€f~1(0) peS(f)
because if f(z) = (z — a)*g(2), 2 € A(a,0,r) CC D, where k € Z and g € O(B(a,r)),
g(a) # 0, then
f'iz) _ k(= a)"g(2) + (2 —a)*d'(2) _
@(Z) f(Z> - 90(2) (Z o a)’“g(z) - QO(Z>Z —a + QO(Z) g(Z) )

z € Aa,0,r).
U

Theorem 4.4.2 (Rouché (3) theorem). Let D C C be a bounded domain and let f,g €
O(D)NC(D) be such that |g(¢)| < |f ()|, ¢ € 9D. Then f+ g and f have the same number

of zeros in D, counted with multiplicities.

PROOF. Observe that the functions f 4+ g and f have no zeros on dD. Consequently, the
number of zeros in D is finite. Let G CC D be regular such that (f + ¢)~*(0) U f~1(0) c G
and |g(Q)| < |f(¢)], ¢ € OG. To get G we may use square nets.

Observe that for ¢ € 0G and t € [0,1] we have |f(() + tg(Q)] > |f(O)] — t|g(Q)] >
|£(O)] —1g9(¢)| > 0. In particular, the function f + tg has no zeros on 0G. Let Z(t) denote
the number of zeros in G of f + tg counted with multiplicities. By the theorem on residues
of the logarithmic derivative, we know that

f'(€) +tg'(¢
d t 1].
27”/ —|—tg C7 € [07 ]

It remains to note that the functlon Z is continuous. O

Corollary 4.4.3. Every polynomial P € P,(C), deg P =n > 1, has ezactly n roots counted
with multiplicities.

PROOF. Let P(z) = a,2" + -+ a1z + ag, f(2) :=a,2", g(2) == a,_ 12"+ -+ + a1z + ao.
Then |g(¢)| < |f({)], ¢ € C(R), for R > 1. It remains to use Rouché theorem. O

Theorem 4.4.4 (Hurwitz (*) theorem). Let D C C be domain, (f)3>, C O(D), fr — f
locally uniformly in D, f # 0. Then for ana € D and a d € Z the following conditions are
equivalent:

(*) Eugene Rouché (1832-1910).
(*) Adolf Hurwitz (859-1919).
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(i) a € D is a zero of f with multiplicity d
(ii) there exists an € > 0 such that for every 0 < 6 < e there exists a ky € N such that for
k > ko the function fi, has exactly d zeros in B(a,d), counted with multiplicities.

PROOF. (i) = (ii): Take an € > 0 such that f(z) # 0, z € B(a,e) \ {a}. Let 0 < 6 < ¢
and let n := Fmin{|f(z)| : z € C(a,d)} > 0. Choose kg € N such that |f(z) — f(z)| < n,
z € B(a,6), k > ko. Then for z € C(a, ) and k > ko we get |fu(2) — f(2)| <n < 2n < |f(2)].
Now, by the Rouché theorem the functions fy = (fx — f) + f and the same number of zeros
in B(a,0), counted with multiplicities.

(ii) = (i): In view of the previous argument, f must have a zero of multiplicity d at
a. g

Corollary 4.4.5. Let D C C be a domain, (fr)i2, C O(D), fr — f locally uniformly in
D, f # const. Assume that each function fy is injective. Then f is injective.

PROOF. Suppose that f(a) = f(b) =: ¢ for some a,b € D, a #b. Let B(a,r) N B(b,1r) = .
By the Hurwitz theorem applied to (fx — ¢)32; and f — ¢, we conclude that there exists a
ko € N such that for every k > ko the function f; — ¢ has at least one zero in B(a,r) and in
B(b,r), say ag,b,. Thus fi(ar) = fr(bx), kK > ko — a contradiction. O
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4.4.1. Multiplicity at a point.

Definition 4.4.6. Let D C C be a domain, a € D, and let f € O(D). We say that f
has multiplicity d at a (d € N), if there exists a neighborhood Uy C D of a such that for
every neighborhood U C Uy of a there exists a neighborhood V' of f(a) such that for every
w € V\{f(a)} the function f — w has exactly d zeros in U, counted with multiplicities.

Corollary 4.4.7. Let D C C be a domain, a € D, and let f € O(D). Then the following
conditions are equivalent:

(i) f has multiplicity d at a;

(i) a is a zero of f — f(a) of order d.

PROOF. (ii) = (i): Let » > 0 be such that the function f — f(a) has exactly one zero in
B(a,r) C D. Let 0 < § < randn:=min{|f(z)—f(a)|: z € C(a,0)}. Let 0 < |w—f(a)| <n.
Then |f(a) —w| < |f(2) = f(a)], z € C(a,d). Hence, by the Rouché theorem the functions
f(z)—w=(f(2) — f(a)) + (f(a) —w) and f(z) — f(a) have in B(a,d) the same number of
zeros counted with multiplicities.

(i) = (ii): By the above proof, if a is a zero of f — f(a) of multiplicity k, then f has
multiplicity £ at a. Thus k£ = d. U

Corollary 4.4.8. Let D C C be a domain and let f € M(D), f # const. Then f is an
open mapping.

Remark 4.4.9. If f: D — C is open, then |f| : D — R, is open and |f| satisfies the
maximum principle.






CHAPTER 5
Biholomorphic mappings

5.1. Biholomorphic mappings
5.2. Biholomorphisms of annuli

Theorem 5.2.1. For f € O(D) the following conditions are equivalent:
(i) G := f(D) is open and f € Bih(D, G);

(ii) f is injective and f'(z) #0, z € D;

(iii) f is injective.

PROOF. Indeed, the implications (i) <= (ii) = (iii) are elementary.

(ili) = (i): By Corollary 4.4.8, f is an open mapping. By Corollary 4.4.7 f satisfies
(ii). O
Theorem 5.2.2 (Hadamard () three circles theorem). Let f € O(A(r1,73)), 0 <711 <719 <
+o00, and let M; := sup{limsup |f(2)| : ¢ € C(r;)}, j =1,2. Then

z—(

z
log L—Q‘

<M10g%M10g% A
|f(2)] < M, 2 . 2 € A(ry, ).

PROOF. We may assume that My, M, < 400, f # const. Let u(z) = [2|¥|f(2)], z €
A(ry,72). Observe that v is an open mapping because locally u = |e® f|, where £ is a local
branch of the logarithm. Since all open mappings satisfy the maximum principle we get
12| f (2)| < max{r{M;, r§Ms}, z € A(ry,72). Taking « so that r{M; = r$ M, we get the
result (EXERCISE). O

Remark 5.2.3. If f € O(A(r1,72))NC(A(ry,72)) and M(r) := max{|f(2)| : z € C(r)}, then
the function [logrq,logrs] 3 t — log M(e') is convex.

Theorem 5.2.4. If f € Bih(A(ry, R1),A(ry, Ry)), 0 < 7; < R; < 400, j = 1,2, then
Ry/r1 = Ry/ry and f(2) = (ra/r1)z or f(z) = riRa/z up to a rotation.

In particular, for 0 < r < R < 400, Aut(A(r,R)) = {z — ¥z : ¥ € R} U {z —
erR/z 1 9 € R}; the group Aut(A(r, R)) depends on one real parameter and does not act
transitively.

4
log %

ProoF. We may assume that 7, = r5 = 1. Let g := f~!. The mapping f is proper so

e i o ist(f (), OA(L, Ry)) = 0.

(*) Jacques Hadamard (1865-1963).
41
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We will show that either

lim |F()] = Land lim /()| = Re (1)
or
lim |£()] = Ry and Jim |£(2)] = 1. (1)

Suppose for a moment that (1) is true. Then, by the Hadamard theorem,

log | z| log |w]| log Ry

log R
If(2)] < R®*™ = |z|lo§Rf, z€ A(1,Ry), and |g(w)| < R™™ = |w|eF:, w € A(1, Ry).

log R
Hence |f(z)] = \2]10573? =: |z]*, z € A(1,Ry). Our aim is to show that a = 1. We have
f(z) = eerloez > e A(1,R)) \ R_ (for a ¥ € R). Since f is continuous, we must have
e eallogttim) — g pallogt—im) 4 (1 R;). Hence e**™ = 1, and therefore a € Z. Since f is
injective we get o = £1. The condition (}) implies that o = 1.
The case () reduces to the above after the composition with the inversion

A(1,Ry) > w— Ryjw € A(L, Ry). (*)

It remains to check (1), (1). Let 7 := /Ry, B_ = A(1,7), B, := A(r,Ry). Since
g(C(r)) is compact there exist 1 < 51 < s; < R; such that g(C(r)) C A(sy,sz). Consider
domains A, = f(A(sq, Ry)) and A_ := f(A(1,s1)). Since A, NC(r) = &, the domain A, is
contained in By or B_. We may assume that A, C B, (use the inversion (*)). This means
that | l‘iHIl% |f(2)] = Ry. It remains to show that A_ C B_. Suppose that A_ C B,. Then

Z|—

we can joint an arbitrary point a, € A, with any a_ € A_ by a curve 7 in By. Then the
curve g(vy) connects g(ay) € A(sy, Ry) and g(a_) € A(1, s1) and is disjoint with g(C(r)) —
a contradiction. i

Exercise 5.2.5. Describe all biholomorphisms f : A(r1, Ry) — A(rg, Rs), 0 < 1; < R; <
400, j = 1,2, in all the cases not covered by Theorem 5.2.4.

5.3. Riemann theorem

Theorem 5.3.1 (Riemann theorem). Let D C Chea simply connected domain with #0D >
2. Then there exists a biholomorphism f: D — D.

PROOF. The case oo € D reduces to a D C C via an inversion. Let a,b € 0D, a # b. Fix a
2o € D and let R:={f € O(D,D) : f(20) =0, f is injective}.

First we prove that R # @. Observe that it suffices to find an injective g : D — C
such that B(c,r) N g(D) = @ for some ¢ € C and r > 0. In fact, if we have g, then we put
[="

Vqu move to the construction of g. We may assume that a € C\ D. Let g be a branch of
z +—> y/z — a (cf. Theorem 2.3.12). It is an injective function in D and g(D)N(—g(D)) = &.
In fact, if g(21) = —g(22), then ¢g?(21) = ¢g*(22), s0 21 = z9. Hence g(21) = —g(z;) = 0 and
therefore z; = z5 = a — a contradiction. Now we can take an arbitrary B(c,r) C —g(D).

Let M :=sup{|f'(z0)| : f € R}. Since each f € F is injective we must have M > 0. Let
(fr)i2, C R, fl(z0) — M. By the Montel theorem we may assume that f, — fo locally
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uniformly in D. Obviously, fo € O(D,D), fi(2) = M > 0. In particular, fy # const. Since
fo(z0) = 0, we conclude that f € O(D,D). By the Hurwitz theorem we get fy € R. We will

show that fo(D) = D and therefore fj is the required mapping.
Suppose that G := fo(D) & D. We need the following lemma.

43

Lemma 5.3.2. Let G & D be a simply connected domain with 0 € G. Then there exists an
injective mapping 1 € O(G,D) such that ¥(0) = 0, and [¢'(0)| > 1.

PROOF. Fix ac € D\ G and let G; := h.(G). Then G; C D is a simply connected domain
with 0 ¢ G. In particular, there exists a branch of the square root Gi. Let d := g(h.(0))
and let ) := hgogoh. Then ¢p : G — D is injective and ¥(0) = 0. Observe that
vt =h_.o(z— h*y(z)) € O(D,D) (in the sense of the extension from ¥(G) to D). The
Schwarz lemma implies that |~ (w)| < |w|, w € Dy, [("1)(0)| < 1. The equality would
imply that ¢! (w) = ¢ “w, and hence (h_4(2))? = h.(e'*2), 2 € D — a contradiction. O

Now let ¢ € O(G,D) be as in the lemma. Put f := 1 o f;. Then f € R and |f'(z0)| =
[ (0) f§(20)| = [/ (0)]M > M — a contradiction. O

Corollary 5.3.3. Let D C C be a simply connected domain with #0D > 2. Let zy € DNC,
v € R. Then there exists exactly one f € Bih(D, D) such that f(zy) =0 and ¥ € arg f'(2o).

PROOF. By the Riemann theorem there exists a biholomorphic mapping f : D — D.
Taking hy(.,) o f € Aut(D) we get f(z) = 0. Now it remains to use a suitable rotation to
get ¥ € arg f'(20)-

If f1, f : D — D are two mappings with the above property, then ¢ = fyof; ' € Aut(D),

©(0) =0 and ¢'(0) € Rg. Hence ¢ =id and so f; = f. O
5.4. Index
Definition 5.4.1. Let v : [0,1] — C be a closed path. For a € C\ 7* the integral
Ind,(a) : L ! dz

" 2mi yZ—a
is called the index of a with respect to 7.

Theorem 5.4.2. Ind,(a) € Z and Ind, is zero in the unbounded component of C\ ~*.

PROOF. Obviously, Ind, is continuous and |Ind,(a)] < 5= disf((;)y*) - 0. It remains to
prove that Ind,(a) € Z, a € C\ ~*. Fix an a and let h(z) := [’ Wﬁ(’t)(t_)adt, 0 <z <1 The

function h is continuous, differentiable in (0,1) except a finite number of points, h(0) = 0,
h(1) = 2miInd,(a). Observe that (e™"(y—a)) = e™"(=h'(y—a)+~') = 0 except for a finite

number of points. Hence e "(y — a) = const = (0) — a. Consequently, e" = y(vo;iw and

therefore e = 1. Thus h(1) = 27iInd, (a) = 2mi k for a k € Z. O

Exercise 5.4.3. Let 7y : [0,1] — C be a Jordan path with positive orientation with respect

1, ifze€int
to inty. Then Ind,(z) =< ’ 1 zemly.
0, ifzeexty
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Theorem 5.4.4. Let vy : [0,1] — C be a closed curve, let a € C\~v*, and let r := dist(a,v*).
Let 0j : [0,1] — C be a closed path such that ||o; — Y| < 7/4, j =1,2. Then Ind,, (a) =
Ind,,(a). Consequently, the formula Ind,(a) := lims—_closed path Ind,(a), a € C\ v*, defines

llo—=~lljo,1;—0

Ind, : C\ v* — Z for arbitrary closed curve v : [0,1] — C.
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[Theorem 5.4.4— Exer . . . . . . . . . . . ... |

Theorem 5.4.5 (Cauchy-Goursat). Let D C C be simply connected and let f € O(D).
Then

/Wf(z)d,z:() and  f(a)Ind,(a =5 z/ “Ldz, aeD\7,

for every closed path v : [0,1] — D (cf. Theorem 2.3.12).

Theorem 5.4.6 (Cauchy-Dixon theorem). Let D be a domain and let v be a closed path in
D. Then the following conditions are equivalent:

(i) for every f € O(D) we have f(a)Ind,(a) = 7= ; 1)
(i) for every f € O(D) we have fv f(2)dz =0;
(ili) for Ind,(a) =0, for every a € C\ D.

PROOF. (i) = (ii): We apply (i) to the function =z »H (z—a)f.
(ii) = (iii): We apply (ii) to the function z — z—
(

iii) = (i): Fix an f. We have to check that - f f(z @z =0, aeC\ 7" Define
FRfw)
g(z,w) := —w 1 ZFw . (z,w) € D x D. We know that ¢ is separately holo-
1'(2), if z=w

morphic (?). The continuity of G out of the diagonal is trivial. For (a,a) € D x D and
B(a,r) CC D we have

sr-sa= g [ (- 1) L

1 1 1
=5t o e )

because the function under the integral is uniformly continuous with respect to { when
(z,w) — (a,a). Let

Mm:{m@>::{%fgzwma ifweD

ha(2) ﬁvfidz ifweC\D"
We are going to prove that h € O(C). Since h(w ) —> 0 when w — oo, the maximum
principle implies that A = 0. In particular, =+ 5 f f( )y = 0,a € C\~"

By the production lemma, the function C\ D C C \ Y w— oy e f : (Zw dz is holomor-
phic.

(2) In fact, every separately holomorphic function is holomorphic with respect to all variables — at the
moment this result is beyond our lecture.
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The function h is continuous on D. For every triangle 7" CC D, using the Fubini (3)

theorem, we get
1
h(w)dw = — (/ gz,wdw)dz:().
[ pwa = o [ ([ o

Consequently, by the Morera theorem h € O(D).

In view of (iii) Ind, = 0 in each connected component of C\ v* that intersects C\ D, i.e.
h = ho = 0 in each connected component of C \ v* that intersects C \ D.

Let C:={z € C\ v* : Ind,(2) = 0}. We have C\ D C C. Moreover, hy = hy on D\ C.
Hence, by the identity principle, h € O(C). d
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Theorem 5.4.7. The following conditions are equivalent:
(i) every f € O(D) has a primitive;
(i) every f € O*(D) has a branch of its logarithm in D;
(iii) for every f € O*(D) there exists a p = p(f) € Ny such that f has a branch of its p-th
root in D;
f f(2)dz =0 for every closed path v : [0,1] — D;

( ) the set C\ D is connected.

PROOF. (i) = (ii): Let g € O(D) be such that ¢’ = f’/f. We may assume that ¢9*) = f(a)

/ 1.9 f£__ o9 f/
for an a € D. We have (%) = gej;—zef = 0 and therefore ¢/ = f (cf. Theorem 2.3.12).

(ii) = (iii): f = €9 = (e9/P)? (cf. Remark 2.3.6).
(iii) = (ii): It suffices to show that f’/f has a primitive. We already know (cf. Lemma
2.3.1) that we only need to show that that fv J;/((j)) dz = 0 for every closed path v in D. Let

b ::p<f>7 g1 € O*<D>7 gl - fv

p2:=p(g1), g2 € O*(D), g5° = g1, g5 = f, ...,
P = p(gr-1), g1 € O*(D ) g =g g =0
Put g, :=p1---pr  +00. Hence 7, = q’“g’;]—kg’“ = qk , and therefore
k
f'(z 1 [g(2)
Ind fo- ( — dz = q,Ind,, ., (0), k€ N.
nd fo, (0 27”/ = ) g(m) T I ~(0)

Thus gj|Indfo,(0) for every k£ € N. It is only possible if Ind s, (0) = 0.

(ii) = (iv): Fix an a ¢ D and let g € O(D) be such that ¢ = z —a. Then e%¢' = 1.
hence ¢ = Zl . Thus the function z — ﬁ has a primitive. Now, using Lemma 2.3.1, we
get Ind, (a) = 0. ~Where is f7

(iv) = (i): It follows from the Cauchy-Dixon Theorem 5.4.6 and Lemma 2.3.1.

(iv) = (v): Suppose that C\ D is not connected. Let K be a compact component
of C \ D such that U := D U K is open. Let G := int (Q be an open set based on a net
Qjr = [Tj_n 7] X [%7%] (m>1)

(*) Guido Fubini (1879-1943).
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such that K Cc G CcC U, Q = U Qj.k, G is open and its boundary may be identified
Qjr: QjkCD,
QiNK#2
with a finite number of Jordan piecewise linear curves 7y, ...,yy. Then Ind,(a) =1, a € K.

In particular, Ind,,(a) # 0 for some a € K C C\ D and j € {1,..., N} — a contradiction.
(v) = (iv): We know that Ind,(a) = 0, a € D4, where D, is the unbounded component

of C\ v* (Ind,(o00) := 0). Clearly, (C\ D) N Dy # @. It remains to use the fact that Ind,

A~

is constant on C\ D. O



CHAPTER 6

Runge theorem

6.1. Runge theorem

Exercise 6.1.1. |[Exercise 6.1.1— Exer | For every open set {2 C C there exists a sequence
of compact sets (K)2, C {2 such that
o Kj Cint Kiyq,
e every connected component of C \ K}, intersects C \ 2, k eN,
k=1
Theorem 6.1.2 (Runge (*) Theorem). (a) Let 2 C C be open and let f € O(R2). Then
there exists a sequence (fi)5, of rational functions with poles in @\Q such that fr, — f
locally uniformly in {2.
FEquivalently: for every compact set K CC 2 and € > 0 there exists a rational
function g with poles in C \ 2 such that |g — f| < e on K.
(b) Let £2 C C be an open set such that C \ £2 is connected and let f € O(£2). The there
exists a sequence (fi)52, C P(C) such that fi, — [ locally uniformly in (2.

Equivalently: for every compact set K CC {2 and € > 0 there exists a polynomial
g € P(C) such that |g — f| < e on K.

Exercise 6.1.3. The polynomial version of the Runge theorem does not hold for (2 =
A(r,R),0 <r < R < +00.
[Exercise 6.1.3— Exer . . . . . . . . . .. |

PROOF. (a) The case 2 = C is trivial because f = const. If co € 2 ¢ C, then fix a

point zg € C\ (2. Define h. If g; is a rational function with poles in C \ h(£2) such that
lgg — foh™'| <eon h(K), then g := g, o h solves our problem. Thus we may assume that

oo ¢ (2.
Let (Kx)7Z, be as in Exercise 6.1.1. We only need to approximate f on each Kj. Fix
K := Ky, and €. Let G be an open set based on a square net [, ZH] x [£ FH] (7 5 1) 50

that K C G CC {2. The Cauchy integral formula gives
L O, N1 o, &
1= g | £ =35 [ £ 300, 26
e = Ls =

where each L is a single vertical or horizontal segment from our net. Now, it suffices to
approximate each function fs uniformly on K by rational functions with poles in C\ (2. Fix
an s.

47
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First, we will find an approximation by rational functions with poles in L, =: la,b]. Let
¢(t) —a—l—t( a), Guj i =C(t),neN, j=0,...,n For z € K we obtain:

fs( QMZCMM b_a”_‘sz/C —z a>dt_2im;%b_7a‘

Now, using the uniform continuity of the function K x [a,b] 3 (z,() —> %, we conclude
that for n > 1 we get

< b—q|
€,

€ K.
27 i

anzgmm

Thus, it remains to prove that for every ¢ € [a, b], the function ﬁ may be approximated

uniformly on K by rational functions with poles in C \ 2. Tt follows from the following
general result.

Lemma 6.1.4 (Pole transport lemma). Let K CC C be compact and let f = P(z -), where
PeP(C),degP >1. Let b e C \ K be in the same connected component of C \ K as a.

Then for every e > 0 there ezists a QQ € P(C) such that |f —g| < e on K, where g := Q(ﬁ)
If b= o0, then g = Q.

PROOF. Let GG be a connected component of C \ K with a, b € G. Note that GNC is
connected. Let G be the set of all ¢ € G N C for which for every ¢ > 0 there exists a
polynomial R such that |h — f| < e on K, where h = R(-). Obviously, a € Gp. We will
show that Gq is open and closed in G N C, Which will prove that Go = GNC.

Openness: Let ¢ € Gy and let h = R( -) be such that |[f —h| < /2 on K. Let
ro= dist(c K), d € B(e,r/3) CC G. We only need to approximate uniformly on K the
functlon —L by functions of the form S(-L;). It suffices to observe that for z € K we get

1 . 1 1 Z C—
i—¢ z—d4d—c z—-dl-— ;j o (z—d ”“

and the series is uniformly convergent on K.
Closedness: Let d € GuNGNC. Take a ¢ € GoN B(d,r/2), where r := dist(d, K'). Then
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It remains to consider the case where co € G. Take a ¢ € Gy \ B(2r), where K C B(r).
Then |£| <1/2, z € K, and

49

1 11 — 2"

z—c:_zl—i :_;cnﬂ

and the series is uniformly convergent on K. O

(b) follows from (a) and the lemma. O
The Runge theorem may be essentially strengthened.

Theorem* 6.1.5 (Mergeljan (?) theorem). Let K C C be a compact set such that the set
C\ K is connected and let f € C(K)NO(int K'). Then there exists a sequence (fi)52, C P(C)
such that f, — f uniformly on K.

Exercise 6.1.6. The assumptions in the Mergeljan theorem are also necessary.

(*) Sergey Mergelyan (1928-2008).






CHAPTER 7

Mittag-Lefller theorem

7.1. Mittag-Lefller theorem

Theorem 7.1.1 (Mittag-Leffler (1) theorem). For arbitrary open set 2 G C, for arbitrary
set B C §2 without accumulation points in 2, and for arbitrary family (P,)ees C P(C) of
polynomials of degree > 1 with P,(0) =0, a € B, there exists an f € M(2)NO(2\ B) such
that for each a € B the function f — Pa(:la) has a removable singularity at a, i.e. Pa(ﬁ)
is the principal part of pole of f at a. If oo € B, then we mean that P, is the principal part

of pole of f at cc.

PROOF. If oo € B, By := B\ {cco} and f; € M(£2)NO(£2\ By) is such that for each a € B,
the principal part of pole of f; at a equals Pa(ﬁ), then f := f; + Py is a solution of the
initial problem. Thus we may assume that co ¢ B.

If B is finite, then we may take f := > P,(-X).

a€B -
Assume that B is infinite. Let (Kj)32, be as in Remark 6.1.1 an let

fr(z) = Z Pa<zia>’ ke N,

a€BN(K\ K1)

where Ky := @ and > --- := 0. Each set B N (K \ Ki_1) is finite. Thus f; is a well-
acd
defined rational function with poles in C\ Kj_;. By the pole transport lemma, there exists

a rational function g, with poles in C \ 2 such that |fx — gx| < 1/2% in K;_;. In particular,
the series > (f, — gn) is uniformly convergent in Kj 1. Let f := > (fn — gn). Clearly,

n=1

n=~k
feM(2)NnO(2\ B). Moreover, for a € BN (Ky, \ Ki,—1), we have

f-R() = ii(fn—gnw (h-P(=)) —gmng“(fn—gn) —: A4 B—gy, +C.

where
e A has poles in Ki,_1,
e B is holomorphic in a neighborhood of a,
e (' has poles outside Kj,. 0

The Mittag-Leffler theorem may be also formulated in the following sheaf-theory form.

() Magnus Mittag-Leffler (1846-1927).
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Theorem 7.1.2 (Mittag-Leffler theorem). For every open covering (£24)aca of an open set

2 and for every family f, € M(£2,), a € A such that f, — fs € O(2, N 25), a, 8 € A,
there exists an f € M(§2) such that f — f, € O(£2,), a € A.

Theorem 7.1.2 = Theorem 7.1.1. Let {2, B, and (P,),ep be as in Theorem 7.1.1. Let
r, > 0, a € B, be such that B(a,r,) N B(b,1,) = &, a # b, a,b € B. If oo € B, then by
B(00,7s) we mean a suitable neighborhood of co. Set

52

A={+x}UB, .,:=0\B, ,:=B(a,r,), f[fi:=0, fa::Pa< ), a € B;

z—a
if oo € B, then f,, := P,. One can easily check that all the assumptions of Theorem 7.1.2
are satisfied. Let f € M({2) be as in Theorem 7.1.2. Then

f=f = €O2) =0\ B), [~ Pi) = [~ fu € O2) = O(Bla,r), a € B

U

Theorem 7.1.1 = Theorem 7.1.2. Let 2, (£24)aca, and (fa)aca be as in Theorem 7.1.2.
Set
B, :=S(fa), B:=|] Ba.
a€cA
Since f, — fs € O(£2, N £25) we conclude that, B, N 23 C Bg, o, f € A. In particular, B
has no accumulation points in 2. For a € B,, let P, , € P(C) be polynomial of degree > 1
such that P, ,(0) = 0 and f, — Pa,a(ﬁ) extends holomorphically to a neighborhood of a

(i.e. Pao(sX) is the principal part of pole of f, at a), with the standard change if co € B,.

Since fo, — fz € O(£2, N §23), we conclude that P, , is independent of . Put P, := P, ,.
Let f € M(£2) be as in Theorem 7.1.1. Then S(f) = B and for any a € A and a € B,, the

function 1 1
f—=Ja= (f_Pa<z—a>> B <fa_Pa<z—a))

extends holomorphically to a neighborhood of a (if co € B, then f — foo = (f — Px) — (fa —
P.)). O

7.2. Welerstrass theorem

Theorem 7.2.1 (Weierstrass theorem). For every open set {2 ¢ @, for every set S C {2
without accumulation points in (2, and for every function k : S — N, there exists a function

feo2)ynoO*(2\S) such that ord, f = k(a), a € S.
1

PROOF. If oo ¢ {2, then we choose an arbitrary z € {2\ and use the transform h(z) := —.
Then oo € 2, := h(£2). Let Sy := h(S). Suppose that f; € O(£2;)NO*(£2,\ Sy) is such that
f1 has a zero of multiplicity k(a) at h(a), a € S. then f := f; o h solves our problem. Thus
we may assume that oo € (2.

If S is finite, then we may take f(2) := [[,.4(z — @)*®. Thus assume that S is infinite.
Write S = {s1, 52,... } and let a1, as, ... be the sequence obtained from (s;)52, by repeating
each s; k(s;) times. Let ¢, € 012 be such that |a, — ¢;| = dist(ax, 012), k € N. Observe that
lag — cx| —> 0 (EXERCISE).
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Assume for a moment that, the following two lemmas are true.

Lemma 7.2.2. Let {2 ¢ C be open and let f, € O(£2), k € N. Assume that the series

> 1Skl is convergent locally uniformly in §2. Put I, :=T[;_,(1 + fx) € O(£2), n € N. Then
k=1
the sequence (I,)72 is convergent locally uniformly in £2. Let I := lim I, =[]~ (1+ fx).

n——+o00

Moreover for an a € £2 we get I(a) =0 <= Jpen : 1+ fr(a) =0.
Lemma 7.2.3. For a k € N, let Ey(u) := (1 —u)exp <u+“—22+- : —l—%) Then |1 — Ex(u)| <
|u|**1 for u € D.

First, let us finish the proof of the Weierstrass theorem. Let

HEk(ak ), z €2
Z — Ck

k=1

By Lemma 7.2.2, it suffices to prove that for fi(z) := Ej(%=%) — 1, the series Z | fie| is
k=1
convergent locally uniformly in (2. Fix a compact K CC (2 and let ky € N be such that

2|a — ¢ < dist(K,012), k > ko. Then [%=%| <1/2for z € K ik > ko. Now using Lemma
7.2.3, we conclude that |f] < (1/2)*"! on K for k > ky. The proof is completed. O

Proof of Lemma 7.2.2. Tt suffices to prove that the series > (I, — I,,_1) is locally uniformly
n=2

convergent. Observe that |I,,| < [Tr_, (1 + |fr]) < [Ti_, el = exp ( > |f;€|>, which shows
k=1

that the sequence (1,,)7° is locally uniformly bounded. The equality |1, — I,,—1| = |L—1|| ful
implies now the locally uniform convergence.

To prove the second part it suffices to prove that there exists a C' > 0 such that | [;_, (1+
fr(a))| > C, n > ky. Fix aneighborhood U CC {2 of a and let ky € N be such that |f| < 1/2

on U for k > ky. Then for k > ky on U we have lf}k < |_f’“‘ < 2| fx|- This means that the

series §
1+
Ko f

the product

k=ko
is convergent on U. U

Proof of Lemma 7.2.3. We have

H (1_ 1—|—fk> _kgol-i-fk a [Tk, (1 + fi)

, u u? u” b1
Ek<U):—€Xp< +—+ ?)—l— (1 —u) exp( +?—|—.---|— )(1+u—i—~~~—i—u )

2

k “ k
= e (s o ) = e
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Observe that ¢; > 0, j € Z,. In particular, ordg(l — Ej) > k+ 1. Let

1 — Ex(
fu) = uk+k1 Z aju’.

54

Looking at the coefficient (EXERCISE) we get a; = kfjﬂ and hence a; > 0, j € Z,. Thus
for u € D we obtain |f(u)| < f(1) = 1. O

Corollary 7.2.4. For every domain D & C and for every function f € M(D) there exist
g,h € O(D) such that h € O*(D\ S(f)) and f = g/h. Consequently, M(D) is the field of
fractions of O(D).

PROOF. By the Weierstrass theorem there exists h € O(D) having zeros at poles of f such
that the multiplicity of zero equals to the order of pole and without zeros elsewhere. It
suffices to take g :== f - h. U

Theorem 7.2.5 (Weierstrass-Mittag-Leffler theorem). For every open set 2 & C, for every
S C 2 without accumulation points in (2. and for every function k : S — Z,, there exists

an f € M(2)NO*(2\ S) such that ord, f = k(a), a € S.

PROOF. Let Sy := {a € S : £h(a) > 0} and let fi be a function from the Weierstrass
theorem for Sy and +kl|g,: fr € O*(£2\ S1), f has a zero of multiplicity £h(a) at a € Sx.
Now we may put f:= f,/f_. O

Theorem 7.2.5 may be formulated in the sheaf theory language.

Theorem 7.2.6. For every open covering of an open set 2 & C and for every family
fa € M(£2,), o € A such that f,/fs € O (2, N (25), o, B € A, there exists an f € M(S2)
such that f/f, € O*(2,), a € A.

Theorem 7.2.6 = Theorem 7.2.5. Let 2, S and k : S — 7Z, be as in Theorem 7.2.5. Let
r, > 0, a € S, be such that B(a,r,) N B(b,1,) = &. a # b, a,b € S. If o € S, then
B(o0,7+) is a neighborhood of co. Put

A={x}US, 2,:=02\85, 2,:=B(a,ry), a€sS, f[fi:=1, fa::(z—a)k(a), a €S,

if oo € S, then fo = 2B Tt is clear that all the assumptions of Theorem 7.2.6 are
satisfied. Let f € M(f2) be as in Theorem 7.2.6. Then

f=Ff €0 (2)=0(2\S5), f-(z=a)™@=f/fi€0"(2)=0"(Ba,r), a ES

Theorem 7.2.5 = Theorem 7.2.6. Let §2, (£24)aca and (fa)aca be as in Theorem 7.2.6. Put
So = S(fa)Uf;10), S:= | S, Since fo/fs € O*(2,N125) we get S,N2s C Sp, a, B € A.

acA
In particular, S has no accumulation points in 2. For a € S, let B(a,a) := ord, f,. Since

folfs € O*(£2, N §23), we see that B(a,a) is independent of o. Put k(a) := B(«,a). Let
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f € M(£2) be as in Theorem 7.2.5. Then f has neither zeros nor poles outside S and for
any o € A and a € S, the function

f_f(z—a) @

fao o far(z—a)™H@
extends holomorphically to a. The extension has no zeros in a neighborhood of a; if co € S,
then

55

. B(o0)
S_ra O
fa fa . ZB(OO)
Remark 7.2.7. [Remark 7.2.7— Exer . . . . . . . . . . . ... |
(a) For (a,)s,C,, a, — 00, and (a;,)22; C N let (2¢)72, be generated by (a,)>; in such
a way that a, is repeated a,,~times. For o € Z. , define

f(z):= zaﬁEk<§k>, z e C.
k=1

Then
e f€0(C),
e f has a zero of multiplicity o at z = 0,
e f has a zero of multiplicity «,, at z = ay,,
e there are no other zeros.
Indeed, the only problem is to prove that the product is locally uniformly convergent.

Let K CC C. Then |z/z| <1/2, z € K, k > ko > 1. Hence
z 1N k+1
’Ek(—> —1( < (—) L e K, k> k.
Zke 2

(b) Every entire function f € O(C) having infinitely many zeros may be written in the form

RIS §
f(z) =9z IHEk<2k), 2z € C,

where g € O(C).

(¢) One can take in (a)

f(z) = zaﬁEnk (i), z € C,
k=1

where the sequence (ng)72, is such that the series Y . |2/
convergent.

(d) For example z, := —k, n :=1, a:=1, f(z) = 2 [ [, (1 + %) exp < - %), z € C.
(e) sinmz = 7wz [[;-, (1 — Z—i), z € C.

Indeed, we know that

| +1 is locally uniformly

o0

2
sinmz = €92 H <1 — %), z € C, (7.2.1)
k=1
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for a g € O(C). We must prove that e? = w. We have
(sin 7rz) ( )
t = — 7.2.2
T TE sinmz )+ +Z z—k z—l—k: ( )
In particular, ¢’ is an odd function.
2 (o] o0
™ o B i _ ( 1 1 > o N 1
sinfrz © (2) 22 =\ (2 —k)? * (2 + k)2 g'() k;oo (z — k)2
In particular, ¢”(2+1) = ¢"(2), 2 € C. Let A :=={z+iy : 0 <z < 1}. For z = x+iy € A,
lyl > 1, we get:
o0 1 o0
— < <2
)k2m<z_k)2 2 (x_ 7S Zk2+ 5
’ 2 ) B 472 B 472
sinfrzl  |emz — e miz2  |(e=™ — ™) cos x4+ i(e~™ + e™¥) sin wx|?

472 472

< .
€2 + =2 — Qcos2mr ~ el — 2

This means that lim g¢”(z) = 0. Thus ¢” is bounded on A. Since ¢” is periodic, we

Adz—00
conclude that ¢” is bounded on C. Consequently, ¢’ = const. Since ¢’ is odd, we must

sinmz

have ¢’ =0, so g = const = ¢. By (7.2.1) we obtain © = lim,_,q #£™ = ¢
(f) We have metgmz =1 43777, (ﬂ Z+k) zeC.
()

1/I(z) = e”zzH (1 + ) exp < - %), z € C, where (7.2.3)

v:= lim ~, = lim (i%—logn>:0,577...

n—-+o0o n—-+o0o —
is the Fuler constant. In particular, m = —Zsinmz, 2 € C.
(7.2.3) follows for the formula
nle? logn
I'(z) = lim , 2€C\Z_. (7.2.4)

n—+too z(z + 1)+ (2 +n)
Indeed, (7.2.4) implies that

— zlogn - Yz - E _ E
1/I(z) = znl_lglooe (14+2z/1)---(14+2z/n) = znl_lglooe H(l—l—k) exp( k;)
(7.2.5)
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Let I be given by the right side of (7.2.4). Observe that I is well defined and I" €
O(C\ Z_). It suffices to show that I" = I" on (0,1], i.e

r(x+1)---(x+n)
n!n®
F(:H—n—i—l)

57

I'(z) — 1, z€(0,1].

It is equivalent to proving that — 1, x € (0,1]. For x € (0,1] we get

Fz+n+1)= /Oo t et dt < n” /n t"e tdt + n*! /Oo t" e tdt
0 0 n
=n" /n t"etdt + nx71< — "> + (n+ 1) /00 t"e’tdt>
0 n
=n" /OO the tdt +n* ! /OO the tdt + e
0 n
= n®n! 4+ n® ! /OO t"e tdt + ne ™™ < nnl + n*in! 4 n®tMe ™,

Analogously,

I'z+n+1)> nzl/ t" e tdt + n”‘“/ t"e tdt
0 n

= nx_l( — " et 4+ (n 4+ 1) / t”e‘tdt> + nx/ t"e tdt
0 n

n
=n"nl +n* ! / tetdt — n"te™ > ntnl — nte ™,
0

Consequently, 1 — ”ns: nog Dladndl) g 4 1 + n’e ™ Tt remains to use the Stirling (%)

— nln®

formula n! ~ %ﬁ

Theorem 7.2.8 (Weierstrass-Mittag-Leffler theorem). For every open set {2 & ((A:, for every
set S C 2 without accumulation points in (2, and for every family of polynomials (P,)ees C
P(C), there exists an f € O(§2) such that for every a € S the Taylor series f begins from
P,(z —a); if oo € S, then we mean that the Taylor series of z — f(1/2) at O starts from

P (2).
Observe that ord,(f — P,) > degP, +1,a € S.

PROOF. By the Weierstrass theorem there exists a ¢ € O*(£2\ S) such that ord, g =
deg P, + 1, a € S. By the Mittag-Leffler theorem there exists an h € M(£2) N O(£2\ S)

such that h, :== h — @ is holomorphic in a neighborhood of a for every a € S if a = oo,
then h,, = h — —1/Z is holomorphic in a neighborhood of co. Define f := h-g. In a
nelghborhood of each point a € S we get

P.(z —a)

):g-ha’
g

f—Pa(z—a):h-g—Pa(z—a):g(h—

(*) James Stirling (1692-1770).
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which implies that ord,(f — P,(z — a)) > ord, g = deg P, + 1. This means that the Taylor
series of f at a starts with P,(z — a). O

58

7.2.1. ( Riemann function. Let
— I H, = R:Rez>1}.
¢(2) ;nz ;ezbgn, zeH; ={z¢€ ez }

Since |n?| = |e*198"| = e(Re2)logn — pRez the series is locally uniformly convergent in H; and
defines a holomorphic function called ¢ Riemann function.

Theorem 7.2.9 (Euler theorem). Let (pi)7>, C N be a sequence of all prime numbers. Then

|
g(Z) = 1— e z € Hl
k=1 Py
PROOF. Fix a z € H;. Since |p;*| = p; "% < 1, we get
n 1 n oo oo
11 1—p~* 1> wom= > e
k=1 k k=1m=0 M1 4oy =0
It remains to use the uniqueness of the decomposition into prime numbers. O

Theorem* 7.2.10. The function ( extends to a meromorphic function on C\ {1} so that:

e ( has a single pole with res; ( =1 at 1,

o ( satisfies the Riemann equation ((z) = 2e*"D1eCm (1 — 2)((1 — 2) sin(32),

o ((—2k)=0, k € N; they are called trivial zeros;

Indeed, by the Riemann equation ¢ has no zeros in Hy. If zg is a zero of ¢ such that
Rezy < 0 and sin(52) # 0 (i.e. 20 ¢ —2N), then the Riemann equation gives I'(1 — zp) = 0
— a contradiction.

e ( has no non-trivial zeros outside {z € C: 0 < Rez < 1}.

e (Riemann Conjecture) All non-trivial zeros of the Riemann function are on the line

_1
Rez-z.



CHAPTER 8

Subharmonic functions

8.1. Harmonic functions

Definition 8.1.1. Let {2 € top(R?) and let h € C*(£2,R). We say that h is harmonic on {2
(h € H(2)), if

9?h  0*h
Ah = @ + a—yQ =0 on 2.
Remark 8.1.2. (a) H({2) is a vector space.
(b) A =42,

(c) Harmonic functions may be defined in any open set {2 C R™: we say that a function
h € C*(£2,R) is harmonic on 2 (h € H($2)), if

Sl

(d) For n =1, if 2 C R is a segment, then a function i € C?(§2,R) is harmonic if and only
if h is linear.

Theorem 8.1.3. Let D C C be a starlike domain and let h : D — R. Then h € H(D) if
and only if there exists an f € O(D) with h = Re f.

PROOF. Let f =u+iv € O(D). Then
O0u OOou 00w 0 0Ov 0% 9%v

A = —— —_——— — — = — :O
U= oror Toydy  0xdy oyor 010y  oyox
Now let h € H(D). Then the form Pdx + Qdy := —h,dr + hjdy ic closed because
P, —Q, = —hl,—h,, = —Ah = 0. Thus there exists a v € C'(D, R) such that v}, = P = —h,
v, = Q = hi,, which means that h +iv € O(D). O

Definition 8.1.4. Let D C C be a domain. If h € H(D) and h +iv € O(D), then we say
that v is a conjugate harmonic function to h.

Corollary 8.1.5. Let 2 C C be open.

((a) H({2) C C2(£2).

((b) If f € O(82) and 0 & f(£2), then log|f| € H(£2).

((c) Let 2, 2" C C be open, h € H(£2"), f € O$2,82"). Then ho f € H(L2).

Remark 8.1.6. The conjugate harmonic function is unique up to a constant.
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Theorem 8.1.7 (Identity principle). Let D C C be a domain and let h € H(D) be such

that h = 0 on a non-empty open subset U C D. Then h = 0 on D. Consequently, if
hi,hy € H(D) are equal on a non-empty open set, then hy = hs.

PROOF. Let Dy :={a € D : h =0 in an open neighborhood U C D of a}. Obviously, Dy #
@ and Dy is open. Let b € D N D{ and let U C D be a starlike domain with b € U. Let
f € O(U) be such that Re f = h (Theorem 8.1.3). Then Ref = h =0on UN Dy # 2.
Hence h =Re f =0na U. O

Theorem 8.1.8 (Maximum principle). Let D C C be a domain and let h € H(D), h #

const. Then h does not have local mazima. Moreover, if D is bounded, then

h(z) < sup{limsup h(z) : ( € 0D}, =z € D.

D3z—(¢
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If we substitute h by —h, we can get the minimum principle.

PROOF. Suppose that h has a local maximum at a € D. Let U C D be a starlike domain
with a € U such that h(z) < h(a), 2 € U. Let h = Re f, where f € O(U). Then |ef| = "
has a local maximum at a. Consequently, e” = const and therefore h = const in U. Using
the identity principle we conclude we get a contradiction.

If D is bounded, then we argue as in Theorem 2.1.8. U

Remark 8.1.9. Let u : C(a,r) — [—00, +00) be a measurable function (i.e. the function
2

[0,27) 3 ¥ — u(a+re™”) is £ measurable). Then &= [u(a+re™)dd = 7= [, u(a—{—rC)%.
0

Definition 8.1.10. Let u : C(a,r) — [—00,+00) be an upper bounded measurable func-

tion, e.g. u is upper semicontinuous. Put

oy L [ oo |z —af? i
P(u;a,r;z) = DE) Ry p u(a+re”)dd, ze€ Bla,r),
0

2w
1 )
J(u;a,r) :==Pusa,r;a) = Py /u(a + re')dv;
m
0

r). The function P(z,() := Kll;__lfg‘z is called

J(u; a,r) is the integral mean value of u on C(a

the Poisson kernel (). Thus P(u;a,r;z) = P(z — a,re™)u(a + re')dv.

1
2

Remark 8.1.11. Observe that ‘ﬁ';__!? = Re gfj, z € C\ {¢}. Thus P(-,¢) € H(C\ {¢})

and therefore P(u;a,r;-) € H(B(a,r)).

Theorem 8.1.12 (Poisson formula). Let h € C(B(a,r))NH(B(a,r)). Then h(z) = P(h;a,r; 2),
z € B(a,r). In particular,
e h(a) =J(h;a,r) (mean value theorem),

(*) Siméon Poisson (1781-1840).
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27
o 1= [P(z—a,re")dd, z € B(a,r).
0

PROOF. We may assume that a = 0. Let f € O(B(r)), h = Re f. Then for |z| < s < rweget

s?/Z ¢ B(s), and therefore, using the Cauchy integral formula, we have 0 = ;- L%d( .
C(s) > =
Now
hz) = Re f(2) QZ/C—Z 2%2/( SQC
C(s) C(s)
| P L )P
—Re (- : d¢) = Re (— d
(527 / -2 ¢) = e <27rz' / e OK)
C(s) C(s)
L[ s8]z - |Z|2 i
Re (27?2' C|C — |2f<0 27r |se“9 — z|2 ) >
- 2‘2 o0
dv.
27r/ |se? — z|2 )
It remains to allow s 7 r. O
Corollary 8.1.13 (Schwarz formula). For h € H(B(a,r)) NC(B(a,r)) let

2

f(z):= % / %h(a +re)dy, 2 € Bla,r).
0

Then f € O(B(a,r)), Re f = h.
Corollary 8.1.14 (Poisson-Jensen (?) formula). [Corollary 8.1.14— Exer | Let f € M(£2),

where 2 D D. Assume that f has neither zeros nor poles on T and let a1, . . . ,a, denote the
zeros of f inDD, by, ..., b, —the poles of f in D counted with multiplicities. Then
21
T hy (2 1 A ,
log f(z)M = P(log |f];0,1; 2) = —/P(z, eVlog |f(e?)|d, zeD,
i1 hay (2) 27 /
where [[ := 1. In particular:
%]
. mﬁ@%ﬁz<mm01—%ﬂ%uwwﬂ
2
e Ifq =0 then log|f(z)] < P(logl|f[;0,1;2) = 5= [ P(z,€e")log|f(e”)|dV, = € D;

0

log [f(0)| < J(log|f];0,1).
(*) Johan Jensen (1859-1925).
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Exercise 8.1.15. |Exercise 8.1.15— Exer | What is the Poisson-Jensen formula for B(a,r)
?

Definition 8.1.16. For a bounded domain D C C and b € C(9D,R), the Dirichlet (*)
problem is to find an h € H(D) N C(D) such that h = b on 9D.
Observe that the Dirichlet problem has at most one solution.

Exercise 8.1.17. Show that the Dirichlet problem for D, and a b may be without any
solution.

Theorem 8.1.18 (Dirichlet problem for a disc). Forb e C(C(a,r),R) define
P(b;a,r;z), if z € B(a,r)
Then h € C(B(a,r)) N H(B(a,r)).
PROOF. We may assume that a = 0. We already know that h € H(B(r)). It remains to
prove that for each ¢ € C(r) we have lin<1 P(b;0,7;2) = b((p).
z—Co

Let C > 0 be such that |b(z)| < C, z € C(r). Fix a {; = re”’0 € C(r). First, assume that
0 < g < 2m. Fore>0let 0 << min{dg, 27 — g} be such that |b(re?’) — b(re)| < e for
all [0 —dy| < 9. Then:

2

27
P(0.752) = b(G)| = |5 [ Plevrebtre o = 5 [ Ple.reuic)an)
0

0

IN

1 ) . . . . .
o ( / Pz, re)|b(rei®) — b(re®)|d + / P(z, re®)[b(re®) — b(re'®) |d19)
T

[0,27]\[Y0—6,90+] [90—08,90+6]
(20 / P(z,re™)di + ¢ / P(z, reiﬁ)dﬁ>

[0,27]\[90—6,90+] [90—08,90+6]

A
¥ =

7,,2 _ |Z|2

IA
21Q

———di+e — ¢
|re?? — 2|2 2o
[0,27]\[ho—0,00+]

U

1.11.8, The case (y = r is left as an EXERCISE.

Exercise 8.1.19. |Exercise 8.1.19— Exer . | Prove that if b: C(a,r) — R is a bounded

measurable function that is continuous at a point (5 € C(a,r), then lin<1 P(b;a,r; z) = b((p).
zZ—C0

Corollary 8.1.20. The Dirichlet problem has the solution in any bounded Jordan domain.

PROOF. Let f : D — D be biholomorphic that is homeomorphic D — D (Osgood-
Carathéodory theorem). Let h be the solution of the Dirichlet problem for D and the
function bo f~1. Then ho f is the solution of the initial Dirichlet problem. U

(%) Peter Dirichlet (1805-1859).
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Theorem 8.1.21 (1-st Harnack’s theorem). Let 2 C C be open and let (h, )72, C H(2). If
h, — h locally uniformly in 2, then h € H(S2).

63

PROOF. Fix a € 2 and r > 0 such that B(a,r) C £2. Then, by Theorem ??, we get

h,(z) =P(hy;a,7;2), z¢€ Bla,r), veN.
Since h, — h uniformly on C(a,r), we get P(h,;a,r;z) — P(h;a,r;z). On the other
hand h,(z) — h(z). Thus
h(z) =P(h;a,r;2), =z€ B(a,r).
Now, by Theorem ??, h € H(B(a,r)). O
Theorem 8.1.22 (2-nd Harnack’s theorem). Let D be a domain in C, (h,)>2,; C H(D),

v=1

and h, < h,1, v > 1. If there exists a € D such that lim,_, o h,(a) ezists and is finite,
then (h,)S2, converges locally uniformly in D.

PROOF. Let
Dy ={z¢€ D: (h,);2, is convergent uniformly in a neighborhood of z}.

If we show that Dg is non-empty open and closed in D, then Dy = D, which will end the
proof.
The set Dy is open by definition. To prove that Dy # & we show that a € Dy. Choose
r > 0 such that B(a,r) C D. Note that
r? — |z —al? r?—|z—al>  r+|z—a

z € Bla,r). (8.1.6)

lre? — (z —a))? =~ (r—|z—al)2 r—|z—ad|

Moreover, for z € B(a,r) and v, u € N, we have

1 ot |z — a|2 i i
0 < hypu(z) —h(2) = 57 ) e - (o a)|2(h,,+”(a +re”) — h,(a+re™)) di

r+|z—a

1 [ r+|z—d " "
< — L el Wy _ i _ _ .
< 27T/0 Ry (hyula+1e™) —hy(a+1e")) dd (hysp(a) — hy(a))

For |z — a| < r/2 this last expression is not greater than 3(h,,(a) — h,(a)). Therefore the

sequence (h, )22, satisfies the uniform Cauchy condition in B(a,r/2), and hence converges

uniformly there. Thus a € Dj.
_ Suppose now that z9 € D is an accumulation point of the set Dy. Choose r > 0 such that
B(zg,7) C D. There exists b € Dy N K(zy,7/3). Hence B(b,2r/3) C D. Since b € Dy, the

sequence (h, (b))%, is convergent. Similarly as above we prove that (h,)22, is convergent

v=1 v=1

uniformly in K(b,7/3). Hence (h,)22, is convergent uniformly in a neighborhood of zy, and

v=1

S0 zg € Dy, which proves that Dy is relatively closed. Il

r—|z—al

Theorem 8.1.23. Any annulus
A={zeC:r <zl <rt}, 0<r <rt < +oo,

15 reqular with respect to the Dirichlet problem.
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Theorem 8.1.24 (|Schwartz]). Let u € L*'(£2,1oc) (*) be such that Au = 0 in the sense of
distribution, i.e.

64

/ w-(Ag) AL =0, € CP(R).
0
Then there exists h € H({2) such that u = h L*-a.e. on (2.

8.2. Subharmonic functions

Definition 8.2.1. Let 2 C C be open. A function u : 2 — [—00, +00) is called subhar-
monic in {2 (we write u € SH((2)) if:

e u is upper semicontinuous in §2 (u € CT(£2)),

e for every domain D CC 2 and for every function h € C(D) NH (D), if u < h on 9D,
then u < hin D.

In particular, the function u = —oo is subharmonic.
The following properties are immediate consequences of the above definition and of the
maximum principle for harmonic functions:

H(2) C SH(L2),
SH(02) +H(2) = SH(2),
Roo - SH(2) = SH(%).
Theorem 8.2.2 (Mean value property). If u € SH({2), then
1

2
u(a) < J(usa,r) = %/ u(a+re)dd, ac2,0<r<dgya)
0

PROOF. Fix an a € 2 and 0 < r < dg(a). Let b, : C(a,r) — R, v € N, be a sequence of
continuous functions such that b, N\, u pointwise on C(a,r). Let h, be the solution of the
Dirichlet problem for B(a,r) with h, = b, on C(a,r). Then u < h,, on C(a,r) and hence on
B(a,r). Consequently, we get

u(a) < hy(a) = I(hy;a,7) = I(bsa,r), v=>1
Since b, N\, u on C(a,r), the monotone convergence theorem implies that
J(by;a,m) — J(u;a,r). O

Lemma 8.2.3. Let D C C be a domain and let v € CT(D,[—00,+00)), v % const. Assume
that for every a € D there ezists a number 0 < R(a) < dp(a) such that

v(a) < J(v;a,r), 0<r < R(a).
Then v does not attain its global mazimum in D.

PROOF. Suppose that v(z) < v(z), z € D (for some 2y € D). Let Dy := v~!(v(2)). Then
Dy # @. Note that for every accumulation point a € D of Dy we have

v(zp) = limsupv(z) < limsupv(z) = v(a) < v(2).

Dog3z—a D>z—a

(*) LY(02,1oc) := {u:Vicco : ulx € L (K, L)}
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Hence a € Dy, which means that Dy is relatively closed in D. On the other hand, if a € Dy,
then

v(z0) = v(a) < J(v;a,r) <v(z), 0<r<R(a).
Now, since v is upper semicontinuous, we conclude that v = v(z) on C(a,r) with 0 < r <
R(a). This implies that B(a, R(a)) C Dy, and therefore Dy is open. Since D is connected,
we have Dy = D, which shows that v = v(zp); contradiction. O

From Theorem 8.2.2 and Lemma 8.2.3 we immediately obtain

Corollary 8.2.4 (Maximum principle). Let D C C be a domain and let uw € SH(D),
u # const. Then u does not attain its global mazimum in D. Moreover, if D is bounded,
then

u(z) < sup{limsupu(w)}, =ze€ D.
¢€edD D>3w—(

Notice that a subharmonic function can attain its global minimum.

Theorem 8.2.5. Let u: 2 — [—o0,+00). Then u € SH(2) iff u € CT(2) and for every
a € (2 there ezists an R(a), 0 < R(a) < dg(a), such that

u(a) < J(u;a,r), 0<r< R(a). (8.2.7)

PROOF. The implication = follows from Theorem 8.2.2. o
To prove the opposite, fix a domain D CC {2 and a function i € C(D) NH(D) such that
u < hondD. Put v(z) :=u(z) — h(z), z € D. By Theorem 7?7 and (8.2.7) we have
v(a) < J(v;a,r), 0<r<min{R(a),dp(a)}, a € D.
Using Lemma 8.2.3, we conclude that v < 0 in D, which shows that « < h in D. O

Corollary 8.2.6. (a) Let u: 2 — [—00,+00). Then u € SH(L2) iff every point a € 2 ad-
mits an open neighborhood U, C (2 such that u|y, € SH(U,). In other words, subharmonicity
s a local property.

(b) SH(R2) + SH(2) = SH(2).

Theorem 8.2.7. Let u : 2 — [—o0,+00). Then u € SH($) iff u € CT(2) and for any
a€ 2,0<r<dg(a), andp € P(C), ifu <Rep on C(a,r), then u < Rep in B(a,r).

PROOF. Since the function Rep is harmonic, the implication = is obvious.

We prove now the opposite. Fix a € 2 and 0 < r < dg(a). In virtue of Theorem 8.2.5
and the proof of Theorem 8.2.2, it is sufficient to prove that for every continuous function
b: C(a,7) — R such that u < b we have u(a) < J(b;a,r). Fix a function b and let
¢, : R — R, v > 1, be a sequence of trigonometric polynomials (°) such that

. 1 1
|b(a+7’em)+;—gol,(19)| < ;, YeR
(5) Recall that ¢ : R — R is a trigonometric polynomial if

k
p(¥) =ao+ »_(ajcosji + B;sinjv), o €R,
j=1
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(cf. [Rudin|, the Fejér theorem). Let p, € P(C) be such that ¢, () = Rep,(a+re?), ¥ € R,
v > 1. Then u < Rep, on C(a,r) and hence

66

u(a) < Rep,(a) =JRep,;a,7) < J(b;a,r) + %, v>1.

(the first equality follows from the fact that the function Rep, is harmonic). Letting v —
400, we end the proof. O

Theorem 8.2.8. If f € O(12), then log|f| € SH(S2).

PROOF. Let u := log|f|. Then u € C'(§2). By Theorem 8.2.5, it is enough to check that
u(a) < J(u;a,r), a € 2,0 < r < R(a). This is evident if f(a) = 0. If f(a) # 0, then
u € H(B(a, R(a))), where R(a) := dg\ s-1(0y(a) (cf. Remark 8.1.2(e)). O

Theorem 8.2.9. (a) If SH(2) > u, N u, then u € SH(S2).
(b) If SH(£2) > u, —> u locally uniformly in 2, then u € SH(S2).

PROOF. It is clear that in both cases u € CT(§2). For each v we have
uy(a) < J(uysa,r), a€ 2, 0<r<dga).
Letting v — 400 proves that u satisfies (8.2.7). O

Theorem 8.2.10. If a family (u,).c;r C SH(S2) is locally bounded from above (°), then the
function

u = (supw,)”,
el

is subharmonic, where * denotes the upper regularization. (7)
In particular, max{uy,...,uny} € SH({2) for any uy,...,uy € SH(L2).

PROOF. Tt is clear that u is upper semicontinuous. Let D CC 2, h € C(D) NH(D), u < h
on 9D. Then u, < h on 9D for every ¢ € I, and hence sup,.;u, < h in D. Finally, since h
is continuous, we get u < h in D. O

Theorem 8.2.11. Let G C §2 C C be open and let v e SH(G), u € SH({2). Assume that
limsupv(z) <u((), ¢ € (0G)N{.

G3z—(

for some ag, ..., ax, B1,- .., Bk € R. Observe that ¢(19) = Re p(a + rei?), where

zZ—a

k
)7 Q(Z) = O‘O+Z(Olj *iﬂj)zj.

r

(6) Note that in general the function sup,c; u, need not be upper semicontinuous.
(") If v: £2 — [—00, +00) is locally bounded from above, then (cf. [Lojasiewicz])

v*(2) :=limsupv(z’) = inf{p(z) : ¢ € C(2,R), v < ¢}, z€ N.

2=z
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Let
~ max{v(z),u(z)}, ze@G
u<z):{u(z),{() I 2eN\G
Then u € SH(£2).
PROOF. It is evident that u € CT(2) and u € SH(2 \ G). For a € 2N G we have
u(a) = ul(a) < J(u;a,r) < J(u;a,r), 0<r<dp(a). O

Theorem 8.2.12. Let u: 2 — [—00,+00). Then u € SH(12) iff u € C'(£2) and for every
a € §2 there exists an R(a), 0 < R(a) < dgp(a), such that

R
u(z) < P(uja,r;z) = 5 ) e = (oo a)]Qu(a +re™)dd, 0<r< R(a), z€ B(a,r).
(8.2.8)

PROOF. Since P(u;a,r;a) = J(u;a;r), the implication <= follows from Theorem 8.2.5.
To prove the opposite, it is sufficient to argue as in the proof of Theorem 8.2.2 and use
the Poisson formula

u(z) < hy(2) =P(hya,r;2) = P(by;a,r;2) \Plusa,r, 2). O
By Theorems 7?7 and 8.2.12 we get
Corollary 8.2.13. SH(2) N (=SH(£2)) = H(£2).

Theorem 8.2.14. If a sequence (u,);2,; C SH({2) is locally bounded from above, then the
function

u := (limsupu,)”.
v—+00

is subharmonic. (®)
PROOF. Of course, the function u is upper semicontinuous. Fix a € 2 and 0 < r < dg(a).
By Theorem 8.2.12 and Fatou’s lemma we get

limsup u,(2) < limsup P(u,;a,r; z) < P(limsupu,;a,r;z) < P(u;a,7;2), 2z € B(a,r).

v—+00 vV—+00 V—+00

Since the right-hand side is a continuous function of z, we get u(z) < P(u;a,r;z), z €

B(a,r). O
Let u : B(a,r) — [—00, +00) be bounded from above and measurable. Define
1
A(uya,r) = — wdL?
T JB(a,r)

A(u;a,r) is the mean value of u on the disc B(a,r).

Theorem 8.2.15 (Mean value property). Let u : {2 — [—00,+00). Then u € SH(S?) iff
u € C(2) and for every a € D there exists an R(a), 0 < R(a) < dp(a), such that

u(a) < A(w;a,r), 0<r < R(a).

(®) Note that in general the function limsup,,_, . u, need not be upper semicontinuous.
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PROOF. Let u € SH(S2). Using polar coordinates, we have by Theorem 8.2.2

2m
A(uya,r) = 2// u(a + 7e”)7 di dr
o

/JuaTTdT>—2 u(a)T dr =u(a), a€ 2,0<r <dg(a).
™ Jo

To prove the opposite we check first that u does not attain its maximum (like in the

proof of Lemma 8.2.3), and then we proceed as in the proof of Theorem 8.2.5. U

Theorem 8.2.16. Let D C C be a domain and let u € SH(D), u # —oco. Then u €
LY(D,loc). In particular, £*(u='(—o0)) = 0.

PROOF. Suppose that for some zy € D we have [, u d£? = —oo for any neighborhood U of
2p. Let 2r := dp(zp). By Theorem 8.2.15

u(z) < A(u; z,1) = —o00,  z € K(z0,7).

Let Dy :={z € D : u = —c¢ in a neighborhood of z}. The set Dy is clearly open. We have
already shown that it is non-empty (29 € D). To obtain a contradiction, it is sufficient to
note that proceeding exactly as above, we can prove that Dy is relatively closed in D.  [J

Theorem 8.2.17 (Removable singularities). Let D C C be a domain and let M C D be a
relatively closed subset of D such that for every point a € M there exist a connected open
neighborhood U, C D of a and a function v, € SH(U,), v, Z —o0, such that M NU, =
v, (—00). Let u € SH(D\ M) be locally bounded from above in D (°). Define

w(z) := limsup u(z'), ze€D.
D\M>z'—z

Then w € SH(D). In particular, the set D\ M is connected.

PROOF. By Theorem 8.2.16 the set M is nowhere dense and hence the function u is well
defined for every z € D. Note that @ = (ug)*, where up := u on D\ M and ug := —o0 on
M. In particular, u € CT(D). Moreover, &« = u on D\ M.

It remains to prove that @ is subharmonic. We may assume that M = v~!(—o00), where
veSH(D), v# —ooand v <0in D. For e > 0 let

ua(2) = {u(z) + ev(z), z€ D\ M .

—00, zeM

It is easy to see that u. € SH(D) and that the family (u.).~¢ is locally bounded from above
in D. Observe that uy = sup,., u.. Hence, by Theorem 8.2.10, u = (ug)* € SH(D).

To prove that D \ M is connected, suppose that D\ M = U; U Us, where U; and U, are
disjoint and non-empty open sets. Then the function u(z) := j for z € U; would extend to
a subharmonic function on D; contradiction. O

(9) That is, every point a € D admits an open neighborhood V,, C D such that u is bounded from above
in V, \ M.
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The above result can be generalized in the following way:

We say that a set M C C is polar if for every point a € M there exist a connected open
neighborhood U, and a function v, € SH(U,), vq Z —00, such that M NU, C v, ! (—c0).

Note that the set M from Theorem 8.2.17 is polar. Every polar set has measure zero (by
Theorem 8.2.16).

Lemma 8.2.18. Let M C C be a polar set. Then for every a € C there exists an R(a) > 0 such
that

LY{welo,2r):atre” € M}) =0, 0<r< R(a).

PROOF. Suppose that for some a € C it is not the case. Fix a disc B(a,R) and a function
v € SH(B(a, R)), v # —o0, such that M N B(a,R) C v~!(—00). Let 0 < r < R be such that

LY{Ye0,2n) :a+7re? € M}) > 0.

This means that v(a + re®’) = —oo for ¥ in a set of positive measure. In particular, v(z) <
P(v;a,r;z) = —oo for z € B(a,r), and so v = —o0 in B(a,r); contradiction. O

Theorem 8.2.19 (Removable singularities). Let D C C be a domain and let M C D be a polar
set. Assume that u € CT(D\ M) is locally bounded from above in D and for arbitrary a € D\ M
there exists an R(a), 0 < R(a) < dp(a), such that

u(a) < J(u;a,r), 0<r<Ra). (1)

Put

u(z) ;== limsup u(2’), z€ D.
D\M>z'—z

Then uw € SH(D). In particular, if M is closed in D, then D\ M is a domain.

PROOF. The function u is upper semicontinuous and w = u in D\ M. Let G CC D be an arbitrary
domain and let h € H(G) NC(G) be such that u < h on dG. It is sufficient to check that @ < h in
G\ M. Fix an a € G\ M. One can prove (see for instance [Hay-Ken|, Th. 5.11), that there exists
a function v subharmonic in the neighborhood of G and such that M NG C v~!(—c0), v < 0, and
v(a) > —oo. Define h. := % +ev — h, ¢ > 0. Then h. € CT(G) and h. < 0 on OG. One can easily
check that h. € SH(G) (11) . By the maximum principle (Corollary 8.2.4) it follows that A, < 0 in
G, € > 0. In particular, u(a) — h(a) = sup,~¢{h:(a)} <O.

(|

Theorem 8.2.20 (Hartogs lemma). Let (u, )02, C SH(§2) be locally bounded from above.
Assume that for some m € R

limsupu, < m.
v—+00

Then for any compact K C 2 and € > 0 there exists a vy such that

maxu, <m+e¢e, v>vy, cf Lemma ?77?.
K

(*°) Note that if M is a closed subset of D, then every function u € SH(D \ M) satisfies this condition
(with R(a) := dp\a(a)). Moreover, by Lemma 8.2.18, the integral J(u;a,r) is well defined for small r.

(11) We apply for instance Theorem 8.2.5: since h, = —oo on M, it is sufficient to observe that h.(zg) <
J(he; z0,7) for zg € G\ M.
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PROOF. It is sufficient to show that for every a € £2 the assertion holds for K := K (a, d(a)),
where d(a) > 0 is sufficiently small. Fix a and 0 < R < dg(a)/2. We may assume that
u, < 0in K(a,2R), v > 1, and m < 0. By Fatou’s lemma we have

limsup A(u,;a, R) < A(limsupu,;a, R) < A(m;a, R) =

v—400 v—+00
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Let 0 < § < R/2. By the above inequality, since u, < 0 on K (a,2R), we get

2 2
R—QA(u,,; a,R) < Lm.

limsup max wu,(z) <limsup sup A(u,;z, R+J) < limsup R+ o)

v—+4oo 2€K(a,d) V=400 LK (a,8) V400 (R+5)
Now it is sufficient to take a 6 = d(a) so small that the last term is smaller than m +¢. O

Theorem 8.2.21. Let I C R be an open interval and let ¢ : [ — R be non-decreasing and
conver. Then pou € SH(S2) for any subharmonic function u : 2 — I. In particular,

et € SH(2) for any function v € SH($2) (1?),

uP € SH(R2) for any subharmonic function u: 2 — R, and p > 1 (13).

PROOF. Since ¢ is convex, it is continuous (cf. [Schwartz:Analiza|), and therefore pou € CT(2).
Fix a € 2 and 0 < r < dp(a). By the monotonicity and convexity of ¢ and by Jensen’s
inequality (cf. [Rudin|), we obtain

p(u(a)) < p(J(u;a,r) < J(pou;a,r). O
Theorem 8.2.22. Let u € SH({2), a € £2. Then the functions
(—o0,logdg(a)) >t — J(u;a,el), (—o0,logdg(a)) >t — A(u;a,e')
are non—decreasing and convexr. Moreover,
J(uya,r) \gu(a) when r N\, 0, A(usa,r) \yu(a) when r 0.

PROOF. We show first that it is sufficient to consider only the function J. Note that if the
function J(u;a, -) is convex with respect to logr, then it is continuous, and therefore we have

2 T
A(u;a,r) = ﬁ/o J(wa,7)rdr = lm —7 Z]J ) = Jim on(r).
If the function J(u;a,-) is non—decreasing and convex with respect to logr, then the same
properties has every function ¢y, and so also the limit function A(u;a,.). Moreover,

u(a) < A(u;a,r) = Jua77d7<supJ(uaT)<J(uar)
0<r<r

Therefore, if J(u; a,7) — u(a), then the same property has the function A.

(12) First we consider u : 2 — R and next we observe that in the general case we have e™@x{w =1} N ev
when v 7 +00.

(13) First we consider u : 2 — R+ and next we observe that in the general case we have (u+¢e)P \, u?
when € N\ 0.
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Now consider the function J. Let 0 < < 7y < dg(a), let b, € C(C(a,r2),R), b, \, u,
and denote by h,, the solution of the Dirichlet problem for B(a, ) with boundary condition
b, (cf. Theorem ?7?). Then

J(u;a,r) < J(hy;a,m1) = hy(a) = J(hy; a,m2) = J(by; a,79).

The last integral converges to J(u;a,ry) when v — +o00. Letting v — 400 we get the
monotonicity of the function J(u;a,-).
Note that by Fatou’s lemma we have
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1 [ .
u(a) < lim J(u;a,r) < —/ limsup u(a 4 re™) dv < u(a).
r—0 2m Jo r—0
This proves that J(u;a,r) N\, u(a) when r N\ 0.
It remains to check the convexity with respect to logr, i.e. we want to prove the inequality

J(u;a,ry) —TJ(u;a,m) logi, 0<r <r<ry<dn(a)

log = r1
Fix 0 <r <ry <dg(a). Let A:={z¢€ C:r; <|z| <r}, let b, € C(OA,R), b, \, u, and
let h, be the solution of the Dirichlet problem for the annulus A with boundary condition

b, (cf. Theorem ?7?). Differentiating under the integral sign, we obtain

J(uya,r) < J(u;a,rm) +

d d1 [* , 1 [* /0h, , h, .
—J(h,;a,e') = hy(a+e'e™) dv / (6 (a+e'e™)e! cos 79+%—(a—|—ete“9)et sin 19) d)
0

dt T dtor 0 T or Ox Y
1 oh,, oh,,
= — ——d dy = t(v).
27 Jowey 0y T+ 5, Wy = cons (v)
The last equality follows from the fact that the form
oh oh
——d “d
oy T ox 4

is closed. Consequently, there exist «,,, 5, € R such that

J(hyya,r) = a,logr+B,, r <r<rs.
Finally,
J(hy;a,m9) — I(hysa,m) r

J(usa,r) < J(h;a,r) = J(h;a,m) + log 10gr—1
bu; ) - bV) )
=J(by;a,m) + I(bs;a,rs) TJ( @) log 1, re<r<ro.
log ﬁ 1
Letting v — 400 we end the proof. U
Corollary 8.2.23. Let uy,us € SH($2). If uy = uy L?-almost everywhere in 2, then u; = us

m (2.

Corollary 8.2.24. Let D and M be as in Theorem 8.2.17 or 8.2.19. Then for every function
u € SH(D) we have

w(z) = limsup wu(z'), z€ D.
D\M>3z'—z2
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Fix a function ¥ € C5°(C,Ry) such that
o supp¥ =D,

o U(z) =¥(lz]), z € C,

° fkp dc? =1.

Let
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WE(Z) = 6—@(5)7 A (C, e > 0.

For every function u € L'(§2,1oc), we put

us(2) == / u(w)¥.(z—w) dL*(w) = / u(z+ew)¥(w) dC*(w), 2z € 2 :={z€ 2:dy(z) >¢c}.
Q D
The function u, is called the e-regularization of w.

Theorem 8.2.25. If u € SH(2) N L' (N2,loc), then u. € SH(2.) NC®(£2.) and u. \, u
when € N\ 0.

PROOF. Since we can differentiate under the integral sign in the first integral above, it is
clear that u. € C*(f2.). For a € {2, and 0 < r < dg_(a) we have

2T
Husia,r) = / / (a+ re + cw)¥(w) dL2(w) do
™

= /J(u; a+ ew, )W (w) dL*(w) > /u(a + ew)¥ (w) dL*(w) = u.(a),
D D
which shows that u. € SH(f2.). Note that

uc(a) = /Du(a—l—sw) w) dL*(w / /27T (atrere W (r)r dY dr = 27 /Olj(u;a, eT)W(7)T dr.

Now, by Theorem 8.2.22 and monotone convergence theorem, we get u.(a) N\, u(a) when
e\ 0 for every a € (2. O

Remark 8.2.26. It follows from the proof of Theorem 8.2.25 that for an arbitrary function
U € C°(C,Ry) such that supp¥ = D and for every function u € SH(2), the functions

ue(2) = /Du(z b e (w) dL2(w), ze 0., >0,

are subharmonic.

Theorem 8.2.27. Let u € C*(2,R). Then u € SH(2) iff Au>0 in 2.

PROOF. <=. Assume first that Au > 0in 2. Let D CC 2, h € C(D)NH(D), u < h on
OD. Put v :=u — h and let zy € D be such that v(zy) = maxzv. Suppose that v(z) > 0
(in particular, zg € D). Then (Au)(2p) < 0; contradiction.

For arbitrary u, take the sequence v.(2) := u(z) + ¢|z2|?, 2 € 2, ¢ > 0, and note that
Av. = Au+4e > 0 and v. \, u.

—. Suppose that Au < 0 on some domain D C (2. Then, by the previous part of the
proof, —u € SH(D). Hence u € H(D); contradiction. O
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Theorem 8.2.28. Ifu € SH(D) (D is a domain in C), u # —oo, then Au >0 in D in the
distribution sense, i.e. for every function ¢ € C°(D,R,) we have

/ u- (Agp) dL? > 0.
D

Conversely, if u € L'(D,loc) is such that Au > 0 in D in the distribution sense, then there
exists a function v € SH(D) such that w = v L*-almost everywhere in D; cf. Theorem ?7.
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PROOF. Note first that if u € C*(D), then, by the Stokes theorem, Au > 0 in D in the
distribution sense iff Au > 0 in D in the usual sense.

—>. Let u. denote the regularization of the function u (as in Theorem 8.2.25). By
Theorems 8.2.25 and 8.2.27, Au, > 0 in D, in the distribution sense, i.e.

/ ue - (Ap) dL? >0
for every test function ¢ € C3°(D., R, ). Since u. \, u (Theorem 8.2.25), we get
[u@p =0 pecrnr).
D

<. For every function ¢ € C°(D.,R,) we have

/ e (49) dL? = / (Au dL? = / S ( /D w(w) (AW (2 — w) dEQ(w))w(z) dL2(z)
- / ( /D u(w) (A= ) (w) dL(w) ) p(2) dL2(2) > 0

This proves that u. € SH(D.).
We show now that u. \, when € \, 0. Let 0 < 1 < g59. By Theorem 8.2.25 applied for
z € D., we have

Ue, (2) = lim(ue,):(2) = hm/ / Z 4w + 26U (€) dL (&)W (w) dL* (w)

e—0 e—0

 lim / / u(z + ew + £ (w) dL2(w)F(E) dL2(E)
= li_{l(l)(us)@ (2) > ?_I}(l)(ue)a('z) = y_%(us:l)s(z) = Ue, (2).

Let v := lim. ,gu.. Then v € SH(D). On the other hand, it is well known (cf. [Rudin|) that
u. — u in L'(D,loc). In particular, u. — u £?-almost everywhere in D. Hence u = v

L2-almost everywhere D.
O

Theorem 8.2.29. For every f € O(2,G) (G is an open subset of C) and u € SH(G) we
have uo f € SH(L2).

PROOF. If u € C*(G) it is sufficient to note that

A(uo f) = ((Au)o f) - |f'I%,
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and use Theorem 8.2.27. For the general case we use the regularizations (u.).~q, cf. Theo-
rem 8.2.25. Let v, := u. o f. Then v, € SH(f1(G.)), and v. \, uo f in G, and so, by
Theorem 8.2.9(a), uo f € SH(L2). O

Theorem 8.2.30 (Liouville type theorem). If u € SH(C) is bounded from above, then
u = const.

PROOF. Let v(z) := u(l/2), z € C.. Then, by Theorem 8.2.29, v € SH(C,) and v is
bounded from above. Hence, by Theorem 8.2.17, v extends to a function v € SH(C). Now,
by the maximum principle, for arbitrary z € C, we have

u(z) < max{m%xu, mﬁgmxv} = u(zp)
for some 2z, € T. Using once again the maximum principle we conclude that v = const. [

Theorem 8.2.31 (Oka theorem). For every function u € SH(S2), and for every R-analytic
curve v : [0, 1] — §2 it holds

u(7(0)) = lim Sup u(v(t)).

PROOF. Since the curve v is R-analytic, there exists a function f € O(G), where G C C is
an open neighborhood of the interval [0,1], such that f = v on [0,1] and f(G) C 2. Put
uy = uo f. To prove the assertion, it is sufficient to show that limsup,_ o, ui(x) = u;(0).
Moreover, we may assume that u; < 0.

Suppose that limsup,_,o, u1(z) < C < u1(0). Let

1
up = max{uy, C'} + 1.

Then uy € SH(G), 0 < up < 1, up(0) > 0, and uy = 0 on (0, §] for some 0 < § < 1. We may
assume that 6D C G. Define v(2) := us(8z), z € D. Then v € SH, 0 <v < 1, v(0) > 0, and
v=0on (0,1]. Let

, 2
Sl,::{re“920<7‘<1,0<19<77r},

v(z¥), forzels,
0, for zeD,\S,’

It is not difficult to check that v, € SH(D,) (cf. Theorem 8.2.11). Since v, < 1, the function
v, extends to a subharmonic function on ID; denote the extension also by v,. Observe that

v,(z) = veN.

v,(0) = limsup v, (2) = limsup v(z”) = limsup v(z) = v(0).
Dy32z—0 Su22—0 D4«32z—0

Finally, for any 0 < r < 1, we have

1 2w /v ' 1 o
U(O) = UV(O) < J(U,,;O,’[“) = %/0 ,U(,rllewﬁ) 49 = % 0

Letting v — 400 we obtain v(0) = 0; contradiction. O

The above result can be generalized as follows:
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Theorem 8.2.32 (Oka theorem). For any u € SH(2) and a curve v : [0,1] — 2 we have
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u(y(0)) = lim sup u(y(t)).
t—0+

PRoOOF. Cf. [Vla]. We may assume that v(0) = 0 € 2. Suppose that
u(0) > A > limsup u(y(t)).
t—0+

Take r > 0 and 0 < ty < 1 such that:

o K(r)CC 12,

o [y(t)| <rfor 0 <t<tp,

e [(to)| =,

o u(v(t)) < Afor 0 <t <tp.

We may assume that to = 1. Let {2y := {z € £ : u(z) < A}. Observe that {2y is open and
~7((0,1]) C £2. Let G denote the connected component of 2 that contains v((0,1]). For 0 < p <r
let 0 < t, <1 be such that |y(t,)| = p. Take a Jordan arc o, : [0,1] — G such that 0,(0) = ~(t,),
op(1) =~(1). There exist 0 < 79 < 71 < 1 such that

L ‘O-P(TON =p,

o p <|o,(t)] <rform <t<my,

o [op(r)| = 7.

We may assume that 0 = 0, 7y = 1. Let L, := 0,([0,1]), D, := K(r) \ L,. One can prove
that D, is simply connected (Exercise). Let ¢, : D — D, be a biholomorphic mapping (from the
Riemann theorem) with ¢,(0) = 0 and ¢},(0) € Rxo. By the Carathéodory theorem (cf. [Vla]), the

mapping ¢, extends continuously to D (we denote this extension also by ¢,) and ¢,(T) C 0D,. Let
T, = {9 € 0,2m) : g, (") € L}

(observe that T}, is relatively closed in [0,2n)) and let m,, :== £L*(T},)/(27). Notice that |p,(e”)| =1
for 9 € T, := [0,27) \ T),. The function

_Jeo(2)/z,  2#0
T/JP(Z) = {@Z(O% .—0

is holomorphic in D and continuous on D. Moreover, 1,(z) # 0, z € D. In particular, log |t,| is
harmonic in D and continuous on D and, therefore,

log ¢,(0) = log [14,(0)] = J(log[¢,l; 0, 1) = J(log |¢p,|; 0, 1)

1 . )
(/ log |, (&) dv —|—/ log |, (&) dz?) > mplogp+ (1 —m,)logr.
21\ J, T

On the other hand, by the Koebe theorem (cf. [Vla]), since K (p) ¢ ¢,(D), we get ¢,(0) < 4p. Hence
4p1—mp Z rl—mp7

and, consequently, lim, ,om, = 1.
Since u o ¢, is subharmonic in D and upper semicontinuous in D, we get

w0) < 3o p0.1) = 5o ([ () @i+ [ uloye?)) do) < mpa+ (1= m)e

2T
P

where ¢ := SUDT () U- Letting p — 0 gives u(0) < A; contradiction O
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Theorem 8.2.33. Let u € CT(£2,R,). Then logu € SH($2) (M) iff for every polynomial
p € P(C) the function |eP|u is subharmonic. In particular, if loguy, logus € SH(S2), then
10g(u1 + ’LLQ) c SH(.Q)

PROOF. =. Let v(2) := |[e?®|u(z), z € £2. Then logv = Rep + logu and hence logv €
SH(£2); therefore also v € SH(2).

<=. We use Theorem 8.2.7. Let a € 2, 0 < r < dp(a) and let p € P(C) be such
that logu < Rep on C(a,r). Then v := |e7P|lu < 1 on C(a,r). Since the function v is
subharmonic, it follows from the maximum principle that v < 1 in K(a,r), which means
that logu < Rep in K(a,r). O

Theorem 8.2.33 can be generalized in the following way:

Theorem 8.2.34. Let u € C'(2,R,). Thenlogu € SH($2) iff for every a € C the function
|e**|u(z) is subharmonic.

PROOF. Tt is clear that the problem is to prove <=. Suppose first that u € C*(£2,R-g). It
is sufficient to check that Alogu > 0 in (2. Note that

1 (Au— (%)2‘*’ (%)2)

Alogu = —
u u
Let a = o +if and put v, := |e**|u. Then
0< Av, = [e|(Au + faf*u + 2(0% - 5%)).
Fix a zg € {2 and put
u du
o gx(z()) 8= ay(zo)
u(z0) u(zo)
Then | |
e—0%0
Alogu)(zg) = Avg(29) >0
( g )( 0) U(Z()) ( 0)

Now consider the general case. Note that the function u is subharmonic (because u =
|e%%|u). Let (u.).>o denote the regularizations of the function u. Since u. + ¢ N\, u, it suffices
to show that log(u. +¢) € SH(f2.), ¢ > 0. Fix an € > 0. In virtue of the first part of the
proof it remains to show that |e**|u. € SH((2.) for every a € C. Fix an a € C. Then

e |u.(z) = / |G |y (2 4 ew)W (w)|e | dL*(w), =z € L.
D

Now we apply Corollary 8.2.26. O
Theorem 8.2.35 (Schwarz type lemma). Let u : D — [0, 1] be such that logu € SH(D),
u(0) =0, and

: u(z)

limsup —= < 4o00.

D320 |2]

(14) That is u is logarithmically subharmonic.
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Then
u(z) <|z|, z€D, and limsup u(z) <1
D.32z—0 |Z|
Moreover, if
Jpep, © u(z0) = |20 or limsup u(z) =1,

D.32—0 |Z’ B
then u(z) = |z| for all z € D.

PROOF. Let v(z) := u(2)/|z|, z € D,. Since logv = logu — log|z|, it follows that logv €
SH(D,), and hence v € SH(D,). By the assumption we conclude that the function v is
locally bounded in . Hence, putting v(0) := limsupy, 5, ,,v(2), and using Theorem 8.2.17,
we obtain a function subharmonic in D. By the maximum principle we get v < 1, which
gives the required inequalities.

Moreover, if v(zg) = 1 for some 2y € D, then v = 1. O

Theorem 8.2.36. Let D C C be a conver domain and let uw : D — R be a convex function
Then u € SH(D).

PROOF. Since u is convex, it is also continuous (cf. [Schwartz:Analiza|). Fix an a € D and
0 <7 < dp(a). Then we have

N N
1 - 27j ]_ - 27
. — : _ (v > : _ 1= —
J(u;a,r) Nlil}’rloo El Nu(cH—re N) > Nl;rg@u( g 1 N(a+re N )) u(a).
j: j:
It remains to apply Theorem 8.2.5. U

Theorem 8.2.37 (Hadamard’s three circles theorem). Let
A={ze€C:r <|z| <ry}

(0 <r; <ry<+o0) and let logu € SH(A). Assume that
limsupu(z) < M;, j=1,2.

2| =7,
Then
log% log%
log:—2 log:—2
u(z) <M, "M, ", ze€A
PROOF. For @ € R put un(z) := |z|*u(z), 2 € A. Observe that u, is logarithmically

subharmonic on A. Now, by the maximum principle (Corollary 8.2.4), we get
12|u(2) = ua(z) < max{r{My,r5Ms}, =z € A.

Taking v € R so that r{!M; = r§ M, we get the required estimate. U



