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Preface

This book is based on lectures on several complex variables given by the authors at the Jagiellonian
University in Krakéw during the period of 1991-1999. The material contains two-semestral course for
graduate students of III and IV year.

The text contains the background theory of several complex variables. Chapter I is of preparatory
nature. In Chapters II-VI we discuss the extension of holomorphic functions, automorphisms, domains of
holomorphy, subharmonic and plurisubharmonic functions, pseudoconvexity, the solution of the d-problem
by means of Hérmander’s L2-methods, and Cousin problems. The aim has not been to obtain completeness
in any direction; in particular, several classical topics (like sheaf theory, Cartan’s A and B theorems, local
theory, or theory of analytic subsets) are postponed to the second part of the book, which is planned to be
written in the future.

The treatment of the subject is rather classical and mostly oriented on d-problem techniques developed
by Hoérmander in [I7]. The reader is however encouraged to consult also other monographs on the theory
of several complex variables, e.g.[15], [25] (where the approach is based on the theory of integral formulas),
[13], [12] (where similar results are obtained by means of local theory); cf. also [10], [19], [23], [24], [33], [35].
We would like to stress out that the choice of bibliography reflects only personal preferences of the authors,
and should be by no means treated as the try to valuate the textbooks on complex analysis.

Every chapter begins with a short summary which contains a rough outline of the material. The exercises
which follow some chapters are based on problems proposed to the students during tutorials.

The reader will note that the contents of Chapter I1I, devoted to the theory of subharmonic and plurisub-
harmonic functions, is much larger than the amount of the material on this subject presented in most of
textbooks on several complex variables. This is due to the traditionally strong position of the theory of
plurisubharmonic functions in the Institute of Mathematics of the Jagiellonian University, and by the in-
creasing importance of this subject to several complex variables, e.g. the recent development of the theory
of the complex Monge-Ampére operator.

The reader is required to be familiar with elements of classical real analysis and complex analysis of one
variable.

The references concerning one-variable theory are directed onto the textbook [4]. Of course, a similar
material on one complex variable can be found in many other classical textbooks, e.g. [2], [26].

It is our great pleasure to record a debt of gratitude to our teacher, Professor Jozef Siciak, who introduced
us into complex analysis.

We thank Professor Peter Pflug for numerous helpful discussions and suggestions during writing this
book. We are greatly indebted to our colleagues Armen Edigarian, Stawomir Kotodziej, and Wtodzimierz
Zwonek who have been conducting tutorials to our lectures and who helped us in corrections of the text.

Piotr Jakoébcezak
Marek Jarnicki
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CHAPTER 1

Holomorphic functions

1.1. Formal derivatives
Let £2 C C™ be open, let a € £2, j € {1,...,n}, and let
= fm): 2 —C™

be a mapping such that
of

G @ 5y

exist@ Define
o1 Of (0 O OF (@) +i2d
0z; 7,V = <8x]( @)= 8%( )) 823( a) = (5333( R 8y]( ))

ng (a) and g f ( ) are called the j-th formal partial derivatives (or Wirtinger derivatives) of f at a.

Remark 1.1.1. (a)

af
8z]

_af
0z, J

= (a).

(*)

(b) Assume that the j-th complex partial derivative %(a) of f at a exists, i.e. the limit
J

U (@)= 1im L(f(atrey) - f(a)

0z C3A=0 A\

exists and is finite (observe the difference between the complex partial derivative g—jj(a) and the formal

partial derivative Zj (a)). Then

af af of af
87.’13]( 37:]( ) 6:/./]( ) 62’]( )
and hence of of of
672"]( azj )7 62’_1( ) 0.

Let K € {R,C}. Recall that the K-(Fréchet) differential fg(a) of f at a is the K-linear mapping
fk(a) : C* — C™ such that

fla+h) = f(a) + fk(a)(h) + o(]|h||) when C" > h — 0.
Obviously, if f{.(a) exists, then fg(a) exists and they coincide.

(1) We always use the following identification of C* and R2*

C* 3 (z1 4+ iy, ok +iyr) — (@1, Y1, - Tk, Yk) € R

(?) For w = (w1, ..., wm) € C™ we put @ := (Wi, ..., Wm).
(3) e1,...,en are vectors of the canonical basis in C"; e; := (ej,1,...,€jn), €jx =0for j #Zkande;;:=1,5=1,...,n.
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If fr(a) exists, then B2;

fala)(n) =3 (52 (0 Re, +

If fL(a) exists, then 24

0z

(a)

(a). =1,
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of
' By;

(a)vj:]-a"'a

n

T
j:1 J

n, exist and

of

82/]'

Zazj )h; +Zazj

n, exist

and

(a)lnlhj)

= (ha,...

= (ha,...

)

yhy) € CT.

eC™.

Remark 1.1.2. Assume that fg(a) exists. Then the following conditions are equivalent:

(i) fg(a) is C-linear;
(i) fé(a) exists;
(iii) 2L

(a)=0,7=1,...,n

= Irnfj,

8“1
7 Oyy
B’Uf

> Oyn

(a)
(@)

(a),

(a)
(a)

T (

Un

82] ?
Assume that m = n and let
Uj = Re fj7 Vj
If {;91];( ) and 8yk (a), k=1,...,n, exist, then we put
2 (0), 1 (a),....,
d d d
For(a), gor(a), .., 5t
Jrf(a) ;= det

duy duy duy,
315:71 (a)’ 31?31 (a)’ ’ agn
v v v
g (a), 52 (a), ... o

Observe that

Jrf(a) = det

Define

[ 85
821

Ofn
851
ofy
821

JRﬁwf(a) = det

8?’71/
L 0z1

(a),...

It is clear that if %(a) =0,

(a), 5y=(a)

> Oyn

5 d 9 i
s aas (@), gy (@), k(@)
-a%a)v%%a)" ’gz:(a)
e (@), 52 (@), 5 ()
5o (a), B (a), -, e (a) |
P ) 9
(a),..., %(0)7 32 (@),..., dEf:z (a)
o or o
7 8; (a), 821 (a),. ,%(a)
P d 9
(@), (@), ()
. -
3 SIOR SORS 20)
k=1,...,n, then
a .
Jrow f(a) = |det ij(a)}
Z

a)

j=1,...

.|

, 1.
Buj Buj
oz (a) > Yk
Ov; 81)]

.

(i.e. f satisfies the Cauchy—Riemann equations at a).
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If g—g(a), 4,k =1,...,n, exist, then we define
oi(a)..... 3 (a) o
Jof(a) := det _— =d t[a;(a)]
9n(q),..., % (a) k 3 k=1,

321

Proposition 1.1.3.
Jrf(a) = Jrwf(a).
In particular, if Ofr(a), k =1,...,n, exist, then

Jaf(a) = |Jcf(a)l*.

Proof. Jrwf(a)

=1,...,n
of; o af; 0f;
:i det T}(a) Zag; (a) J,k=1,...,n ’ [33; (a) + lagi (a):| J,k=1,...,n
N [Fe ) i % )] (22 (a) + %2 (a)]
Fo-ipw),,  lEerigo),,
we add the (n + k)-th column to the k-th column
af; of; .Of;
— 1 e |:d:ci (CL):| 7,k=1,...n ’ [ﬁ(a) + zﬁ(aﬂj,k:l,...,n
o o7, o7, o7,
{Bz; (a):|j7k:1,...,n ’ {81'; (a) + Zay; (a)L,k:L...,n
we subtract the k-th column from the (n + k)-th column
g [l [0
_(l)n det [‘9fk (a) jk=1,...,n LYk (a) Jk=1,..n
S| [F@) [ @)]
L9z N =1, " LOUR N k=1, m
M| Ouy . Qv Ouj . Ovj
L | T
2 Ouj () _ 90U Ous (N _ ;9% }
_[3”; (a) o (G)L,kzl ..... n’ [ayi (a) s (a) jik=1,...,n
we add the (n + k)-th row to the k-th row
s )] (2220
=i" det [&”’“ (@) jk=1,..n’ ‘9%( ) Jk=1,..,n
(52 (@) — 52 (a) F@) i ()]
Oy, Ork Y] k=1,....n " LOVE Ok N k=1,....n
we subtract the k-th row from the (n + k)-th row
], [l
) . " | Dyx .
—det azk 3.k=1,...,n azk Jk=1,..,n| _ J]Rf(a)
=22 J
{3% (G)L,k:L...,n’ [Byk (a)L,k:L...,n
In the sequel we will use also the following differential operators
a,B k m k—la|—|B| m a,B 9 @ 9 el 9
D*P . CP(2,C™) — C (£2,C™), D ::(a—)lmno(a— "oﬁf
21 Zn 21

)Blo...
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where «, 8 € Nj @, |a] + 8] < k. Moreover, we put

4

7] 0
(o]

a._ pa0 _ (Y a5
Dti=D (8z1) O(azn

)", aeNg, |l <k.

1.2. Separately holomorphic functions

Let £2 C C” be open and let f: 2 — C™. Given a € C" and X € C", define
Qa,X = {/\ECICL‘F)\XGQ}, fa,X(/\) = f(a—!—/\X), )\G_me.
Note that 2, x is an open subset of C.

Definition 1.2.1. A function f : 2 — C is separately holomorphic on 2 (f € Os(02)) if

fae; € O0$2e;), a€ R, j=1,...,n

Observe that O4(2) is a ring. Obviously, if n = 1, then O4(£2) = O(12).

Remark 1.2.2. (a) f € O,(£2) iff g—zfj(a) exists for any @ € 2 and j=1,...,n.
(b) A function f : {2 — C is separately holomorphic in {2 iff every point a € {2 admits an open neighborhood
U, C 2 such that f|y, € Os(U,) @

Proposition 1.2.3 (Osgood). For f € O4(£2) the following conditions are equivalent:
(i) f€C(£2);
(ii) f is locally bounded.

Proof. The implication (i) = (ii) is trivial.
To prove the implication (ii) = (i) fix an @ = (a3,...,a,) € 2 and r > 0 such that P(a,r) CC 2
Put C := supp(, . | f|. Observe that for any (by,...,b,) € P(a,r) the functions

K(Clj,’/') 9>\'—>f(b17"'7bj—17>\7bj+1a"'abn)a .]: 17"'7”7

are holomorphic. Hence, by the classical Schwarz lemma (cf. [4], Th. VI.2.1), we get

[f(2) = fla)| < |f(z1,a9,...,an) — flar,a2,...;an)| + -+ |f(z1,. s 2n-1,2n) — (21, oy Zn-1,0n)]

20
< 7(\21 —ar1|+ -+ |z —anl), z2=1(21,...,2n) € P(a,r),

which implies that f is continuous at a. |

Definition 1.2.4. We say that a bounded domain D C C is regular if 9D is the finite union of images of
pairwise disjoint Jordan piecewise C' curves having positive orientation with respect to D.

(%) Ay :=={a € A:a > 0}. To simplify notation we write NZ instead of (No)™.

(5) If U C C is open, then O(U) denotes the space of all holomorphic functions on U in the sense of the one-variable
theory.

(6) That is, f is separately holomorphic iff f is locally separately holomorphic.

(") P(a,7) = Pnla,r) == K(a1,71) X -+ X K(an,rn), where K(a,7) := {z € C : |z — a| < r}; P(a,7) = Pn(a,r) :=
P(a, (r,...,r)).
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A

c)

Figure 1.2.1

Proposition 1.2.5 (Cauchy’s integral formula). Let Dy, --» Dy, € C be regular domains. Put D := Dy X
<+« X Dy, gD :=0Dy X -+- x dD,, and let f € Os(D)NC(D). Then

! B F(ClrenrCo) o G
“”‘@mwém Lmﬂfﬂﬁ““@f%ﬂgmﬂﬁ'QMWAwC—ﬂQ
z=(z1,...,2n) € D. (1.2.1)

The set gD is called the distinguished boundary of D. Observe that the integral is well defined and
independent of the order of integration.

Proof. We apply induction with respect to n. For n = 1 the result reduces to the classical Cauchy integral
formula (cf. [], IV.5).
n—1~n. Fixana=(a',a,) € D' x D,, ;== (D1 X -+ x D,_1) X D,,. We have

1 f(¢ an)
a) = f(d',a,) = 7/ >R qcl. 1.2.2
)= 1o on) = ey [ T (122)
Observe that f(¢',-) € O(D,) NC(D,,) for any ¢’ € dD’.

Indeed, fix a ¢’ € 9yD’" and let D' 5 ¢/, — ¢’. Since f is separately holomorphic, f(¢/, ) € O(D,,) for
any v. Obviously, f(¢/,-) — f(¢’,+) uniformly on D,,. Hence, by Weierstrass’ theorem (cf. [4], Th. VII.2.1),
f(¢) € O(Dn).

Consequently, by the classical Cauchy formula,

1 f(¢6n)

!/
n = 5 7d ns
F(¢an) = 5 . o G
which together with (1.2.2)) gives (1.2.1]). O

1.3. Domains of convergence of power series

Definition 1.3.1. Any series

Z aq(z —20)%, z€C,

aeNy

where (aa)aeNg Cc Cand zg € C™ @ is called a power series with center at zg.

In other words, a power series with center at zg is the series generated by a family (C" > z +——
aa(z — Zo)a)aeN3~

(®) w* == wit oo wp, w= (wi,...,wn) €EC", a=(ai,...,an) € NJ; 00 :=1.
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Example 1.3.2. (a) The geometric series
z
D o
aeNy

where 7 € RZ @ is locally normally convergent in P(r m to the function

P(’I")B(Zh..., I—)H

1—zj/rj

(b) The series
z1\ el 2\ lenl
PN G I
where 7 € RZ,, is locally normally convergent in P(r) to the function

rj+ 2
T — Zj

P(r) 3 (z1,-- v 20) — ||

j=1
Proposition 1.3.3 (Abel’s lemma). If

lag|r® < C, e N{,

o

where r € R, then the series ZaeNQ anz® is locally normally convergent in P(r).

Proof. Since |aqz*| < C|z%|/r*, the result follows immediately from Example a).

Definition 1.3.4. A set A C C" is called:
e circular if Aa € A for arbitrary A€ T, a € A
e n-circled if (A1a1,..., a,) € A for arbitrary Aq,..., A\, €T, (a1,...,a,) € 4;
e balanced if Aa € A for arbitrary A € D, a € A;

e complete n-circled if (A\ay, ..., \ya,) € A for arbitrary A,..., A\, €D, (ay,...,a,) € A

Observe that

A is complete n-circled ——— A is n-circled —— A is circular

N e

A is balanced
Let
C"3 (21, -, 20) =5 (|21, - -, |2al) € RT.

Observe that a set A C C" is n-circled iff A = R7!(R(A)). Consequently, any n-circled set A C C" is

completely determined by the set R(A) C R’}. Obviously, if A C C" is n-circled, then R(A)

9) A>0 = {a € A:a > 0}. To simplify notation we write RZ, instead of (R>0)".
10) =Pnp(r) :=P(0,r), P(r) = Py(r) :=P(0,r).
11) D denotes the unit disc.

(
(
(

— ANR™.

( ) More generally: if ag € C" is fixed, then the set A is called circular with respect to ag if ag + A(a — ap) € A for

arbitrary A € T, a € A. The other definitions may be generalized similarly.
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A

/
|32| |Zz|

R(By(r)) R(Py((r,ry)))

s

AN BENEN
Figure 1.3.1

The mapping R is open. Consequently, if A C C" is n-circled, then A is open in C™ iff R(A) is open in
R .
+
Moreover, if B C R is arcwise connected, then so is R~*(B). In particular, if A C C™" is n-circled, then
A is a domain in C" iff R(A) is a domain in R”} (cf. Exercise .
For every n-circled set A C C" put

log A :={(z1,...,x,) € R™: (e™,...,€"") € A}.

The set log A is called the logarithmic image of A. Note that log A = log(A NRZ,).

We say that A is logarithmically convex (log-convez) if log A is convex.

Notice that A is logarithmically convex iff for any (21,...,2n), (y1,...,9n) € ANRZ, and for any
t €[0,1] the point (z7 ‘ot ..., xL7tyL) belongs to A.

We will see (cf. the Riemann removable singularities theorem that if D C C" is a domain, then
D\{(z1,...,2,) €EC" 1 2y - -+ -~ 2, = 0} is connected. In particular, if D C C™ is an n-circled domain, then
log D is a domain in R™ (cf. Exercise .

Example 1.3.5. Let
D :={(z1,...,2n) € 2(a) : |z1|* ... |zn|* < CY,

where o = (av1,...,a,) € R, C >0, and 2(a) :=U(aq) X -+ x U(aw,) with

U(zx) :=

if x>
{C ite=0 z € R.

C, ifz<0’

Then
logD ={z e R": (z,a) < log C},

where (, ) denotes the standard scalar product in R™.
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/ A
EN T2
D log D
Ty
|2, |
Figure 1.3.2
Fix a power series
Y= Z 2"
aeNy
and let

B=B(2):={2€C": 3050 : Vaeng : |aaz”| < C},
C=C(X):={z€C":Xis summable at z},
D=D(X):=intC.

Clearly D C € C B. The set D is called the domain of convergence of ¥.. We will see (Proposition
that D is connected and, therefore, is indeed a domain in C™.

Recall that for n = 1, if @ # D # C, then B = € = D = K(R) where R is the radius of
convergence of ¥. For n > 1 the situation is more complicated, for instance if ¥ := ijozo zY z9, then
Cx{0}ceC butD=DxC.

Proposition 1.3.6. (a) The set B is complete n-circled and log-convex.
(b) D =int B. In particular, D is a complete n-circled and log-convex domain .
(¢) The series X is locally normally convergent in D.

All the above properties (after formal changes) remain true for power series with an arbitrary center.

Proof. (a) is obvious. Notice that
logB ={z € R" : 3050 Vaeny : (z,) <logC —log|aa|}.

(b) Since D = int € C int B, it remains to prove that int B C D. Let a € int B. Since B is complete
n-circled, there exists an r € RZ, N B such that a € P(r). Now, by Abel’s lemma, we have P(r) C €. Hence
a€eD.

(c) Take a point @ € D and let r € RZ; N B and 0 < § < 1 be such that a € P(fr). By Abel’s lemma,
the series is convergent normally in P(67) and, therefore, it is convergent normally in a neighborhood of a.

O

(13) K(r) == K(0,7).
(1) Observe that if A C C™ is n-circled (resp. complete n-circled), then int A is n-circled (resp. complete n-circled).
Moreover, if A C C" is n-circled, then intlog A = logint A.
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Let f: 2 — C be a function having all complex derivatives at any point of 2. Put

T.f(z) =Y Da(f!(“)(zfa)a, ae . |(*)

aeNy

The series Ty, f is called the Taylor series of f at a. The number
d(Tof) :=sup{r > 0:P(a,r) C D(T.f)}
is called the radius of convergence of T, f.

Proposition 1.3.7. Assume that D = D(X) # & and let
f(z) = Z aqz®, z€D.

aeNy

For B € Ny let DPY. denote the series

3 (g)ﬁ! ao 227, |(19)

aeNy: a>8

Then f has all complex derivatives in D, D C D(D?Y), and

DPf(z) = Z (g)ﬁ! aa 2P, zeD, pe Ng.

a€eNj: a>p

In particular, ¥ = Tof and f(2) = Tof(2) for z € D.

All the aforementioned properties of the series ¥ remain valid (with obvious changes) for power series
with arbitrary center.

Notice the following difference between one and several variables. For n = 1 the radius of convergence
of ¥ is equal to the radius of convergence of the series of derivatives. This is no longer true for n > 1, for

instance if
oo o
o— 14 174
Y= E z] + E 2y,
v=0 v=0

then D(L) =D x D, but D(F2) =D x C|(*7)

Proof. 1t is sufficient to consider the case 8 = ¢; for some j € {1,...,n}. We show first that the series
ox e,
FD DR
J aeNG: a>e;

is locally normally convergent in D. It is sufficient to prove that if » € RZ, N B(X), then the series 9;% is
locally normally convergent in P(7). Let C' > 0 be such that |a,|r® < C, @ € NJ. Then for any 0 < 6 < 1

we have o
sup {|ajaq 279} < — a0l
> s (o T .

aeNg: a>e;

which gives the normal convergence in P(67).
Now fix a zg € D. The series

> (@00, (V) = Y aalzo + Aej)”

a€eNG a€eNG

ali=aq!----- apl, a = (a1,...,an) € Ny.
(1%) (g) — (gi ..... (‘E:), a=(ai,...,on), B=(B1,...,8n) € N}, a <.
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converges locally normally in D, ., to the function f, ... Hence, by the classical one-dimensional Weierstrass
theorem (cf. [4], Th. VIL.2.1), the function f., ., is holomorphic (in particular the derivative %(ZO) =
(fz0,e;)'(0) exists) and

8f o a—e€j
55 (20) = (fz0.6,)(0) = D (@az)z0e) 0) = > ajanz O -
J aeNg aeNG: a>e;
1.4. Holomorphic functions
Definition 1.4.1. Let 2 C C" be open. Put
do(a) :=sup{r > 0:P(a,r) C 2}, ae€ .

We say that a function f : 2 — C is holomorphic in 2 (f € O(£2)) if for any a € {2 there exists a power
series

Z ae(z —a)®

aeNg

and 0 < r < dg(a) such that

f@) =Y aalz =), zeP(ar). [(¥)

aeNg

A mapping f = (f1,..., fm) : 2 — C™ is called holomorphic (f € O(2,C™)) if f1,..., fm € O(£2).
The functions from O(C™) are called entire functions.

Remark 1.4.2. (a) O(£2) is a ring.

(b) A function f : 2 — C is holomorphic on {2 iff for any point a € (2 there exists a neighborhood U, such
that f|Ua S O(Ua)

(c) Every polynomial of n complex variables is an entire function, i.e. P(C™) C O(C™).

(d) Holomorphic functions are infinitely differentiable in the complex sense (by Proposition [1.3.7).

(e) If f € O(02), then D*f € O(2) for arbitrary o € Nj.

Proposition 1.4.3 (Identity principle). Let f,g € O(D), where D C C™ is a domain. Then the following
conditions are equivalent:

(i) f=g;
(ii) there exists an a € D such that T, f = Tag;

(iii) int({z € D : f(2) = g(2)}) # @.

Proof. Clearly (i) = (ii) <= (iii). To prove the implication (ii) = (i) it is sufficient to note that the set
Dy:={2€ D:T,f =T.g} is non-empty open and closed in D. O

Lemma 1.4.4. Let v; : [0,1] — C be a piecewise C' curve. Put v; = ~;([0,1]), j = 1,...,n, and let
@:iyfx - x s — C be a continuous function. Define

1 (G5 Gn) _ 1 ()
@(Z) = (27'('7/)“ /’;1 /n (Cl _ Zl) ..... (Cn o Zn)d(ﬁ .. an . (27’(’1)” /ylx-ux»yn C— ZdC’
2€C™\ () X+ xv8) =: 0.

Then
(a) @ € O(£2);

ere and 1 e sequel, 1I we write z) = n Qa2 —a)®, z € 5 en we assume a 1S contained 1n e
18) H d in th 1, if it Ny @ A, th that A i tained in th

domain of convergence of the series.
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« _ a! @(Clw--;Cn)
D) = i [ | e o
_ o ©(Q) n
B (27"”" /71x--~><7n (C - Z)(H_l de, z€f ac No.

where 1 := (1,...,1) € N";
(c) for any polydisc P(a,r) C {2 we have

D(z) =ToP(2), ze€P(a,r).
Proof. Fix a P(a,r) C {2 and observe that for ((,z) € (7§ x -+ x v}) x P(a, )

1 (z —a)®
SR

aeNy

and the series is locally normally convergent. Hence
1 v(<)
B(2) = [7/ 2 dc] (- ), = e Bla,r).
a%@ (QWZ)n Y1 X XY (C - a)a+1
It remains to apply Proposition [I.3.7} O

The above lemma and the Cauchy integral formula (Proposition [1.2.5) imply the following important
corollaries.

Corollary 1.4.5. Let f: 2 — C. The following conditions are equivalent:
(i) f € O(£2);
(ii) f € Os(£2) NC(L2);

(iil) f is differentiable in the complex sense at an arbitrary point of £2.
Corollary 1.4.6. If f € O(£2), then for every polydisc P(a,r) C {2 we have
f(Z) = Taf<z)7 z e P(avr)'

In particular,
f(z) =Tuf(2), z€P(a,dp(a)), a€ L.

Corollary 1.4.7. Let D C C™ be a complete n-circled domain. Then

Corollary 1.4.8 (Cauchy’s inequalities). If f € O(P(a,r)) NC(P(a,T)), then
ol

D (@) < S lapry o€ NG |(9)

Similarly as in the case of one complex variable, the following corollary is an easy consequence of the
Cauchy inequalities.

Corollary 1.4.9 (Liouville theorem). Let f € O(C™), k € Ng. Then the following conditions are equivalent:
(i) f is a polynomial of degree < k;
(ii) ey > 01 |f(2)] < Cllz|1* for ||2]| = Ro.

For ACC", r e R%y, and r > 0 let

AT = | Pla,r), AW = Al
a€A

Note that if A is compact, then A) is also compact.

(") If]la = sup |f].
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Corollary 1.4.10. For arbitrary compact K C 2 and polyradius r such that K C £ we have
1D fllx < Sl Fllgcery,  f € O2), a €N

Hence, using Corollary [[.4.5] we get

Corollary 1.4.11 (Weierstrass theorem). If O(£2) > f, — f locally uniformly on §2, then f € O(£2) and
Def, — D*f locally uniformly on 2 for any a € Ng.

In other words, we have

Corollary 1.4.12. The space O(£2) endowed with the topology defined by seminorms
o2)> f—|Ifllk, K cCcC,
is a Fréchet space such that for arbitrary o € Nj the mapping
O2)> fr—Df e 0O(N2)
18 continuous.

Corollary 1.4.13. (a) Let
H>(02) :={f € O(2) : || flle < +oc}.
Then (H™(£2),] |l2) is a Banach algebra.
(b) Assume that (2 is bounded, and let
AF(Q) = {f € O(2) : Vaeng, o<k * Tp.ce@) @ Pa=Df in 2}, keNogU{oo}.
Then A*(£2) endowed with the topology defined by seminorms
AM2) 3 fr—= 1D fllo, ol <k,
is a Fréchet space. If k < oo, then the space A*(2) endowed with the norm
fr= > ID%flle
aeNy: |a|<k

is a Banach space.

Corollary iii) implies also
Corollary 1.4.14. The composition of holomorphic mappings is holomorphic.

A bijective holomorphic mapping f : 2 — 2’ (where £2 and 2" are open in C") is called biholomorphic
if f=1 is also holomorphic (cf. Chapter VII).

Corollary 1.4.15 (Inverse mapping theorem). Let f : £2 — C™ be a holomorphic mapping with Jc f(a) # 0
for some a € 2. Then there exists an open neighborhood U of a (U C 2) such that f(U) is an open set and
flu : U — f(U) is biholomorphic.

Corollary 1.4.16 (Implicit mapping theorem). Let {2 be an open subset of C™* x C™ and let f : 2 — C™
be a holomorphic mapping. Assume that

det ({%(a’ b)]j,kzl ..... m) #0

for some (a,b) € 2, where (z,w) = (21,...,2n, W1, ..., W) € C" x C™. Then there exist
an open neighborhood U of a,
an open neighborhood V' of b, U x V C {2,
a holomorphic mapping p : U — V,

such that

{(z,w) €U xV: f(z,w) = f(a,b)} ={(2,0(2)) : 2 € U}.
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Corollary 1.4.17 (Rank theorem). Let f : 2 — C™ be holomorphic and such that rank f'(z) = r for any
z € 2. Then for arbitrary a € {2 there exist

an open neighborhood U of a, U C (2,

an open neighborhood V' of f(a), V .C C™,

biholomorphic mappings @ : D" — U, ¥ :V — E™,
such that #(0) = a, ¥(f(a)) =0, f({U)CV, and

Vo fod(z1,...,2n) = (21,--+,2r,0,...,0), (21,...,2,) €D™

13

Proposition 1.4.18. Let D C C" be a domain and let f € O(D), f # const. Then f is an open mapping.

Proof. Fix an a € D. By the identity principle, there exists an X € C" such that f, x # const in the
connected component S, x of D, x with 0 € S, x. Consequently, the function f, x : S;,x — C is open.
Hence f(a) € int f(U) for any neighborhood U of a. O

Corollary 1.4.19 (Maximum principle). Let D C C™ be a domain and let f € O(D), f # const. Then
(a) |f| does not attain local mazima in D;
(b) if, moreover, D is bounded, then

|f(2)] < sup {limsup|f(2)[}, =€ D.
CeEOD D>z—(¢

Lemma 1.4.20. For any compact K C 2 and v = (rq,...,7) such that K™ C 2 we have

1

—_——— ac® e O

D) Jyn 196 T €O,

where L2™ denotes Lebesgue measure in C™. In particular, for arbitrary 1 < p < oo and for arbitrary compact
K C (2 there exists a constant C' > 0 such that

Ifllx < Cllfllze,  f€ Lp(R2) == O(2) N LP (2, £27),

1fllx <

where
1
I = ([ 1f1Pac) .
Q
Proof. By Cauchy’s integral formula, for every a = (ay,..., a,) € K we have

1 1 T1 Tn 1 27 27 . .
(57”%)(57"2)”(“” < / 5l dﬁ---/ Ty dTp, / / |f(a1—|—ﬁe’01,...,an—l—Tnew“)|d91...d@n
0 0 0 0
1

(2m)"

1
= —— ac® < / ac?m.
(2m)" /IP’(a,r) d 2m)™ Jgar i
O

Corollary 1.4.21. For arbitrary 1 < p < oo (L¥(£2),]| ||1») is a Banach space. The space L3 (£2) (with the
scalar product induced from L?($2, L") @) is a Hilbert space.

Lemma 1.4.22. Assume that a family F C O(£2) is locally uniformly bounded in §2. Then F is equicontin-
UOUS.

Proof. Fix a P(a,r) CC §2. Set C :=sup;c #{||fllp(a,r)}- Now, using the Schwarz lemma, similarly as in the
proof of Proposition [I.2:3] we obtain
2C
If(2) = f(a)] < o
Having Lemma [1.4.22] we can repeat the proof of the classical (one-dimensional) Montel theorem (cf. [4],
Th. VII.2.9) and we obtain

(o1 —a1| + -+ |zn —anl), f€F, z€P(a,r). O

() (f.9) L2 = [ fgdL?", f,g € L2(£2,L£7™).
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Corollary 1.4.23 (Montel theorem). Let F C O(£2) be a family locally uniformly bounded in (2. Then for
arbitrary sequence (f,)52, C F there exists a subsequence which converges locally uniformly to a holomorphic
function on (2.

Proposition 1.4.24 (Vitali theorem). Let D C C™ be a domain and let a sequence (f,)22, C O(D) be
locally uniformly bounded and pointwise convergent on a non-empty open subset U C D. Then the sequence
(f,)22, is convergent locally uniformly in D.

14

Proof. Similarly as in the case of one complex variable, the main difficulty is to show that the sequence
(f,)22, is pointwise convergent in all of D. Let

Dy :={a € D: the sequence (f,)52, is pointwise convergent a neighborhood of a}.

The set Dy is non-empty and open. It is sufficient to show that it is closed in D. Fix an accumulation point
be D of Dy. Let P(b,rr) C D and a € Dy NP(b,r). For every X € C", X # 0, the sequence ((f.)a x)o2,
considered on the connected component S, x of D, x with 0 € S, x, is locally uniformly bounded and
pointwise convergent in (Dg)q,x NSy, x- It is easy to see that this last set is non-empty (because a € Dy) and
open. Hence, by the classical one-dimensional Vitali theorem, the sequence (f,)52 is pointwise convergent in

Sax = {a+AX : A€ S, x}. Therefore the sequence (f,);2; is pointwise convergent in the set | Jyccn Sa,x
which is a neighborhood of b.

Recall that, by the Riemann Mapping Theorem (cf. [4], Th. VIL.4.2), any simply connected domain
D ¢ C is biholomorphic to the unit disc . In other words, if D ¢ C is a domain, then D and D are
biholomorphically equivalent iff they are topologically equivalent.

It is surprising, but for n > 2 the above theorem is not true even in the category of bounded convex
domains.

Theorem 1.4.25 (Poincaré theorem). For n > 2 the unit Euclidean ball B,, is not biholomorphic to the
unit polydisc D".

The proof will be based on the following version of the Schwarz lemma (cf. Exercise .
Lemma 1.4.26. Let || ||1, || [|l2 : C* — R4 be arbitrary C—norms. Put
Bj:={ze€C":|z|l; <1}, j=1,2,
and let F: By — By be a holomorphic mapping with F(0) = 0. Then
IF(2)ll2 < llzlli, 2 € B

Proof. Fix a zg € By \ {0}. Let L : C* — C be a C-linear functional with |L| < || ||2 and |L(F(20))| =
IF(20)]|2 (use the Hahn-Banach theorem). Consider the holomorphic mapping

@A) = L(F(Az0)), [Al <1/llz0]l1-
Then by the classical Schwarz lemma, we obtain
le(M)] < [Al[z0ll1, [Al < 1/llzo]l1-
In particular, if A = 1, then we get ||F'(20)]2 < ||20l/1- O

Proof of the Poincaré theorem. Suppose that f : B,, — D" is biholomorphic. Let a = (ay,...,a,) := f(0).
Define

b 21 — a1 Zn — Qn

D" > ,...,n»—>( by )eID)”.

(Zl . ) 1—a1z 1—a,z,

It is easy to see that @ maps biholomorphically D™ onto D™. Replacing f by @ o f we may assume that
f(0)=0. Put g = (g1,...,9n) := f~1:D® — B,. By Lemma [1.4.26] we conclude that ||g(w)|| = |w| for

any w € D”. Thus
g1 (w)* + -+ |gn(w)? = max{wi ... Jwa [}, w = (wy,...,w,) € D"

Observe that the left-hand side defines a function of class C*°, but the right-hand side is even not differentiable
(for n > 2); contradiction. O
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1.5. Hartogs’ theorem
Theorem 1.5.1 (Hartogs’ theorem). O(£2) = Os(£2) for an arbitrary open subset 2 C C™.

Remark 1.5.2. Observe that there is no analogous theorem for separately R-analytic functions @ For
example, let

72 if (21, 22) # (0,0)
— )zt
[z, 20) : {0 if (21,29) = (0.0)

Then f is separately R-analytic, but is not continuous at (0, 0).
The proof of Hartogs’ theorem will be based on the following

Lemma 1.5.3 (Hartogs’ lemma). Let f : P,(r) — C be such that
f(z,2) € O(Pp_1(r)) for arbitrary z € K(r),
f€O(K(r) xP,_1(8)) for some 0 < <.

Then f € OPy,(r)).

Remark 1.5.4. The lemma is not true without the assumption that f € O(K(r) x P,_1(d)) for some
0 <& < r (even if f satisfies some additional regularity conditions).

For, let us consider the following counterexample due to Leja (cf. [20]; we are going to construct a
function f € O((C\ R_-) x C) such that f(z,-) € O(C) for any z € C, but f is not holomorphic in any
neighborhood of (0,0)).

Let

Ly= |J K(1/k)cCC,

z€R: <0
A= F(kj) \ Lg, By:= F(kj) N (Zk—f—l \ Lgy2), Ck:= F(k) ﬂfk+3, k e N.

7z

|

L
%
E

Figure 1.5.1

(*1) If G C R™ is open and f : G — C, then f is R-analytic if for any zg € G there exist (aa)aeny C C and
an open neighborhood Uy, C G of zg such that for any « € U, the family (aq(z — xo)a)aeNg is summable and f(z) =
ZaeN(} aa(x — x0)®. By Abel’s lemma , the series ZaeNg aa(z — 20)® is normally convergent in a C™-neighborhood
(710 C C™ of zp with (710 NR™ C Ug,. Put fzo(z) = ZQENS aa(z — o), z € ﬁzo~ Then flo € O(ﬁzo) and sz = fin
Uzy NR™.

Thus we have the following equivalent definition: f is R-analytic if for any point zg € G there exist a C"-neighborhood
Uzy C C™ of g with Uzy NR™ C G and f € O(Uy,) such that fr, = f in Uz NR™.

Obviously, R-analytic functions are of class C°°.
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By the Runge theorem (cf. [4], Th. VIIL.1.7) for each k € N there exists a polynomial P, € P(C) such
that
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|Pe(2)] < 1/kF, 2 € Ay UGy, |Pi(2)| > k¥, =z € By.
Let

fz,w) := ZPk(z)wk, (z,w) € C2.
k=1

Observe that f is well defined because for any z € C there exists a ko(z) € N such that z € Ay U Cy, for any
k > ko(z) and therefore

|Pi(2)w®| < (lwl /)", k= ko(2).
In particular, f(z,-) € O(C) for any z € C.
Moreover, for any zg € C\ R_ there exist 7o > 0 and ko € N such that K (zp,79) C A for k > ko. Hence
| P (2)w”| < (Jw|/k)*,  (z,w) € K(z9,70) x C, k> ko,
and consequently, by the Weierstrass theorem, f € O((C\ R_) x C).
Suppose that f is bounded in a neighborhood of (0,0). Let |f(z,w)| < C for (z,w) € Py(r). Then, by
the Cauchy inequalities, we get
|P(2)| < C/rk, keN, ze K(r).
Consequently, taking z € By N K (r) with k> 1, we get
K< |P(z)| < C/rk k> 1

contradiction.

Proof that Lemma [I.5.3 implies Theorem[I.5.1 We use induction with respect to n. For n =1 the theorem
is trivial.
n—1~mn. Fixan 2 CC"=CxC" ! and f € O5(£2).

n-1

Cy

20 Cg
Figure 1.5.2

It is sufficient to show that f is holomorphic in a neighborhood of an arbitrary point (zg,wp) € 2. Let
P, ((z0,wp),2r) C 2, and let

Ak‘ = {’LU € F’ﬂfl(wovr) :szK(zo,r) : |f(sz)| < k}

Clearly Ay, C Agy1. Since f(2,-) € C(Py—1(wo, 2r)) for arbitrary 2z € K(zo,2r) (the inductive assumption),
the sets Ay, are closed. Since f(-,w) € C(K(zo,2r)) for any w € P, _1(wo,r), we get [, Ak = Prn_1(wo, 7).
Using Baire’s property we conclude that int Ay, # & for some kg. Let P,,—1(&0,d) C Apg,. In particular, by
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Osgood’s theorem (Proposition , f € O(K(z9,7) x Pp_1(&,0)). Now we apply Lemma to the
function

17

Pr(r) 3 (z,w) — f(z0 + 2,60 + w),
and we conclude that f € O(P,((z0,&0),7)). It remains to observe that (zy,wo) € Pr((20,0),7). O

Proof of Lemma[1.5.3 Observe that it is sufficient to show that f € O(P,(r’)) for arbitrary 0 < r’ < r.
Thus we may assume that |f| < ¢ < 400 in K(r) x P,_1(0) and that f(z,-) is bounded for any z € P,,_1(r).
We have
flz,w) = Z fg(z)wﬁ, z€ K(r), weP,_1(r),
BeNg !

where . )

fs(z) = @(Dﬁf(z, ))(0) = @(D(O’mf)(z,()), BeNy!, z e K(r).
The last equality follows from the fact that f € O(K (r) xP,,—1(0)). In particular, f3 € O(K(r)) for arbitrary
8. Moreover, by Cauchy’s inequalities, we obtain

1
< n—1
‘f5| < rlﬁlc, ﬁENO .
Applying once more Cauchy’s inequalities (for the function f(z,-)), we have

1 o
|fﬁ(z)| < WHJC(Z’) Pp_1(r)s B € NO 17 EAS K(T)v

and so

lim sup \J”,g(z)|1/‘m <
[B]—=+o0

S|

z € K(r).

We need now the following auxiliary

Lemma 1.5.5. Let 2 C C be open, ¢, € O(£2), p, > 0, v > 1. Assume that the sequence (|, |[P¥)52, is
locally uniformly bounded in 2 and

limsup g, (2)[P» <m, z¢€ .

v—+400

Then for any K CC {2 and € > 0 there exists a vy such that
)P <m+e on K forv > uy. @

Assume for the moment that the lemma is true, and let us finish the main proof.

Write Ng~! = {81, Ba,...} so that |B,] < |Buy1], v =1,2,.... Let 2:= K(r), ¢, := f5,, pv := 1/|B,],
m = 1/r. It is easy to see that all the assumptions of Lemmaare satisfied. Fixa 6 € (0,1) and let £ > 0
be such that (1+7r¢e)f < 1. Applying Lemmamm the compact K := K (6r) we obtain |y, (2)[P* < 1/r+¢
for 2 € K(0r) and v > 1. This means that

1fs(2)] < (% +5)'ﬁ', 2 e K(0r), 18] > 1.

Hence
\fa(2)w?| < [1+7re)0)Pl, 2 e K(6r), we P, 1(0r), |8] > 1.

Consequently, the series

Y felz)u”
BeN 1
is convergent normally in P, (6r), which by the Weierstrass theorem (Corollary [1.4.11)) implies that f €

O(P,(0r)). Since 6 was arbitrary, we get f € O(P,(r)). O

(22) Lemma will be generalized in Proposition |3.2.20]
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Proof of Lemma[I.5.5 The result is local — it is sufficient to show that for any e > 0 and a € {2 there exist
a disc K(a,0) C {2 and vy such that

sup {|le, [P} <m+e, v>w.
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K(a,0)
We may assume that 2 = K(2), a = 0. Let ¢ > 0 be such that |¢,|P» < ¢ in D for arbitrary v. We may
also assume that ¢, # 0, v > 1. Denote by a,1,...,a,,(,) the zeros of ¢, in the disc D counted with

multiplicities (if ¢, has zeros in D). Define

B, () H?(Vl =L aaV Jz, if ¢, has zeros in D
2) =
' 1, otherwise

and let ¢, := ¢, /B,. Observe that |B,| <1 in D, and that |B,| =1 in T. The function #, has no zeros in
D. In particular, it admits a branch y, of the p,-th power in D. Given arbitrary ( € T, we have

lim sup |x,(z)| = limsup |1, (2)|P* = limsup |p, (2)|P* <,
D D

D3>z—¢ Sz—( Sz—(
and so [x,| < ¢ in D for arbitrary v. This means in particular that the family (x, )7, is equicontinuous in
D. Fix an ¢ > 0 and let 0 < § < 1 be such that |x,(z) — x,(0)] <&/2 for z € K(§) and v > 1. Then
v ()7 = [Bu(2) ()" < [ ()P = Ixu(2) < /24 [xw(0)], 2 € K(0), v > 1.
It remains to estimate x, (0). Since
Lo T
v(0)] < — L(ret?) do = — e df, 0<r<l1,
0= 50 [ hetrenlan = o [ 2T ,

the Lebesgue dominated convergence theorem (recall that |y, (re’)| < ¢ and |x, (re??)| — |@, (e??)|P» as
r — 1) gives

27
Ix.(0)] < %/0 I ()P db, v >1.
Let
Ay = {9 € [O727T] : “pu(ewﬂpy < m+5/4, v > k}
The sets Ay, are closed, Ay C Agy1, and (J, o Ar = [0, 27] @ In particular, £!(Ay) —s 27, For v > k

we have
1 0\ |p 1 1 1
O < 5-( [+ Yl do < o= [(m+ /)L (A) + (27 — £1(Aw))]:
2r N4, Jo,2a\Ax 2m
Hence |x,(0)| < m + ¢/2 for v large enough. O

Proposition 1.5.6 (Hartogs’ lemma). Let G be a domain in C" % and let D be a domain in G x C* such
that for each z € G the fiber
D, :={weC*: (z,w) € D}
is connected. Assume that f : D — C 1is such that:
f(z,-) € O(D,), z € G, (%)
f€OWU), where U C D is an open set such that U, # & for any z € G.
Then f € O(D).

Proof. First, we consider the case where G := D" D :=D" U :=D""* x (§D)* (0 < § < 1).

The case n — k = 1 reduces to Lemma [1.5.3

Assume that n — k > 2. By virtue of Hartogs’ theorem, it suffices to prove that f € Og(D™). In view of
(¥) we only need to check that f(-,w) € Os(D"*). Fix a 2o € D"~* and j € {1,...,n — k}. Define

g(C,’U}) = f(ZO,la <3 20,5—15 Ca 20,541y ZO,n—kvw)a (Ca w) €D x Dk'

(?3) Because limsup,,_, | o, [¢v|P¥ < m.
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Then g satisfies all the assumptions of the lemma with n = k + 1. Consequently, g € O(D x D¥), which
shows that f is holomorphic as a function of z;.

In the general case let D denote the maximal open subset of D such that f € O(D). Obviously U C D.
Suppose that 520 G D,, for some zp € G. Since @ # U,, C 520 and D, is connected, there exists a
wy € D, such that dﬁzo (wo) < dp. (wp). Take an r > 0 such that dﬁza (wo) < r < dp, (wo) and let
0 < e < r be such that

Pn_k(ZO,E) X Pk(woﬂ’) cD, ]P)n_k(ZO,é‘) X Pk(wo,t’-}) cD.

Define
g(z,w) := flzo + ez, wo +7w), (z,w) € D"* x D

Then, by the first part of the proof (with § := ¢/r), g € O(D™). Consequently, f € O(P,_x(z0,€) X Px(wo,T));
contradiction. O

Corollary 1.5.7. Let G; C éj C C™ be domains such that O(G;) = O(éj)|gj, j=1,2. Then O(él X
G2)|G1><G2 = O(Gl X GQ)

—_~—

Proof. Let f € O(G1 x G2). For any w € G2 the function f(-,w) extends to a function f(-,w) € O(él).

Define g(z,w) := f(-,w)(z), (z,w) € Gy X Go. Then, by Proposition g is holomorphic.
Now, for any z € Gy the function g(z,-) extends holomorphically to g(z,-) € O(Gs). The same argument

as above shows that the function f(z,w) := g(z,)(w), (z,w) € G1 x Go, is holomorphic on Gy x Ga. O

1.6. Special domains

Recall (Corollary [1.4.7) that if D C C™ is a complete n-circled domain, then any function f € O(D) can
be represented by the power series

f(z) = Z %D"‘J"(O)z“7 z e D.
aeNg

Moreover, the series is locally normally convergent in D. -
Consider a more general case where D is balanced (i.e. D- D = D). Let hp denote the Minkowski
functional of D, i.e.

hp(z) :=1inf{t > 0: ; e D}, zeC™

Lemma 1.6.1. (a) If D C C" is a balanced domain and h := hp, then

h(Az) =|Alh(z), AeC, zeC", (1.6.1)
D={zeC":h(z) <1}, (1.6.2)
h is upper semicontinuous on C". (1.6.3)

Conversely, if h : C" — R4 satisfies (1.6.1) and (1.6.3), then the set D given by (1.6.2) is a balanced
domain.
(b) If D is a complete n-circled domain and h := hp, then
R(A1z1, .. dnzn) < h(2), AM,..., €D, 2= (21,...,2,) €C", (1.6.4)
h(e%zy,... €% 2,) = h(z), O1,...,0, €R, 2= (21,...,2,) € C", (1.6.5)
h is continuous.

Conversely, if h satisfies (1.6.1), (1.6.3), and (1.6.4), then the set D given by (1.6.2) is a complete

n-circled domain.
In particular, if h satisfies (1.6.1), (1.6.3)), and (1.6.4), then h is continuous.
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Proof. (a) Property is a direct consequence of the definition of the Minkowski functional.

It is clear that {h < 1} C D. Take an a € D\ {0} and let 0 < 6 < 1 be such that a/0 € D (D is open).
Then h(a/0) < 1, which gives h(a) = 6h(a/0) < 6 < 1. Thus is proved.

Take an a € C™. To prove that h is upper semicontinuous at a we have to prove that for any C' > h(a)
there exists a neighborhood U of a such that h < C in U. Observe that b := a/C € D. Let V be a
neighborhood of b with V- C D. Put U := CV. Then, for z € U we have h(z) = Ch(z/C) < C.

(b) The proof of is elementary. Property follows directly from .

To prove that h is continuous it suffices to show that h is lower semicontinuous at any point @ € C™ such

that h(a) > 0. Fix such an a = (ay,...,a,). We may assume that a1 - ----as #0, asy1 = -~ = a, =0 for
some 1 <s<n. Fixaz=(21,...,2,) € C", put
z
m:=min{| Z|:j=1,...,s},
ay

and let \; € D be such that
)\jz—j =m, j=1,...,s.
a;

Then conditions (1.6.1) and (1.6.4) give
mh(a) = h(may,...,mas,0,...,0) = h(A121,..., As2s, 02541, -.,02) < h(2).

Consequently,
min{|ﬁ| 2j=1,...,sth(a) < h(z), z=(z1,...,2,) €C",
ay

which implies the lower semicontinuity of h at a. O

Proposition 1.6.2. Let D C C" be a balanced domain and let f € O(D). Then

f(z)=>"Qu(z), z€D, (1.6.6)
v=0

where

1 « o
Q.(2) = Z aD F(0)z%. |(**)
aeNy: |a|=v
Moreover, for any compact K C D there exist C >0 and 6 € (0,1) such that
Q.(2)| <CO”, ze K, veN,.
In particular, the series converges locally normally in D.

Proof. Let h := hp. Take an a € D\ {0}. The function
K(1/h(a)) 3 A % f(Xa)

is holomorphic. Hence

fla) = pu()) = 3" Lo (0) = 3" Qula).
v=0 """ v=0

Thus the formula (1.6.6) is true (and the series is pointwise convergent in D). It remains to prove the
estimate.
Take a compact K C D. Let 6 € (0,1) be such that

L:={X\z:|A\|<1/0, z€ K} C D.
Then, for any a € K, by Cauchy’s inequalities, we get

1 v 14 v
Qu(a)l = — el 0] < llgall ot < 1167, v e No.

(24) Observe that @, : C* — C is a homogeneous polynomial of degree v.
(?%) K(1/0) :=C.
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Definition 1.6.3. Let D be a domain in C", let 1 < k <n — 1, and let G denote the projection of D onto
C"* G = n(D), where

C"*xCF 3 (z,w) = zeC" ",
We say that D is a Hartogs domain over G with k-dimensional balanced fibers if for any z € G the fiber
D, :={weC*: (z,w) € D}

is balanced.

If D, is complete k-circled for any z € G, then we say that D is a Hartogs domain over G with complete
k-circled fibers. Of course, if k = 1, then there is no difference between Hartogs domains with 1-dimensional
balanced fibers and Hartogs domains with complete 1-circled fibers @ in this case we simply say that D
is a complete Hartogs domain over G.

If D, is only k-circled for any z € G, then D is called a Hartogs domain over G with k-circled fibers (we
point out that we do not assume that D, is connected). If k = 1, then we shortly say D is a Hartogs domain
over G.

|w]

Figure 1.6.1

Remark 1.6.4. (a) Let D be a Hartogs domain over G with k-dimensional balanced fibers. Define
H(Zaw):HD(va) = th(w)’ (va) GGX(Ckv

where hp_ is the Minkowski functional of D, z € G. Observe that

D ={(z,w) € G xCF: H(z,w) < 1}, (1.6.7)
H(z, \w) = |\H(z,w), (z,w)e G xCF, (1.6.8)
H is upper semicontinuous on G' x C*. (1.6.9)

)

To prove that H is upper semicontinuous we can argue as in the proof of Lemma a): if H(zo,wp) < C,
then (zp,wo/C) € D. Hence there exists a neighborhood V' of (zp,wo/C) such that V" C D. Put U :
{(#,Cw) : (z,w) € V}. Then U is a neighborhood of (zg,wp) and H < C'in U.

Conversely, if a function H : G x C¥ — R, satisfies and 7 then the set D given by
is a Hartogs domain over G with k-dimensional balanced fibers.

i Q

(%) If k =1, then D, = C or D, = K(R(z)) for some R(z) > 0.
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(b) D is a Hartogs domain over G with complete k-circled fibers iff the function H = Hp from (a) satisfies
additionally the following condition
H(z,\wi, ..., \wg) < H(z,w), Ai,...,\t €D, z€ G, w=(wy,...,w) € CF.
(¢) In particular, if k = 1, then D is a complete Hartogs domain over G iff
D={(z,w)€GxC:|w| <e ™
where u : G — [—00,400) is upper semicontinuous
(d) If k =1, then D is a Hartogs domain over G such that D, is an annulus for any z € G ift
D={(z,w) € GxC:e’® < |w| <e "3},

where v,u : G — [—00,+00) are upper semicontinuous and such that v(z) + u(z) < 0 for any z € G.
Hartogs domains of the above type are sometimes called Hartogs-Laurent domains over G.

Proposition 1.6.5. (a) Let D be a Hartogs domain over G with complete k-circled fibers. Then any f €
O(D) can be represented by the Hartogs series

fz,w) = Z fa(z)w?,  (z,w) € D,
BENE
where
fa(z) = %D(‘)’B)f(z,o), 2€G, BENS.
Moreover, for any compact K C D there exist C > 0 and 0 € (0,1) such that
|[fa(z2)w’| < COVI, (z,w) € K, B €N,

In particular, the series converges locally normally in D.
(b) If D is a Hartogs domain over G with k-dimensional balanced fibers, then any f € O(D) can be represented
by the Hartogs series

fzw) =) Qu(zw), (z,w)€D,
v=0

where

1
Q. (z,w) = Z ED(O”B)f(z,O)wﬁ, (z,w) € G x C*, v e Ny. (*)
|B|=v
Moreover, for any compact K C D there exist C > 0 and 6 € (0,1) such that
|Qu(sz)| < 001/’ (Z7w) € K7 S I\TO~

In particular, the series converges locally normally in D.

The case of Hartogs domains with k-circled fibers will be considered in Proposition

Proof. In virtue of Corollary and Proposition [1.6.2] we only need to check the estimates. Take a
compact K C D.
(a) Let 6 € (0,1) be such that

L:={(z, \w1,..., \wg) : (z,w1,...,wg) € K, |N;| <1/0, 5=1,...,k} C D.
Now, if (z,w) € K, then by Cauchy’s inequalities we get
[fo(2)w?| < |IfL6"), 5 € NG.
(b) We argue as in the proof of Proposition Let 6 € (0,1) be such that
L:={(z, \w): (z,w) € K, |A\| <1/6} C D.
(®") u=1log H(-,1).

(?8) That is, D, = {w € C: r(2) < |w| < R(2)} for some 0 < r(z) < R(z) < +oo.
(?%) Notice that Q, € O(G x CF) and Q. (z,-) is a homogeneous polynomial of degree v.
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Then, by Cauchy’s inequalities, we get
‘Qu(zaw” < Hf”LaU? (Zaw) € K, veN.
O

1.7. Weierstrass Preparation and Division Theorems

If f is a function holomorphic in a connected neighborhood of 0 € C with f(0) =0, f £ 0, then f has a
unique decomposition f = zPg, where g is holomorphic and g(0) # 0. The aim of this section is to generalize
the above result to the case of several variables.

Definition 1.7.1. Any function W of the form

P
W( z0) = 25 + Y Wi
j=1
where W; is holomorphic in a neighborhood of 0’ € C"~! and W;(0') =0, j = 1,...,p, is called a Weierstrass
polynomial of degree p with center at 0 € C". @

Note that if W is a Weierstrass polynomial of degree p, then W (0', z,,) = 2%, and so W (0, -) has a zero
of order p at z, = 0.

Theorem 1.7.2 (Weierstrass Preparation Theorem). Let Uy be a neighborhood of 0 € C™ and let f € O(Up)
be such that the function f(0/,-) has a zero of order p at z, = 0. Then there exists a polydisc P, 0 € P C Uy,
such that the function f has in P a unique decomposition f = h- W, where hy W € O(P), h(z) #0, z € P,
and W is a Weierstrass polynomial of degree p.

The Weierstrass Preparation Theorem will be a consequence of the following theorem.

Theorem 1.7.3 (Weierstrass Division Theorem). Let Uy be a neighborhood of 0 € C™ and let f € O(Up) be
such that the function f(0',-) has a zero of order p at z, = 0. Then there exist a polydisc P = P(p) C Uy
and a constant ¢ > 0 such that any function g € H*>°(P) has in P a unique decomposition g = q - f +r,

where g € O(P), 1 € O(P,,—1(0"))[Zn] @ deg, r <p, and |q||lp < c||g]p-

Proof that the Weierstrass Division Theorem implies the Weierstrass Preparation Theorem. Let P = P(p) C
Uy be as in the Weierstrass Division Theorem. Then, taking g := 22, we obtain the decomposition
22=q-f+r nP

with

p—1

qeO(P), r=Y 17, €OP,_1(¢))[Zn], degy r<p.

§=0

In particular,

A =q(0,2,) £(0',2n) + Y _7(00)2], 20 € K(on).

Hence ¢(0) # 0 and 7;(0') =0, j =0,...,p — 1. Shrinking g, we may assume that ¢(z) # 0, z € P. Setting

h(z) :=1/q(z) and W (2, zp,) := 2E —r(2', zn), 2 = (2, 2n) € P, we obtain the required decomposition. The
uniqueness follows from the uniqueness of the decompos1t10n in the Weierstrass Division Theorem.

In fact, if f = h-W in P, then setting q : 1/h and 7 = 2P — W we obtain the decomposmon

zP =¢q- f+7in P. Hence h=hand7=rina neighborhood of 0 and so, by the identity principle, h=nh

and r=ron P. |

(30) More generally, a Weierstrass polynomial with center at a = (a’,an) € C™ of degree p is a function W of the form
W (2 zn) = (2n — an)p + Z W;(2')(2n — an)P~7, where the W; are holomorphic in a neighborhood of a’ € C"~! and
W;(ad)=0,j=1,.

(31) A[Z] denotes the ring of polynomials with coefficients in A.
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Lemma 1.7.4. For arbitrary P = P(@) C C" and p € N, every function ¢ € O(P) admits a unique
decomposition

( n) fﬁpl(z/’ Zn) + 4102(2:/’ Zn)a (zl7 zn) € P,
with ¢1 € O(P), p2 € O(Pn_1(0))[Zx], degy, w2 < p. Moreover

1
7|l llp-

n

lerllp <

Proof. The existence and uniqueness of the decomposition are obvious. Since

/ plla@ j
WQ(Z,Zn)—Z |a P (Z’O)Zn’

Cauchy’s inequalities imply that ||p2||p < p|l¢|lp, and hence
sup [zn1| < (p+ 1)l p-

Consequently,

le1llp <
O
Proof of the Weierstrass Division Theorem. Let P = P(g) CC Uy be an arbitrary polydisc. The polyradius
o will be modified in the sequel. By Lemma we may assume that f = zPf; + fo, where f1, fo are
holomorphic in a neighborhood of P, f5 is a polynomial of degree < p with respect to z,. In particular,
f(O/,Zn) = ngl(ol>zn)+f2(0/azn)7 Zn € K(Qn)

Since lim, o f(0/,2,)/28 € C,, we get f1(0) # 0 and f2(0’,-) = 0. Shrinking @, we may assume that
f1(z) # 0 in a neighborhood of P. Let h := fo/f1. Since h(0',-) = 0, we may shrink @’ (with fixed g,) so
that

Ih]lp < 20 Qi Ty (1.7.1)

From now on g is assumed to be fixed.
Take a g € H*>°(P). Setting f = 2P f1 + fo, we see that the required decomposition g = gqf + r is
equivalent to the decomposition g = s(zE + h) + r, where

s€O(P), re€OPn1(0))[Zn], degy,r<p, |lsllp <clgllp,

with a constant ¢ independent of g. Moreover, the decomposition g = ¢f + r is unique iff the decomposition
g = s(z2 + h) + r is unique.
We proceed by recurrence. Let sp := 0 and let

g—h-sp_1=2Esk+ry (1.7.2)
be the decomposition obtained from Lemma k > 1. Since
h(skp—1 — sk) = 28 (Sk41 — Sk) + Tha1 — Ths
the second part of Lemmam (applied to ¢ := h(sx_1 — s)) and imply that

1
l|Sk+1 (s —sk—1)llp < §||5k — Sk—1l|p-

This means that the sequence (s;)52, is convergent uniformly in P to a holomorphic function s. Applying
(1.7.2) we conclude that ry, — 7 uniformly in P (r must be a polynomial of degree < p with respect to z,)
and g = s(zE + h) + r. Applying once more Lemma (With @ :=g—sh) and (1.7.1), we obtain

4 + 1

1
Isllp < S lsle,
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and hence
2(p+1) ~
lslle = =—llgll» =cllgll -
Suppose that there exists another decomposition g = (22 + h) + 7. Then (s —38)(22 + h) + r — 7 =0, and
therefore, by Lemma [1.7.4] (with ¢ := h(5 — s)) and (1.7.1]), we would have

~ p+1 1 ~
s —3sllp < 7 1h(s =)l < 5lls = 5]lp-

Hence s = s, and consequently 7 = r. g

1.8. Elementary properties of the ring of germs of holomorphic functions

Let a € C™. Define
Ou :={(U, f) :U € B(a), f €OU)},
where B(a) denotes the family of all open neighborhoods of a. For (U, f), (V,g) € 0, we put

(U.f) % (V.g) €5 Fwes : W CUNV, flw = glw.
It is clear that ~ is an equivalence relation. Put
O, =0 =0,/ ~.
The class [(U, f)]a is called the germ of f at a. We write foi= [(U, f)]o. Define

(U, N]e +1Vigle = [(UNV, f+9)le, [UNle-[(Vg)le :=[UNV,f-g)]e.

One can easily check that the operations 4, - : O, x O, — O, are well defined and that (O,,+,") is a
commutative ring with the unit element (the ring of germs of holomorphic functions at a).

Let § = f/‘; € O,. Observe that the series T, := Ty f is well defined (it is independent of the representant
f). The mapping

O, 3 f+— T,f € the ring of all power series with center at a

which are convergent in a neighborhood of a

is an isomorphism.

Let O™ .= 0.

Let a = (a’,a,) € C". We say that a germ F € O™ is z,-normalized if there exist r > 0 and a
representation (P, (a,r), f) of F such that f(a’,-) # 0 in K(a,,r). Then we will denote by ord, z, F the
order of zero of f(d/,-) at ay.

Note that the germ F € O™ is an invertible element of the ring o (i.e. it is a unit in the ring (9((1"))
iff F(a) #0[2) ]

Let ngn) C Ot(ln) denote the set of all germs of Weierstrass polynomials with center at a. Note that
W™ can be considered as a subset of (9((1771) [Z,]. According to the general rule, let W™ := Wén).

We have ordg, z, W = deg, W for any W € Wi,

Lemma 1.8.1. (a) Let F, G, W € O™ be such that F = G- W. Assume that F € O"~V[Z,], W € WM,
Then G € 0O"=Y[Z,].

(b) Assume that a germ F € O™=Y[Z,] is z,-normalized and irreducible in O~V [Z,]. Then F is also
irreducible in O™,

(32) The value of the germ F' at a point a is well defined.
(33) The theorem is not true if W is not a germ of the Weierstrass polynomial; for instance 1 = (1/W) - W, where W is a
germ of a polynomial such that W(0) # 0.
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Proof. (a) By the division algorithm, we obtain F = G - W + R, where G1, R € O"~V[Z,], deg, R <
deg, W. Therefore we have two factorizations: F' = G- W and F' = G - W + R. The uniqueness of the
factorization in the Weierstrass Division Theorem implies that G = G; € O~Y[Z,] (and R = 0).

(b) Suppose that F' = G - H, where G, H € O™, and H is not a unit in O, i.e. H(0) = 0. Clearly H
is zp-normalized and ordg z, H > 0. By the Weierstrass Preparation Theorem we have H = K - W, where
W ewm, degy W > 0. Therefore F' = (G- K)-W, and so, by (a), G- K € 0=1(Z,]. We have obtained
a factorization in O~1[Z,]. Since W is not a unit in O"~1[Z,], G - K must be a unit. In particular, G
is a unit in O™, g

Lemma 1.8.2. Let F, G, W € O"~V[Z,] be such that W = F - G. Assume that W € W™ . Then there
exists a unit H € O=Y such that H - F, (1/H) -G € W,

Proof. Let r:=deg, F,s:=deg, G,

26

F= zr:FjZfl_j, G = i:GjZZ_j, W = Zp:WjZ,’l"j,
§=0 §=0 =0

where Wy =1, W;(0") =0, j =1,...,p. In particular,

=W, 20) = F(0',20) - G(0',20) = ) Fj(0)277 x ) G(0)277,
j=0 j=0
and hence 1 = Fy(0') - Go(0), F;(0) =0,5=1,...,r,G;(0')=0,j=1,...,s. O

Lemma 1.8.3. Let f; € O(P,(r)), f;(0) =0, f; #0, j € N. Then there exists a unitary transformation
L:C" — C" such that fj o L is z,-normalized, j € N.

Proof. Let
fi2)= D" Qi z€P(r),

k=k(7)

where

Qj,1 is a homogeneous polynomial of degree &,

Qixr=0k=0,...,k(j) -1,

Qjri) #Z0, k(j) > 1.

Let V; := Q;;(j)(()); V; is a closed cone with int V; = @. Hence, by the Baire property, there exists
an X € C", || X| =1, such that X ¢ V; for any j € N. Let L : C* — C" be a unitary mapping with
L(en,) = X. Then

(fj o L)(0',2) = fj(L(2nen)) = fi(2aX) = Z Qj’k(X)Zﬁa
k=k(j)
and so (f; o L)(0',-)#0, j € N. O

Proposition 1.8.4. Og") is a unique factorization domain.

Proof. Tt is sufficient to consider the case a = 0. We apply induction with respect to n. The case n = 1 is
clear: every germ F € O, F 0, has a unique factorization F = zPG, where G is a unit in O,

Suppose that the theorem is true for O~ Consequently, O"~1)[Z,] is also a unique factorization
domain.

Fix a germ F € O™ which is not a unit. We may assume that it is z,-normalized. By the Weierstrass
Preparation Theorem we have F = G- W, where G is a unit, and W € W), By the inductive hypothesis W
admits a factorization W = Wy - - - - Wy, where Wq,... W) € O("*l)[Zn] are irreducible. By Lemma
we may assume that Wy,..., W, € W™ . By Lemma b) the elements W1y,..., W) are also irreducible
in O, Therefore we have obtained a factorization F = H-Wj - - --Wy, where H is a unit and Wy, ..., Wy €
W) are irreducible Weierstrass polynomials.
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Suppose that there exists another factorization

where V7, .. Vg € O(”) are irreducible. Then, by the Welerstrass Preparation Theorem, we get F' =
H. Wl ----- Wg, where H is a unit in O™ and Wl, ... Wz are irreducible Weierstrass polynomials. Recall
that the decomposition in the Weierstrass Preparation Theorem is unique. Hence Wy -- - -- Wi = Wl ----- Wz.
Now, since O"~1)[Z,] is a unique factorization domain, we get k = ¢ and W; = Wj, j=1,...,k (up to a
permutation). O

Proposition 1.8.5. Let U be a neighborhood of 0 € C™ and let f,g € O(U) be such that f(0) = g(0) = 0.
Assume that the germs F := fo and G :=go are relatzvely prime (in o ). Then:

(a) There exists a numberr > 0 such that the germs fz, g. are relatively prime in o foranyz € P,(r) CU.
(b) If n > 2, then for cmy nezghborhood of zero V.C U and for any w € C there exists a z € V such that

9(2) # 0 and f(2)/9(z) =

Proof. (a) We may assume that F and G are z,-normalized. By Lemmaand the Weierstrass Preparation
Theorem we may assume that F, G € W™, The germs F and G are relatively prime in the ring O(*~1) [Z.].
Hence, by the Gauss lemma, they are relatively prime in k[Z,,], where k denotes the quotient field of on=1,
Consequently, there exists an 7 > 0 and f1, g1 € OPp—1(r))[Zn], h € O(Pn—_1(r)), h # 0, such that

h(z") = f1(2) f(z) + g1(2)9(2), 2= (2, 2,) € Pu(r). (1.8.1)

Suppose that for some ¢ = (¢',(,) € P,(r) the germs fc, g¢ are not relatively prime, and let C' € (’)En)
be their nontrivial divisor. Then clearly C is z,-normalized (in (’)én)). Consequently, by the Weierstrass
Preparation Theorem, we may assume that C € WC("). On the other hand, equality 1' shows that C' must

divide ?LC. Recall that h depends only on z’. Hence, using Lemma a), we conclude that deg, C = 0;
contradiction.

(b) Fix a w. Replacing f by f —wg we may assume that w = 0. We may also assume that f and g are
zp-normalized. By the proof of (a) there exist r > 0, f1,g1 € O(P,(r)), h € O(Pr_1(r)), h £ 0, such that
equality is true.

Suppose that (b) does not hold, i.e. there exists a neighborhood of zero V' C P, (r) such that {z € V :
f(z) =0} C {z €V :g(z) =0} Let P(7) CC V be such that f(0',z,) # 0 for 0 < |z,] < 7,. Let
e := min{|f(0/, z,)| : |2n| = 7 }. Shrinking 7/ (with fixed 7,,) we may assume that |f(2',z,) — f(0',2,)] < e
for 2 € P,_1(7’), |2n| = 7n. Now, by Rouché’s theorem (cf. [4], Th. V.3.8), for every 2’ € P,_1(7’) the
function f(2',-) has a zero in the disc K (7,,). In particular, for any z’ € P,,_1(7') there exists a z, € K(7,)
such that f(2', z,) = g(#/, z,) = 0. Hence, by , h =0 on P, (7); contradiction. O

Proposition 1.8.6. (’),(In) 1s Noetherian.

Proof. We may assume that « = 0. We apply induction on n. In the case n = 1 every ideal is principal.
Assume that @1 is Noetherian.

Let Z ¢ O™ be a nontrivial ideal. We may assume that there exists an F, € Z such that Fy is z,-
normalized. Let p := ordg, z, Fy. Using the Weierstrass Division Theorem, we see that Z is generated over
O™ by {Fy} UM, where

M:={FeTn0o"V[z,]: deg, F < p}.

Observe that M is an O™~ Y-module. Hence, by the Hilbert theorem, M is finitely generated over O("~1).
Let Fi,...,Fy be generators of M. Then Fy, F, ..., Fx generate T over O, 0
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Exercises

1.1.  Prove the following slight generalization of the Cauchy integral formula. Let P := P(a,r) and let

feOP)NC(PUOyP). Then
f(z) = ! / f(odg, z€P.
0

(2mi)™ Jo,p C— 2
Verify whether, in general, the Cauchy integral formula from Proposition [1.2.5 remains true for f €
O(D)NC(DUIyD).
1.2. Let g :[0,1] — R,

1 1
NG S ST A
1—% 1f%§x§1

Put fy := gr — gr—1, k € N (go := 0). Prove that the series ), .\ fx is uniformly summable on [0, 1], but is
not normally summable on [0, 1].

1.3. Let A C C" be n-circled. Prove that A is connected iff R(A) is connected.

1.4. Find the domains of convergence of the following series:

oo o0 oo oo
Z 2™, Z nlz"w™, Z(zw)", Z (n/mhz"w™.
n,m=0 n,m=0 n=0 n,m=1

1.5.  Check whether the set (D x (2D)) U ((2D) x D) can be the domain of convergence of a power series.
1.6. Find a power series whose domain of convergence is the ball B, C C2. B
1.7.  Prove the following version of the Cauchy inequalities. If f € O(B(a,r)) NC(B(a,r)), then

k!
1 (@)l < FlflB@r, keNo

(recall that for L := f*)(a) we have ||L|| := max{|L(X)| : | X]|| = 1}).

1.8. Let D C C" be a domain such that D NR™ # @&. Show that if f € O(D) is such that f =0 in
DNR"™, then f=0.

1.9. Let D C C™ be a domain and let D* := {Z : z € D}. Assume that f € O(D x D*) is such that
f(2,2) =0 for z in a neighborhood of a point pg € D. Prove that f = 0.

1.10. A set A C 2 is called a determining set for O(£2) if for any function f € O(£2) the following
implication is true fla =0 = f =0.

Construct a countable set A C C™ such that A NB(r) is determining for O(B(r)) for any r > 0.

1.11. Suppose that f € O(C™) is a complex polynomial with respect to each variable separately. Prove
that f is a polynomial.

1.12. Let D C C" be a bounded domain. The smallest closed subset A C D such that

Vicopyne(d) Jaca : |f(a)l =max{[f(z) : z € D}.
is called the Shilov boundary of D and is denoted by dgD. Notice that dsD C 9D.
Prove that:
(a) asﬁn = 8Bn
(b) If Dy,..., D, are fat @ bounded planar domains, then dg(Dy X -+ X Dy,) = 0g(D1 X - -+ x D) =
(0D1) x -+ x (0Dy,). In particular, dg(D™) = 9p(D™) = T™.
1.13. Let D C C" be a bounded domain. The smallest closed subset A C D such that

vfeO(_Q):ﬁc.Q Jaca : |f(a)| = max{lf(z)‘ HEAS E}

is called the Bergman boundary of D and is denoted by dgD. Prove that dg D is well defined. Observe that
dgD C 9sD.
Calculate OgB,, and OgD™.

(3%) 2 is fat if £2 = int £2.
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Exercises

Prove that for the domain
D= {(21,22) €C?: 0 < |z1| < 1, 2| < || 108121}
we have
8011))2 = 83D ; 6SD = {(21,22) S (C2 : |2’1| S 1, ‘Zg| = |21|710g|21|}.

1.14. Show that a complete Hartogs domain D C C" is convex iff the set {(2/,]2,]) € C"1 x R :
(2',2,) € D} is convex in R?"~1,

1.15. Let D C C™ be an n-circled domain. Prove that D\ {(z1,...,2,) € C" : 21 - -+ -z, = 0} is
connected (without using the Riemann removable singularities theorem).






CHAPTER 2

Extension of holomorphic functions

2.1. Hartogs and Riemann theorems

Theorem 2.1.1. Let D be a domain in C* = C* ! x C, n > 2, and let M be a relatively closed subset of
D such that D\ M is connected. Put

C"I1xC>s (z,w) s zeCm L.

Assume that:
1° for every point a € p(D) there exist an open neighborhood U, C p(D) of a and a compact set K, C C
such that

p ' (Us) N M C U, x Ko CD.
2° there exists a point ag € p(D) such that
p Hag)N M = 2.
Then O(D\ M) = O(D)|p\m, i-e. any function f € O(D \ M) extends holomorphically to D.

C

/

Figure 2.1.1

Proof. Fix a function f € O(D\ M). Consider the family § of all pairs (P, £2), where
P is an open convex subset of p(D),
{2 is an open subset of C being a finite union of regular domains (cf. Definition 2=G1U---UGyN
with G; NGy, = @ for j # k,
such that
p Y (P)NM cc Px 2 ccD.

Define
1 f(z:¢)

AN T

¢, (z,w) € P x {2

31
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Then fp,g(z,-) € O(N) for every z € P, and fp)g(',ﬂ)) € O4(P) for every w € 2. Moreover, fpﬂ is
continuous. Hence, by Osgood’s theorem 3l fr.o € O(P x £2). Using the Cauchy theorem (cf. [4], IV.5)
we easily conclude that fp/ o = fpr.ovin (P’ x 2') N (P" x ") for arbitrary two (P', "), (P", ") e §
@1

Observe that, by 1°, for each (a,wg) € D there exists a pair (P, {2) € § such that (a,wy) € P x 2
Thus the formula

32

f(z,w) = fp,g(z,w), (z,w) € P x (2,
defines a function holomorphic on D.
By 2° and the Cauchy integral formula we see that there exists an open neighborhood U,, such that
f=finD Np~1(U,) € D\ M. Since D\ M is connected, the identity principle implies that f=fin
D\ M. a

It is clear that if M C D is compact then conditions 1° and 2° from Theorem [2.1.1] are always satisfied.
Consequently, we get the following

Corollary 2.1.2 (Hartogs’ extension theorem). Let D be a domain in C*, n > 2, and let K be a compact
subset of D such that D\ K is connected. Then O(D\ K) = O(D)|p\k |(%) |

Notice that the above result does not hold for n =1 @
Corollary 2.1.3. Forn > 2 the zeros of holomorphic functions are not isolated.

Proof. Suppose that f € O(P,(a,r)), n > 2, f(a) =0, and f(z) # 0 for z # a. Then, by Hartogs’ extension
theorem, the function 1/f would extend holomorphically onto P, (a,r); contradiction. a

Definition 2.1.4. A subset M of an open set 2 C C™ is called thin in (2 if for every point a € {2 there exist
a polydisc P =P(a,r) C £ and a function ¢ € O(P), ¢ # 0, such that M NP C ¢=1(0)|(°) |

Remark 2.1.5. (a) If M is thin, then int M = @.
(b) If M is thin in 2 and N C M, then N is thin in 2.
(c) If My, M are thin in {2, then My U My is thin in 2.
Assume that p € O(D), ¢ # 0, where D C C" is a domain. Then ¢~1(0) is thin in D.

Theorem 2.1.6 (Riemann removable singularities theorem). Let D be a domain in C" and let M C D
be thin and relatively closed in D. Then every function f € O(D \ M) which is locally bounded in D @
extends holomorphically to D.

Moreover, the set D\ M is connected.

Proof. Fix a function f € O(D \ M) such that f is locally bounded on D. Observe that the problem of
continuation across M is local. In fact, if every point a € D admits a polydlsc P, and a function fa € (9( )
such that fa fin P, \ M, then by identity principle and Remark 2 a ), the function f defined as f = fa
in P, gives the required extension.

Fixan a € D. We may assume that a = 0 € M. Let ¢ € O(P(r)), ¢ # 0, be such that MNP(r) C = 1(0).
Let » = (¢',7,) = (r1,...,7,). Changing the coordinate system if necessary (cf. Lemma we may
assume that:

(*) Assume that (P’ x £2') N (P"” x £2"") # @ and let (20, wo) € (P’ x £2') N (P x £2") be fixed. Let {2} be the connected
component of 2’ N 2’ that contains wg. There exists an 2 C 2’ N 2" such that (P’ N P"”,2) € §F and 2N 2 # &. By the
Cauchy theorem, we conclude that fp/ o/ (20, w) = fprapr (20, w) = fprr i (20,w) for any w € 2. Hence, by the identity
principle, fpr_ g (20,w0) = fprr o (0, w0)-

(2) Let Uy, Ko be as in 1°. It is clear that there exists an {2 as in the definition of § such that K, C 2, wg € §2, and
{a} x 2 CC D. Let P CC U, be an open convex neighborhood of a such that P x 2 CC D. Then (P, 2) satisfies all the
required conditions.

(3) See the end of § 4.2 for another proof.

(1) For example, f(z2):=1/z, z € C\ {0}.

(5) Note that M need not be closed in 2.

(6) That is, every point a € D has a neighborhood U, such that f is bounded in U, \ M.
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¢ is zp-normalized, p(0',-) has zero of order p at z, =0 (p € N),
¢ is holomorphic in a neighborhood of P(r),

(0, 2,) #0 for z € K(ry,) \ {0}.

Cznl
rﬂ

52(3’)

7

5] (Z’)

Figure 2.1.2

Let € := min{|p(0", z,)| : |2n| = mn}. Shrinking ' (with fixed r,) we may assume that |p(z’, z,) —
o0, z,)] < € for 2/ € Pp_1(r'), |2n| = rn. Now, by Rouché’s theorem (cf. [4], Th. V.3.8), for every
z' € P,_1(r’) the function p(z’,-) has exactly p zeros (counted with multiplicities) in the disc K(r,,), say
&(7), ..., & (%), and ¢(2',-) does not vanish on the circle C(r,,). In particular, for every 2/ € P,_1(r')
the function f(2’,-) is holomorphic in K(r,,) \ {&1(2),...,&,(2")} and locally bounded in K (r,). Hence, by
the classical (one-dimensional) Riemann theorem on removable singularities (cf. [4], V.1), f(2’,-) extends

~ —~—

holomorphically to a function f(z/,) € O(K(ry)). Let f(',zn) := f(2',-)(zn), (2/,2,) € P(r). By the
Hartogs Lemma f € O(P(r)). Tt is clear that f = f in P(r) \ M.

It remains to prove that D\ M is connected. Suppose that D\ M = 2y U 21, where {2y and 2, are
non-empty, disjoint, and open. Then the function f := j in 2;, j = 0,1, would extend holomorphically onto
D; contradiction. O

Proposition 2.1.7. Let D C C be a regular domain (cf. Definition , let G € C"! be an arbitrary
bounded domain, and let wy € G be fized. Put

H:= (D x {we}) U (@D x G) c C™.

Then every function holomorphic in a neighborhood of H extends holomorphically to a neighborhood of D xG.
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A
n-1
CM,’
Wy
a
D C,
Figure 2.1.3

Proof. Note that H is connected. Let f € O(U), where U is a neighborhood of H. Then there exist domains
Dy C C, Gy € C* 1, and a neighborhood V of wy such that:

e Dy is regular, G is bounded,
e D CC Dy, G CC Gy,

. (EO X V) U (8D0 X Go) cU.
Define

Flzow) = 2% N fC(C_ﬂz) d¢, (z,w) € Dy x Go.

One can easily check that f € O(Dy x Gy) and f=finDyxV (by the Cauchy integral formula). Finally,
by the identity principle, f = f in a neighborhood of H.

O

Corollary 2.1.8. Every function holomorphic in a neighborhood of the set

H:= (D x {0}) U(T x D) c C?

extends holomorphically to a neighborhood of D x D.
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2.2. Biholomorphisms

Theorem 2.2.1. Let 2 C C" be open and let F = (Fy,..., F,) : 2 — C" be holomorphic. Then the
following conditions are equivalent:
(i) F(92) is open and F : 2 — F(£2) is biholomorphic;
(ii) F is injective and JcF(z) #0, z € £2;
(iii) F is injective.
Proof. The implications (i) = (ii) = (iii) are obvious.

The implication (ii) = (i) follows from the inverse mapping theorem (cf. Corollary [1.4.15)).

(iii) = (ii) (Cf. [28]). We apply induction on n. The case n = 1 is well known. Assume that the result
is true for n — 1 and let

A:={a€ 2:F'(a) =0}.

Take an a € 2\ A. We may assume that a = F'(a) = 0 and gf: (0) =c#0. Let

G(z) = G(¢,20) == (¢, Fu(2)), 2= (2,2,) €R2CC" ! xC.

Observe that G(0) = 0 and JcG(0) = ¢ # 0. Hence, by the inverse mapping theorem (Corollary |1.4.15)),
there exists an open neighborhood U of 0, U C {2, such that G(U) is open and G|y : U — G(U) is
biholomorphic. Let

H = (Hy,...,H,):=Fo(Gly)™':GU) — C"™
Then H is an injective holomorphic mapping with H,,(w) = w,. Take a P(r) C G(U) and define

Hw') := (Hy(w',0), ..., Ho_1(w',0)), w' €Pp_y(r).

Observe that H : P,_q(r) — C" ! is injective. Moreover, JeH(0',0) = JcH(0'). By the inductive
assumption we get JeH(0') # 0. Hence JoH(0) # 0 and, consequently, JcF(0) # 0.
It remains to show that A = &. Suppose that A # & and let a € A. We may assume that a = F(a) = 0.
Put
u(z) = |F)|” = [Fi(2) + - + |[Fa(2)]?, 2z €0
Notice that ©=1(0) = {0}. Fix a ball B(r) CC {2 and let
to := min{u(z) : z € IB(r)}.

Put U; := {2z € B(r) : u(z) < t}. Observe that U, CC B(r) for 0 < t < ¢;. By the Sard theorem (cf. [6],
Th. 3.4.3) there exists a t € (0,%y) such that gradu(z) # 0 for all z € 2 with u(z) = ¢. In particular,
ANOoU; = @. Let D denote the connected component of U; that contains 0. Then K := AN D is a compact
thin set with 0 € K. In particular, the set D \ K is connected (Theorem . Observe that, by the first
part of the proof, we have A = {z € 2 : JcF(z) = 0}. Consequently, by the Hartogs theorem (Corollary
, the function 1/JcF extends holomorphically to D; contradiction (cf. Corollary . ]

2.3. Cartan theorems
Given an arbitrary domain D C C™ set
Aut(D) :={F : D — D : F is biholomorphic}, Auty (D) :={F € Aut(D) : F(a) =a}, a€D.

Obviously, Aut(D) is a group and Aut, (D) is a subgroup of Aut(D). The group Aut(D) is called the group
of automorphisms of D. We say that Aut(D) acts transitively on D if for arbitrary z’,z" € D there exists
an F' € Aut(D) such that F(2') = 2".

Notice that if # : D — G is biholomorphic, then

Auwt(D)> Fr— ®oFod ! € Aut(Q)

is a group isomorphism.
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Remark 2.3.1. (a) (cf. [])

=~ = az+b _~ a,b

Aut(C)={C> 2z — =1 d eC: a,bc,deC, det [c,d] # 0},

Aut(C)={C>2+—az+beC: a,beC, a+#0},

Aut(D)z{DSz»—)ewlz;fED: 0 €R, acD};

—az
Aut(C), Aut(C), Aut(D) act transitively.
(b) Let
1
A::{Z€C1E<|Z‘<R}.

Then

Aut(A)={A3z2+— 2 € A: 06R}U{A92i—>ei91€A: 0 € R};
z

Aut(A) does not act transitively; cf. [29].

Indeed, fix an F' € Aut(A). Let C:=C(1) and let A_ :={1/R < |2| < 1}, Ay := {1 < |z| < R}. Since
F~1(C) is a compact subset of A, there exists an R’ € (1, R) such that F~1(C) c {z € C: 1/R' < |z| < R'}.
Consider the set By := F({z € C: R’ < |z| < R}). Since By NC = @&, the set By is contained either in
A, orin A_. Taking 1/F instead of F' (if necessary), we may assume that By C A;. Now consider the set
B_:=F({z€C:1/R<|z| <1/R'}). It is clear that B_ C A_. Thus

lim |F(z)]=1/R, lim |F(z)|=R.
|z| =R

|z|=»1/R

Hence, by the classical Hadamard three circles theorem (cf. [4], Th. 3.13; see also Proposition [3.2.37)), we get

og 12!
/R

R = |z|, =€ A.

log % 1

R

|F(2)| < (1/R)"* /= R

Since F~! has the same properties, we conclude that |F~!(w)| < |w| for any w € A. Thus |F(z)| = |z| for
any z € A, and, therefore, there exists a § € R such that F(z) =€z, z € A.

Theorem 2.3.2 (Cartan). Let D C C" be a bounded domain, let a € D, and assume that F': D — D is a
holomorphic mapping such that F(a) = a and F'(a) =1id. Then F =id. @

Proof. Without loss of generality we may assume that a = 0. Suppose that F' # id. Fix r, R > 0 such that
P :=P(r) C D C B(R). We have
F(z)=> Qi(z), z€P,
k=0

where @y : C* — C” is a homogeneous polynomial of degree k. By our assumptions, Qo = 0 and @; = id.
Let kg > 2 be such that Q2 = -+ = Q-1 =0, Qk, # 0. Let F{) denote the v-th iterate of the mapping
F,ie. FO :=id, F“t1) .= F®) o F. Then

FW(2) = 2+ vQu, + Z Qui(z), z€P
k=ko+1

Hence, by the Cauchy integral formula, for any z € P we get
1 [ FY(C) v
Qi ()l = N5 | —gmer Al Smax{IFY(C2)| :CeTH< R, vz L,
Letting v — 400, we obtain @, = 0; contradiction. O

(") Notice that the assumption that D is bounded is essential (take for instance D = C, F(2) := 2(1 — 2), a := 0).
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Proposition 2.3.3 (Cartan). Let D,G C C™ be circular domains with 0 € D, 0 € G, such that D is
bounded, and let F': D — G be a biholomorphic mapping with F(0) = 0. Then F is a linear isomorphism.

A1O]

Proof. For 6 € R put

37

Hy(z) := F~ (7 F(e2)), ze€D.
Then Hy is well defined, Hy € Aut(D), Hyg(0) = 0, and Hy(0) = id. Therefore, by Theorem Hy =id,
ie.
F(e"2) =e"F(z), 2€D,0cR.
Let

F(2)=) Qu(2), z€P(r),
k=1
be the expansion of F' into the series of homogeneous polynomials in a polydisc P(r) C D. Then
F(z) =Y ¢ Qu(2), zeD, §eR.
k=1

This means (Exercise) that @, = 0 in P(r) for £ > 2, and so, by the identity principle, F' = @;. Therefore
F is a linear mapping. Since F' is biholomorphic, it must be a linear isomorphism. O

2.4. Automorphism group of D"
Given a € D put

Theorem 2.4.1.

Aut(D") = {D" 3 (21,- .., 2n) — (€7 hay (25(1)), - - -, € P, (20(n))) € D™ :
0;eR, a; €D, j=1...,n, 0 € §,} = &.

Autg(D™) = {D" 3 (21,...,2n) — (ewlzg(l),...,ew"zo(n)) eD":0,eR, j=1...,n, 0 € 6,} =: B,

where &, denotes the group of all permutations of n-elements.
The group Aut(D") acts transitively.

Proof. It is easy to see that & is a subgroup of Aut(D"), & is a subgroup of Auty(ID"™), and & acts transitively
on D™. Tt remains to show that Auty(D") C &,. By Lemmaand Proposition any automorphism
F € Auto(D") is a linear isomorphism such that |F(z)| = |z|, z € D™. Let [L; x| k=1,...n denote the matrix
representation of F'. We have

n
max {|Y Ljgzel} =max{|z1],..., |z}, 2= (21,...,2,) €D
Jj=1,..., n 1
In particular,
max{|Ligl,...,|Loikl} =1, k=1,...,n, |Lji|+--+|Ljn| <1, j=1,...,n.

Thus the matrix [L; ;] has in each row, and each column, exactly one nonzero element (which must have
absolute value 1). This means that F' € &. O

(®) Notice that the assumption that D is bounded is essential (take for instance D = G = C2, F(z1, 22) := (21 + f(22), 22),
where f € O(C) is a nonlinear entire function such that f(0) = 0).

(%) ct. Exercise
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2.5. Automorphism group of B,
For a € B, let

1 T TaP(lal - (z.a}a)  flalPa + (.0}
Xal2) = e I~ (z.q)

if a # 0,

Xo(z) : = id,

where (-,-) denotes the standard complex scalar product in C"®. Let $4(C") denote the group of unitary
automorphisms of C™.

Recall that a linear mapping L : C* — C" is unitary if (L(z"),L(z")) = (#/,2"), 2/,2"" € C" (or,
equivalently, || L(z)|| = ||z||, z € C").

Notice that the mapping ¥, is defined in the domain

D,:={2z€C":(2,a) #1} DB,
and y4(a) = 0.
Theorem 2.5.1.
Aut(B,) ={Uoxe: U € U(C"), a € B, }, Auto(B,,) = LU(C").

The group Aut(B,,) acts transitively.

Proof. The fact that Autg(B,,) = U(C,,) follows immediately from Lemma and Proposition 2.3.3]
We move to the characterization of the full group Aut(B,,). Since x,(a) = 0, we only need to prove that
Xa € Aut(B,,).
Fix an a € B,,. The case a = 0 is trivial, so assume that a # 0.
Direct calculations show (Exercise) that

(1—({a,a))(1 = (z,w)) =
1- <Xa(z)7Xa(w)> - (1—<z,a>)(17 <a,w>)’ Z7w€B’ﬂ
(cf. [30], Th. 2.2.2). Taking w = z, we conclude that x,(B,) C B,, and x,(0B,,) C 9B,,.

In particular, x, © Y—q is well defined in a neighborhood of B,,. Using once again direct calculations, we
prove (Exercise) that x, o x_q = id. Hence x, € Aut(B,,) and (xa)™! = X—a- O

2.6. Laurent series
Given r~ = (r{,...,ry), v" = (r{,...,r}) € R with ry <r;r,j: 1,...,n, let
A=A(r ,rT):=A; x--- x A, C C",
where
Aji={zeC:r; <|z| <r]}.
Let f be holomorphic in a neighborhood of A. Given r = (r1,...,7,) € RZ;N A, define
ao(r) =al(r) = ! / 1) d¢, aeZ”".

(2mi)™ Joypery COTE

Proposition 2.6.1. (a) The number a, = af, := af (r) is independent of r and

\a“ﬁ”{j#, acZ", reRY;NA. (2.6.1)

(b) If r; =0 for some j € {1,...,n}, then aq =0 for every a = (au,...,an) € Z" with a; <0.
(c) For every 0 < 0 < 1 with § > 0y := max{ r;/r;r :j=1,...,n} we have

laaza, < |Ifl|la@'tIT ol o = (aq,...,a,) € Z", (2.6.2)
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with
Ap = A(%r‘, Or).

(d) The Laurent series ), aa2® converges locally normally in int A.
(e) f(2) =D pezn @a?z®, z€int A
Proof. (a) We apply induction on n. For n = 1 the result is well known (cf. [4], V.1.11). Assume that it is

true for n — 1. Let r = (r,...,7m), ¥’ = (r,...,7,) € RZy N A. Then
1 . d¢ 1 . d¢
f (! _ F(+6n) / / n_oo_ _- F(6n) n
aa(T ) i /C(T/)a(al"“’o‘"1)((r17.”,rn1))Cﬁn+1 i et a(al’.“,an,l)((rla...,Tnfl)) gz,ﬂrl
=al((ry,....,rn1,70)).
Similar argument with respect to the first variable shows that
CLé((Th s ’rn—lvriL)) = CL?:(’I").

Directly from the definition of a,(r) we get (2.6.1).

b) Use (2.6.1) with r; — 0.

(¢) Fix a = (aq,...,a,) € Z" and 0y < 0 < 1. We may assume that aq,..., a5 > 0, qgy1,...,0, <0
with0 < s <n. Takeaz = (z1,...,2,) € Ag with z1-- - -z, # 0. Let r := (|z1]/6, ..., |25|/0, 0|zs41], - - - , 0] 2n])-
Observe that r» € R%; N A. Using (a), we get:

| a| < HfHA' 1|o¢1 o |Zn an Hf||A9a1+~-~+as—as+1—~~—o¢n — ||f||A9|a1\+"'+|an\.

d For every compact subset K C int A there exists 0 < # < 1 such that K C Ay. Now we can apply

5 (1]

) We apply induction on n. For n = 1 the result is well known. Assume that it is true for n — 1. Fix
az= (21, ") € int A and observe that

, 1 ,
1@ =3 el = 3 (5 /cm) félglﬁl) Ay )"

a1 EZ a1 €Z
= 71 f(C . 1 f((u)
-2 (27Ti /c( al“( D, e )dgl) =2 (27rl /c( 1) Ca1+1 C1>
a1€Z a’ezn—1 aeZn
1 F(¢1,¢)
gz:n 2mi /C a1+1 W /C’(r2)><~-~><c(rn) (¢)e'+1 a1 46 )d(: ) QEZZH aq 2%, O

Put
V; =Ctx{0}xC" P cC, j=1,...,n

Proposition 2.6.2. Let D C C" be an n-circled domain and let f € O(D). For r € DNRZ, put

_ ! f(©) n
aq(r) = @ri) /81?’7“) Catt ¢, a€elZ".

Then:
(a) The number an, = ao(r) is independent of r (o € Z™).
(b) For any compact K C D there exist C > 0 and 0 < 0 < 1 such that

aaz® ||k < COlorlFFloanl o e 7,

In particular, the series ) cyn aa2® converges locally normally in D.

(1°) Ct. Example[1.3.2[b).
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(¢) f(2) = Xnezn a2z, 2z € D. (d) Assume that DNV ; # & for some j € {1,...,n}. Then aq =0 for
every o = (a, ..., o) € Z™ with a; <0 and, consequently, f extends holomorphically to the domain

DY) = {( Xz, 2") : (2, 25,2") € DC CI™1 x C x C*J, X e D}.
(e) If0 € D, then f =Tyf in D m and the function f extends holomorphically to the domain
D i={(\z1, ..., An2n) i M. s An €D, (21,...,2n) € D}

40

|Z2|

N

|21|

Figure 2.2.1

Proof. (a) Fix v’ = (ry,...,r,), v" = (r{,...,7r) € DNRY,. Since D NRZ, is connected, there exists a
curve 7 : [0, 1] — DNRZ, such that y(0) = " and (1) = r”. Since the set v([0,1]) is compact, there exist
N € N and annuli AV) = A(r=(j),7(j)), 5 =1,..., N, such that

7([0,1]) Cint AM U - Uint AN cc D,

r' €int AV ¢” € int ANV,

int AW Nint AUTD £ g j=1,..., N—1.

By Proposition a) we know that for fixed j the coefficient a,(r) is independent of » € AU) NRZ,.
Put af) := a,(r) for r € AW ARZ,. Consequently, since int AU Nint AUHD) £ &, we get aq(r') = al)) =
o= aM = an(r).

(b) Observe that for every compact subset K C D there exist N € N, annuli AY) = A(r~(j),r"(5)),
j=1,...,N,and 0 < 6 < 1 such that K C A(gl) U---u AéN) CC D. Now we apply Proposition [2.6.1(c).

(c) follows immediately from Proposition [2.6.1|e).

(d) First observe that there exist r~ and r* such that r; = 0 and A(r~,r*) C D. Hence, by Propo-
sition m(b)7 aq = 0 whenever a; < 0. By (b), the series converges locally normally in D@ and,

therefore, its sum defines there a holomorphic extension of f.
(e) follows from (d). O

Proposition 2.6.3. Let D C C" be a Hartogs domain over G with k-circled fibers. Then any function
f € O(D) can be represented by a Hartogs—Laurent series

f(z,w) = Z fa(z,w)w?,  (z,w) € D, (2.6.3)

BELk

(11) Cf. Corollary

(12) Observe that D is a complete n-circled domain.
(*¥) If K, C, and 6 are as in (b), then ||aaz®| 7y < cgloaltFlonl o € 77 where K9 := {(2/,Azj,2") : (¢/,2j,2") €
K, X € D}. Moreover, Jccpint K() = D).
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where fg € O(D) and for any z € G the function fg(z,-) is constant on any connected component of the
fiber D, B € ZF.
For any compact K C D there exist C > 0 and 0 € (0,1) such that
| f5(z, w)wP| < coslt+IBl(z w) e K, B=(B1,...,Bk) € ZF.

In particular, the series converges locally normally in D.
Moreover, if DN (G x {0}¥) # @, then fz = 0 for all B ¢ N& and (2.6.3)) reduces to a Hartogs series

(cf. Proposition [1.6.5(a)).

Proof. For (z,w) € D let D,,, denote the connected component of D, such that w € D,,. By
Proposition the function f can be represented in the form ([2.6.3]) with

1

where r is an arbitrary vector from D, ,, ﬂR’;O (we know that the formula is independent of r € D, ,, ﬂR’;O).
In particular, fz(z, ) is constant on any connected component of D,. Moreover, if 0 € D, ,,, then fz(z,w) =0
for all 3 ¢ N§.

Observe that r in can be chosen to be locally independent of (z,w). Hence fs € O(D), B € ZF.

If DN (G x {0}*) # &, then by the identity principle, fz = 0 for all 3 ¢ NE.

We pass to the proof of the estimate. It suffices to consider only the case where K = Ko x A, Ky CC G,

A::{(wl,...,wk)eck:rj_ < |wy| gr;', ji=1,...,k}
for some 0 <7 <r;' <+oo,j:1,...,k: Let 6 € (0,1) be such that
L:= Ky x {(w1,...,wg) E(Ck:t%“j_ <|w;| <r}/0, j=1,....k} CD.
Then, by Proposition [2.6.1] we get
[fo(z,w)w?| < [0 () e K, g ezt O

2.7. Domains of holomorphy

Recall that if 2 & C, then each boundary point of (2 is a singular point for a function holomorphic in
2. By virtue of the Hartogs theorem 2.1.2] a similar result is not true for 2 ¢ C™ with n > 2. Thus, it is
natural to look for characterizations of those open sets in C", n > 2, which are regions of holomorphy.

On the other hand, even for n = 1, if we restrict the class of all holomorphic functions in {2 to, for
instance, the class of all bounded holomorphic functions in {2, then not all open sets 2 C C are regions
of existence of such functions; e.g. each function from H*°(DD,) extends holomorphically to . The same
situation appears for n > 2 if, for instance, 2 = D\ M, where M is a relatively closed thin subset of D
(cf. the Riemann theorem . Thus, it seems to be interesting to consider also the case where an open
set £2 C C™ is the region of holomorphy with respect to a family F C O(£2).

Observe the following additional problem. Let {2 := C\ R, and let f := Log be the principal branch of
the logarithm. Then f cannot be holomorphically continued to a larger plane domain, but it is well known
that f can be holomorphically continued to a Riemann surface which is no longer a plane domain.

One could expect that the above multivaluedness of holomorphic continuation disappears if we simulta-
neously extend all holomorphic functions. Unfortunately, this is not true — cf. Example[2.8.1] Consequently,
to study maximal holomorphic extensions of open sets in C™ we have to consider ‘multivalued’ regions over
C™ (called Riemann regions).

Definition 2.7.1. Let 2 C C™ be open and let @ # F C O(£2). We say that {2 is an F-region of holomorphy
if there are no domains !~2, 29 C C™ such that

Q¢ 0,

@ # 0y C 02NLQ,

(14) Any compact subset of D can be covered by a finite number of compacts of the above type.
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for every f € F there exists an fe O(_(NZ) such that j‘v: fin £2p.
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Observe that by the identity principle ]?is uniquely determined by f. Moreover, if {2 is not an F-region
of holomorphy, then we may always assume that (2 is a connected component of 2 N 0.

If 2 is an {f}-region of holomorphy, then we say that (2 is the region of existence of f (or that the
function f does not extend beyond (2).

If 2 is an O(§2)-region of holomorphy, then we shortly say that (2 is a region of holomorphy.

If 2 is connected, then we will say that 2 is an F-domain of holomorphy (resp. the domain of existence
of f, resp. a domain of holomorphy).

Figure 2.3.1

Remark 2.7.2. (a) If 2 is an F-region of holomorphy, then {2 is a G-region of holomorphy for any G O F.
In particular, any F-region of holomorphy is a region of holomorphy.

(b) 2 is an F-region of holomorphy iff {2 is an [F]-region of holomorphy, where [F] is the minimal subalgebra
A of O(£2) such that

F CA,
Zl7~~~7ZnEA7
A is O-stable, i.e. (967fl7 e 8‘1’1 € A for any f € A.

(c) £2 is an F-region of holomorphy iff any connected component D of {2 is an F|p-domain of holomorphy.
(d) C™ is an F-domain of holomorphy for every @ # F C O(C™).
(e) Every open subset 2 & C is an F-domain of holomorphy with respect to the family

1
={f —_— 02}.
F=A{ 9z»—>z_a,a§§ }

In particular, every open subset of C is a domain of holomorphy.
(f) Every open and fat subset 2 ¢ C is an F-domain of holomorphy with respect to the family

1 _
F:={1 e — %Y.
(@52 1 ag D)

In particular, every open and fat subset of C is an H* ({2)-domain of holomorphy.

(g) Let K be a non-empty compact subset of a domain D C C", n > 2, such that D\ K is connected. Then,
by Theorem D\ K is not a domain of holomorphy.

(h) Let M be a non-empty closed thin subset of a domain D C C™. Then, by Theorem D\ M is not
an H*>°(D \ M)-domain of holomorphy.

(i) Let D be an n-circled domain with 0 € D such that D is not complete. Then, by Proposition D is
not a domain of holomorphy.

(*%) 2 is fat if £2 = int £2.
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Proposition 2.7.3. (a) Assume that {2 is not a region of holomorphy and let fZ, 29 be as in Definition
with F := O(£2). Then

f@2)cf(2), feo).
(b) Assume that £2 is not an H>®(§2)-region of holomorphy and let £2, 2y be as in Definition with
F :=H>(82). Then

1fllg < fle, feH=(2).

Proof. (a) Suppose that for f € O(£2) and a € 2 we have f(a) & f(£2). Let g := 1/(f — f(a)). Obviously
g€ O(R). Since g- (f — f(a)) =11in 2, we get §- (f — f(a)) =1 in 2; contradiction.

(b) Suppose that for some f € H>®(£2) and a € 2 we have |f(a)| > || f|o. Put g := 1/(f — f(a)). Then
g € H*((2) and we can argue as in (a). O

Proposition 2.7.4. (a) Assume that for every a € 0f2 there exists an f, € O(£2,D) such thatlim,_,, |fo(2)] =
1 (each such a function f, is called a barrier function). Then 2 is an H(§2)-region of holomorphy.
(b) Every conver domain D C C™ is an H™(D)-domain of holomorphy.

Proof. (a) Let £2 and §2y be as in Definition with F = H>®(£2). We may assume that (2 is a connected
component of 2N 2. Let a € 92N 2N d82. Then, by Proposition [2.7.3(b), |f.| < 1 in 2. Moreover,
| fa(a)| = limg,52—a | fa(2)| = 1. Hence, by the maximum principle, |f,| = 1 in £2; contradiction.

(b) We may assume that D & C". We apply (a). Fix an a € dD. Since D is convex, there exists a real
affine function £ : C* — R such that £ < 0 in D and £(a) = 0. Let

(z) =bo+ Z(bjmj +ciyi), 2= (x1+ W1, .., Tn+Yn),
j=1

with bg,...,bn, c1,...,cn € R, Put
L(z):=bg+ Z(bj —icj)z;.
j=1

Then ¢ = Re L. Let f, :=el. We have |f,| =Rl =ef < 1in D and f,(a) = 1.
g

Proposition 2.7.5. Let A C {2 be an arbitrary dense subset and let F C O(S2). Then the following
conditions are equivalent:
(i) 2 is an F-region of holomorphy;
(ii) for any a € A and r > dp(a) there exists an f € F such that d(To f) <, i.e.
do(a) =inf{d(T,f): f € F}, ac€A.

Proof. (i) = (ii). Suppose that for some a € A and r > dgn(a) condition (ii) does not hold. Then the
polydiscs 2 := P(a,r), 2y :=P(a,dgn(a)) satisfy the conditions of Definition contradiction.
(i) = (i). Suppose that {2 is not an F-region of holomorphy and let {2, {2y be as in Definition m

Take a point a € AN §2y such that dp(a) < dz(a). Then d(T,f) = d(Tof) > ds(a) > do(a) for any f e F;
contradiction. O

Definition 2.7.6. Let F C O(£2) be a vector subspace. Assume that F is endowed with a Fréchet space
topology. We say that F is a natural Fréchet space in O(S2) if the identity id : F — O(£2) is continuous,
i.e. if a sequence (f,)52; C F is convergent to fo € F in the sense of the topology of F, then f, — fj
locally uniformly in 2.

Remark 2.7.7. O(02), H*>(2), Ak(2), LPH(§2) are natural Fréchet spaces.

Let
N(F) :={f € F: f does not extend beyond §2}.
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Proposition 2.7.8. Let F be a natural Fréchet space in O(§2). Then the following conditions are equivalent:
(i) £2 is an F-region of holomorphy;
(i) N(F) # 2;
(i) M(F) is of second Baire category in .F.
Proof. The implications (iii) = (ii) = (i) are obvious.
(i) = (iii). Let A C {2 be an arbitrary countable dense subset of 2, A = {aq,as,...}, and let

1
Fik =A{f € F:d(To, f) > do(a;) + %}, j,keN.

By Proposition [2.7.5] we have
F\NF) = {J Fix-
J,keN
Fj i is a vector subspace of F and Fj & F for every j,k € N (in virtue of (i)).

We define a topology on Fj ;: a sequence (f,)o2; C Fj is convergent to fo € F, if f, — fo in F
and T, f, — T4, fo locally uniformly in the polydisc P(a;,dg(a;j) +1/k). The above topology is a Fréchet
topology and the mapping id : F; ;, — F is clearly continuous. In particular, by the Banach theorem @
Fjk is of the first category in F. Consequently, 91(F) is of the second category.

O

Immediately from Definition we obtain:

Remark 2.7.9. (a) If £2, is an F,-region of holomorphy, then (2 := int ", ., £2, is an F-region of holomorphy,
where F :=J,c; Flo-
Indeed,

inf{d(T,f): fe F} = zrelginf{d(Taf) cfeF}= }1615 dg,(a) =dgo(a), ae€ 2.

In particular, if £2,, ¢ € I, are regions of holomorphy, then (2 is a region of holomorphy.
(b) If £2; C C™ is an Fj-region of holomorphy, j = 1,..., N, then 2 := (2; x --- x 2y is an F-region of
holomorphy, where
F={fomj:feF;,j=1,...,N}
and m; : C™t oty — C™ is the natural projection.

In particular, if £21,..., 2y are regions of holomorphy, then {2 is a region of holomorphy.

For example, if {21, ..., £2,, C C are arbitrary open subsets, then {27 X - - - x {2, is a region of holomorphy
in C™.

Indeed,

inf{d(T,f): feF} = j:rln.i‘r.lNinf{d(Ta(f om;)): f € F;}
= ‘_minNinf{d(Tajf) cfeFt= j:?j?,N dg,(aj) = do(a),

Jj=1,..,

)

a=(ay,...,an) € £2.
(c) If £2 is a region of holomorphy, then for arbitrary functions fi,..., fy € O(£2), the set G := {z €
:1fj(z)] <1, j=1,...,N} is a region of holomorphy.
Indeed, if a € G is such that dg(a) = dp(a), then
dg(a) =dgo(a) =inf{d(T.f) : f € OW2)} > inf{d(T,f): f € O(G)} > dg(a).
If dg(a) < do(a), then there exist j € {1,..., N} and ¢ € T such that
OP(a,dg(a)) N{z € 12: fj(2) = (} # @.

(16) Recall that a set A C X is of the first Baire category in a topological space X if A = U;’il Aj; with int Zj = o for
any j. We say that A C X is of the second Baire category if X \ A is of the first category.

(17) If X, Y are Fréchet spaces, L : X — Y is linear and continuous, then either L(X) =Y or L(X) is of the first Baire
category in Y; cf. [9], § 5.8.
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Consequently, g :=1/(f; — ¢) € O(G) and d(T,g) = da(a).
(d) If G is a domain of holomorphy, then for every function f € O(G), the set 2 := G\ f~1(0) is a domain
of holomorphy.
Indeed, if a € {2 is such that dp(a) = dg(a), then

do(a) = inf{d(T,f) : f € O(2)}
(exactly as above). If dp(a) < dg(a), then dP(a,dn(a)) N f71(0) # @. Consequently, d(T,(1/f)) = de(a).
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Definition 2.7.10. Let F C O({2). For every compact K C {2 put
Kr:={ze2:VfeF:|f)<|flx}

The set K7 is the F-hull of K. If F = O(42), then I?O(_Q) is the holomorphic hull of K. If 2 = C" and
F =P(C™), then IA(p(Cn) is the polynomial hull of K. If K = IA(f, then K is F-convez. If K is O({2)-convex,
then K is holomorphically conver. If K = I?p(cn)7 then K is polynomially convex; put K= KP(C'rL).

We say that (2 is F-convex if K F is compact for every compact set K C 2. If £2 is O(§2)-convex, then
2 is holomorphically convex.

Remark 2.7.11. (a) If K; C K and F; C Fa, then (I/(\l)].-,z C (I/(\Q)}-l.
(b) The set K is closed in f2.

(¢) If z1,...,2, € F, then Kx is bounded.

(d) If K7 is compact, then (Kz)r = K.

(e) Kr = Kg, where G denotes the closure in O(£2) of the family

{af’:a€C, feF, veN}L

In particular, if {2 = C™, then ]?’p((Cn) = [?O((Cn).
(f) 2 is F-convex iff there exists a sequence (K,)22 ; of F-convex compact sets such that K, C int K, for
any v and 2 =J 2, K,.

Indeed, the implication <= is obvious. To prove = let (Lj)?‘;l be an arbitrary sequence of compact

sets such that L; C int L1 and 2 = 2, L;. Put K; := (f?)r Since 2 = |J;2, int L, there exists a

J2 > 1 such that K Cint Lj,. Put K5 := (Lj,) . Now we take a j3 > jo such that Ky C int Lj, etc.
(g) Let £2; C C™ be open and let K; C £2; be compact, j = 1,2. Then

— —_—

(K1 X K2)o(0,x02,) = (K1) o,y X (K2)o(a,)-
In particular,
KﬂQ = ]?1 X R\—Q.

Indeed, let (29,29) € (Kﬂg)o(nleb) and let f € O(£2;). The function f can be regarded as a
holomorphic function on {2y x {25. Thus

|£(25)] Srr}ng\fL

—_—

Conversely, let (29, 29) € (K1) o0,y % (K2)p(n,) and let f € O(f21 x 2;). Then

(21, 22)| < max{|f(z1,23)] : 21 € K1}
< max{max{|f(z1,22)| : 22 € K2} : z1 € K1} = max |f]|.
KixKo

(h) Let F : £2 — (2’ be biholomorphic. Then }'{(?)O(Q,) = F(I?O(Q)) for any compact K C (2. In
particular, {2 is holomorphically convex iff {2’ is holomorphically convex.
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Consider the following conditions:

(HC1) {2 is an F-region of holomorphy.

(HC2) 2 is F-convex.

(HC3) For every compact set K C £2: do(Kr) = do(K).

(HC4) For every compact set K C 2: do(Kx) > 0.

(HC5) For every infinite subset A C 2 without accumulation points in §2, there exists a function f € F
such that sup 4 |f| = +o0.

Theorem 2.7.12. (a) (HC2) = (HC4), (HC3) = (HC4), (HC5) = (HC1).

(b) If z1,...,2, € F, then (HC4) = (HC2).

(¢) If F is a closed subalgebra of O(£2), then (HC2) = (HC5).

(d) If F is 0-stable (™) | then (HC1) = (HC3).

(e) For F = O(S2) all the conditions (HC1), (HC2), (HC3), (HC4), (HC5) are equivalent.

O-stability

(1) (3) (4) 214,20 €F (2) closed algebra (5) (1)

Proof. (a) is obvious.

(b) follows from Remark [2.7.11)(c).
(c) By Remark [2.7.11|f) there exists a sequence of F-convex compact sets such that K, C int K, ; and

U;o:1 K, = 2. We may assume that for a sequence (a,)%2; C A we have a, € K, 41 \ K, v > 1. Since
a1 ¢ Ky and K, is F-convex, there exists a function f; € F such that |f(a1)| > ||f|lk,- Replacing fi by
(af1)N with suitable @ > 0 and N € N, we may assume that |fi(a;)| > 1, and || f1]|x, < 1/2 (here we use
the fact that F is an algebra). Repeating the above argument for other points, we easily find a sequence
(f,)52, C F such that |f,(a,)| > I/Jrzz;i |fu(a,)| and || fu]lk, < 1/2”. Now put f:= >, f, (the series
is locally normally convergent in §2). Since F is a closed subalgebra we conclude that f € F. Moreover,
|f(a,)] > v —1 for every v.

(d) Suppose that for some a € Kz we have dg(a) < do(K) =: 7. Let 0 < ¢ < r. By the Cauchy
inequalities we obtain

a!
IDfllx < =5l fllkes  feF.
o
Hence (using the 0-stability of F) we get

o al
|ID*f(a)] < WHfHK(o), ferF.

In particular, d(T, f) > o and hence d(T,f) > r, f € F. Finally, since {2 is an F-region of holomorphy, we
conclude that P(a,r) C §2; contradiction.
(e) is an immediate consequence of (a) — (d). O

Proposition 2.7.13. If £ C C", 25 C C™ are holomorphically conver and f € O(§21,C™), then 2 :=
f~Y(922) is holomorphically convex.
Proof. Let K C {2 be compact. Then

I?O(Q) C Qﬂf?@(gl) CC (.
Suppose that there exists a sequence (z,)52; C l?@( @) such that z, — 2o € £21 N 0S2. Observe that for any
z € IA(O(Q) and g € O(f22) we get
l9(f(2))| < sup|go f[ = sup |g]|.
K F(K)

Hence

—

f([?O(Q)) C f(K)O(.QZ) CcC 92.

(18) Cf. Remark b .
(19) Recall Remark c), where {25 =D™.
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In particular,
f(z) € J@o(m) CCoh, v=1,
and therefore f(zg) € {25; contradiction. O

Proposition 2.7.14. Let 2 C C™ be a region of holomorphy and let V be an affine subspace of C™. Then
2NV is a region of holomorphy.

Proof. Let V=a+ Cvy + --- 4+ Cuj, (k:=dimV),

Cck > (#15+ -+, 2k) »i>a+zlv1+~~-+zkvk e C".
Then 2NV ~ f~1(£2) and we can apply Proposition [2.7.13 a

Proposition 2.7.15. Let D C C" be an n-circled domain. Then the following conditions are equivalent:
(i) D is a domain of holomorphy;
(ii) log D is a convex domain and

(%) for every j € {1,...,n}, if DNV ; # @, then DY c D .
Note that the condition (x) is always satisfied if D is complete.

Proof. (i) = (ii). Take an f € O(D). Then f can be represented by a Laurent series

= Z anz%, z€D (2.7.1)

a€Zm
(Proposition [2.6.2)(c)).
Fix z(, z{ € log D and let U CC log D be a domain with z(, 2 € U. We will prove that U :=convU C
log D.
Let G,G C (C,)™ be such that logG = U and logé =U, respectively. Observe that G CC D. By
Proposition [2.6.2(c) there exist C' > 0 and 0 < § < 1 such that

laaz®|| < COlerl+Hlanl 2 e G o ez
For any 2/, 2" € U we get Eﬂ
|aa|e<a’m/+(1_t)x//> = (laale ™) (jag|ef** )=t < cglealt-Henl o<t <1, a ez

Hence the series is normally convergent in G and, therefore, its sum gives there a holomorphlc
extension of f. Slnce D is a domain of holomorphy, we conclude that GcD and, consequently, UcC log D.

Now, suppose that D N'V; # @. Then, by Proposition m(d), the function f has a holomorphic
extension to D). Since D is a domain of holomorphy, we get DU ¢ D, which gives (x).

(ii) = (i). Assume additionally that D is bounded.

Suppose that D is not a domain of holomorphy and let Dy, D be domains such that D ¢ D, @ # Dy C
Dn D and for every function f € O(D) there exists a function f € O(D ) such that f fin Dqg.

Put

Vo={(z1,...,2n) €C" 1 21...2, =0}.

First, consider the case where D\ Vo ¢ D. Take an a € (D\V)\D. Let U € D\ Vg be a neighborhood
of a. Then logU is a neighborhood of the point (log|ail,...,log|a,|) ¢ log D. In particular, there exists
ab= (by,...,b,) € U such that zg := (log|b1],...,log|bs|) & logD. Recall that log D is convex and
log D C (—o0, M)™ for some M € R (because D is bounded). Hence there exists an a = (aq,...,a,) € (Z").
such that

logD C {x € R": (x — zg, ) < 0}. (2.7.2)

() Vv; =0~ x {0} x C" 7, DO = {(z',2z;,2") : (2, 2,2") € D, A € D}.
(21) (, ) denotes the standard scalar product in R™.
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Consequently,
|2 < [b%], ze€ D\ Vy.
Hence, by (), DNV; = & for all j such that a; < 0 Thus D C 2(a) (where 2(«) is as in
Example and
[2%] < |6%], z€ D.
Let fe (’)(f)) denote the extension of the function D 5 z — 2®. Then, by the identity principle, f(z) = 2%
for 2 € D \ V. Now, by Proposition b),

22| < [p*], z€ D\ V.

Since b € D \ Vo, we get a contradiction.

Now consider the case where D \ Vo C D. Fix an a = (a,...,a,) € D \ D C V. Suppose that there
exists a j € {1,...,n} such that a; =0 and DNV ; = @. Then obviously the function f(z):=1/z;, z € D,
is holomorphic in D and cannot be extended to ﬁ; contradiction.

Thus we may assume that D NV ; # & for all j such that a; = 0. We may assume that aq,...,a, #0

and as41,...,a, = 0 for some 0 < s < n—1. Using (x) we easily conclude that (ai,...,as, 2s41,...,2n) ¢ D
for any zs41,...,2n € C In particular, s > 1.

Let m : C* — C*® denote the natural projection (z1,...,2,) —> (21,...,25). Observe that (log|ai],
..., log|as|) ¢ w(log D). Hence there exists a point b = (by,...,b,) € D (in a neighborhood of @) such
that xf := (log|b1],...,log|bs|) ¢ w(log D). The set w(log D) is closed and contained in (—oo, M)* for some

M € R. Consequently, there exists an a € (Z%), x {0}"*® such that holds. Now we can argue as
above.

We pass to the case where D is unbounded. Let Dy := DNP(N), N € N. Then each Dy is n-circled,
bounded, satisfies (), and log Dy = (log D) N (—o0,log N)™ is convex. In particular, Dy \ Vg is a domain.
Since Dy C Dy \ Vo, we conclude that Dy is a domain.

Thus, by the first part of the proof, Dy is a domain of holomorphy. Obviously, Dy C Dy41.

Now, it would be sufficient to know that the union of an increasing sequence of regions of holomorphy
is a region of holomorphy. This will be done in the sequel (cf. Proposition c) and Theorem . 0

Corollary 2.7.16. If D is an n-circled domain of holomorphy with 0 € D, then D is complete n-circled.

Remark 2.7.17. In the case where D is complete the implication (ii) = (i) in Proposition may be
proved in a simpler way. Namely, we prove that D is holomorphically convex.

Fix a compact K C D and an arbitrary point a = (ay,...,a,) in the closure (in C") of IA(O(D). We want
to show that a € D. Without loss of generality we may assume that aq,...,as # 0, as41 =+ = a, =0,
where 1 < s < n. It is easily seen that there exists a finite number of points £1),... ¢é™) e DN RZ%, such
that

N
K c |JPED).
j=1
By the definition of IA(@( p) we have
< max{(€7) - (€0 j=1,... N}, au,...,as € N
Hence (we take the log and divide by |as| + - - + |as|) we get

|a‘1’¥1.....a?5

S S
Zt,,log|al,\ Smax{Ztl,logﬁlgj) cj=1,...,N}, t1,...,ts€Qq4, t1+---+ts =1,
v=1 v=1

(22) Indeed, suppose that a; < 0 and DNV, # @. Fix a z = (z1,...,2n) € D\ Vo. Then, by (%), z(\) :=
(215- -+ 2j—1, A2}, Zj41,..-,2n) € D\ Vi for any A € D\ {0}. Consequently, [b%| > |z(N\)¥| = |A|%]z%], X € D\ {0}.
Letting A — 0 we get a contradiction.

(?3) Otherwise, a = (a1, ..., as,0,...,0) € D.
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and, consequently, by continuity, for all ¢1,...,ts € Ry with ¢;+---+¢5 = 1. Thus the point (log|a4], ...,

is in the convex hull C of the set
{n,....,ns) €eR®:3Fje{1,...,N}:n, <logeW, v=1,..., s}
Clearly the set C is contained in the projection onto R® of the convex hull C,, of the set
{,...,m) €R":3je{l,...,N}:n, <log&¥), v=1,...,n}.
Since C,, C log D, there exists a point = € log D, for which |a,| < e, v =1,...,n. Hence a € D.
Example 2.7.18. For 0 < a,b < 1 let
D :={(z,w) € D?: |z| < a or |w| < b}.
Then the smallest 2-circled domain of holomorphy containing D is of the form

f) — {(21’22) cD?: |Z1|—logb|22|—loga < e—logalogb}.

2.8. Riemann regions over C"

Example 2.8.1. (Cf. [33]) Let
D = (]D) X (2D)) \ (Ql U QQ U S),

where

49

log |a|)

Q1 ={(z+i0,w) eDx (2D): x>0, |w| <1}, Q2:={(0+iy,w) €D x (2D) :y >0, |w| > 1},

S:={(z+iy,w) eDx2D): 2 >0, y >0, |w| =1}.

Notice that D is a Hartogs domain over D, and

{1 < |w| < 2} ifr>0andy=0
Du{1 2 if 0 and
Dyysy = U{l < |w| <2} ?x> an y>0’ o +iyeD,.
D ifr=0andy >0
2D ifr<Oory<0

’

Figure 2.4.1

Put

D:={(z+iy,w) eDx(2D):z#0o0ry ¢ [0,1)}
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For f € O(D) let

ry _ 1 f(z,()

= d D, 1 2 ;
flzw) 27 Sy €~ w ¢, (zw)eD,1<r<2, |w<r;

notice that f(z,w) is independent of r with 1 < r < 2, jw| < r. Then f € O(D) and f = f in the domain
{(x +iy,w) eDx (2D):x <0ory <0}U{(z+iy,w) eDx (2D): (x #0ory ¢ [0,1)), 1 < |w| < 2}.

Consequently, every function holomorphic in D extends (in the sense of Definition D to D.
Let Log : C\ R_ — C denote the principal branch of the logarithm. Define

{_:C\Ry — C, (_(2):=Log(—=z), ly :C\iRy — C, {4(2):=Log(iz) + im/2.

Observe that ¢4 = ¢_ in the domain {z + iy : ¢ < Oory < 0} and ¢4 = /_ + 27 in the domain
A:={z+iy:z>0and y > 0}
Define fo : D — C,

fo(z,w) := {exp((1/2)g(z)) if lw) <1

- ew((1/2)64.(2)) if fw| > 17

One can easily prove that fy is well defined and holomorphic in D. It is also clear that ]?0(27111) =
exp((1/2)¢4(z)), (z,w) € D. On the other hand, for (z,w) € A x D we have fo(z,w) = exp((1/2)l4(z)) =
—exp((1/2)0-(2)) = —fo(z,w).

Consequently, the extension of the function f; cannot be univalent on D.

A pair (X, p) is called a Riemann region over C™ if:

X is a topological Hausdorff space,

p: X — C" is a local homeomorphism, i.e. an arbitrary point a € X has an open neighborhood U such
that the set p(U) is open in C™ and the mapping p|y : U — p(U) is a homeomorphism.

Any open set U with the above property will be called univalent or schlicht.

If X is connected, then we say that (X,p) is a Riemann domain over C™.

Remark 2.8.2. (a) If {2 is an open subset of C”, then (£2,id) is a Riemann region.

(b) If (X,p) is a Riemann region and Y C X is open, then (Y,p|y) is a Riemann region.

(c) If (X, p;) is a Riemann region over C", j =1..., N, then (X; x --- x Xy,p1 X --- X py) is a Riemann
region over C™ " +nn

Definition 2.8.3. Let (X,p),(Y,q) be Riemann regions over C". A mapping ¢ : X — Y is called a
morphism if ¢ is continuous and g o p = p.
X 4>y

A\ /-

! is also a morphism, then we say that ¢ is an isomorphism.

If, moreover, ¢ is bijective and @~

Remark 2.8.4. (a) The composition of morphisms is a morphism.
P

X 25y Z
AN
Cn

(b) If (X,p) is a Riemann region over C", then p is a morphism of (X, p) into (C",id).

(¢) Every morphism is a local homeomorphism and, therefore, an open mapping. In particular, ¢(X) is an
open subset of Y. Moreover, if U C X is univalent, then ¢(U) is univalent in Y.

(d) If (X,p) is a Riemann region, then p is an open mapping.

(e) If a morphism ¢ is bijective, then it is an isomorphism.
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Definition 2.8.5. Let (X,p), (Y,q) be Riemann regions over C" and C™, respectively. A mapping f :
X — Y is called holomorphic (f € O(X,Y)) if f is continuous and for any univalent open set U C X the

mapping
go fo(ply)™ :p(U) — C™
is holomorphic in the standard sense.

x 1 v

(P\U)AT J,q

U cm
If (Y,q) = (C,id), then we write f € O(X).

Remark 2.8.6. (a) In the case where (X,p) = (£2,id) (with 2 € topC") and (Y,q) = (G,id) (with
G € top C™) the above definition of a holomorphic mapping is equivalent to the standard one.

(b) The composition of holomorphic mappings is holomorphic.

(c) Every morphism is a holomorphic mapping. In particular, if (X,p) is a Riemann region, then p is
holomorphic.

Lemma 2.8.7 (Identity principle for liftings). Let (X, p) be a Riemann region, let T be a connected topological
space, and let v; : T — X, j = 1,2, be continuous mappings such that p oy = poye and 1(to) = v2(to)
for some ty € T. Then v1 = 7.

T X
AN
Cn

Proof. Let Ty :={t € T : 71(t) = v2(t)}. The set T is closed and non-empty. It is sufficient to show that it
is open. Fix a t € T and put a := 71 (t) = 72(t). Let U be a univalent neighborhood of a and let V' be a
neighborhood of ¢ such that v;(V)) C U, j = 1,2. Then (p|v) oy1 = (plv) 02 in V, and hence V. C Tp. O

Proposition 2.8.8 (Identity principle). Let (X,p), (Y, q) be Riemann regions over C* and C™, respectively,
fr9€ OX,Y). Assume that X is connected and f = g on some non-empty open subset. Then f = g.

Proof. Because of Lemma it is sufficient to show that fz g, where f:: qo f,g:=qog. Put
Xo={zxeX: f = in some neighborhood of x}.

The set X is open and non-empty. It is sufficient to show that it is closed. Let a be an accumulation point
of X and let U be a univalent connected neighborhood of a. Note that f o (plv)™ =go(ply)~! on a
non-empty and open set p(Xo N U). Hence, by the standard identity principle, fo (plv)~' = go (plv) 4,
which shows that U C Xj.

For Riemann regions (X, p), (Y, ¢) and a morphism ¢ : X — Y let
" 0(Y) — O(X), ¢ (f):=fop
Remark 2.8.9. The mapping ¢* is injective iff every connected component of Y intersects p(X).

Definition 2.8.10. Let (X, p), (Y, ¢) be Riemann regions over C", & # F C O(X). We say that a morphism
p: X — Y gives an F-extension if ¢* is injective and F C ¢*(O(Y)).

We shortly write: ¢ : X — Y is an F-extension.

O(X)-extensions are called holomorphic extensions.
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An F-extension ¢ : X — Y is called a mazimal F-extension if for any F-extension ¢ : X — Z there
exists a morphism o : Z — Y such that o o) = ¢.

X %25y
SN T
A

If p: X — Y is a maximal F-extension, then (Y, q) is called an F-envelope of holomorphy of (X, p).

If F = O(X), then we say that ¢ : X — Y is a mazimal holomorphic extension and that (Y, q) is an
envelope of holomorphy of (X,p).

We say that (X, p) is an F-region of holomorphy if for any F-extension ¢ : X — Y the morphism ¢ is
bijective.
Remark 2.8.11. (a) If ¢ : X — Y is an F-extension, then it is a G-extension for any @ # G C F.

(b) If ¢ : X — Y is an F-extension and ¢ : Y — Z is a (p*) " (F)-extension, then o p : X — Z is an
F-extension.

Proposition 2.8.12. (a) The mazimal F-extension is determined uniquely up to an isomorphism.
(b) If p : X — Y is the maximal F-extension, then'Y is a G-region of holomorphy with G := (¢*)~*(F).
(c) If o : X — Y is the maximal F-extension, then X is an F-region of holomorphy iff ¢ is an isomorphism.

Proof. (a) Suppose that ¢ : X — Y and ¢ : X — Z are two maximal F-extensions. Then there exist
morphisms 0 : Z — Y and 7: Y — Z such that c oy = p, Top = 1.

L

Consequently, c o 70 = ¢, i.e. 0 o7 = idy on ¢(X). Since every connected component of Y intersects
©(X), the identity principle implies that o o 7 = idy. Similarly, 700 =idg.

(b) Suppose that ¢ : Y — Z is a G-extension. Then ¢ o ¢ : X — Z is an F-extension. Consequently,
since ¢ : X — Y is maximal, there exists a morphism o : Z — Y such that o o (¢ o ) = . Hence,
similarly as in (a), 0 0¥ = idy, 9 0 0 = idz. In particular, ¢ is an isomorphism.

(¢) The implication = is trivial. To prove <= suppose that 1 : X — Z is an arbitrary F-extension.
Since ¢ : X — Y is maximal, there exists a morphism o : Z — Y such that o 0¥ = ¢. We know that ¢
is an isomorphism. Consequently, v is an isomorphism with ¢)=! = o=l o o. O

Example 2.8.13 (Sheaf of germs). (Cf. § 1.8.) Let I # @ be arbitrary. For a € C" let (O, denote the set
of all pairs (U, F) such that U is a neighborhood of @ and F : I — O(U). We define an equivalence relation
in ! )(5a:

(U,F) & (V,G) <L there exists a neighborhood W of a (WcunVv)
such that F(:) = G(¢) in W for any ¢ € I.
Put
No, =D, L, DO .= U {a} x DO, 7;: DO —C", =(a,f) =a.
acCn

We endow ()O with the topology in which the basis of neighborhoods of a point (a,f) € () consists of all
sets of the form
M(a, f, U) = {(Z, [(Ua F)]i,) HEAS U}7
where (U, F) is a representant of f. One can easily check that the topology is well defined and Hausdorff.
Indeed, if (a,f) # (b,9), f = [(U.F)]e. 6 = [(V.G)] , then:
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if a # b, then U(a,§,U’) N (b, g, V') = & provided that U’ C U, V' C V,and U' NV’ = &,
if a = b, then, by the identity principle for holomorphic functions, U(a,f, W) N U(a,g, W) = & for any
connected neighborhood W of a such that W Cc UNV.
Moreover, the projection 7y maps homeomorphically U(a, f,U) onto U and

(7TI|u(a,f,U))71(Z) =(z[(U,F)]z), zel.

Consequently, 77 is a local homeomorphism and ((I O, 7r) is a Riemann region over C".
Fix a v € I and let §, : VO — C be given by the formula

$.(a,§) = F(t)(a),
where (U, F) is a representant of f. Note that §, is well defined and
S0 (7TI|M(a,f,U))71 =F(1).
Thus §, is holomorphic on (D O.

Theorem 2.8.14 (Thullen theorem). For any Riemann region (X,p) and a family @ # F C O(X) there
exists the maximal F-extension.

Proof. Fix (X,p) and F. First we define a morphism ¢ : X — (DO (where (7O, 7x) is the Riemann
region constructed in Example [2.8.13| with I := F). For z € X we put

p(x) = (p(x), [(p(Uz), F)lpe));

where

U, is a univalent neighborhood of z,

F(f) = fo (plv,) ", f € F.

Observe that ¢ is well defined, 7 o ¢ = p, and ¢ is continuous. Thus ¢ is a morphism.

Moreover, for an arbitrary f € F the mapping §y (constructed in Example is holomorphic on
PO and Fyop = f.

Let Y denote the union of those connected components of (7)O that intersect ¢(X) and put ¢ := 7|y
We have proved that ¢ : X — Y is an F-extension.

Now we show that the above extension is maximal. Let ¥ : X — Z be another F-extension. Put
G := (*)"Y(F)andlet o : Z — (9O be constructed in the same way as . Observe (90, 7g) = (F) O, 7x)
(because the mapping G > g — g ot € F is bijective). For x € X we have

o(¥(x)) = (r(@(@)), [(r(@(Us)), G)lrcuen) = (0(2), [(p(Uz), F)]o)) = o(),

where

U, is a univalent neighborhood of x,

G(g) =go (rlyw,)) ' =govo(plv,) ", g€,

F(f)=foplu.) ! f€F.

Moreover, since any connected component of Z intersects ¢ (X), we conclude that o(Z) C Y. |
Proposition 2.8.15. Let £2 C C™ be open and let & # F C O(£2). Then 2 is an F-region of holomorphy
in the sense of Definition iff (£2,id) is an F-region of holomorphy in the sense of Definition [2.8.10,

Proof. =. Let ¢ : 2 — Z be an F-extension. We have to show that v is bijective. Since r o ¢ = id,
the mapping 1 must be injective. Suppose that 1 is not surjective and let b € Z be an arbitrary boundary
point of ¥(£2). Let V C Z be a univalent and connected neighborhood of b. Put 2 := r(V), 2y := r(V),
where Vg is a connected component of V N (f2). Take an f € F. Let g € O(Z) be such that go ) = f.
Put f:: go (rly)~!. Then fe O((NZ) and f: f on 4. Consequently, Qc 2; contradiction.

<=. Suppose that (2 is not an F-region of holomorphy and let f~27 {29 be as in Definition (for any
f € F there exists an f € (’)(f)) such that f = f on 20). Let ¢ : 2 — Y be the F-maximal extension
constructed in the proof of the Thullen theorem. For a € 2, we have

@(a) = (a7 [(QO’ F)]%)a
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where F(f) := f, f € F. Hence
{(a,[(2,G)]e) :a€ 2} CY,
where G(f) := f, f € F. In particular, 2c q(Y"). Consequently, ¢ cannot be an isomorphism; contradic-
tion. 0
Directly from the proof of the Thullen theorem we get the following corollaries.

Corollary 2.8.16. Let (X,p), (Y,q) be Riemann domains over C", let 7 : X — Y be a morphism, and
let G C OY), 7°(G) C F C O(X). Assume that ¢ : X — X and ¢ : Y — Y are the mazimal F-
and G-extension, respectwely, where (X D) and (}/} q) are Riemann domains over C". Then there exists a
morphism 7: X — Y such that To ¢ =¥ o 1. In particular, p(X) C é\(f/)

X —"~-Y

Definition 2.8.17. If (X, p) is a Riemann region over C" and f € O(X), then for any a € N} define
Df(x) :== D*(f o (plv,) H(p(x)), =€ X,

where U, is an arbitrary univalent neighborhood of x.
Observe that Df is well defined and holomorphic on X.

Corollary 2.8.18. Let (X,p) be a Riemann region over C", let F C O(X), and let ¢ : X — Y be the
mazimal F-extension. Then ¢ is injective iff for any points x1,x9 € X with x1 # x2 and p(x1) = p(z2)
there exist f € F and a € N§ such that D*f(x1) # D*f(z2).

In particular, if F = O(X), then ¢ is injective iff O(X) separates points in X.

Consequently, if (X, p) is a region of holomorphy, then O(X) separates points in X.

Proposition 2.8.19. Let (X, p), (Y, q) be Riemann domains over C*, let F C O(X), and let 7: X — Y be
an F-extension. Assume that (Y,q) is a G-domain of holomorphy, where G := (7*)"1(F). Thent: X — Y
is the mazimal F-extension.

such that 0 o 7 = ¢. On the other hand, by Corollary [2 there exists a morphism 7 : X — Y such
that Top = 7. Consequently, (Too)or =7 and (0 07) o p = . Hence, by the identity principle, ¢ is an
isomorphism and o~ = 7. O

Proof. Let p : X — X be the maximal F-extension. By definition there exists a morphism o : Y — X
h

It is clear that the notion of the natural Fréchet space (Definition extends to Riemann regions
over C™. Observe that if X is countable at infinity (i.e. X = Ugozl K,, where K, C int K,;; and K, is
compact, v € N), then O(X) with the topology of locally uniform convergence is a Fréchet space.

It is well known that any Riemann domain over C" is countable at infinity (cf. [22]).

Remark 2.8.20. (a) Let (X, p), (Y, ¢) be countable at infinity Riemann regions over C", let F C O(X) and
let ¢ : X — Y be an F-extension. Assume that F is a natural Fréchet space in O(X) and let g, : F — Ry,
k € N, be a family of seminorms defining the topology of F. Let (Lx)g, be a sequence of compact subsets
of Y such that Ly C int Ly41 and Y = (Jy—, L. Put G := (¢ )*1(]-'). We endow G with the topology
generated by the following seminorms:

Gogr—aqrlgoy), G3g9— lgllz,, keN.

Then G is a Fréchet space. Moreover, by the Banach theorem, *|g : G — F is a topological isomorphism.

Indeed, let (g,)22; C G be a Cauchy sequence. Then (g, 0¢)52 ; is a Cauchy sequence in F. Consequently,
g 0@ — fo in F. On the other hand, (g,)52; C O(Y) is a Cauchy sequence in the topology of locally
uniform convergence on Y. Thus g, — go locally uniformly in Y. Clearly, go o ¢ = fo. Thus g9 € G and
gy — go in G.
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(b) In the case where F = O(X) (with the topology of locally uniform convergence on X) the continuity of
(¢*)~! means that for any compact L C Y there exists a compact K C X such that

lglle < llgeellx, g€O).
Indeed, since (¢*)~! is continuous, for any compact L C Y there exist C' > 0 and a compact K C X
such that
gl < Cllgeellx, geO).
In particular, taking ¢g* instead of g, we get

lgllz < CY¥llgoellx, g€ OY), keN.
Letting k — 400 we get the required estimate.

For any domain D C C" define
= int m U,
U

where the intersection is taken over all domains of holomorphy U C C™ with D C U. Observe that D is the
smallest domain of holomorphy containing D (Remark a))

~

Remark 2.8.21. (a) By Corollary if o : D — X is the maximal holomorphic extension ((X,p) is
a Riemann domain over C"), then p(X) C D.
Indeed, we take (X, p) := D id), 7:=1id, G := O(D), F := - O(D), ( ,@) := (D,id), ¢ := id (Proposition
) Then, by Corollary 6| there exists a morphism 7 : X —» Dsuch that 7 Tow =id on D. Obviously,
p. Hence p(X) =7(X) C D.
) If X is univalent, then ﬁ()? ) = D. Consequently, if the envelope of holomorphy of D is univalent, then

o
OO

= \\)

is the envelope of holomorphy of D.
Indeed, if X is univalent, then by Proposition (b) ﬁ()A( ) is a domain of holomorphy containing D
E Hence D C p(X).
(¢) The envelope of D is univalent iff O(D )\D = O(D).
Indeed, the implication <= follows from Proposition [2.8.19

Proposition 2.8.22. Let D C U be domains such that U has the univalent envelope of holomorphy and
O(U)|p is dense in O(D) in the topology of locally uniform convergence. Then the envelope of holomorphy
of D is also univalent.

Proof. Let p: D — X be the maximal holomorphlc extensmn with (X D) being a Riemann domain over (C"
(the Thullen theorem). Recall (Corollary [2. that O(X) separates points in X. Thus, to prove that X
univalent it suffices to prove that the space p (O(ﬁ(X ))) is dense in O(X) in the topology of locally uniform
convergence on X.

Take a g € O(X), let f := gop € O(D), and let (f,)52, € O(U) be such that f, — f locally uniformly
in D. Let f, € O(U) denote the continuation of f,. Recall that p(X) C D C U (Remark [2.8.21). Put
gy = f,0p € ﬁ"((’)(ﬁ()?))) Then g, 0o o = f, — f = g o ¢. Consequently, by Remark g — g
locally uniformly in X. |

Remark 2.8.23. Let D C U C C" be domains such that U is a domain of holomorphy, and let F : U — U
be biholomorphic such that F(D) = D. Then F(D) = D.

Lemma 2.8.24. (a) Let D C C™ be a domain. Then the following implications are true:
D is n-circled => D is n-circled.
D is complete n-circled — D is complete n-circled.
D is balanced => D is balanced.

(*Y (ﬁ()?),ld) is isomorphic with (X, p).
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(b) Let D C C™ be a Hartogs domain over a domain of holomorphy G C C"~*. Then the following implica-
tions are true:

V.eq D, is k-circled = V,cq ﬁz is k-circled.

V.cq D, is complete k-circled = V,cq ﬁz 1s complete k-circled.

V.cq D, is balanced = V,cq ﬁz 1s balanced.

Proof. (a) See the proof of (b).

(b) We apply Proposition with U = G x C*. In the first case we take F(z,w) := (2,1 wy, ...,
ew’ﬂwk) with 6y,...,0; € R.

In the third case we put F(z,w) := (z, A\w) with 0 < |A] < 1.

In the second case we already know that the fibers of D are k-circled and balanced. By Proposition
ﬁz is a domain of holomorphy for any z € G. Now we can use Corollary ]

Corollary 2.8.25. (a) Any n-circled or balanced domain D C C™ has the univalent envelope of holomorphy.
(b) Let D C C™ be a Hartogs domain over a domain G C C"~* such that the envelope of holomorphy of G
is univalent. Fach of the following conditions implies that the envelope of holomorphy of D is univalent:

Viea D, is connected, k-circled, and D N (G x {0}) # @ @

V.cq D, is balanced.

V.eq D, is connected, k-circled, and D, C (C,)* []

Proof. In all the cases we will apply Proposition [2.8:22]
(a) In the first case we put U = Uy X -+ x U, where

U o= {(C* fDNV, =2

. s J=1...n
(C 1fDﬁVJ7é®

where V; := C/~! x {0} x C"7, j =1,...,n. Note that U is a domain of holomorphy. Now, Proposition
implies that O(U)|p is dense in O(D).

In the second case we put U := C™ and we use Proposition to check that O(U)|p is dense in O(D).

(b) In the first case we take U := G x C*. By Corollary x C* is the envelope of holomorphy of
G x Ck. Now, by Proposition O(U)|p is dense in O(D).

In the second case take U := G x C¥ and use Proposition b).

In the third case put U := G x (C,)* and apply once again Proposition

Exercises

2.1. Let K C C", n > 2, be compact and let a function f € O(C™\K) be such that limsup,|_, [f(2)] <
+o00. Does it follow that f = const?

2.2. Let D be a domain in C" and let F': D — C" be a locally biholomorphic mapping (i.e. any point
a € D has a neighborhood U such that F(U) is open and F'|y : U — F(U) is biholomorphic). Let K C D
be compact such that D\ K is a domain. Assume that F|p\x : D\ K — F(D \ K) is biholomorphic.
Prove that F : D — F(D) is biholomorphic.

2.3. Let

E(1,m) :={(21,22) € C* : |z1)* + |z[*™ < 1}, m > 0.

Given a € D put

P E(1,m) 3 (21,22) — (

n—a (1—|a]?)z=
1 ( ||)L22
m

Prove that ¢ € Aut(E(1,m)).

(25) Notice that if the fibers D, z € G, are not connected, then the envelope of holomorphy of D need not be univalent

(Example .

(26) For instance, D is a Hartogs—Laurent domain over a domain with univalent envelope of holomorphy; cf. Remark

o)
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Exercises

2.4. Determine Aut(7'), where T is Hartogs’ triangle
T :={(21,22) € C*: |21] < |2a] < 1}.

2.5. Find Aut(D?\ ((1/2)D)?).

2.6. Does there exist a compact set K C D?, such that int K # @, 0 ¢ K, and 0 is not a fixed point of
Aut(D? \ K)?

2.7. (Analytic sets, cf. [3].) A subset M of an open set 2 C C" is an analytic subset of (2 if for
any point a € 2 there exist an open neighborhood U C 2 and fi,...,fx € O(U) (N = N(a)) such that
MNU,={2€U: fi(z)=---= fn(z) =0}

Let M be an analytic subset of 2. A point a € M is regular (we write a € Reg(M)) if there exists a
neighborhood U, C {2 such that M N U, is a complex manifold. Points from Sing(M) := M \ Reg(M) are
called singular. Notice that if n = 1, then Sing(M) = @.

We say that M is irreducible if there are no analytic subsets M7, My of {2 such that M = M; U M5 and
M;#M,j=1,2.

Verify the following statements:

(a) M is an analytic subset of 2 iff M N C is an analytic subset of C' for any connected component C'
of 2.

(b) @ and {2 are analytic subsets of 2. Any analytic subset of {2 is closed in f2.

(¢) If M is a complex submanifold of {2, then M is an analytic subset of {2 with Sing(M) = @.

(d) If M is an analytic subset of a domain D C C”, then either M = D or M is thin in D (Definition
. Consequently, D \ M is a domain.

In particular, if M is an analytic subset of a domain D C C, then either M = D or M is a discrete
subset of (2.

(e) If My, ..., My are analytic subsets of {2, then M; N---N My is an analytic subset of 2.

(f) If My, ..., My are analytic subsets of {2, then M; U---U My is an analytic subset of (2.

(g) If F': {21 — (2 is holomorphic ({2; is an open set in C", j = 1,2) and M is an analytic subset of
25, then F~1(M) is an analytic subset of (2;.

In particular, if F' : 21 — (25 is biholomorphic (n; = ng), then M is an analytic subset of (2 iff
F~1(M) is an analytic subset of 2;.

(h) If M; is an analytic subset of £2; C C", j=1,..., N, then My X --- x My is an analytic subset of
21 X -+ X 2.

(i) Let M := f=1(0), f € O(£2). Then the set Reg(M) is dense in M.

2.8. Verify whether the sets

{(21,22) € Cc?: z% = zg'}, {(z1, 22,23) € C3: 2929 = zg}

are reducible. Determine their singular points.

2.9. Letg:C — C? g(2):= (22—2,23—2). Is g(C)NU an analytic subset of U for some neighborhood
U of (0,0) € C??

2.10. Let U be a neighborhood of a point a € dB,, (n > 2) and let D := U \ B,,. Then there exists a
neighborhood W of the point a such that every function holomorphic in D extends holomorphically to W.

2.11. Let D and G be convex domains in C containing 0 and let

K :=1[0,1] - (9D x dG).

Prove that any function f holomorphic in a neighborhood of K, extends holomorphically to a neighborhood
of D x G.

2.12. Let M be a C! submanifold of a domain D C C", dimg M < 2n—1. Show that O(D\M)NC(D) =
O(D), i.e. every function holomorphic in D\ M and continuous in D is holomorphic in D.

2.13. Let f € O(B,) NC(B,), n > 2. Suppose that |f| =1 in B,. Does it follow that f = const?

2.14. Check whether Proposition a) remains true if the barrier function f, exists only for all
points a from a dense subset of 0f2.
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2.15. Let a domain D be bounded and convex. Construct a holomorphic function which does not
extend beyond D (cf. Proposition 2.7.4[b)).
2.16. Let 2 C C" be open and let ¢ : 2 — R be continuous. Put

I(2.9) 1= {f € O(2): [ |fPe e <-+oo}.
(a) Prove that L? (2, ¢) with the scalar product

L%(Q790) X Li(()a(p) > (fa g) — <fvg><p = ‘/(nge_ﬁpdﬁ?n eC

is a complex Hilbert space; let || ||, denote the norm induced by the scalar product.

Moreover, L2 (12, ) is a natural Hilbert space in O(2).

(b) Let F C O(f2) be locally uniformly bounded. Then there exists a continuous (even C*°) function
@ : 2 — R such that

Fc{feli(,p): / |f|Pe%dL?™ < 1}.
7

(c) If £2 = £2; x {2, then the function ¢ in (b) can be found in the form ¢(z1,22) = (1 ® @2)(21, 22) :=
@1(21) =+ 902(22)7 (21322) € 21 X §25.
2.17. LethL%(Ql,gal), fGL}zl(Ql X 927501@902);

g(z2) == f(22)be™ P dL?™ 25 € (.
7

Prove that g € L3 (122, 2).

2.18. Let (bjx)rea, C Li(£2,;) be an othonormal basis (#4; < Rg), j = 1,2. Prove that (by; ®
b2,0) (k,0)€ A x As @ is an orthonormal basis in L,%(Ql X (29,01 ® @2).

2.19. For F; C O(£2;), j = 1,2, let F1 ® F» denote the vector subspace of O(£2; x {25) spanned by the
set

{fi® f2: (f1, f2) € F1 x Fa}.

Using Exercise lm prove that the space L%L(Ql, 01) ® L%(Qg, 2) is dense in Li(Ql X §22, 01 ® ©2).

2.20. Using Exercises [2.16| and [2.18) prove that the space O(£2;) ® O({2;) is dense in O(£21 x {2) (in
the topology of locally uniform convergence).

2.21. Prove that the set {(z,w) € C?: |2|?> + (Imw)? > 1} is not holomorphically convex.

2.22. Prove that every compact set K C R™ C C" is polynomially convex.

223. Let G:={z€C":1<|z| <3}, K:={z¢€C":|z] =2}. Determine the set I?o(g).

2.24. Let 2 =D?\P(1/2). Verify that for

K :={(0,3¢"/4): 0 <t < 27}

we have R
Koy ={0,re"):0<t <2, 1/2 <r < 3/4}
(and, therefore, the set {2 is not holomorphically convex).
2.25. Let G := {(2,w) € C?:0 < |2] < |w| < 1}. Is the set G holomorphically convex? Is it true that
G has a neighborhood basis consisting of polynomially convex sets?

W)(w) = f(2)g(y).



CHAPTER 3

Plurisubharmonic functions

Summary. In this chapter we consider properties of subharmonic and plurisubharmonic functions (cf. [18], [35]).

In Section 3.1 we collect the basic properties of harmonic functions. The results are standard, perhaps except
Proposition [3.1.13] on the Dirichlet problem for the annulus.

Section 3.2 summarizes basic properties of subharmonic functions, e.g. the mean value property and the maximum
principle. A more advanced result contained there is the removable singularities theorem for subharmonic functions.
Various properties of subharmonic functions are obtained by their regularization. Another advanced result is the
Oka theorem (Propositions . The final part of Section 3.2 is devoted to results concerning logarithmic
subharmonicity. The notions of harmonicity and subharmonicity (as well as main parts of Sections 3.1 and 3.2) can
be generalized from open sets in C = R? to open sets in R (cf. [T4], [18]).

In a short Section 3.3 we present basic properties of pluriharmonic functions.

In the next Section 3.4 plurisubharmonic functions are presented. Many of the basic properties of those func-
tions, like the mean value property, the removable singularities theorem, the maximum principle, follow from their
counterparts for subharmonic functions. § 3.4 ends with the introduction of strictly plurisubharmonic functions; the
detailed discussion of this important class will not be pursued in this chapter.

3.1. Harmonic functions

Let 2 C R? ~ C be open and let h € C?(£2,R). The function h is called harmonic in 2 (h € H(2)) if

9?h  0%h
Ahzw—kaiyz:o on f2.

Remark 3.1.1. (a) H({2) is a vector space.
(b) If h : £2 — R is such that every point a € {2 has a neighborhood U, C {2 such that h|y, € H(U,), then
h € H($2).
(c) A=42-.
(d) If f =u+ive O(R2), then u,v € H(L2).

Indeed, by (c) we have Au +iAv =Af = 4%(%) =0.
(e) If f € O(2) and 0 ¢ f(£2), then log|f| € H(2).

Indeed, log|f| = Re¥, where £ is a local branch of the logarithm. Now we apply (d).
(f) Let §2 and 2’ be open sets in C, h € H(£2'), f € O2,82"). Then ho f € H(2).

Indeed,

wl

Alho f) = ((Ah)o )| = 0.

Proposition 3.1.2. Let D C C be a simply connected domain and let h : D — R. Then h € H(D) iff
there exists f € O(D) such that h =TRe f.

In particular, each harmonic function is locally the real part of a holomorphic function.

Proof. The implication <= follows from Remark [3.1.1|(d).

To prove =—> we assume first that D is star-shaped with respect to a point ag € D, i.e. [ag,a] C D for
every a € D @

(1) a0, a] == {ao + t(a — ao) : t € [0,1]}.

59



Piotr Jakobczak, Marek Jarnicki, Lectures on SCV

60 . . .
3. Plurisubharmonic functions

We may assume that ag = 0. Define

! oh oh .
k(z)_/o (—%(tz)x—kax(tz)y)dt, z=x+1iy € D.

Then k € C'(D,R). Moreover, differentiating under the integral sign, and using the fact that Au = 0, we
obtain

ok ! d%h oh d%h
e )_/0 (— S (1)t = S (e) + 2(tz)ty>dt

L7 o%h 92h Y d (oh Lon
—/0 (a z (t2)e+ 53 (12)y )tdt—/ G () dt = /0 tﬁ(%(m)>dt— S a

|+ [ Shae- [ Sasy = -5

= —t—

Similarly we check that 2k = %.

Consequently, f = h + ik € O(D).

Now let D & C be an arbitrary simply connected domain. By the Riemann mapping theorem (cf. [4],
Th. VII.4.2) there exists a biholomorphic mapping ¢ : D — D. By Remark [3.1.1|f), ho ¢ € H(D). Since
D is star-shaped, there exists g € O(D) such that Reg = h o ¢. Finally, h = Re(go ¢~ 1). |

This means that h and k satisfy the Cauchy—Riemann equations in D.

Corollary 3.1.3. H(£2) C C=(02).

Proposition 3.1.4 (Identity principle). Let D C C be a domain and let h € H(D). If int(h=1(0)) # @,
then h =0 in D. In particular, if h1,ha € H(D) are equal on a non-empty open subset, then hy = hg in D.
)|

Proof. Let Dy = {a € D : h = 0 in a neighborhood of a}. Obviously, Dy is open and Dy # @. To end the
proof we need to show that Dy is relatively closed in D. Suppose that zy € D is an accumulation point of Dy
in D. Take any r > 0 such that K(zg,7) C D. By Proposition there exists f € O(K(zg,r)) such that
Re f = h. Then we have Re f = h = 0 on the non-empty and open set Dy N K (zg,r). By the usual identity

principle for holomorphic functions ([4], Th. IV.3.7), f = const in K(zg,r). Since h = 0 in Dy N K (zg,7), we
have h =0 in K(zp,r). Hence zy € Dy. O

Proposition 3.1.5 (Maximum principle). Let D C C be a domain and let h € H(D), h # const. Then h
has no local mazima in D. If, moreover, D is bounded, then

h(z) < sup {limsup h(w)}, zé€ D.
¢€dD D3w—(

If we replace h by —h, then we obtain the minimum principle.

Proof. Suppose that there exist zo € D and r > 0 such that h(z) < h(zg) for every z € K(zp,r). By
Proposition there exists f € O(K(zo,7)) such that h = Re f. Then, for z € K(zp,r), we get

|ef(2)‘ = M(?) < ehl(z0) = |ef(20)|.
Hence, by the maximum principle for holomorphic functions (cf. [4], Th. IV.3.11), e/ = const in K (2o, 7).

Consequently, h = h(zp) in K (29, ) and, finally, by the identity principle (Proposition , we get h = h(zp)
in D; contradiction. O

(?) Note that the function h(z +iy) = « is harmonic in C and k = 0 on the line iR. Therefore the assumption on the zero
set of harmonic function cannot be so weak as in the identity principle for holomorphic functions.
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Let u : C(a,r) — [—00,4+00) be measurable @ and bounded from above. Define

61

LR ap "
P(U;G7T;Z) = %/0 mu(a"'re ) d@, z € K(a,r),

1 27 )
J(u;a,7) :=Plu;a,r;a) = 27/ u(a + rew) do;
T Jo

J(u;a,r) is the integral mean value of u over the circle C(a,r).

Proposition 3.1.6. Let u: C(a,r) — R be continuous. Then the function K(a,r) 3 z — P(u;a,r;z) is
harmonic.

Proof. Consider the function
1 27 0 _ )
S(u;a,r;z) == %/0 Mu(a +re®)dd, z e K(a,r).

Since u is real-valued, we have
1 27 10 _ )
ReS(uja,r;z) = %/0 Re <m> u(a +re') do
1 27 2 412 )
/ uu(a +re') df = P(u;a,r; 2).
0

~or [ret® — (z — a)|?

Moreover, the function S(u;a,r;-) is holomorphic in K (a,r). Now, the result follows from Remark d).
O

Lemma 3.1.7.

1 [ r? — |z —al?
Pliarz) = — | — 7% g9 1 .eK(ar).
(1a,7;2) 277/0 [re?? — (2 — a)|? i (a,7)

Proof. Since P(1;a,7;2) = ReS(1;a,r; z), it suffices to show that S(1;a,r;z) = 1. We have
10 n
re' +(z—a) , 4 (z—a)
re — (z—a) (re” + (= ~0)) Z rntlei(n+1)6’

n=0

oo

and for every z € K(a,r), the series converges uniformly for § € [0,2x]. Then

27 0 o
S(l;a,r;2) = i/ wdg
0

27 ret — (z —a)
S _ n 2 0 _ n+1 27
_ 1 (Z a’) 67in0d9 + 1 § (Z (L) 67i(n+1)9d0.
27 = 0 2 o pntl o

The only non-vanishing term is the term for n = 0 in the first sum, which is equal to

1 27
— 1do=1. a
2m Jo

Definition 3.1.8. Let D be a bounded domain in C and let b € C(0D,R). The Dirichlet problem for D and
b is to find a function h € C(D) N H(D) such that h = b on dD.

By the maximum principle A is uniquely determined. It is called the solution of the Dirichlet problem
for D with boundary data b. If the Dirichlet problem for D has a solution for any boundary data b, then we
say that D is regular with respect to the Dirichlet problem.

In the sequel we need a solution of the Dirichlet problem in the case when D is a disc or an annulus in
C. In the first case the Dirichlet problem can be solved fairly explicitly.

(3) That is, the function [0,27) 3 6 — u(a + re*®) is Lebesgue measurable; C(a,r) := 0K (a, 7).
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Proposition 3.1.9. Let b: C(a,r) — R be continuous. Put
h(z) = b(z), z € Cla,r) .
P(b;a,r; 2), z € K(a,r)
Then h is the solution of the Dirichlet problem for K(a,r) with boundary data b.
Thus all discs are regular with respect to the Dirichlet problem.

Proof. By Proposition h is harmonic in K (a,r). It remains to show that
lim P(b;a,r;z) = b(z0), 20 € Cla,r).

K(a,r)3z—zo
Fix zg € C(a,r) and observe that for z € K(a,r) we have by Lemma

1 [ 12— |z—al? -
— — (b 0y b de|. 3.1.1

o /0 |re?? — (2 — a)|2( (a+ret) (20)) ‘ ( )
We have zg = a+re'® for some p € R. Fix ¢ > 0. There exists § > 0 such that for every 6 with [0 — 6| < 6,
|b(a+re?) —b(a+ret)| < /2. Let I :={a+re : |0 —0| <}, Iy := C(a,r)\ I'1. Then the right-hand

side of (3.1.1) is bounded by

e e e e = [
— —— —|b(a+7e") —bla + re?)|df = — S . 3.1.2
2m Jo  |re? —(z - a)\2| ( )N ) 21\ Jjo—60|<6 10—00|>6 (3.1.2)

Moreover,
1 1 2 12 1 27 2 12
1 ...Sf/ %idggii %df):i
27 Ji9—0,|<s 21 Jig—go<s |re® — (2 —a)|* 2 22m Jy  |ret? —(z —a)| 2

by Lemma [3.1.7] (note that the estimate is independent of z € K(a,r)).
To estimate the second integral in the right-hand side of (3.1.2)) consider only 2z = a + pe'™ € K(a,r)
with |7 — 0| < §/2, and g9 < ¢ < r, where gg is to be chosen. Put

[P(b;a,r;2) — blz0)] =

m = inf{|jre? — (z —a)|:z=a+ 0", [T — 0| <§/2,0< o<, at+re? €Iy}
Then m > 0 and
1 1 [P 2

3 2/[o]|
9 Cla,r) (2 2
21 Jio—oo1>s 27 Jo m2 1bllca.r m2 (r" — )

The last expression is smaller than /2 provided gq is chosen sufficiently close to r. Thus, if z € K(a,r) is
sufficiently close to zy, then

[P(bsa,732) — bz0)] < = 0
From the above proposition we obtain the following reproducing integral formula.
Proposition 3.1.10 (Poisson’s formula). If h € C(K (a,r)) N H(K(a,7)), then
I R P p
h(z) =P(h;a,r;z) = %/0 mh(a—i— re’)df, ze K(a,r).

In particular,

27
h(a) = J(h;a,r) = %/O h(a + re'?) db.

Proof. By Proposition [3.1.9] if

H(z) = h(z), z € C(a,r)
' P(h;a,r;2), z € K(a,r)’

then H € C(K(a,r)) NH(K (a,r)). Consequently, by the maximum principle for harmonic functions, h = H
in K(a,r). O
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Proposition 3.1.11 (1-st Harnack’s theorem). Let 2 C C be open and let (h,)S2, C H($2). If h, — h
locally uniformly in §2, then h € H(S2).

Proof. Fix a € 2 and r > 0 such that K(a,r) C £2. Then, by Proposition [3.1.10, we get
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ho(z) =P(hy;a,1;2), z¢€ K(a,r), v €N.
Since h,, — h uniformly on C(a,r), we get P(h,; a,7;2) — P(h;a,r; z). On the other hand h, (z) — h(z).
Thus
h(z) =P(hsa,r;2), z€ K(a,r).
Now, by Proposition h € H(K(a,r)). O

Proposition 3.1.12 (2-nd Harnack’s theorem). Let D be a domain in C, (h,)52; C H(D), and h, < h, 41,
v > 1. If there exists a € D such that lim,_, 1 hy(a) ezists and is finite, then (h,)S2, converges locally
uniformly in D.

Proof. Let
Do ={z€ D: (h,);2, is convergent uniformly in a neighborhood of z}.
If we show that Dy is non-empty open and closed in D, then Dy = D, which will end the proof.
The set Dy is open by definition. To prove that Dy # @ we show that a € Dy. Choose r > 0 such that
K(a,r) C D. Note that
r? —|z — al? r2—lz—al*> r+|z—ad

- = K . 1.
[re?? —(z—a)|2 ~ (r—|z—al)? r—|z—a| € K(a,r) (3.1.3)

Moreover, for z € K(a,r) and v, ;1 € N, by Proposition [3.1.10] and (3.1.3)), we have

0 < hysn(z) — ho(z) = 1/2ﬂ72_|z_a2(h (a+re'®) — hy(a+rei?)) do
= e T om Joo et —(z—a))2t T v
1 27TT—&—|2—CL|

r+ |z — al
“2r Jy r—|z—a

(hutu(a) = hy(a)).

For |z —a| < r/2 this last expression is not greater than 3(h,4,(a) —hy(a)). Therefore the sequence (h, )52,
satisfies the uniform Cauchy condition in K (a,r/2), and hence converges uniformly there. Thus a € Dy.
Suppose now that zg € D is an accumulation point of the set Dy. Choose r > 0 such that K(zp,r) C D.
There exists b € DyNK (29,7/3). Hence K (b,2r/3) C D. Since b € Dy, the sequence (h,, (b)), is convergent.
Similarly as above we prove that (h,)S2; is convergent uniformly in K (b,r/3). Hence (h, )32 is convergent
uniformly in a neighborhood of 2y, and so zy € Dy, which proves that Dy is relatively closed. O

(hysp(a+re?) —hy,(a+re'?)) do =

r—|z—al

Proposition 3.1.13. Any annulus
A={zeC:r <|z|<r™}, 0<r™ <rt < +oo,

is reqular with respect to the Dirichlet problem.

Proof. First observe that the mapping
Caz+—z/Vr—rteC
maps biholomorphically A onto the “symmetric” annulus
{zeC:1/R< |z| < R}

with R := /rt/r—. Consequently, using Remark f)7 we may assume that r~ = 1/R and 7+ = R for
some R > 1.

By virtue of [I4], it suffices to find the Green function for A, i.e. a function g4 : A x A — (0, +00] such
that:

e ga(-a) € H(A\ {a}),

o limss, ¢ ga(z,a) =0, ¢ € 04,
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e lim 4\ {a}5:—al94(2, @) +log |z — al] exists and is finite, a € A.
By Remark f) it suffices to construct ga(-,a) only for a € ANR,.
Fix 1/R < a < R, put ¢ := 1/R?, and define
z
f(aa Z) = (1 - g)H(av 2)7
where

[Lo, (1= 2¢)(1 - 2¢*)
[T (1 —azg? 1) (1 — Lg?1)

II(a, z) :=

One can prove (cf. [5]) that:

e f(a,-) is meromorphic on C,,

e f(a,-) has simple poles at z = R*~2/a, k € 7Z,

e f(a,-) has simple zeros at z = aR** k € Z.

In particular, f(a,-) is holomorphic on A and the only zero of f(a,-) in A is the simple zero at z = a.
Moreover,

f(aa Z)f(av 1/(R22)) =1, f(a‘v Z)f(aa R2/Z) = R2/a‘27 f(aa Z) = f(aa Z)

and hence
1 if |z2|=1/R
, = . 3.14
f(a,2)] {R/a il (31.4)
Put
1 loga
s(a) = 5 <1 - logR)'
Then
ga(z,a) = —log|f(a,z)| + s(a)log(R|z]), =€ A.
Indeed,

i gA('va) € H(Z\ {a})7
e ga(z,a) =0if z € 0A (by (3.1.4)),
® lim 4\ (4}5:-4l94(2,a) +log |z — a]] = log(a/11(a, a)) + s(a) log(Ra). O

Proposition 3.1.14 ([31]). Let u € L'($2,loc) @ be such that Au = 0 in the sense of distribution, i.e.

/ u-(Ap)dL? =0, ¢€C&F(N).
2
Then there exists h € H(2) such that u=h L*-a.e. on 2.

3.2. Subharmonic functions

Definition 3.2.1. Let 2 C C be open. A function u : 2 — [—00,400) is called subharmonic in 2 (we
write u € SH(2)) if:

e u is upper semicontinuous in 2 (u € CT(2)),

e for every domain D CC §2 and for every function h € C(D)NH(D), if u < h on D, then u < hin D.

In particular, the function © = —oo is subharmonic.

The following properties are immediate consequences of the above definition and of the maximum prin-
ciple for harmonic functions:

H(2) C SH(N?),

SH(N2) + H(2) = SH(N),

Reo - SH(2) = SH(N2).

(1) LY(2,1oc) :={u: Vkcco tulx € LYK, L2)}.
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Proposition 3.2.2 (Mean value property). If u € SH({2), then
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2
u(a) < J(u;a,r) = QL/ u(a+re?)ds, ae R, 0<r<dga)
T Jo

Proof. Fixana € 2and 0 <r < dp(a). Let b, : C(a,r) — R, v € N, be a sequence of continuous functions
such that b, \, u pointwise on C(a,r) (cf. [21I]). Let h, be the solution of the Dirichlet problem for K (a,r)
with h, = b, on C(a,r) (cf. Proposition [3.1.9). Then u < h, on C(a,r) and hence on K (a,r). Consequently,
by Proposition we get
u(a) < hy(a) = J(hy;a,7) = I(by;a,7), v>1.

Since b, \, u on C(a, ), the monotone convergence theorem implies that

J(,;a,7) — J(u;a,r). O
Lemma 3.2.3. Let D C C be a domain and let v € CT(D,[—00,+0)), v # const. Assume that for every
a € D there exists a number 0 < R(a) < dp(a) such that

v(a) < J(v;a,r), 0<r < R(a).

Then v does not attain its global mazximum in D.

Proof. Suppose that v(z) < v(z0), 2 € D (for some zg € D). Let Dy := v~!(v(29)). Then Dy # @. Note
that for every accumulation point a € D of Dy we have

v(zp) = limsup v(z) < limsupv(z) = v(a) < v(2p).
Dop>z—a D3>z—a

Hence a € Dy, which means that Dy is relatively closed in D. On the other hand, if a € Dy, then
v(z0) = v(a) < J(v;a,r) <v(z), 0<r<R(a).

Now, since v is upper semicontinuous, we conclude that v = v(z9) on C(a,r) with 0 < r < R(a). This
implies that K(a, R(a)) C Dy, and therefore Dy is open. Since D is connected, we have Dy = D, which
shows that v = v(zg); contradiction. O

From Proposition [3.2.2] and Lemma [3.2.3] we immediately obtain

Corollary 3.2.4 (Maximum principle). Let D C C be a domain and let v € SH(D), u # const. Then u
does not attain its global mazimum in D. Moreover, if D is bounded, then

u(z) < sup {limsupu(w)}, z€ D.
¢€dD D3w—(

Notice that a subharmonic function can attain its global minimum.

Proposition 3.2.5. Let u: 2 — [—00,+0). Then u € SH(2) iff u € CT(2) and for every a € 2 there
exists an R(a), 0 < R(a) < dp(a), such that

u(a) < J(u;a,7), 0<r< R(a). (3.2.1)

Proof. The implication = follows from Proposition [3.2.2] B
To prove the opposite, fix a domain D CC §2 and a function h € C(D) NH (D) such that u < h on 9D.
Put v(z) := u(z) — h(2), z € D. By Proposition [3.1.10| and (3.2.1]) we have

v(a) < J(v;a,r), 0<r<min{R(a),dp(a)}, a € D.
Using Lemma we conclude that v < 0 in D, which shows that u < h in D. O

Corollary 3.2.6. (a) Let u : 2 — [—00,+00). Then u € SH(2) iff every point a € 2 admits an open

neighborhood U, C 2 such that u|ly, € SH(U,). In other words, subharmonicity is a local property.
(b) SH(2) + SH(2) = SH().

Proposition 3.2.7. Let u : 2 — [—00,+00). Then u € SH(2) iff u € CT(2) and for any a € £,
0 <r<dg(a), andp € P(C), if u <Rep on C(a,r), then u < Rep in K(a,r).
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Proof. Since the function Re p is harmonic, the implication = is obvious.

We prove now the opposite. Fix a € 2 and 0 < r < dp(a). In virtue of Proposition and the proof
of Proposition it is sufficient to prove that for every continuous function b : C(a,r) — R such that
u < b we have u(a) < J(b;a,r). Fix a function b and let ¢, : R — R, v > 1, be a sequence of trigonometric
polynomials such that

R | =

) 1
|b(a+rew) + o e(0) <=, 6€eR

(cf. [29], the Fejér theorem). Let p, € P(C) be such that ¢,
u < Rep, on C(a,r) and hence

0) = Rep,(a+7e?), § € R, v > 1. Then

—~

u(a) < Repy(a) =J(Repy;a,r) < J(bja,r) + g, v>1.
v

(the first equality follows from the fact that the function Rep, is harmonic). Letting v — 400, we end the
proof. a

Proposition 3.2.8. If f € O(£2), then log |f| € SH(12).

Proof. Let u :=log|f|. Then u € CT(£2). By Propositionm it is enough to check that u(a) < J(u;a,r),
a € 2,0 <r < R(a). This is evident if f(a) = 0. If f(a) # 0, then u € H(K(a, R(a))), where R(a) :=
dovf-1(0y(a) (cf. Remark 3.1.1fe)). O

Proposition 3.2.9. (a) If SH(2) 3 u, \(u, then u € SH(L2).
(b) If SH(£2) > uy — u locally uniformly in 2, then u € SH(12).

Proof. 1t is clear that in both cases u € CT(£2). For each v we have

up(a) < J(uysa,r), a€ 2, 0<r<dg(a).
Letting v — 400 proves that u satisfies . O
Proposition 3.2.10. If a family (u,),e; C SH({2) is locally bounded from above then the function

u:= (supu,)”,
el
is subharmonic, where * denotes the upper regularization.
In particular, max{uy,...,un} € SH(2) for any us,...,uny € SH(12).

Proof. Tt is clear that u is upper semicontinuous. Let D CC §2, h € C(D) NH(D), w < h on dD. Then
u, < h on 0D for every ¢ € I, and hence sup,c;u, < h in D. Finally, since h is continuous, we get u < h in
D. |

(5) Recall that ¢ : R — R is a trigonometric polynomial if

k
p(0) = aop + Z(aj cosj0 + B;sinjh), 0 €R,
j=1

for some ap, . ..,ag,B1,---, Bk € R. Observe that ¢(6) = Rep(a + re'?), where

k
p() = a(*=0), az) = a0+ (ay —iB))<.

j=1

(6) Note that in general the function sup, . u, need not be upper semicontinuous.
(") If v : 2 — [—00, +00) is locally bounded from above, then (cf. [21])

v*(z) := limsupv(z’) = inf{p(2) : ¢ € C(2,R), v < ¢}, z€ .

zl—z
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Proposition 3.2.11. Let G C 2 C C be open and let v € SH(G), u € SH(2). Assume that
limsupwv(z) <u(¢), ¢€(0G)NI.
Goz—(
Let
() = max{v(z),u(2)}, zed .
u(z), z€ 2\ G
Then w € SH(12).
Proof. 1t is evident that @ € CT(£2) and @ € SH(2 \ dG). For a € 2N IG we have
w(a) = ula) < J(usa,r) <J(wa,r), 0<r<dpla). O

Proposition 3.2.12. Let u: 2 — [—00,+00). Then u € SH(2) iff u € CT(2) and for every a € 2 there
exists an R(a), 0 < R(a) < dg(a), such that

1 2m 7,2 _ |Z _ a|2 i
u(z) <P(uja,r;z) = % /. mu(a +re””)dd, 0<r<R(a), z€ K(a,r). (3.2.2)

Proof. Since P(u;a,r;a) = J(u;a;7r), the implication <= follows from Proposition m
To prove the opposite, it is sufficient to argue as in the proof of Proposition [3.2.2] and use the Poisson
formula

w(z) < hy(2) =P(hysa,r; z) = P(by;a,r52) \(Plu;a,r, 2). O

By Propositions and [3.2.12] we get
Corollary 3.2.13. SH(£2) N (—=SH(£2)) = H(£2).
Proposition 3.2.14. If a sequence (u,)>2, C SH(2) is locally bounded from above, then the function

w:= (limsupwu,)™.
v—+400

is subharmonic. [e]

Proof. Of course, the function u is upper semicontinuous. Fix a € 2 and 0 < r < dgp(a). By Proposi-
tion [3:2.12] and Fatou’s lemma we get

limsup u, (z) < limsup P(u,;a,7;2) < P(limsup u,;a,7;2) < P(u;a,752), z € K(a,r).
v—+00 v——+00 v——+00

Since the right—hand side is a continuous function of z, we get u(z) < P(u;a,r;2), z € K(a,r). |

Let u : K(a,r) — [—00, +00) be bounded from above and measurable. Define
1
A(y;a,r) = — u dL?;
e JK(a,r)
A (u;a,r) is the mean value of u on the disc K(a,r).

Proposition 3.2.15 (Mean value property). Let u: §2 — [—o0, +00). Then u € SH(2) iff u € CT(2) and
for every a € D there exists an R(a), 0 < R(a) < dp(a), such that

u(a) < A(usa,r), 0<r< R(a).

(8) Note that in general the function limsup,,_, | ., u, need not be upper semicontinuous.
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Proof. Let u € SH(£2). Using polar coordinates, we have by Proposition

68

1 r 2 )
A(u;a,r) = m/0 /0 u(a + 1'% db dr

2 (" 2 ("
=— | Jua,7)rdr > —2/ u(a)Tdr =u(a), a€2,0<r<dgp(a).
= Jo = Jo
To prove the opposite we check first that u does not attain its maximum (like in the proof of Lemma(3.2.3]),
and then we proceed as in the proof of Proposition [3.2.5 (|

Proposition 3.2.16. Let D C C be a domain and let u € SH(D), u # —oo. Then u € L*(D,loc). In
particular, £?(u=1(—00)) = 0.

Proof. Suppose that for some zy € D we have fUu dL? = —oo for any neighborhood U of zy. Let 2r :=
dp(zo). By Proposition [3.2.15

u(z) < A(u;z,r) = —00, z € K(z9,7).

Let Dy := {z € D : u = —o0 in a neighborhood of z}. The set Dy is clearly open. We have already shown
that it is non-empty (z9 € Dy). To obtain a contradiction, it is sufficient to note that proceeding exactly as
above, we can prove that Dy is relatively closed in D. O

Proposition 3.2.17 (Removable singularities). Let D C C be a domain and let M C D be a relatively
closed subset of D such that for every point a € M there exist a connected open neighborhood U, C D of
a and a function v, € SH(U,), vo Z —00, such that M NU, = v, (—o0). Let u € SH(D \ M) be locally
bounded from above in D K%ﬂ Define

u(z) := limsup u(z'), ze€D.
D\M>z'—z

Then w € SH(D). In particular, the set D\ M is connected.

Proof. By Proposition the set M is nowhere dense and hence the function u is well defined for every
z € D. Note that @ = (ug)*, where ug := u on D\ M and ug := —oo on M. In particular, u € CT(D).
Moreover, w = u on D\ M.

It remains to prove that @ is subharmonic. We may assume that M = v~!(—o0), where v € SH(D),
vZ —oo and v < 0 in D. For € > 0 let

(2) = u(z) + ev(z), ze€ D\ M
ue(2) := o, e M .

It is easy to see that u. € SH(D) and that the family (u.)c>0 is locally bounded from above in D. Observe
that uy = sup,. ue. Hence, by Proposition [3.2.10) & = (uo)* € SH(D).

To prove that D\ M is connected, suppose that D\ M = Uy U Us, where Uy and U, are disjoint and
non—empty open sets. Then the function u(z) := j for z € U; would extend to a subharmonic function on
D; contradiction. O

The above result can be generalized in the following way:

We say that a set M C C is polar if for every point a € M there exist a connected open neighborhood U, and a
function v, € SH(U,), va # —0o0, such that M N U, C vy *(—o0).

Note that the set M from Proposition is polar. Every polar set has measure zero (by Proposition .

Lemma 3.2.18. Let M C C be a polar set. Then for every a € C there exists an R(a) > 0 such that
L'{0e0,2m):a+7re® € M}) =0, 0<r<R(a).

(9) That is, every point a € D admits an open neighborhood V, C D such that u is bounded from above in V, \ M.
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Proof. Suppose that for some a € C it is not the case. Fix a disc K (a, R) and a function v € SH(K (a, R)), v Z —o0,
such that M N K(a, R) C v~ '(—00). Let 0 < r < R be such that

L£'({0€0,2n) : a+re® € M}) > 0.
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This means that v(a + re®) = —oo for § in a set of positive measure. In particular, v(z) < P(v;a,r;2z) = —oc for
z € K(a,r), and so v = —oc0 in K (a,r); contradiction. O

Proposition 3.2.19 (Removable singularities). Let D C C be a domain and let M C D be a polar set. Assume that
u € CY(D\ M) is locally bounded from above in D and for arbitrary a € D\ M there exists an R(a), 0 < R(a) < dp(a),
such that

u(a) < J(uya,r), 0<r< R(a). EZ'
Put

u(z) == limsup wu(z’), z€D.
D\M>3z'—z

Then u € SH(D). In particular, if M is closed in D, then D\ M is a domain.

Proof. The function @ is upper semicontinuous and & = u in D \ M. Let G CC D be an arbitrary domain and let

h € H(G)NC(G) be such that w < h on dG. It is sufficient to check that w < h in G\ M. Fix an a € G\ M. One can
prove (see for instance [14], Th. 5.11), that there exists a function v subharmonic in the neighborhood of G and such
that M NG C v~ (—o0), v < 0, and v(a) > —oco. Define h. := & +ev — h, € > 0. Then h. € C'(G) and h. < 0 on
OG. One can easily check that h. € SH(G) KT_TB By the maximum principle (Corollary it follows that h. <0
in G, € > 0. In particular, @(a) — h(a) = sup,o{h:(a)} <O0.

O

Proposition 3.2.20 (Hartogs lemma). Let (u,)52; C SH(£2) be locally bounded from above. Assume that
for some m € R

limsupu, < m.
v—+o0

Then for any compact K C {2 and € > 0 there exists a vy such that
max u, <m+e, v>wy; cf Lemmall50

Proof. 1t is sufficient to show that for every a € {2 the assertion holds for K := K(a,d(a)), where &(a) > 0 is
sufficiently small. Fix a and 0 < R < dg(a)/2. We may assume that u, < 0in K(a,2R), v > 1, and m < 0.
By Fatou’s lemma we have

lim sup A (u,; a, R) < A(limsupu,;a, R) < A(m;a, R) = m.

v—+00 v——+00

Let 0 < § < R/2. By the above inequality, since u, < 0 on K (a,2R), we get

R? R?
limsup max wu,(z) <limsup sup A(uy;z, R+0) <limsup ——=A(uy;a,R) < ————=m.
v—r+o0 2K (a,) ) V=400 LR (a,) | ) vrtoo (R46)? ( ) (R+9)?
Now it is sufficient to take a § = d(a) so small that the last term is smaller than m + ¢. g

Proposition 3.2.21. Let I C R be an open interval and let ¢ : I — R be non-decreasing and convex. Then
pou € SH(N) for any subharmonic function u : Q2 — I. In particular,

e" € SH(12) for any function u € SH(£2) |(*?) |

uP € SH(2) for any subharmonic function u: 2 — Ry andp > 1 Eﬂ

(19) Note that if M is a closed subset of D, then every function u € SH(D \ M) satisfies this condition (with R(a) :=
dp\a(a)). Moreover, by Lemma , the integral J(u; a,r) is well defined for small 7.

(11) We apply for instance Proposition since he = —oo on M, it is sufficient to observe that he(20) < J(he;20,7)
for z0 € G\ M.

(12) First we consider u : 2 — R and next we observe that in the general case we have emax{u,~v} N\ e* when v M +oo.

(13) First we consider u : 2 — R>¢ and next we observe that in the general case we have (u + )P \, uP when ¢ \ 0.
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Proof. Since ¢ is convex, it is continuous (cf. [32]), and therefore pou € CT(£2). Fixa € 2 and 0 < r < dg(a).
By the monotonicity and convexity of ¢ and by Jensen’s inequality (cf. [29]), we obtain

p(u(a)) < oI (u;a,r)) < I(pou;a,r). O
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Proposition 3.2.22. Let u € SH(S2), a € 2. Then the functions
(—o0,logdg(a)) 3t — J(u;a,e), (—o0,logdg(a)) > t — A(u;a,e’)
are non—decreasing and convex. Moreover,
J(u;a,7m) \yu(a) when r ™\, 0, A(usa,r) \yu(a) whenr N\, 0.

Proof. We show first that it is sufficient to consider only the function J. Note that if the function J(u;a, -)
is convex with respect to logr, then it is continuous, and therefore we have

2

r2

A(usa,r) = N>Foo NS oo

T 2 & gr
Jusa, 7)rdr = lim — iJ(u;a, =) =: lim r).
| A e 2o 00 ) on (1)
If the function J(u;a,-) is non—decreasing and convex with respect to logr, then the same properties has
every function ¢y, and so also the limit function A(u;a,.). Moreover,

u(a) < A(u;a,r) = 32/ J(usa,7)Tdr < sup J(uja,7) < J(u;a,r).
r 0 o<r<r

Therefore, if J(u;a,r) — u(a), then the same property has the function A.

Now consider the function J. Let 0 < r1 < 1o < dpn(a), let b, € C(C(a,72),R), b, \, u, and denote
by h, the solution of the Dirichlet problem for K (a,rs) with boundary condition b, (cf. Proposition .
Then

J(usa,m) < I(hysa,r) = hy(a) = I(hy;a,r2) = J(by;a,rs).

The last integral converges to J(u;a,re) when v — +oo. Letting v — 400 we get the monotonicity of
the function J(u;a,-).

Note that by Fatou’s lemma we have

I ,
u(a) < gli% J(u;a,7) < %/0 lir;ljgpu(a +re'?) df < u(a).

This proves that J(u;a,r) \, u(a) when r N\ 0.
It remains to check the convexity with respect to logr, i.e. we want to prove the inequality

J(u;a,m) — J(us a,r)

logi, 0<r <r<ry<dg(a).

T
log f 1

Fix 0 < r < ry <dp(a). Let A:={z¢€ C:ry <|z| <re}, let b, € C(OA,R), b, \, u, and let h, be
the solution of the Dirichlet problem for the annulus A with boundary condition b, (cf. Proposition [3.1.13)).
Differentiating under the integral sign, we obtain

J(u;a,r) < J(u;a,ry) +

d d 1 [ : 1 [* /0h, : h, ,
—J(hy;a,e') = / hy(a + ete’?) df = (8 (a+ ete?®)et cosf + aa (a+ ete'®)et sin 9) de
0 Y

dt T dt2m T2 )y \ox
1 oh,, oh,
= — — d dy = t(v).
27 Jotane Oy x + 5, LY = cons (v)
The last equality follows from the fact that the form
oh, oh,
— 3y dx + E dy

is closed. Consequently, there exist a,,, 8, € R such that
J(husa,r) = aylogr + B, 11 <71 <7)
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Finally,
J th 9 - J th )
I(usa,r) < Jhosa,r) = Ihysayry) + 2w @) = Ihiar) g 7
log ﬁ 1
J bV7 ) - J bl/, 9
:J(bu;a>r1)+ ( e T2) T ( ¢ rl) logia ry <1 <Tra.
log f r1
Letting v — 400 we end the proof. g

Corollary 3.2.23. Let ui,us € SH(2). If uy = ug L?-almost everywhere in 2, then u; = uy in £2.

Corollary 3.2.24. Let D and M be as in Proposition or|3.2.19. Then for every function u € SH(D)
we have

u(z) = limsup wu(z'), z€D.
D\M>3z'—=z

Fix a function ¥ € C5°(C, R, ) such that
o supp¥ =D,

e U(z)=¥(z2|), z€C,

° fgl ac? =1.

Let

1
U (z) = ?mg), 2€C, e>0.

For every function u € L'(§2,loc), we put

e (2) = /Qu(w)y'/,g(z ~ w) dL2(w) = /Du(z b e (w) dL2(w), z€ 0 i={zc 2:do(z) > e},

The function u. is called the e-regularization of wu.
Proposition 3.2.25. If u € SH(2) N LY(2,loc), then u. € SH(2.) NC>®(52.) and u. \ u when e \, 0.

Proof. Since we can differentiate under the integral sign in the first integral above, it is clear that u. €
C>®(§2.). For a € 2. and 0 < r < dp_(a) we have

27
J(ucia,r) = % /0 /D u(a + re? + cw)¥(w) dL*(w) db

= / J(u;a + cw, r)¥(w) dL?(w) > / u(a + ew)¥ (w) dL?(w) = uc(a),
D D

which shows that u. € SH(f2.). Note that

= ula w w sz 1 27Tua Teie TI)T T = 4T 1 U, a, T T)T AT.
ug(a)—/D(+5)y7()d/J() /0/0 (a+ ere®)W(r)r df d 2/OJ(,,5)M7()d

Now, by Proposition |3.2.22f and monotone convergence theorem, we get u.(a) ~\, u(a) when € \, 0 for every
a € (2. |

Remark 3.2.26. It follows from the proof of Proposition3.2.25/that for an arbitrary function ¥ € Cg° (C,Ry)
such that supp? = D and for every function u € SH(S?2), the functions

us(2) = /Du(z +ew)¥(w) dL*(w), z€ 2., >0,

are subharmonic.

Proposition 3.2.27. Let u € C?(2,R). Then u € SH() iff Au >0 in £.
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Proof. <=. Assume first that Au > 0in 2. Let D CC 2, h € C(D) N‘H(D), u < h on dD. Put v:=u—h
and let 2o € D be such that v(zg) = maxzv. Suppose that v(zg) > 0 (in particular, 2o € D). Then
(Au)(z9) < 0; contradiction.

For arbitrary u, take the sequence v.(z) := u(z) +¢|z|?, z € 2, € > 0, and note that Av. = Au+4e > 0
and ve N\ u.

=—>. Suppose that Au < 0 on some domain D C (2. Then, by the previous part of the proof, —u €
SH(D). Hence u € H(D); contradiction. O

Proposition 3.2.28. If u € SH(D) (D is a domain in C), u # —oo, then Au > 0 in D in the distribution

sense, i.e. for every function ¢ € C°(D,Ry) we have

/ u- (Ap) dL? > 0.

D

Conversely, if u € L*(D,loc) is such that Au > 0 in D in the distribution sense, then there exists a function
v € SH(D) such that u = v L?-almost everywhere in D; cf. Proposition|3.1.14)

Proof. Note first that if u € C2(D), then, by the Stokes theorem, Au > 0 in D in the distribution sense iff
Au > 0 in D in the usual sense.

—>. Let u. denote the regularization of the function u (as in Proposition . By Propositions
and Au, > 0 in D, in the distribution sense, i.e.

/ ue - (Ap) dL? >0

for every test function ¢ € C§°(D.,R;). Since u. N\, u (Proposition [3.2.25)), we get
[ w@aaczo pecro.r)
D

<. For every function ¢ € C§°(D.,R;) we have

/ e (4p) de? = / (Bucyp e = /| ( [ ww)An) (= w) de?w)) o (z) ()

72

= /D (/Du(w)(A(Wg(z — M (w) d£2(w)><p(z) dL*(z) > 0.

This proves that u. € SH(D;).
We show now that u. ~\, when € N\, 0. Let 0 < &1 < 9. By Proposition [3.2.25| applied for z € D., we
have

e, (2) = Tim (us, ). (2) = lim /D /D Uz + 2w + e2€)(E) dL2(E)F (w) dL2(w)

e—0 e—0

_ lim /D /D Uz + 2w + £2€ ) (w) dL2(w)P(E) dL2(€)

e—0
= lim (ue)e, (2) > lim (ue)e, (2) = lm (ue, )e(2) = ue, (2).
e—0 e—0 e—0
Let v := lim.,ou.. Then v € SH(D). On the other hand, it is well known (cf. [29]) that v, — u in

LY(D,loc). In particular, u. — u L£-almost everywhere in D. Hence u = v £2-almost everywhere D.
O

Proposition 3.2.29. For every f € O(2,G) (G is an open subset of C) and w € SH(G) we have uo f €
SH($2).

Proof. 1f u € C*(G) it is sufficient to note that
A(wo f) = ((Au)o f) - ',

and use Proposition[3.2.27] For the general case we use the regularizations (uc)e>0, cf. Proposition(3.2.25| Let
ve = uc. o f. Then v, € SH(f(G.)), and v. N, uo f in G, and so, by Proposition a), uo f € SH(2).0O
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Proposition 3.2.30 (Liouville type theorem). If u € SH(C) is bounded from above, then u = const.

Proof. Let v(z) :=u(1/z), z € C,. Then, by Proposition [3.2.29] v € SH(C.) and v is bounded from above.
Hence, by Proposition v extends to a function v € SH(C). Now, by the maximum principle, for
arbitrary z € C, we have

u(z) < max{m%xu, max v} = u(zp)

for some zp € T. Using once again the maximum principle we conclude that « = const. |

Proposition 3.2.31 (Oka theorem). For every function uw € SH(2), and for every R-analytic curve ~ :
[0,1] — £2 it holds

u(v(0)) = limsup u(y(t)).
t—0+

Proof. Since the curve v is R-analytic, there exists a function f € O(G), where G C C is an open neighbor-
hood of the interval [0, 1], such that f =~ on [0,1] and f(G) C 2. Put uy :=uwo f. To prove the assertion,
it is sufficient to show that limsup,_,q, u1(x) = u1(0). Moreover, we may assume that u; < 0.

Suppose that limsup,_,o, u1(z) < C < u1(0). Let

1
uz = - max{uy,C} + 1.
Then uy € SH(G), 0 < ug < 1, u2(0) > 0, and uz = 0 on (0, d] for some 0 < § < 1. We may assume that
6D C G. Define v(2) := u3(0z), z € D. Then v € SH, 0 < v <1, v(0) >0, and v =0 on (0,1]. Let

. 2
S,,::{re319:0<1“<1,O<9<fﬂ-}7
v

on(2) = v(z¥), forzels, v eN
v 0, for €D, \ S, ’ '

It is not difficult to check that v, € SH(D,) (cf. Proposition [3.2.11)). Since v, < 1, the function v, extends

to a subharmonic function on D; denote the extension also by v,. Observe that

v,(0) = ]}]i)n;su% vy (z) = glgsu%v(z”) = ]gn;supov(z) = v(0).
«DZ—r vIDZ—> «DZ—r

Finally, for any 0 < r < 1, we have

(0) = v, (0) < F(vy:0,7) = — /%/Vv( vertyag = L [ eyt gp< L
N v 2 2w o v o T v
Letting v — 400 we obtain v(0) = 0; contradiction. O

The above result can be generalized as follows:
Proposition 3.2.32 (Oka theorem). For any u € SH(£2) and a curve v : [0,1] — 2 we have
u(7(0)) = lim sup u(vy(%)).
t—0+

Proof. Cf. [35]. We may assume that v(0) = 0 € (2. Suppose that
u(0) > A > limsup u(y(t)).
t—0+

Take r > 0 and 0 < tp < 1 such that:

o K(r) CC 02,

o [y(t)| < rfor 0 <t < to,

o r(to)] = .

o u(y(t)) < Afor 0 <t <tp.

We may assume that to = 1. Let 2 := {z € £2: u(z) < A}. Observe that {2y is open and v((0,1]) C 2. Let G
denote the connected component of {2y that contains «((0,1]). For 0 < p < r let 0 < t, < 1 be such that |y(¢,)| = o
Take a Jordan arc o, : [0,1] — G such that 0,(0) = v(t,), 0,(1) = 7(1). There exist 0 < 79 < 71 < 1 such that

® [o,(70)| = o,
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o 0 < |o,(t)| <rfor o <t< T,

o |o,(m1)| =

We may assume that 7o = 0, 71 = 1. Let L, := 0,([0,1]), D, := K(r) \ L,. One can prove that D, is simply
connected (Exercise). Let ¢, : D — D, be a biholomorphic mapping (from the Riemann theorem) with ¢,(0) = 0
and ¢,(0) € Rso. By the Carathéodory theorem (cf. [35]), the mapping ¢, extends continuously to D (we denote
this extension also by ¢,) and ¢,(T) C dD,. Let

T, :={0 €10,2m) : ‘Pg(ew) € Lo}
(observe that T, is relatively closed in [0,2n)) and let m, := £'(T,)/(27). Notice that |p,(e"?)| = r for 6 € T} :=

[0,27) \ T,. The function
_Jwe(2)/z,  z#0
vel2) = {@’Q(o), 2=0

is holomorphic in D and continuous on D. Moreover, ¥,(z) # 0, z € D. In particular, log |1,| is harmonic in I and
continuous on D and, therefore,

log ¢;,(0) = log [ (0)| = J(log |1, 5 0, 1) = I(log |, l; 0, 1)

1 ; .
- 27(/ log o (e™)| d0+/ log [, ()] de) > mylog o+ (1 —my,)logr.
& To Té

On the other hand, by the Koebe theorem (cf. [35]), since K (o) Z ¢o(D), we get ¢, (0) < 4p. Hence
4gl—mg Z ,r_l—mg7

and, consequently, lim,_,0m, = 1.
Since u o ¢, is subharmonic in D and upper semicontinuous in D, we get

u(0) < Jwo i 0.1) = 5 ([ uteule) av+ [ ueu(e)) av) < mpa+ (1= m)e

e

where ¢ := SUpg () u. Letting o — 0 gives u(0) < Aj; contradiction d

Proposition 3.2.33. Let u € CT(£2,Ry). Then logu € SH(12) @ iff for every polynomial p € P(C) the
function |eP|u is subharmonic. In particular, if loguy, logus € SH($2), then log(u; + uz) € SH(£2).

Proof. =>. Let v(z) := |e?®)|u(z), z € 2. Then logv = Rep + logu and hence logv € SH(2); therefore
also v € SH(£2).

<. We use Proposition[3.2.7 Let a € 2,0 <r < d(a) and let p € P(C) be such that logu < Rep on
C(a,r). Then v :=|e P|lu < 1 on C(a,r). Since the function v is subharmonic, it follows from the maximum
principle that v < 1 in K (a,r), which means that logu < Rep in K(a,r). O

Proposition [3.2.33] can be generalized in the following way:

Proposition 3.2.34. Let u € CT(2,R,). Then logu € SH(2) iff for every a € C the function |e**|u(z) is
subharmonic.

Proof. Tt is clear that the problem is to prove <=. Suppose first that u € C?(£2,R~g). It is sufficient to
check that Alogwu > 0 in {2. Note that
(52)% + (‘3;)2)

1
Alogu:f(Au— "

u
Let a = o + i and put v, := |e**|u. Then
ou ou )

0 < Av, = |€az|<Au + |a|*u + 2(a% — ﬁa—y)

(14) That is u is logarithmically subharmonic.
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Fix a zp € {2 and put

ou du
by _ox) o 5y(%)
T T G
Then .
(Alogu)(zo) = l |Ava(zo) > 0.
u(20)

Now consider the general case. Note that the function u is subharmonic (because u = |€%%|u). Let (us)eso
denote the regularizations of the function u. Since u. +¢ \, u, it suffices to show that log(u. +¢) € SH({2),
e > 0. Fix an € > 0. In virtue of the first part of the proof it remains to show that |e®*|u. € SH(f2) for
every a € C. Fix an a € C. Then

st = [ u(e + cpble ] dew), = € 0
D

Now we apply Corollary [3.2.26 a
Proposition 3.2.35 (Schwarz type lemma). Let v : 1D — [0,1] be such that logu € SH(D), u(0) =0, and
lim sup M < +o0.

D.32z—0 |Z|
Then
u(z) <|z|, z€D, and limsupM <1
D.52-0 |2]

Moreover, if

Jepem, @ u(20) =l20] or limsup ulz) =1
D.3>2—0 |Z|

)

then u(z) = |z| for all z € D.

Proof. Let v(z) := u(z)/|z|, z € D,. Since logv = logu — log |z|, it follows that logv € SH(D.), and hence
v € SH(D,). By the assumption we conclude that the function v is locally bounded in D. Hence, putting
v(0) := limsupy, 5,_,ov(2), and using Proposition we obtain a function subharmonic in D. By the
maximum principle we get v < 1, which gives the required inequalities.

Moreover, if v(zp) = 1 for some zy € D, then v = 1. O

Proposition 3.2.36. Let D C C be a conver domain and let u: D — R be a convex function m Then
u € SH(D).

Proof. Since u is convex, it is also continuous (cf. [32]). Fix a € D and 0 < r < dp(a). Then we have

N N
J(u;a,7) = NLHEOOE Nu(a +ret V) > NLHEOOU(X; N(a +re' W )) = u(a).
i= i=
It remains to apply Proposition [3.2.5] O

Proposition 3.2.37 (Hadamard’s three circles theorem). Let
A={ze€C:r; <lz| <ra}

(0 <7 <ry<+400) and let logu € SH(A). Assume that
limsupu(z) < M;, j=1,2.

[z| =

Then

i z
log {2 log %

log% log%
uwlz) <M, "M, ", ze€A

(15) That is, u(t1z1+- - -+tnzn) < tiu(z1)+- - -+tyu(zy) forany z1,...,2xy € Dand ¢1,...,txy > 0with 1+ --+tny = 1;

cf. Exercise
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Proof. For o € R put u,(z) := |2|*u(z), z € A. Observe that u, is logarithmically subharmonic on A. Now,
by the maximum principle (Corollary , we get

|2|%u(2) = un(2) < max{r{M;,r$Ms}, =z € A.
Taking o € R so that r{M; = r§ Ms, we get the required estimate. O

3.3. Pluriharmonic functions
Definition 3.3.1. Let {2 be an open subset of C". A function u € C?(£2,R) is pluriharmonic on (2
(u e PH(92)) if
0*u
szazk

2)=0, ze€, jk=1,...,n. (3.3.1)

Remark 3.3.2. (a) If n =1, then PH(£2) = H(£2) (cf. § 3.1).
(b) PH() is a vector space.
(¢) Condition ([3.3.1)) is equivalent to the following system of equations
0%u 0%u ( 0u () + 0%u
2) = 2 z
Oz jOyy, Ox0y; 7 Ow;0xy y; Oy

(2)=0, z€,jk=1,...,n

In particular,
0%u 0%u

@(73) + GT/JQ-(Z) =0,

zef2, j=1,...,n,

which shows that any function u € PH(S2) is separately harmonic on 2, i.e.
PH(2) C Ho(2) 1= {u € C*(2,R) : Yaco Yie(1,.n} * Uae, € H(2ae,)}. [(F)]

Obviously every separately harmonic function is harmonic as a functlon of (2n)-variables. Thus PH(£2) C
Hs(2) C H(2). In particular, PH(£2) C C>°(£2). Notice that for n = 1 we have PH(2) = H(2) = H(12).
If n > 2, then PH(2) ¢ Hs(2) & H(2)

(d) If f=u+ive O2), then u € PH(L2
Proposition 3.3.3. If D C C™ is a star-shaped domain with respect to a point a € D, then for any
u € PH(D) there exists an f € O(D) such that uw = Re f.

In particular, any pluriharmonic function is locally the real part of a holomorphic function @

Proof. Observe that the function 2 — u(z+a) is pluriharmonic on D —a and the domain D —a is star-shaped
with respect to 0. Thus we may assume that a = 0. Define

:—Z/ Z zj zjg (tz))dt z € D.
Then v € C(D) and using (3.3.1) we get

o(u+iv), . 8u b 0u _ 0% ou
ou ! - _ 0% ou ou Yd /s ou
= a?,;/o (ZE( Se.bm )Jrzjazjazk( ) + g5, (12))d = a?k(z)*/o aitgz 02)de =0,
k=1,...,n. O

(16) One can prove (but it is much more difficult) that if u : £ — R is such that Ua,e; € H(S2a,¢;) for any a € §2 and
j=1,...,n, then u € C?(2,R).
(17) Let u1(z1, 22) = w1 (z1,y1, 32, y2) = 2122, u2(21,22) = u2(®1,y1,%2,¥y2) = z? — 22. Then uy € Hs(C2) \ PH(C2),
2 € H(C?)\ Hs(C2).
(18) We have got another proof of the inclusion PH(£2) C C*°(12).
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Corollary 3.3.4. Let 2; C C" be open, j = 1,2, and let F € O(1,$25). Then uo F € PH(§21) for any
u € PH(£22).

For an arbitrary function u € C?(£2) denote by Lu : 2 x C* — C the Levi form (called also the complex
Hessian) of u, i.e.

7

n

Observe that
82ua,x

(Lu)(a; X) = a2

(0).
In particular, if n = 1, then
1
(Lu)(a; X) = 7 (Au(a)| X|*.

Remark 3.3.5. For a function u € C2(£2,R) the following conditions are equivalent:

(i) u € PH(02);

(i) ug,x € H($2,,x) for any a € 2 and X € C™;

(iii) Lu(a; X) =0 for any a € £2 and X € C".

Let uw : 9oP(a,r) — [—o0, +oo) be bounded from above and measurable Eﬂ For z = (z1,...,2n) €
P(a,r), a = (a1,...,an), 7 = (11, . ) define

2 2
P(u;a,7r;2) = /7r /7r |Z1—a1|2 T — |20 — an/? X
(2m)m |r13191 —(z1—a1)]? 7 et — (2, — ay)|?
w(ay + 11 an 4 e dby ... d6,.

Remark 3.3.6. P(u;a,r;-) € Hs(P(a,r)).
For any affine C-isomorphism L : C* — C™, put
Q= L7(N), ur(z) == u(L(2)), z € 2.
By Corollary [3.3.:4 we have u € PH(£2) iff uy, € PH(£2L).

Proposition 3.3.7. For u € C(£2,R) the following conditions are equivalent:
(i) w e PH(92);
(ii) for every affine isomorphism L and for every a € (21, there exists an R(a), 0 < R(a) < dgp, (a), such that
for anyr = (r1,...,7m,) with0 <r; < R(a), j=1,...,n, we have
ur(z) =P(ur;a,r;2), z¢eP(a,r). (3.3.2)
Moreover, if u € PH(S2), then (3.3.2)) holds for any P(a,r) CC 2.

Proof. Assume that u € PH(2). Fix an affine isomorphism L. Recall that uy, € PH(2;) C Hs(2). Take a
P(a,r) CC 5. Then, by the Poisson formula (Proposition [3.1.10)), for z = (21, ..., 2,) € P(a,r) we have

L7 ri-la-af 0,
ur(z) =Pur(-,22,...,2n);01,71;21) = 55 )y et — (i —al) ur(ar + 7€t 29, ..., 2,) dbs

1 [ r? — |21 — ay)? 1 [ r3 — |22 — az|? 0 0
- E/o [riet — (21 —ay)[? %/o [ra€i®2 — (z5 — ag)2 ur(ay + 1€t az + 12", 23, .., 2,) dfadbs
=---=P(ur;a,r;2).

Conversely, assume that (ii) is satisfied. In particular, u € C%(f2,R). By Remark it suffices to prove
that u, x € H (2, x) for any a € 2 and X € C". Fix a and X # 0. Let L be an affine isomorphism such
that ue x = ur(0',-). Now, by virtue of (3.3.2) and Remark ur,(0',-) is harmonic. O

(19) That is, the function [0,2m)" 3 (61,...,0n) — u(as + r1e¥1, ... an + rme'¥n) is Lebesgue measurable.
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3.4. Plurisubharmonic functions

Definition 3.4.1. Let 2 C C™ be open. A function u : 2 — [—00, +00) is called plurisubharmonic (shortly
psh) in 2 (u € PSH(£2)) if:
e ucCl(2),
e for every a € {2 and X € C" the function
2, x 3\ X w(a+ AX)

is subharmonic.

Notice that the function u = —oo is psh.
The properties of psh functions mentioned just below follow directly from the definition and correspond-
ing properties of subharmonic functions.

Proposition 3.4.2. PH(2) C PSH(R2), PSH(£2) + PSH(12) = PSH(12), Rsg - PSH(£2) = PSH(12).

Proposition 3.4.3. Plurisubharmonicity is a local property, i.e. a function u : §2 — [—00,4+00) is psh in
02 iff every point a € §2 admits an open neighborhood U, C §2 such that u|ly, € PSH(U,).

Proposition 3.4.4. Let u : 2 — [—00,+00) be upper semicontinuous. Then u € PSH($) iff for any
a€ N, X eC” andr >0 such that a +rD- X C 2 we have
1 27 )
u(a) < — u(a + re®? X) db.
2m Jo
Proposition 3.4.5. Let f € O(§2). Thenlog|f| € PSH(2).

Proposition 3.4.6. Let I C R be an open interval and let ¢ : I — R be convex and non—decreasing. Then
for every psh function u : 2 — I, the function ¢ ow is psh. In particular,

— if u € PSH(2), then e* € PSH((2),

— ifu: 2 — Ry is psh, then for every p > 1, the function uP is psh in (2.

Proposition 3.4.7. If loguy, logus € PSH(12), then log(uy + uz) € PSH(£2). |(*V) |

Proposition 3.4.8. If (u, )02, C PSH(L2) and u, N\, u, then u € PSH(?).
Proposition 3.4.9. If (u,)52, C PSH(£2) and u, — u locally uniformly in §2, then u € PSH(S2).

Proposition 3.4.10 (Liouville type theorem). If a function u € PSH(C™) is globally bounded from above,
then u = const.

Proposition 3.4.11. Let u € C*(£2,R). Then u € PSH() iff (Lu)(a; X) >0 for any a € 2 and X € C";
cf. Proposition[3.3.5

Proposition 3.4.12. Let G C 2 be open subsets of C" and let v € PSH(G), u € PSH(2). Assume that
limsupwv(z) <u(¢), ¢e€(0G)NI2.

G3z—(¢
Let

u(z) = {max{v(Z)»“(Z)}7 ceG
u(2), z€N\G

Then uw € PSH((2).
Proof. Exercise — cf. the proof of Proposition [3.2.11] (use Proposition [3.4.4). O

(20) If log u € PSH(S?2), then u is called logarithmically plurisubharmonic.
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We move now to more advanced properties of psh functions. Recall that the most part of the properties
of subharmonic functions follows from Propositions [3.2.5] [3.2.12] and [3.2.15] i.e. from characterization of
subharmonic functions by different mean value theorems. We try to obtain a similar characterization for psh
functions.

Let u : 9pP(a,r) — [—00,400) be bounded from above and measurable. Define

J(u;a,7) :== P(u;a,7r;a).
If u: P(a,r) — [—00,+00) is bounded from above and measurable, a = (a1,...,a,) € C", and
r=(ry,...,mn) € (Rsg)", then we put
1
A(u;a,r) = —/ u dL*™.
(W%) () P(a,T)
Note that u € PSH(S2) iff uy, € PSH(£2,) for an arbitrary affine C-isomorphism L : C* — C™|(*!) |

Proposition 3.4.13. Let u: 2 — [—00, +00) be upper semicontinuous. Then the following conditions are
equivalent:

(i) u € PSH(L2);

(ii) for every affine isomorphism L and every a € (2r, there exists an R(a), 0 < R(a) < dg, (a), such
that for every v = (r1,...,rn), 0 <r; < R(a), j=1,...,n, we have

ur(z) < Plugsa,r;z), z€Pla,r);

(iii) for every affine isomorphism L and for every a € (21, there exists an R(a), 0 < R(a) < dg,(a),

such that for every r = (r1,...,7m,), 0<71; < R(a), j=1,...,n, we have
ur(a) < J(ug;a,r);

(iv) for every affine isomorphism L and for every a € (2, there exists an R(a), 0 < R(a) < dg,(a),
such that for every v = (r1,...,ry), 0 <r; < R(a), j=1,...,n, we have

ur(a) < Alug;a,r).

Moreover, if u € PSH({2), then the inequalities in (ii), (iii), and (iv) hold for every r = (r1,...,1y) such
that P(a,r) C 2r.

Proof. (i) = (ii). Fix L, a, r = (r1,...7,) such that P(a,r) C 2, and z = (21,...,2,) € P(a,r). Since
ur, € PSH(L2y), we obtain (applying n-times Proposition [3.2.12))

1 2 ’I“2 — |21 — a1\2 :
ur(z) < Pur(-, 22,...,2n);01,71521) < ﬂ/o |7"161101 PP up(ay + 1€ 2, .., 2,) dfy

1 [ r? — |21 — a1 |? 1 [ T3 — |22 — az|? 0 )
— - — = ur(ag + e as +r9e'?? 25, ... 2,) dod0
> 27_‘_/0 |T'1€z01 — (2'1 _a1)|2 271_/0 |’I"2€Z€2 — (22 — a2)|2 L( 1 1 s U2 2 ) %3y ) n) 2001
<.+ <P(up;a,r;z).

The implication (ii) = (iii) is evident.
(iii) = (iv).

2 2 T1 Tn
UL(a):’r‘%TQ/O /0 uL(a)Tl...TndTl...dTn
n
2 2 [T n
<. —2/ / J(up;a, (11, )71 ... Tn d7y .. dT, = Alug;a,r).
1 "n Jo 0

(21) Recall that 2p := L™1(£2), uy, :=uo L.
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(iv) = (i). Fixa € 2, X € C", || X|| = 1. It is sufficient to show that u(a) < A(ug x;0,7) for r > 0
sufficiently small. Let L be an affine isometry such that L(a + Ae,) = a + AX, A € C. By Fatou’s lemma,
for r,, > 0 sufficiently small, we have
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u(a) = uL(a) < lim sup A(uL7 (rla sy Tn—1, Tn))
T1yeeeyTn—1—0
27 27 )
= limsup — / / / ur,(ar + tiref L a, + tnrnele")tl ooty dty ... dt, dOy .. .dB,
T1yeeesTn—1—0 "

27 27
<= / / / limsup wup(ay + t1re"™ W an + tnrnew")tl ooty dty ... dt, dOy...dO,
™ 0 71,

Tn—1—0

2w 2w )
/ // UL (@1 s G A €OVt ot db . db dO .. dO,
0 0 0 0

27
= 7/ / up(ay, ..., 1,0, + tnrnem”)tn dty, dbp, = A(ug,x;0,7,).
™ Jo 0

IA

Propositions [3.4.13[ and imply the following corollary (cf. Corollary [3.2.13)).
Corollary 3.4.14. PSH(2) N (=PSH(2)) = PH(S2).

Proposition 3.4.15. Let D C C" be a domain and let u € PSH(D), u # —oo. Then u € L'(D,loc).
Consequently, L2 (u=t(—o00)) = 0.
In particular, if M is a thin subset of an open set 2 C C™ (cf. Definition , then L?"(M) = 0.

Proof. Tt is sufficient to apply the method of the proof of Proposition [3.2.16{ and use Proposition [3.4.13(iv)
(with L =id). |

Proposition 3.4.16 (Maximum principle). Let D C C™ be a domain and let u € PSH(D), u # const.
Then u does not attain its global maximum in D. If, moreover, D is bounded, then

u(z) < sup {limsupu(z)}, zé€D.
¢€dD D3z—¢

Proof. Exercise — cf. the proof of Lemma [3.2.3 |

Proposition 3.4.17. If a family (u,),er C PSH(L2) is locally bounded from above, then the function

u = (supu,)*
el

is psh in §2.
In particular, max{uy,...,un} € PSH(2) for any ui,...,un € PSH(2).

Proof. We use Proposition |3 11 Fix L,a € Q2p,and r = (r1,...,m5), 0 < 1r; <dgp,(a),j=1,...,n
Note that uy = (supLef(ub)L) For every ¢ € I we have (u,)r(z) < P((u,)r;a,7,2), 2z € P(a,r), and
consequently, sup,c;(u,)r(2) < P(ur;a,r;2), z € P(a,r). Now it is sufficient to observe that the right-hand
side is a continuous function of the variable z, and hence ur(z) < P(ur;a,r;z), z € P(a, 7). O

Proposition 3.4.18. If a sequence (u,)32; C PSH(L2) is locally bounded from above, then the function

uw = (limsupu,)*
vV—00

is psh on 2.
Proof. Exercise — cf. the proof of Proposition |
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Proposition 3.4.19 (Removable singularities). Let D C C™ be a domain, and let M C D be a closed subset
of D such that for every point a € M there exist a connected open neighborhood U, C D and a function
vy € PSH(U,), va & —00, such that MNU, = v, }(—o0). Assume also that u € PSH(D\ M) is an arbitrary
function locally bounded from above in D. Let
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u(z):= limsup u(z'), z€D.
D\M>z'—z

Then @ € SH(D). In particular, the set D\ M is connected.
Proof. Exercise — cf. the proof of Proposition [3.2.17 O

Proposition 3.4.20 (Hartogs lemma). Let (u, )52, C PSH(L2) be a sequence locally bounded from above.
Assume that for some m € R

limsupu, < m.
v——400

Then for every compact subset K C 2 and for every € > 0, there exists a vy such that

m}a{xxul, <m-+e, V2>

Proof. Exercise; cf. the proof of Proposition [3.2.20] (use Proposition [3.4.13|(iv)).

U
Proposition 3.4.21. Let u € PSH({2), a € 2. Then
J(usa,r") < J(usa,v") forrv’ <" and J(u;a,r) — u(a) when r — 0,
A(uya,r") < A(uja,r”) forr' <r” and A(u;a,7) — u(a) when r — 0.
Proof. Exercise — cf. Proposition [3.2.22 |

Corollary 3.4.22. Let uj,us € PSH(2). If uy = ug L* -almost everywhere in 2, then u; = uy in £.

Corollary 3.4.23. Let D and M be as in Proposition |3.4.19 Then for every function u € PSH(D) we
have

uw(z) ;= limsup wu(z’), ze€D.
D\M>z'—z

Let @(z1,...,2n) :=¥(2z1) -+ ¥(2zn), 2 = (21,...,2n) € C", where ¥ is a regularization function from

§ 3.2. Put
. 1 Z n
D.(z2) := 62—n¢(g), zeC" e>0.

Notice that:

L @5 S Cgo((C”,]R+),

o supp . = P(e),

e D (21,...,2n) =D(|21],-- -, |2nl)s 2= (21,...,2n) € C™,

° an &AL = 1.

For every function u € L'(£2,loc), define

ue(2) := /Qu(w)éﬁg(z —w) dL*™(w) = / u(z + ew)d(w) dL*(w), z € N.:={z€ N:da(z) > e}.

n

The function u. is called the e-regularization of w.

Proposition 3.4.24. If u € PSH(2) N L*(£2,loc), then u. € PSH(2:) NC®(§2.) and u. \, u in 2 when
e \(0.
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Proof. We have u. € C*°({2.). The monotonicity and convergence follow from the identity

(2m)" / / (uya,e(Ty .oy T))P(T1y ooy T)TL oo T ATy .. dTy

and from Proposition 3.4:21] To show that the function wu. is psh, we use Proposition 3.4.4] Fix a € (2.,

X €C" and r > 0such that a+r-D-X C £2.. Then
1o i0 I i0 2n
— uc(a+re’X) df = (— u(a +re X + ew) dﬂ)éﬁ(w) AL (w)
2 n \2T 0

> / u(a + ew)®(w) dL™(w) = u.(a). O
Proposition 3.4.25. Let £2; be an open subset of C", j = 1,2, and suppose that F' : 1 — (25 is a
holomorphic mapping. Then for any u € PSH((2:), the function wo F is in PSH({2).

Proof. Exercise — cf. the proof of Proposition [3.2.29} we consider first the case u € C?(§2) and use the
formula

(L(uo F))(a; X) = (Lu)(F(a); F'(a)(X)).
In the general case we apply the regularization (Proposition [3.4.24]). |
Proposition 3.4.26. If g : C* — R, is a C-seminorm, then logq € PSH(C™).

Proof. Given arbitrary a, X € C", the function C 5 A — ¢(a + AX) is convex, and hence subharmonic
(Proposition [3.2.36)). This means that ¢ € PSH(C™). Moreover, for every polynomial p € P(C) we have

0(A) = [P ga+ AX) = g(e"(a + AX)
and so, by Proposition v € SH(C). Consequently, by Proposition log g € PSH(C™). O

Proposition 3.4.27. Let h : C* — Ry be such that h(Az) = |A|h(z), A € C,z € C"*. Then h is psh in C"
iff log h is psh in C™.

Proof. Exercise — cf. the proof of Proposition [3.4.26] O

Proposition 3.4.28. Ifu € PSH(D) (D is a domain in C"), u # —oo, then Lu > 0 in D in the distribution
sense, i.e. for every ¢ € C3°(D,Ry) we have

/ u(2)(Lp)(z; X) dL*™(2) >0, X € C™

D

Conwersely, if u € L*(D,loc) is such that Lu > 0 in D in the distribution sense, then there exists a function
v € PSH(D) such that u = v L*"-almost everywhere in D.

Proof. Exercise — cf. the proof of Proposition [3.2.28 O

Definition 3.4.29. A function u € C(£2,R) is called strictly plurisubharmonic if for every domain D CC (2
there exists an & > 0 such that the function D 3 z — u(z) — £||2||? is psh.

Proposition 3.4.30. A function u € C?(£2) is strictly psh iff
(Lu)(a; X) >0, a€f2, XeC" X #0.
Proof. <. Fix a domain D CC {2 and let
e:=min{(Lu)(a; X):a € D, | X|| =1}, wv(z):=u(2)—¢l|z||?, z € D.

Then
(Lv)(a; X) = (Lu)(a; X) — || X|> >0, a€ R, X cC",
and so v € PSH(D) (Proposition 3.4.11)).
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=. Fix an a € 2 and let D CC {2, € > 0 be such that a € D and the function v(z) = u(z) — ¢||z||?,
z € D, is psh in D. Then

(Lu)(a; X) = (Lv)(a; X) + || X||2 > e[| X]? >0, X #0. 0

83

Remark 3.4.31. In the case where u € PSH({2) is continuous Proposition may be generalized in
the following way (cf. [27]):

If u € PSH(L2) is continuous, then for any continuous function n : 2 — Rsq there exists a strictly psh
function v € C*(§2) such that u <v < u+n on §2.

Proposition may be also ‘globalized’ in the case where (2 is a region of holomorphy (cf. [7]):

If 2 is a region of holomorphy, then for any u € PSH(2) there exists a sequence (u,)5>; C PSH(£2)N
C>°(£2) such that u, \, u pointwise on 2.

Definition 3.4.32. We say that a bounded domain D C C" is hyperconvez if there exists a psh continuous
function v : D — (—00,0) such that
{ze€D:u(z) <t} cC D for any t < 0. (*)
We say that D is weakly hyperconvex if there exists a u : D — [—00,0) with (*).

It is clear that any hyperconvex domain is weakly hyperconvex.
Proposition 3.4.33. Let D be a bounded domain in C™. Then D is hyperconvex iff D is weakly hyperconvez.

Proof. (Cf. [36].) Let w : D — [—00,0) be a psh function with (*). We will construct a continuous psh
function vo : D — (—00,0) with (*).
Fix a ball K := B(a,r) C D and let

hp k(z) :==sup{h(z) : h € PSH(D), h <1, hlgx <0}, ze€D.

Obviously 0 < hp xk <1and hp g =0on K. Put v := hE’K. It is clear that v = 0 in B(a,r). Observe that

v € PSH(D) (Proposition [3.4.17) and hence, by the maximum principle (Proposition [3.4.16) v(z) < 1 for
any z € D.

Fix a tg > 0 such that u < —ty on K and put h := (1/tp)u+ 1. Then h € PSH(D), h <1,and h <0
on K. Hence h < hp x < v. Consequently, v — 1 is a negative psh function with (*). We will show that v is
continuous (then vy := v — 1 satisfies all the required conditions).

By the Oka theorem (Proposition |3.2.31)), for any point b € 9B(a,r) we get

v(b) = [o,ll)lgtl—n v(a+t(b—a))=0.

Thus v =0o0n K.
For a € (0,1) let D, := {2z € D : v(2) < a}. Notice that K ¢ D, cC D and D, /' D when a 1.
The same proof as above shows that h}, , =0 on K. Observe that

ahp x <von D,.
Indeed, define
b max{ahp x,v} on Dy
e on D\ D,
Then
limsup ahp k(2) < a <v((), ¢ € ID,.
Dy,>z—(¢
Hence, by Proposition [3.2.11] h € PSH(D). Obviously h <1 on D and h =0 on K. Thus h < hp g < v.
In particular, ah], j < h <von D,.
Fix a point zy € D. We want to prove that v is continuous at zy. Let () := maxg 0. Observe that
a < B(a) < 1. In particular, S(a) — 1 when @« — 1. Fix n > 0 and « € (0,1) such that zo € D, and
B/a—1<n, where 8 := 3(«).
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Let (ve)o<e<e, be a family of C°° psh functions defined in a neighborhood §2 of D,,, £2 C D, such that

ve N\ v on {2 when € N\, 0 (Proposition [3.4.24). By the Hartogs lemma (Proposition [3.4.20)), one can find a
function w € PSH(£2) N C>(£2) such that w > v on 2, w <non K, and w < B+ n on D,. Consequently,

(w—n)/8 < hp, x on Dg.
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Hence,

0<w—v<php, g+n—v<(B/a-v+n<B/a—1+n<2non D,.
Now, by the continuity of w, there exists a neighborhood U od zp, U C D,, such that |w(z) —w(zo)| <7
for z € U. Finally, |v(z) — v(z0)| < b1 for z € U. O

Exercises

3.1. Let D C C be a domain, h € H(D), h # const. Prove that h? ¢ H(D).
3.2. Let h € H(D), h > 0. Prove that

1— 2| 1+ |z]
T "0 e < T
3.3. Determine the set {h(1/2) : h € H(D), h >0, h(0) = 1}.
3.4. Let £2 C C be open and let (h,),c;r C H(2) be locally uniformly bounded. Show that the function
sup,cs h, is continuous.
3.5. Let £2 C C be open. Prove that —logdg, € SH(12).
3.6. Given a domain D C C, find a continuous subharmonic function « : D — R such that {z € D :
u(z) <t} cC D for any t € R.
3.7. Let 2 CC" u: 2 — Ry. Prove that logu € PSH(S?) iff for any a € C™ the function

25z e u(z)

h(0), zeD.

is psh (cf. Proposition

3.8. Construct a function v € PSH(C™), u # 0, such that v = 0 on dense subset of C™.

3.9. Let D :={(21,22) € C?: |2122| < 1}, u € PSH(D), u < 0. Prove that there exists a v € SH(D)
such that u(z1,22) = v(2z122), (21,22) € D.

3.10. Let u € C*(£2,R). Prove that

2n n
82u 82u
7,k=1 Jk=1
where
z2=1(21,..-,2n) = (¥1 +i%a, ..., Ton_1 + iTap) € 2,

X =(X1,...,Xpn) = Y1 +1Ys,..., Yo, 1 +1iYs,) € C™.

3.11. (Convex functions.) Let D C RY be a convex domain and let CV(D) denote the set of all convex
functions v : D — [—00, 00).

(a) Let uw € CV(D). Prove that either u = —oo or u € C(D,R).

(b) Let (w,),er € CV(D) be locally bounded from above in D. Prove that u := sup,c;u, € CV(D)
(cf. Propositions 3.4.17).

(c) Let (u,)p2, € CV(D) be locally bounded from above in D. Prove that u := limsup,_, , ., u, € CV(D)

(cf. Propositions [3.2.14} |3.4.18)).
(d) Let u € C*>(D,R). Prove that u € CV(D) iff Hu(x; X) > 0 for any 2 € D and X € RY, where Hu

denotes the real Hessian of wu,

N
82
Hu(z; X) = Y W;%(x)xjxk, zeD, X =(Xi,...,Xn) € RV,
J,k=1

(*?) (z,0) = X7, 245
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Exercises
(e) Let op denote the distance to the boundary of D with respect to the Euclidean norm. Prove that
—logop € CV(D).
(f) Let @ € C5°(RY,R.) be such that
supp® = By = the unit Euclidean ball in RY,
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&(z) = d(|z1), ..., |zN]), 2 = (21,...,2N) € RY,
Jon @ dLN =1.
Define
D.:={x e D:op(x)>c}, ue(x) := u(z + ey)®(y) dLN(y), x € D., € > 0.
By

Prove that if u € CV(D), u # 0, then u. € CV(D,) NC®(D,), € > 0, and u. \y u when £ \, 0 (cf.
Propositions [3.2.25| and [3.4.24)).
(g) Let w € C(D,R). Prove that v € CV(D) iff Hu > 0 in the sense of distributions, i.e. for any function

v € C(D,R) we have

/ u(z)Ho(r; X) dCN (x) >0, X e RN
D
(cf. Propositions 3.4.28]).
(h) Let w: D — [—00,00). Put
D:=D+iRN cCV, @(x+iy):=u(z), z+iyeD.

Prove that u € CV(D) iff & € PSH(D).
(i) Let u : D — R.. Prove that logu € CV(D) iff for any a € RY the function

D 3z —s e Py(x)
is convex (cf. Exercise [3.7).






CHAPTER 4

Pseudoconvexity and the 0-problem

4.1. Pseudoconvexity

Definition 4.1.1. An open set 2 C C™ is called pseudoconvex if
—logdgn € PSH(£2).

Notice that C™ is pseudoconvex (because —logdcn = —o0). The empty set @ is pseudoconvex by
definition.

Observe that {2 is pseudoconvex iff each connected component of {2 is pseudoconvex. We will see
(Corollary a)) that any convex domain is pseudoconvex, which partially justifies the terminology.

Proposition 4.1.2. (a) Every open set {2 C C is pseudoconvez.
(b) If (§2,).er1 is a family of pseudoconvex open subsets of C", then

(2 :=int ﬂ 0,
el

s pseudoconver.
(c) If (£2;)32, is a sequence of pseudoconver subsets of C" such that £2; C 2;11, j > 1, then

.= G .Qj
j=1

is pseudoconver.
(d) If 2; is a pseudoconvex subset of C™, j =1,...,N, then

91291X~'~X.QN
is pseudoconver in C1 40N (cf Corollary|4.1.10).

In particular, for any open sets (21,...,82, C C, the set {2:= (21 X --- X {2, is pseudoconvex in C".
Proof. (a) If £2 ¢ C, then
do(z)=inf{|z—(|: (¢ 2}, z€ .
Hence, by Propositions and [3.2.10) —logdg, € SH(12).

(b) One can prove that
do =inf{dg, : 1€ I}.
Hence, by Proposition —logdg, € PSH(S?).
(c) Since —logdg, \, —logdg, we use Proposition

(d) We have
do(z1,...,2n) =min{dg,(z;) : j=1,...,N},  (21,...,20) € 2.
Hence, by Proposition [3.4.17, —logdo € PSH(L2). O

For an open set 2 C C", put
do.x(a) =sup{r >0:a+K(r)- X C 2}, XeC" ac
Obviously, if n = 1, then dp x = dn/|X|.

87
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Note that
dox(a+AX)=dg, «(A), Ie€,x.
Lemma 4.1.3. The function
2xC" >3 (a,X) — I x(a) € (0,+]
is lower semicontinuous.

Proof. Fix (ag, Xo) € 2 x C" and 0 < ro < 80, x,(ag). Since the set ag + K (ro) - Xo is compact, there exists
an ¢ > 0 such that a + K(rg) - X C 2 for any (a,X) € U := B(ag, ) x B(Xo,e) C 2 x C". Consequently,
30, x(a) > rg for any (a, X) € U. O

Given a C-norm q : C* — R, define

dg,q(a) =sup{r > 0: By(a,r) C 2}, ac€ 12,

where By(a,r) := {z € C" : q(z —a) < r}. Obviously, do|| = do. Notice that the function dp 4 is
continuous.
Remark 4.1.4. dp 4 = inf{do x : X € C", q(X) = 1}.

For a compact K C {2 and a family & C PSH({2) let

Ks:={z€ 2 :Vyes: u(z) < m}r?xu}.

By Proposition I?’[JSH(_Q) - I?O(Q).

Moreover, Kpsx () C Kpswu(2)nc(e) and the set Kpsy(o)ne(n) is relatively closed in (2.

A function u : 2 — R is called an exhaustion function if for any ¢ € R the set {z € 2 : u(z) < t} is
relatively compact in (2.

Theorem 4.1.5. Let {2 be an open subset of C™. Then the following conditions are equivalent:
(PC1) —logdn,x € PSH(L2) for every X € C";

(PC2) —logdgn,q € PSH(12) for every C-norm q;

( ) 2 is pseudoconver;

(PC4) there exists an exhaustion function u € PSH(2) NC(2);

(PC5) there exists an exhaustion function u € PSH(2);
(PC6)
(PCT)
(PC8)

Proof.

(6)
(1) (2) 3) (4) () (7) (1)
®)
The case {2 = C" is obvious (in (PC4) we can take for instance u(z) := ||z||, z € C™ (cf. Proposi-

tion [3.4.26))). Thus we may assume that 2 & C™.
(PC1) = (PC2) follows from Remark and Proposition
The implication (PC2) = (PC3) is trivial.
For the proof of (PC3) = (PC4) we can take u(z) := max{—logdn(z), 2|}, z € £2.
The implications (PC4) = (PC5) and (PC6) = (PC7) are trivial.

(1) That is, (2 is locally pseudoconver.
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For the proof of (PC5) = (PC7) observe that if v is as in (PC5), then
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KPSH(Q) C{zeR:u(z) < m}a{txu} cC f2.

In the same way we check that (PC4) = (PC6).
(PC7) = (PC1) (This is the main part of the proof.) Fix a € £2, X, Y € C™\ {0}. We want to show
that the function

2,y 22— —logdn x(a+ AY)

is subharmonic.

First consider the case where X and Y are linearly dependent. We may assume that X = Y. Since
dox(a+AX)=dg, «(N), X € 2, x, we can use Proposition a).

Now assume that X,Y are linearly independent. It is sufficient to prove (cf. Proposition that if
K(r) C 24y, and if p € P(C) is such that

—logdo x(a+AY) <Rep(A), Ie€IK(r),
then the same inequality holds for all A € K(r). In other words, if
Sox(a+AY)>e RPN X e 9K (1),
then the same is true for all A € K (r). Thus we have to show that if
a+ Y + K(e PN . X C 2, \edK(r),
then the same inclusion holds for all A € K(r).
For0<6#<1let
Ko:={a+\Y +K@lePN|). X : A€ dK(r)},
My :={a+ XY +K@lePV|). X : Xe K(r)}.
Observe that Ky and My are compact. Our problem is to show that if Ky C 2 for all 0 < 0 < 1, then
My C (2 for all 0 < 0 < 1. Thus assume that Ky C 2 for all 0 <6 < 1 and let Iy := {0 € [0,1) : My C £2}.
Notice that My = a + K(r)Y C £2. Hence Iy # @. Suppose that y € Iy. Since My, is compact, there
exists a 6 € (0p,1) such that My C 2. Consequently, Iy is open. It remains to prove that Iy is closed in
[0,1), ie. if My C 2for 0 <0 <y <1, then My, C 2.
Fix 0 < 6 < 6y. Observe that
My ={a+ Y +CePVX: |\ <7 [¢] <6} cc .
Take a u € PSH({2) and define
ve(N) i=ula + Y + e PVX), e K(6), e K(r).
Then v, is subharmonic and, therefore, the maximum principle gives

ve(A) < max ve < maxu < maxu.
OK(r) Ko Ko,
Consequently, My C (If(\(:o)pgq.[(g) CC {2 for any 0 < 6 < 6y and hence My, C 2.

The implication (PC3) = (PC8) is trivial.

(PC8) = (PC4). For a € 02 let U, be a neighborhood of a such that U, N 2 is pseudoconvex.
Clearly, there exists a smaller neighborhood V, C U, such that dgn = dy,ng in Vo N 2 (Exercise). In
particular, —logdg, € PSH(V, N 2). Consequently, there exists a closed set F' C C™ such that F' C 2 and
—logdp € PSH(2\ F). Let

wo(t) == max{—logdn(z): z € F, ||z|]| <t}, teR

(with max@ = —o0). One can easily prove (Exercise) that there exists an increasing convex function
¢ : R — Ry such that ¢(t) > max{t, po(t)}, t € R. Put

u(z) = max{—logdan(z),¢(|z|)}, =z€ .
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The function w is obviously continuous. Since ¢(||z||) > —logdn(z) for z in a neighborhood of F, the
function w is plurisubharmonic in {2 (cf. Proposition . Moreover,

{ze:u(z) <ty Cc{ze€R:do(z) >, |2z| <t} cc R, teR. O
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Corollary 4.1.6. (a) Any holomorphically convex open set £2 C C" is pseudoconvex. ED In particular,
any conver domain is pseudoconver.

(b) Any hyperconvex domain D C C™ (Definition is pseudoconver (cf. Exercise[].9).

Proof. (a) Kpsuo) C Koo
(b) Let v : D — (—00,0) be a continuous psh function such that

{zeD:u(z) <t} cC D

for any t < 0. Then for any compact K C D we get

I?'pSH(D) c{zeD:u(z) < m}z{%xu} cc D.

O
Proposition 4.1.7. If 2, C C", 23 C C™ are pseudoconver and f € O(§2;,C™), then 2 = f~1(2) is
pseudoconvex (cf. Proposition .
Proof. (Cf. the proof of Proposition ) Let K C {2 be compact. Then
Kpsna) C 2N Kpsy(a,) CC 2.

Suppose Ehat there exists a sequence (z,)32, C }?’psy(g) such that z, — zg € 21 N 9f2. Observe that for
any z € Kpgy o) and v € PSH(f2;) we get

v(f(z)) < mI?XUOf = ?%?())w.

Hence

f(f(PSH(Q)) C f(K)PSH(Qz) CC (2.
In particular,

—_—

f(z) € [(K)psy(a,) CC 22, v=1,
and so f(zg) € f22; contradiction. O
Proposition 4.1.8. 2 is pseudoconvex iff the function
NxC"> (2,X)— —logdn x(2)
is psh.
Proof. The implication <= is obvious. To prove = let
2xC" 3 (2,X) % (2,X,0) € 2 xC" x C 3 (2, X, ) s 2 + AX € C™.

Put G := f~1(£2). Note that g(£2 x C*) C G. By Proposition G is pseudoconvex. In particular, by
(PC1) the function —logdg y, is psh in G, where Y := (0,0,1) € C" x C™ x C. Now we only need to prove
that

599{(2’) = 5G7y0(g(Z,X)), (Z,X) e 2 xC".

Indeed, we have
dox(z)=sup{r>0:2z+K(r)- X C 2} =sup{r >0:{z} x {X} x K(r) C G}
=sup{r >0: (2, X,0)+ K(r)- Yo C G} =dg,v,(9(2,X)). O

(2) It is natural to ask whether the converse implication is also true. This is the famous Levi Problem, which will be solved
in Chapter 5.
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Proposition 4.1.9. Let 2 C C" be pseudoconvexr. Then for any complex affine subspace V. C C" the set
2NV is pseudoconvex in 'V, i.e. for any a € C™ and linearly independent vectors vy, ...,vy the set
G:={(AM,..-, ) eCF a4+ Mvr+ -+ M\vg, € 2}
is pseudoconvex in CF.
Proof. If u is a psh exhaustion function for 2 (cf. (PC5)), then the function
v(A) i=ula+ Ao+ -+ Aevg), A= (A1, ) €G,
is a psh exhaustion function for G. @ g

Corollary 4.1.10. Let §2; be open in C*, j =1,...,N. Then {1 x --- X {2y is pseudoconvez iff each §2;
is pseudoconver, j =1,...,N.

Proposition 4.1.11. Let 2 C C" be pseudoconvex. Then for any biholomorphic mapping @ : 2 — P((2)
the set ©(£2) is pseudoconves.

Proof. If u is a psh exhaustion function for 2, then u o &' is a psh exhaustion function for &(£2). O
Proposition 4.1.12. Let 2 C C" be pseudoconvexr and let w € PSH((2). Then
G:={z€ 2:u(z) <0}
is pseudoconver.
Proof. First assume additionally that w is continuous. Take an arbitrary compact K C G. Then

KPSH(Q) C{zeR:u(z) < m}gxu} cG.

Consequently, RVVPS%(G) C IN(pgq.L(Q) CcCG.
Now, let u be arbitrary. Put
. :={z€2:dg(z) >}, e>0.
By the first part of the proof (2. is pseudoconvex for any ¢ > 0. Let u. € PSH(£2.) NC>®(f2.) be the
e-regularization of u (cf. Proposition |3.4.24). Define
G.:={z€ 8 :u(z) <0}, e>0.

By the first part of the proof we know that G, is pseudoconvex for any ¢ > 0. It remains to observe that

G. /G as € \( 0 and use Proposition [4.1.2(c). O

Corollary 4.1.13. An open set 2 C C" is pseudoconvez iff for arbitrary e > 0 the set {z € 2 : dp(z) > &}
is pseudoconver.

Proposition 4.1.14. Let
D ={(z,w) € GxC*: H(z,w) < 1}
be a Hartogs domain over G with k-dimensional balanced fibers (Definition m, where H is as in Remark
(a). Then D is pseudoconvez iff G is pseudoconver and log H € PSH(G x CF).
In particular, we get the following results:
(a) A balanced domain
D={zeC":h(z) <1},
where h is the Minkowski functional of D, is pseudoconvez iff log h is psh on C™ (cf. Proposition .
(b) A complete Hartogs domain

D :={(z,w) € GxC:|w <e "},

(3) Observe that the result follows also from Proposition with

CF 3 (A, AR) s @ Aror + -+ Aoy € C™.
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where G C C" 1 is a domain and u : G — [—o0,+00) is upper semicontinuous (cf. Remark|1.6.4|(c)), is
pseudoconvez iff G is pseudoconver and u € PSH(G).
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Proof. <=. Observe that G x CF is pseudoconvex and
D = {(z,w) € G x CF :log H(z,w) < 0}.

It remains to use Proposition [£.1.12]
=>. We have G x {0} = D N {w = 0}. Hence, by Proposition G is pseudoconvex. Moreover,

zeG, weCF.

1
0D, (0.u)(2,0) = H(z,w)’

Hence, by Proposition log H € PSH(G x CF). O

Proposition 4.1.15. Let 2 C C" be pseudoconvex open set, let K C {2 be a compact set, and let U C (2
be an open neighborhood of Kpsy o). Then there exists a strictly psh exhaustion function u € C*(§2) such
that

u<O0onK, u>0o0nR\U.

Proof. Let ug be a continuous psh exhaustion function on 2 (cf. (PC4)). We may assume that uy < 0 on
K. Define

L:={z€R:uy(z) <2}, M:={2€ 2\U:up(z) <0}.

The sets L, M are compact, M C L.

Suppose that M # @&. Since M N Kpsy (o) = 9, for any point a € M there exists a function u, €
PSH(2) such that u, < 0 on K and us(a) > 0. Let 2, :={z € 2:dn(z) > ¢} and let (uy)e € PSH(£2:)N
C>(§2.) denote the e-regularization of u,. It is clear that there exists an e(a) > 0 such that L C f2.(,),
(ta)e(a) < 0on K and (uqg)z(q)(@) > 0. Put vy := (Ug)s(q). Since v, is continuous, there exists a neighborhood
Va C £2.(q) of a such that v, > 0 in V,. Since M is compact, there exist points ay,...,anx € M such that
M CV, U---UV,,. Define ¢ := max{e(a1),...,c(an)}, w = max{vg,,...,vay } € PSH(2:) NC(§2:) and
observe that L C 2., w < 0 on K and w > 0 on M. Let ¢ := max{1, maxy w} and put

v(z) = max{w(z), cuo(2)} if up(z) <2
| euo(2) if ug(z) > 1

Then v is a well-defined continuous psh function on 2. Observe that {v < t} C {ug < 2} U{ug < t/c} CC 2
for any t € R, so v is an exhaustion function. Clearly, v < 0 on K. Moreover, if z € £2\ U and ug(z) > 0,
then v(z) > cup(z) > 0; if z € 2\ U and up(z) <0, then z € M and therefore v(z) > w(z) > 0. Thus v >0
on 2\U.

If M = @ we put v := uyg.

It remains to smooth v. Put

G, ={ze2:v(z)<v}, veL

Let 0. € PSH(£2.)NC>(£2.) be the e-regularization of v and let v. := . +¢l|z||* + . Then v, is strictly psh
and v \ v as € \, 0 on 2. Since v is continuous, v. — v locally uniformly on {2 (use the Dini theorem).
For each v € Ny let (v) > 0 be such that G, CC £2.(,), v < v,y < v+ 1 on G, and Vo) <0 on K. Let
@, € C3°(42,[0,1]) be such that supp ¢, C 2.,y and ¢, = 1 in a neighborhood of G,. Define ¥, := ¢, - Ve(v)
on G, and ¢, = 0 on {2\ supp ¢,. Observe that 1, is a well-defined C*> function on {2 and 9, = v.(, in a
neighborhood of G,,, v € Ny.

Let x : R — R4 be a C* increasing convex function such that x(¢) = 0 for t < 0 and x'(¢) > 0 for
t > 0. Define V,, := x(¢, + 1 —v) € C®(£2,R;). Observe that:

(a) V, is psh in a neighborhood of G,,.

(b) V, =0 on G,_5. Indeed, if z € G,,_o, then ¥, (2) + 1 —v <wv(2) +1+1—-v < 0.
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(c) V, is strictly psh and > 0 in a neighborhood of G, \ G,_;. Indeed, if 2 € G, \ G,_1, then
Y(z)+1—v>wv(z)+1—v>0. Hence V,(2) > 0 and for X € (C"), we get
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EVV(Z; X) = X//(wu(z) +1- V)’ Z %il/ (Z)XJ'Q + X/(l/fu(z) +1- V)ﬁ%(z,X)
j=1 Y

> X/('(/}V(Z) +1=v)LY(2X) >0

We are going to construct a sequence (c¢,)22; C Ry such that for each v € N the function W, :=
o +c1Vi + -+ ¢, V, is > v and strictly psh in a neighborhood of G,. We proceed by induction over
v. Put Wy := 9 and suppose that cj,...,c, are already constructed for some v > 0 (this condition
is empty for v = 0). By (a), for any ¢,41; > 0, the function W,11 = W, + ¢,+1V,41 is strictly psh
and > v in a neighborhood of G,. We have to find cy4+1 such that W, is strictly psh and > v in a
neighborhood of H := G,41 \ G,. Fix an A > 0 such that LW, (2;X) > —A||X|?, z € H, X € C". In
virtue of (c) there exists a constant B > 0 such that £V, 1(2;X) > B|X||?, z € H, X € C". Hence
LW, 1(2;X) = LW, (2, X) + cvs1LV41(2; X) > (A + 11 B)|| X%, 2 € H, X € C", which shows that
with ¢,41 > 0 the function W, is strictly psh on G, ;. Recall that V, ;1 > 0 on H (cf. (¢)). Hence, if
cy4+1 > 0, then W41 > v on H.

Observe that W, = W), on G, for any v > u (use (b)). Thus u := lim,_, ;o W, is a well-defined C>
strictly psh function on 2. If z € K C Gg, then we get u(z) = W1(2) = ¥o(2) + cix(¥1(2)) = ¥o(2) < 0.
Moreover, u > v and therefore u is an exhaustion function. O

Corollary 4.1.16. Let 2 C C" be a pseudoconvex open set and let K C (2 be a compact set. Then
Kpsun) = Kpsw(a)nc=()- In particular, the set Kpsy (o) is closed.

Proof. Obviously, I?pSH(Q) C I?’]DSH(Q)QCOO(Q). Take an a ¢ IN(psy(Q) and let U := 2\ {a}. Then by
Proposition [4.1.15) there exists a function v € PSH(£2) N C>(£2) such that u < 0 on K and u(a) > 0.
Consequently, a ¢ Kpsy(o)nc=(0)- O

Definition 4.1.17. We say that an open bounded set 2 C C" is strongly pseudoconvez if for any point
a € 952 there exist a polydisc P C C" and a strictly psh function v € C2(P,R) (cf. § 3.4) such that

eac P,

e P2NP={z€ P:u(z) <0},

e P\ 2={z€P:u(z) >0},

o grad u(z) # 0 for any z € PN of2.

Observe that, by (PC8) and Proposition [4.1.12] any strongly pseudoconvex open set is pseudoconvex.

Proposition 4.1.18. Assume that §2 is holomorphically convex open set.
(a) Let K C 2 be compact and let U be an open neighborhood of R\-O(Q). Then there exists a strictly psh real
analytic exzhaustion function u : 2 — R such that u < 0 on K and u >0 on 2\ U.
(b) 2 =Ure, 2, where
2 is a relatively compact open subset of £2 with {2y, C 2k41, and
0 1is strongly pseudoconvex with real analytic boundary, k > 1.

Proof. (a) There exists a sequence of holomorphically convex compact sets (K;)72; such that K; = IA{O( Q)
K; CintKjiq,j>1,and 2 = Ujoil Kj; cf. Remark [2.7.11(g). Fix open sets U;, j > 1, such that U; C U,
K; CU; C Kj41,j > 1. Fixa j > 1. For any point z € K12 \ U; there exists an f, € O(£2) such that
|f2(2)] > 1> || f:|lx,. Let V. be a neighborhood of z such that |f.(w)| > 1 for w € V.. There exist points
21, .-+ 2k(j) such that Ko\ U; C V,, U---UV;, . Define f;, = fL,v=1,...,k(j), where £ = ((j) is
such that
k(4) 1 k(4)

S i) < o 2 € Ky, S ()P >4, 2 € Kjpa\ U;.
v=1 v=1
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Put
oo k(j)
vi=—1+ Z Z |fj,1/|2'
j=1v=1

Observe that the series converges locally normally in 2. Tt is clear that v € PSH({2), v < 0 on K, and that
v>j—1on 2\Uj, j>1. In particular, v > 0 on 2\ U and v is an exhaustion function.
To prove that v is real analytic we proceed as follows.
Define 2* :={Z:z€ 2} and ¢ : 2 x 2* — C,
oo k(4)
p(z,w) == -1+ Z Z fiw(2) fi0 ().
j=1lv=1
The series converges locally normally in 2 x 2* and therefore ¢ € O(£2 x £2*). Since v(2) = p(z,%), z € £2,
the function v is real analytic.
Finally, we put u := v + ¢|z||?, where € > 0 is so small that u < 0 on K. It is clear that u satisfies all

the required conditions.
(b) Let u be as in (a). By the Sard theorem (cf. [6], Th. 3.4.3) @there exists a sequence R 3 t;, 7 400

such that t;, ¢ u({z € £2: gradu(z) =0}). We put 2, :={z € 2:u(z) <tp}, k> 1. O
Let (A,)%2, be an arbitrary sequence of subsets of C". Define
Ap= lim 4, A 0T s A C (A0)©), Ag C (A4,)E. |(7)

One can easily check that if A, — Ag, Ao is bounded, and u € C(C™,R), then inf4, u — inf4, .

Theorem 4.1.19 (Kontinuititssatz). Let {2 be an open subset of C*. Then the following conditions are
equivalent:

(PC3) 12 is pseudoconver;

(PC9) for any k € N, a bounded domain D C C*, and a sequence (v,)5; C O(D, 2)NC(D, $2), the following
implication is true:

if v,(D) — A and v,(0D) — Ay, where A is bounded and Ay CC {2, then A CC §2;

(PC10) for every sequence of injective holomorphic mappings (v,)5%, C O(C,C") such that |J;~, 7, (D) C £2,
the following implication is true:

if (D) — A and v, (T) — Ao, where A is bounded and Ay CC 12, then A CC (2.
Proof. (PC3) = (PC9). Let u, := —logdg o~,. Then u, € PSH(D)NC(D) (cf. Proposition [3.4.25). In

particular, by the maximum principle we have
max u, = maxu,, UV > 1.
D oD

This means that
inf dp= inf dp, v>1

v (D) 7 (0D)
Put dp :=0on C"\ 2. Then dg, € C(C™). We get
inf do — infdg7 inf do — infd(),
’YV(B) A 'VV(aD) Ao

which proves that inf 4 dp = inf4, dp > 0, and so A CC (2.

The implication (PC9) = (PC10) is obvious.

(PC10) = (PC3). We keep all the notations from the proof of the implication (PC7) = (PC1)
in Theorem Recall that the only problem is to show that the set Iy is closed in [0,1). Take an
Ip >0, — 6y €[0,1) and fix a ¢ € D. Define

Y\ == a+7rAY +60,ePUNVX, NeC, v>1.

(%) For any u € C2™(£2,R), the set u({z € £2: gradu(z) = 0}) C R is of Lebesgue measure zero.
(°) Recall that A®) =], 4 P(a, ).
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Then =, is injective (because X and Y are linearly independent). Obviously,
257([0) — A, (T) — A,
where
A:={a+71AY + 00 PUVX |\ < 1} C My,,
Ag :={a+7r\Y +600CePVX A\ =1} € Ky, CC 2.
Consequently, A C {2 and hence (since ( is arbitrary) 6y € Iy. a

4.2. The O-problem

Let 2 C C" be open, p, q € Ny, and let u be a differential form on (2 of order p 4+ gq. We say that u is of
type (p, q) (v € Fip.q)(£2)) if

u = Z UI,JdZ[/\dEJ, (421)

I€En,JeED

where
Ey={l = (i1,...,0p) €NP 1 <y <00 <y <},
ur,Jg: 2 — (C,
dzy = dZil VAKERIVAN dZip, dzy := d?jl VANCERIVAN d?jq.
To simplify notation, we will write
/

[I|=p,|J|=q

D

IGE;},JEEZ}

instead of

The representation (4.2.1)) is uniquely determined; it is called the canonical representation of w.
Notice that F, 4)(£2) = {0} for p > n or ¢ > n.
Let

Céﬂp’q)(ﬂ) = {’LL S ]:(p,q)(‘g) Zvlegg, JEEM 1 UL J € Ck(-Q)}, 0<k<oo.
For u € C}, ,(£2) in the form (4.2.1) define

/ n 8u1 J —
= 2 i 4.2.2
ou E E oz, dz; Ndzp Ndzy, ( )

[I|=p,|J|=q j=1

= N _
Ju= > > o) dz; Ndzp N dZy. (4.2.3)

[I|=p,|J|=q j=1

Note that the right-hand sides of (4.2.2)) and (4.2.3)) are not in the canonical form. For instance, the canonical
form of (4.2.3)) is the following one

— / . 6u1J o

Ju = ( LK, J, —’)d Adzk,

u Z i Z e( 7) 7z, zr NdZ g
|I|:p,|K|:q+1 JE:q’,]E{l,.n,n}
where for K = (k1,...,kgt1) and J = (j1,...,4q),
e(l,K,J,5):=0
if {kla ) kq+1} 7& {j)jlv . 7jq}a and
e(I,K,J,j) € {—1,+1} is such that dz; Adzr AdzZ; =e(I, K, J, j)dzr NdZk

if {k17 ) kq+1} = {j)jlv s 7jq}'
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Observe that

9: Cpq)( ) — C(karllq(Q)’ 9: Cpq)( ) — C(kpqlﬂ (2), 9+09=d,

where d denotes the standard exterior differentiation operator.
A form u € C(lp’q)(ﬂ) is called 0-closed if Ou = 0.

A form v € Cp 441)(£2) is called D-ezact if there exists a u € C(lpyq)(ﬂ) such that du = v.

The equation du = v is called the inhomogeneous Cauchy-Riemann equation or the 0-equation or the
d-problem.

Remark 4.2.1. (a) Since 9 + 0 = d, we get
(@00)(u) =0, (900)(u)=0, (200)(u)=—(000)(u), u€CqH ().
In particular, if v € C( gin(2) and v = Ou for a form u € C(Qpﬂ)(()), then v = 0, i.e. v must be d-closed.
(b) For f € C1(£2) we have
fe0O() = df =0.
More generally, if u = Z \1j=p Urdz1 € C (p,0)(£2), then
ou =0 V[eg;z Lur € O(Q)

(c) If u € Fip,q)(92), v € Fr5)(£2), then u Av € Fpir g16)(£2).
(d) Let & = (P1,...,Py) : 2 — {2 be a holomorphic mapping, where 2’ is an open set in C™. Then

P (Fp,g) (12)) C Fip,) (£2),

/
where for u =" [T|=p,|J|=q ur,ydzr A\ dz; we put

()= S (urgo®) dby, A--- AdB;, AdB, A~ A dB;,
\11=p11=a
= Z' (ur,g 0 D) dD;y A -+ ANOD; NOB; A+ N\DD;, .
\11=p1T|=a

Moreover,
*(C, (12)) C C, 4 (52), (@* 0 9)(u) = (Do ®*)(u), u€EC,, (2.

k o "
C(p,q) (£2) C(p q)(QI)

al &

Crarn(2) -, Clrasny (1)

In particular, if Ju = v, then 5(@*( )) = *(v). Consequently, if u € C(lp’q)(Q) is O-closed, then &*(u)
is also O-closed.

(e)
A(uAv) = (0u) Av+ (=1)PTiy A (Ov), u€ C(lp’q)(ﬂ), veC Ts)( ).

For u as in (4.2.1)) we define the support of u by the formula

supp u := U suppur,j.
I€Ep, JEED
Proposition 4.2.2. Let v € C(o 1)( ") be a O-closed form with k > 1, n > 2, and suppv CC C". Then

there exists a function u € C§(C™) such that Ou = v and u = 0 in the unbounded connected component of the
set C™ \ suppv.
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__ Ou
9z

Remark 4.2.3. The above result is not true for n =1
for a function u € C}(C). Then by the Stokes theorem, for sufficiently large R > 0 we have

Indeed, let v = vodz € C7¥ © 1)( ) be such that suppvy CC C and f(c vo dL% # 0. Suppose that vy = 5
Ou 9
0= udz = ( YdZ N dz = 2i vodL* #0
OK(R) K(R) K(R)

contradiction.
Lemma 4.2.4 (The Cauchy—Green formula). Let D C C be a regular domain (cf. Deﬁmtwn and let

fecy(D). Then
of
1 £(©) / 9
_ L D.
£(2) 27ri(/aDszdC+ A giZdC/\dC> s e
Proof. Fix an a € D and take a disc K(a,e) CC D. Then, by the Stokes theorem (applied to the domain
D. := D\ K(a,¢)), we have
[ 90 1Dy [ Sy [ (£
ap C—a Clae) C—a ap. G — C—a
H© il _
:—/ d¢ N dT — — d¢ A dC.
p. (—a p¢—a
On the other hand,
i om [ P )] < dim (max{1(0) — @) ¢ € Clae)}) =0,
e—>0 270 Jo(ae) C — @ T e—0 ’
O
Proof of Proposition[{.2.3 Let v=>Y"_, v;dz;. Note that the condition v = 0 means that
ov;  Ovp .
— = — k=1,... 4.2.4
azk) 82‘77 .]7 9 7n ( )
Suppose that suppv C P(R). For z = (2, n) € C™ define
1 01(C, 22, .y 2n) 1 v1(z1 — (29,0, 2n) —
u(e) = g [ ST A aC =~ j : d¢ A dC.
Observe that u(z) = 0 for (22, 2n) ¢ P,_1(R). Tt is clear that u € C*(C™). Moreover, by (4.2.4), we get
0vy v
ou 1 az(l_C722,.. Zn) 1 a—zjl(zl—gz%..., Zn)
a?j(z = ~5m /. : dC/\dC——ﬂ c d¢ A dC
v 11]
1 = 3Ry ey 2 _ 1 (Ca 27"'777,) _
= ./821(4 : )dC/\dC:/ dCAdC, Ze(cnajzlv"'an
27 Jo C— 2z 2mi Jk(R) (—=
Now we apply the Cauchy—Green formula (with D := K(R)) and we get
1 i -
UJ<<7227 7Zn) dCZ'Uj(Z)7 zEC",j:L...,n
. Consequently, by the
0

ou
—(2) =vi(2) — —
271 Jo(r) (—=

2) =
Hence du = v. In particular, Ju = 0 outside suppwv, i.e. u € O(C™ \ suppv)
identity principle, u = 0 in the unbounded connected component of the set C™ \ supp v

Proposition “ permits us to give a new elegant proof of the Hartogs extension theorem (cf. Theo-

rem [F1.3).

connected. Then O(D \ K)

Theorem 4.2.5. Let D be a domain in C™, n > 2, and let K be a compact subset of D such that D\ K is
= O(D)|p\k-
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Proof. Fix an f € O(D \ K). Let ¢ € C5°(D) be such that ¢ =1 in a neighborhood U of K. Put

F::{(l—wff in D\K
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0 inU
Then clearly F' is well defined and F' € C*°(D). Define

OF in D
vi= .
0 in C™ \ supp ¢

Then v is well defined, v € Cé’al)(D), v = 0, and suppv C suppy CC D. By Proposition there exists
a function u € C§°(C™) such that du = v and u = 0 in the unbounded connected component 2, of the set
C™ \ suppv.

Put f:: F —u. Then fé C*>(D) and gf: 0. Thus fe O(D). Moreover f: F=fin (D\suppp)N
2 # . Hence, by the identity principle, f: fin D\ K. a

Definition 4.2.6. Let S, , = S5,,,(C") denote the family of all sets A C C” such that for every open

neighborhood G of A and for every O-closed form v € CE’;’ p +1)(G) there exist an open neighborhood G of A

(with G C @) and a form u € C&‘;q)(é) such that Ou = v in G.

Remark 4.2.7. (a) If £2 C C" is open, then 2 € S, , iff for any d-closed form v € Clp.q+1)(£2) there exists
au€Cq  (£2) such that u = v.
(b) Let @ : 2 — (2 be biholomorphic, where 2, C C™ are open. Then for any A C {2 we have:
A€ Sy <= P(A)eS,,.

Indeed, let v € CF . 11(G") be O-closed, where G’ is an open neighborhood of @(A). Then v := &*(v') €
Cira+n(G) and Ov = 0, where G := ¢71(G’") D A (cf. Remark d)). Since A € S, ,, there exist an
open neighborhood G of A (G C G) and u € Cy ) (G) such that Ou =vin G. Put o/ := (&71)*(u). Then

u e C&iq)(é') with ¢/ := &(G) C & and
B/ = (@) (@) = (@) () = (07 (@ () =
Proposition 4.2.8. Let p1,...,0m € O(C"™™) (1 <m <n-—1) and let
Ch ™52 s (2, 01(2), ... om(2)) € C.

Take a set A C C" and put A’ := p=1(A) Cc C*—™.
(a) If
A€ S, NN Sy gimot,

a‘;q)(G’), where G' is an open neighborhood of A’, there exist an open

neighborhood G of A and a d-closed form w € Corg(G) such that w' = p* (w) in pH(G) C@.
In particular, if £2 C C™ is open and 2 € Soo N -+ N Spm—1, then for any f' € O(L2') there exists an
f € 0(0) such that f' = f o pu.

(b) If

then for any O-closed form w' € C

AeSpaN---NSpgtms
then A" € S, ((C*—™).

Proof. We will use finite induction on m (with an arbitrary n).
m=1.
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G A c’
Figure 4.2.1

(a) Define 7 : C* — C"~ 1, 7(2/, 2,) := 2/. Fix a 0-closed form w’ € Ci.p(G'); where G is an open

neighborhood of A’. Put 2 := (G’ x C) U (C™ \ u(C"~1)). Observe that §2 is an open neighborhood of A.
Put

My:={z€2:7(2) ¢ G'}, My :=pu(G)=02nuC" M.
Note that the sets My, M; are relatively closed in 2 and disjoint. In particular, there exists a function
X € C*°(42) such that x = j in an open neighborhood U; of Mj, j = 0,1 (cf. [32]). Let

P X -7 (w') in G xC
“ o inlUp

Obviously, w is well defined and w € C&j’,q)(ﬂ). We have
pr(w) = p*(x -7 (w) = (xop) - (rop)*(w)=(xon) w=w" inG.

The form w need not be d-closed. Therefore, we take w = @ — Q - u with Q(z) := ¢1(2') — 2,, where
u € C&‘f q)(G) will be chosen below. Independently of a choice of u, we have

e (w) = p*(w) — p*(Q - u) = p*(w) = w'.
Observe that ~ ~
8w:{(6x)/\7r*(w’)—Q8u in G’><(C.
—QO0u in Uy
To get Ow = 0 we only need to find v such that

e Ty Q@) AT (W) i (G X C)\ My
. 0 in Uo U U1 '

It is easy to check that v € C&iqﬂ)((z) and v = 0. Since A € S, 4, there exist an open neighborhood G of
A (with G C ) and u € CF7 1 (G) such that Ju = v in G. Consequently, w is d-closed in G and w' = p* (w)
inp~HG)C G

(b) Take a O-closed form v" € CF . )(G'), where G” is an open neighborhood of A’. Since A € 5y q11,
assertion (a) implies that there exist an open neighborhood G of A and a d-closed form v € Cirg +1)(G)
such that v' = p*(v) in p~1(G). Since A € S, 4, there exist an open neighborhood G of A (with G C G)
and u € C&f’q)(G) such that Ou = v in G. Put v/ := p*(u) in G’ := p~Y(G). Then v’ € Coa (@) and
o' = p*(0u) = p*(v) =o' in G'.

m—1~m.
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Observe that p = o o p1, where
C'm 52 (¢ pi() €CP X C,
C"™™ x C > (,2") 2 (2, 2", 02(2'), ..., om(2")) € C™.

(a) Take a d-closed form w' € Cl. ) (G'), where G is an open neighborhood of A’. Since (b) is true for
m —1, the set A; := ;' (A) belongs to S, ,(C"~™*!). Note that A’ = y; *(A;). Since (a) is true for m = 1,
there exist an open neighborhood Gy of A; and a O-closed form w; € Cl.q)(G1) such that w’ = pi(w:) in
uyH(G1) € G'. Now, since (a) is true for m — 1, there exist a neighborhood G of A and a d-closed form
w € C 1 (G) such that wy = p3(w) in py H(G) € Gy. Then w' = pi(p3(w)) = p*(w) in p=H(G) C G'.

(b) Since (b) is true for m — 1, the set A; := u; *(A) belongs to S, ;N S, 4+1. Now we apply the case

m = 1to A; and we conclude that A’ = u;'(A;) € S,
(|

Theorem 4.2.9. Let 2 C C" be open, n > 2. If
e SO,O N---N SO,n727
then {2 is holomorphically convex.

Proof. Tt is sufficient to show that for any a € (2 there exists an f € O(f2) such that d(T,f) = dn(a)
(Proposition [2.7.5). Fix an a = (a1, ...,a,) € 2, let P :=P(a,dg(a)), and let b € 32N P. Using a complex
affine isomorphism of C", we may assume that b =0 and as = -+ = a,, = 0 (cf. Remark 4.2.7(b)). Let

2 :={€eC:(2,0,...,0) € 2}.

Note that 0 € 9f2. By Proposition (with f/(2') :=1/2") there exists an f € O({2) such that f(z',0) =
1/2'. Obviously, f cannot be extended across b. a

Remark 4.2.10. To solve the Levi problem it suffices to show that any pseudoconvex domain
belongs to Sy oN--- N Spn_2.

4.3. Runge domains

Definition 4.3.1. A region of holomorphy {2 C C" is called a Runge region if every function f € O({2) can
be approximated uniformly on every compact subset of {2 by polynomials of n complex variables.
If £2 is a connected Runge region, then we say that {2 is a Runge domain.
Obviously, if {2 is a Runge region, then each connected component of (2 is a Runge domain.
Note that in the above definition the space of polynomials can be replaced by the space of entire functions.
Let K be a compact subset of C". Recall (Remark [2.7.11e)) that

~

K = Ko@eny = Kpeny = {2 € C" : Vpep(eny : [P(2)] < | Pk}
If K= IA(, then we say that K is polynomially convex.

Remark 4.3.2. (a) If 2 C C, then {2 is a Runge region iff any connected component of {2 is simply
connected (cf. [4], VIIL.1).
(b) By Proposition any balanced domain of holomorphy is a Runge domain.
(c) Let G be a Runge domain in C"~* and let D C C" be a Hartogs domain of holomorphy over G (cf.
Definition such that one of the following conditions is satisfied:

V.eq D, is connected, k-circled, and D N (G x {0}F) # @.

V.ca D, is balanced.
Then, by Propositions and b) D is a Runge domain
(d) Let F': C* — C" be a polynomial mapping and let £’ C C" be a Runge region. Put 2 := F~1(§2').
Assume that F|p : 2 — 2 is biholomorphic. Then (2 is also a Runge region (cf. Example .

Indeed, let g € O(£2), K CC §2, and let (p, )< ; be a sequence of polynomials such that p, — go(F|o) ™!
uniformly on F(K). Then p, o F — g uniformly on K.
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Theorem 4.3.3. Let 2 be a region of holomorphy in C™. The following conditions are equivalent:
(i) 2isa Runge region;

(i) K= KO(Q) for any compact K C (2;

(iii) KnN= KO(Q for any compact K C (2;

(iv) KnRcc for any compact K C (2.

(i)

() (i) (iv)
The implication (i) = (iii) follows immediately from the fact that polynomials are dense in O({2).
The implication (ii) = (iii) is obvious.
The implication (iii) = (iv) follows from Theorem
In the sequel (after Proposition we will prove that (iv) = (ii) = (i).

Lemma 4.3.4. Let G be a neighborhood of a polynomially convex compact set K C C™. Then there exist
m €N and Py,..., P, € P(C") such that

Kc{zeC":|Pj(»)|<1,j=1,...,m} =L CCQG.
The set L is called a polynomial polyhedron. Note that L is polynomially convex.

Proof. Let € > 0 be such that K C P(1/¢). Put P;(z) := €2, j = 1,...,n. Let M := P(1/e) \ G. Since
K is polynomially convex, for every point z € M there exists a polynomial P such that |P(z)| > 1 and

|IP|lx < 1. Consequently, there exists a finite number of polynomials P, y1,..., P, such that ||Pj||x <1,
j=n+1,...,m, and max{|P;| : j =n+1,...,m} > 1 on M. The polynomials Pi,..., P, satisfy all the
required conditions. O

Proposition 4.3.5. Let v € Ci 1) (Pn(a, 7)) be 0-closed. Then for every polydisc P, (a,') CC P,(a,r)
there exists a uw € 7\ (Pn(a, 7 ")) such that Ou = v in P, (a,r’).
In particular, every closed polydisc I belongs to S, 4 for any p,q € Np.

Proof. We use induction on k, where k is such that v is independent of dZp11,..., dz, (the case k = n will
give the required result). If k = 0, then v = 0 and therefore the situation is trivial.
Suppose that the result has been proved for k — 1, and let v be independent of dzy1,...,dz,. Write

v=dz, Ag+h, (4.3.1)

where g € C(p q)( n(a,r)), h € C°° (]P’n(a,r)), and g and h are independent of dzy,...,dz,. Write g in

the canonical form

P,q+1)

/ —
g = Z g],JdZ]/\dZJ.
[I|=p,|J|=q

Since dv = 0, we easily conclude that for any I, .J we have

91,7
= =0, j>k.
0%; J
In other words, the functions gr ; are holomorphic with respect to zx11,. .., 2n.
Choose a function ¢ € C§°(K (ag,ry)) such that ¥ (z) = 1 on K (ax,ry) with 7}, < 7} < ri. Let
1 (T
G]_"](Z) = — ( ) g],J(Zl, ey 21Ty Zkgly - - - ,Zn)d’r AN dT
21 Jo T — 2k
Yz — 7 _
= ¥g[“](2’17...,2}€,1,2k—T,Zk+1,...,zn)d7'/\d7'.

2mi Je T
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The function Gy, ; is well defined for z € P(a,r) and Gr ; € C*°(P(a,r)). Observe that

oGry, | ‘
7, (2)=0, j>k, z€P(a,r).
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Moreover, by the Cauchnyreen formula (cf. Lemma {4.2.4)), we obtain

agi[ki = 2m / 8* 7)g1 J(Zl,...,Zk71,7,2k+1,..‘,Zn))dTT_/\jZ =g1,s(2), z€P(a,r").
akﬂrk
Define
G = Z, GI,JdZI/\dEJ.
[I|=p,|J|=q
Then
G = Z/ ZaGIJaF ANdzr NdZy = dz A g+ hy in P(a,r"), (4.3.2)
npii=a =1 9%

Where hy is independent of dZy,...,dZ,. Consider in P(a,r”) the form v — dG. In virtue of 1} and
we have v — 9G = h — hy. Hence v — 0G is independentiof dzk,...,dz,. Moreover, (v —0G) =
81} = O Therefore, there exists a u € Cf o (P(a,7")) such that 0u = v — 9G. Define u := u + G. Then

ou = 0u + 0G = v. O

Proposition 4.3.6. Let K CC C" be polynomially conver and let f be holomorphic in a neighborhood of
K. Then there exists a sequence (f;)32; C P(C") such that f; — f uniformly on K.

Proof. By Lemma [4.3.4] there exists a polynomial polyhedron L such that K C L and f is holomorphic in a
neighborhood of L. Choose a closed polydisc II D L so that

L={zeIl:|Pj(2)| <1, j=1,...,m}.
By Proposition m I xD" € Sp0N---NSpm_1. Hence, by Proposition with A :=II x D™, there
exists a function F holomorphic in a neighborhood of II x D" € C™ x C™ such that
in a neighborhood of L. Let F} be the k-th partial sum of the Taylor expansion of F' in a neighborhood of
IIxD", k>0. Then F, — F uniformly on IT x D™. Therefore
Fy(z,P,...,Py,) — F(z,P1,...,P,) = f uniformly on L.
|

The end of the proof of Theorem[4.3.3 The implication (ii) = (i) can be obtained by an immediate appli-
cation of Proposition
Now we prove that (iv) = (ii). Define
KlzzlA(ﬂ.Q, KQZI?\Q

By (iv), the set K7 is compact. Since Kj is a closed subset of K , K5 is also compact. Moreover, K1NKy = &
Let f := 0 in a neighborhood of K; and f := 1 in a neighborhood of K. Then f is holomorphic in a
neighborhood of K. Since K is polynomlally convex, Pr0p051t10n1mphes that there exists a polynomlal
g such that |g — f| < 1/2 on K. Hence |g| < 1/2 on K; and [g| > 1/2 on K. S1nce K C Ky and K, C K,
it must hold Ky = @. Therefore K= K, C 2. Let f € O(£2). By Proposition 6 the function f can
be approximated uniformly on K=K 1 (in particular, on K) by polynomials of n complex variables. This
means that {2 is a Runge domain, i.e. condition (1) of Theorem is fulfilled. We already know that (i)
= (iii). Hence Knn= KO(Q) Finally, K= KO( Q)- O

Theorem and Remark [2.7.11] m(f give
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Corollary 4.3.7. (2, is a Runge region in C™, j = 1,2, iff £1 x 25 is a Runge region in C" "2,
In particular, if D; C C is simply connected, j = 1,...,n, then Dy x ---x D,, is a Runge domain in C".

Example 4.3.8 (Wermer). Recall (Remark [£.3.2(a)) that for n = 1 Runge regions are characterized in a
purely topological way. This is no longer true for n > 2. We will show that Runge regions in C" with
n > 2 are not invariant under biholomorphic mappings. Namely, for n > 2 we will find a domain D,, C C"
biholomorphic to D™ and such that D,, is not a Runge domain.

First, following [8], we will construct a domain D C C? biholomorphic to D? such that T x {0} C D but
(1/2,0) ¢ D.

Assume for a moment that such a domain is already constructed. Then for any n > 2 put D, :=
D x D"=2. The domain D,, is obviously biholomorphic to D". Moreover, K,, := T x {(0,...,0)} C D,,
(1/2,0,...,0) ¢ D,,. Suppose that D,, is a Runge domain. Then, by Theorem K, C D,. On the other
hand, by the maximum principle, D x {(0,...,0)} C K,. In particular, (1/2,0,...,0) € D,; contradiction.

We pass to the construction. Let

Ag = ([~1,1] +1i0) x ([~1,1] +1i0) C C?, A= {(x+iy,x —iy) € C*: 2,y € [-1,1]}.

Let U be an arbitrary open neighborhood of Ay. Then there exist open rectangles Ry, Ry C C such that
Ay C Ry x Ry C U. By the Riemann mapping theorem, the domain R; x Rs is biholomorphic to D?. Thus
Ay has a neighborhood basis consisting of domains biholomorphic to D?. Observe that the mapping

C? 3 (21, 22) — (21 + 122,21 —i2p) € C?

maps biholomorphically Ay onto A. Consequently, A has a neighborhood basis consisting of domains biholo-
morphic to D?.

Put

F(z,w) := (2, P(z,w)), P(z,w):=(1+i)w —izw? — z*w?.

Observe that:

e For any ¢ € T we have (¢,() € A and F((,¢) = (¢,0). Hence (T) x {0} C F(A).

e (1/2,0) ¢ F(A). Indeed, P(1/2,1/2) = (1+1i)/2—1i/8 —1/32 #0.

e F'| 4 is injective.

e JcF # 0 on A. Indeed, we have JoF(z,w) = & (z,w) = 14 — 2izw — 322w? and hence JcF(z,%) =
1+ —2i[z]? = 3|2|* £ 0.

In particular, there exists an open neighborhood Uy of A such that F|y, is biholomorphic.

Now, since A has a neighborhood basis consisting of domains biholomorphic to D?, we find a domain U
biholomorphic to D? such that A C U C Uy and (1/2,0) ¢ F(U). Finally, we put D := F(U).

Notice that for n > 3 the construction of the required domain D,, may be essentially simplified. Instead
of D, = D x D"~2 (as above) we will construct (in a simpler way) a domain G C C? biholomorphic to a
polydisc such that (T) x {(1,0)} € G but (0,1,0) ¢ G. Next, for n > 3 we take D,, :== G x D"~3 and we
repeat the above argument showing that D,, is not Runge.

The example is also due to Wermer (cf. [I3]). Let

F:C*—C* F(ry,z2) = (z,2y+2zzy°—y+2y2).

Then JeF(x,y,z) = 1 —2z. In particular, F is locally biholomorphic on C?\ {z = 1/2}. We will show that
F is injective on U := C x C x K(1/2).

Let (z1,y1,21), (x2,y2,22) € U be such that F(x1,y1,21) = F(22,y2,22). Then obviously z; = x5 =: x
and

Y1 + 21 = TY2 + 22, Tyt —y1 +2y121 = 2Y5 — Y2 + 2020
In other words,
(Y1 — y2) = 22 — 21, z(yr —y2) (W1 +y2) —y1 +y2 + 2121 — 2y220 = 0.

Thus (22 — 21)(y1 + y2) — y1 + Y2 + 2y121 — 2y222 = 0 and hence (y1 — y2)(z1 + 22 — 1) = 0. Now, since
|z1] + |22| < 1, we conclude that y; = yo and 21 = 2s.
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In particular, Flp(,(2,2,1/2)) is injective. Let G := F(P(0,(2,2,1/2))). Observe that F(z,1/z,0) =

(x,1,0). Hence (T) x {(1,0)} C G. Obviously, (0,1,0) ¢ G.

4.4. Hefer’s theorem
Let 2 C C*, n > 2, be open. Assume that 0 € {2 and let
O ={7ecCr:(2,0,...,00 € 2}, My :=02n(CFx{0}" ", k=1,...,n—1.
Let, moreover, My := {0}. Observe that if

n

f(z):= Z zifi(z), z=(2z1,...,2,) € 02,

j=k+1
where f; € O(f2), j=k+1,...,n,then f =0o0n M, (k=0,...,n—1).
Our aim is to prove a converse theorem.

Remark 4.4.1. The case k =n — 1 is elementary.
Indeed, let f € O(£2) be such that f =0 on M, _1, i.e. f(2/,0) =0 for any 2’ € £2,,_1. Define

fu(2) = f(2)/2n, z€ 02\ M,_;1.

It remains to observe that f,, extends holomorphically to (2.

Remark 4.4.2. Assume that (2 is a star-shaped domain with respect to 0 and £ = 0. Let f € O(f2) be

such that f(0) = 0. Then we have

1 1 n n
f(z):/0 —f (tz)dt = / Zz]a (tz) t::szfj(z), z € 2.
j=1

It is clear that fi,..., f, € O(£2).

Proposition 4.4.3. Assume that
2€ 800N NSy n—k—2

for some k € {0,...,n—1} @ Then for any f € O(£2) such that f =0 on My there exist fri1,. ..

O(02) such that

n

f= Z 2 fj.

j=k+1
Proof. We apply finite induction on n — k. The case n — k = 1 has been solved in Remark
n—k~n—~k+1.
Assume that 2 € SooN---N Sy p_k—1)-2(C"). By Proposition
Q-1 € So0 N+ NSy (n-1)—(k—1)—2(C"* ).

Consequently, there exist Fy,..., F,—1 € O(£2,_1) such that

n—1

! O) = ZZJ'F]‘(Z/), 2 = (Zl, .. .,Zn_l) €2, 1.
j=k

s Jn €

By Proposition there exist fi,..., fn—1 € O(£2) such that F;(z') = f;(#',0), j=k,...,n— 1. Put

n—1
f: f—= Z i [

=k

(6) If K =mn — 1, then (2 is arbitrary.
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Exercises
Then f € O(2) and f=0on M,_;. Hence f = z, f, for a function f, € O({2). Finally,
n
f= Z zjf; on {2. O
j=k

Theorem 4.4.4. Assume that £2 C C™ is an open set such that
2 x02€8SpoN-NSpn_o(C*™).
(a) For any f € O(£2 x £2) with
f(z,2)=0, ze€f,
there exist f1,..., fn € O(£2 X 2) such that

n
f(Z,U)) = Z(ZJ - wj)fj(Z,U]), z = (Zla s 7Z7L)7 w = (wla v 7wn) € .
j=1
(b) (Hefer’s theorem) For any fo € O(12) there exist f1,..., fn € O(2 X 2) such that

n

fo(z) = folw) =D (25 —wy) f;(z,w), 2w e 2.

j=1
Proof. (a) Let @ : C** — C?" be given by the formula

D(&r, . &) = (&, 6ns & — Engty - 6 — Eon)-

The mapping @ is a C-linear isomorphism. Let ¥ := &~!. Then ¥(z,w) = (2,2 — w). Observe that
U(2x§2) € SooN---NSypn_2 (cf. Remark (b)) Now we apply to ¥ ({2 x §2) Proposition with
k = n. Consequently, there exist f,11,..., fon € O(¥(2 x §2)) such that

2n
Z &1

j=n+1

Let f; := J?nﬂ‘ogf,j:l,...,n. Then

f=(fod)ow = (Zﬁgfg)oif S5 w)fy

j=n-+1 j=1
(b) follows directly from (a) with f(z,w) := fo(z) — fo(w). O
Exercises

4.1. Schwarz type lemma (cf. Lemma : Let D; C C% be a balanced domain and let h; denote
the Minkowski functional of D;, j = 1,2. Assume that D, is pseudoconvex. Let F' : D; — D, be a
holomorphic mapping with F(0) = 0. Using Propositions [3.2.35| and [4.1.14} prove the following results:

(a) hg o F < hy on D; and hy o F'(0) < hy. In particular, F'(0) maps D; into Ds.

(b) If F is biholomorphic, then hy o F = hy on Dy and hg o F'(0) = hy. In particular, F/(0) is a C-linear
isomorphism which maps D; onto D-.

4.2. Let T be the Hartogs triangle, 7' := {(z1,22) € C?: |21] < |22] < 1}. Prove that T is pseudoconvex
but not hyperconvex.

43. Let FF: D — D’ be a proper mapping, where D, D’ C C™ are domains. Suppose that D’ is
pseudoconvex. Show that D is pseudoconvex.

4.4. Let w C R™ be a domain. Define

T, :={2€C":Rez € w}.

Prove that the following conditions are equivalent:
(i) w is convex;
(ii) T,, is pseudoconvex.
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4. Pseudoconvexity and the O-problem
4.5. Give an example of a pseudoconvex domain in C", n > 2, which is not biholomorphically equivalent
to a convex domain.
4.6. Let D := {(21,22) € C?: |z129| < 1}. Does there exist ¢ € O(D) NC(D) such that p(1,1) = 1,
ol < Lin D\ {(1,1)}?
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CHAPTER 5

Hoérmander’s solution of the O-problem

Summary. In this chapter, following [17], we present a detailed proof of Hormander’s solution of the Levi
problem. Section 5.1 contains basic facts from the distribution theory, which are used in the sequel; details are
omitted, and it is assumed that the reader who requires to check the proofs, will consult classical monographs on the
subject.

The exposition of Hérmander’s solution of the Levi problem begins in Section 5.2. The proof is based on the
theory of (unbounded) operators in Hilbert spaces, and the solution of the d-problem for pseudoconvex domains in
appropriately chosen spaces of differential forms with coefficients which are L2-integrable with respect to convenient
weight functions. The main result of this section is Hérmander’s L2-estimate. This makes possible to solve the
-problem in pseudoconvex domains for differential forms with coefficients which are locally square integrable.

This enables in turn to do similar, but for differential forms with coefficients in Sobolev spaces, and thus, by the
Sobolev inclusion, for forms with smooth coefficients. Thus, in virtue of results in Section 4.2, we obtain the solution
of the Levi problem; the details are presented in Section 5.3.

5.1. Distributions

For the reader’s convenience we collect below basic facts from distribution theory (the details may be
found for instance in [31]).
For K C RY let

D(K):={f €C*RY,C):supp f C K},  qri(f):= >, sup|D*f|], keN,,

aeNY: |a|<k

D® = (%)almuo (a?c—N)aN, a=(a,...,ay) € NY.

The seminorms (qx k)ken, generate on D(K) a Fréchet topology; we have

where

fv ZM)) fo = Vaeny : D®f, — D fy uniformly on K.
For an open set 2 C RY let
D(R):=Cr(R,C)= | DK).
Kccn
We define
D(2 def o D(K
fl/ (—Q fO <:e> ElKCC_Q : (fu)u:l - D(K)a fV (‘)) fO-
Let £(£2) := C>(£2). The seminorms (¢x k) xccn, ken, generate on £(£2) a Fréchet topology; we have
Fo 88 fo = Vaeny : D*f, — Dy locally uniformly in (2.

A linear functional I : D(§2) — C is a distribution on 2 (T € D'(£2)) if for any compact K C {2 the

mapping J|p k) : D(K) — C is continuous.

5.1.1. For a linear operator J: D(§2) — C the following conditions are equivalent:
() T D'(02);
(ii) for any compact K C 2 there exist C' > 0 and k € Ny such that

TN < Caxr(f), [ eDE);

107
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(i) if £, 22 fo, then T(f,) — T(fo).

We endow D’(£2) with the weak topology, i.e.

D'(2
T, 29 T4 = Yoy 1 To(f) — To(f).

5.1.2. For u € L'(£2,1oc) let
()= [ wrdc®, jeD(@)
Then [u] € D'(£2). Moreover, the mapping
LY(£2,1oc) 3 u+— [u] € D'(2) (5.1.1)

is injective. Consequently, we may identify L!(§2,loc) with a subspace of D’(§2) and we will frequently write
u instead of [u].
If we consider on L'(2,loc) the standard topology, i.e.

L' (£2,loc) LY(K)
u,  —% ug <= Vicco Uk — uolk,

then the mapping (5.1.1]) is continuous.

Let I € D'(£2). We say that T = 0 on an open set U C {2 if T|p ) = 0.

The support supp T of T is the set of all a € §2 such that T # 0 on any neighborhood of a; supp J is
relatively closed in 2; T = 0 on 2\ suppT; if fi1, fo € D({2) are such that f; = fo in a neighborhood of
supp T, then J(f1) = T(f2).

If supp T CC £2, then T extends to a distribution on RY.

5.1.3. For J € D'(£2) let
Dom(7) :={f € £(£2) : supp T Nsupp f CC 2}.
Then Dom(T) is a linear subspace of £(£2). Obviously, D({2) C Dom(J). If supp T CC {2, then Dom(T) =
E(02). Define
T:Dom(T) — C, T(f) :=T(ef),
where p € D(£2) and ¢ = 1 in a neighborhood of Ki := supp T Nsupp f. Then the definition of ﬁ'(f) is

independent of ¢ and T = T on D(£2). The operator J is also continuous in the following sense:

(Dom(iT) 5 £, % 1 € Dom(T) and G Ky, cC Q) — T(f,) — T(fo).

v=1
In particular, if supp I CC {2, then T is continuous in the standard sense.
Consequently, I extends to continuous linear functional on £(£2) iff supp T CC 2.

Let T € D'(£2). For a € N} define

(DT)(f) = (~=1)*IT(Df), f e D).
The mapping DT is called the a-th derivative of T.

5.1.4. (a) The mapping D(£2) > f — D*f € D({2) is continuous. Consequently, D*T € D'(12).
In particular, any function u € L'(§2,loc) has all derivatives in the sense of distribution.
(b) D¥(DPT) = D+8T.
(c) The mapping D'(2) 2 T — D*T € D'(2) is linear and continuous.
(d) If u € C*(£2), then
D%[u] = [D%], |a| <k

For n € £(12) define
(I)(f) :=T(nf), feD(2)
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5.1.5. (a) The mapping £(£2) x D(£2) > (n, f) — nf € D(£2) is continuous. Consequently, nJ € D’'(12).
(b) The mapping £(£2) x D'(£2) 3 (n,T) — nT € D’'(12) is bilinear and continuous.

(©) 9(nT) = (In)T (9,1 € E(2)).

(d) If u € L($2,loc), then nfu] = [nu].

5.1.6. Let £2; be open in RYi, j =1,2, let T € D'(§21), and let f € £(21 x £22) be such that
U supp f(-22) cC 21

T2 €822
(note that the last condition is satisfied if f € D(£2; x (2;)). Put

F(.’EQ) = Ff({EQ) = j’(f(,xz)), Ty € (25,

109

Then F € £(f2;) and
D°F(x2) = (DS f(-,x2)), @2 € 22, a € NJ™.
Moreover, if f € D(£21 x §23), then F' € D({22) and the mapping
D(Ql X Qg) S f— Ff S D(Qg)

is continuous.

Observe that if u; € L'(£2;,1oc), j = 1,2, then us ®us € L' (21 x £25,10c) |(*) | Moreover, if u; € D(£2;),
j=1,2, then u; ® us € D(£21 x £22) and supp(u; @ us) = (suppuy) X (suppusg). Let D(£21) @ D({2;) denote
the subspace of D({21 x {25) generated by all functions u; ® ug with u; € D(£2;), j =1,2.

5.1.7. D(1) ® D(§23) is dense in D(£21 x (23).
5.1.8. (a) Let J; € D'(£2;), j = 1,2. For f € D({2, x {25) define
Fi(z1) :=To(f(x1,-)), w1 € 21, Fa(za) :=T1(f(-,22)), z2 € (2o,
Wi (f) :=Ti(F1), Wa(f) :=T2(F2)
(note that, by Property W; € D'(£4 x §25), j =1,2). Then
Ui (w1 ® ug) = Us(ug @ ug) = Ti(u1)To(u), u; € D), j=1,2.

Consequently, by Property U; = Uy. Put T3 ® Ty := Uy (= Uy). The distribution T ® T, is called
the tensor product of I and J. It is the only distribution on {27 x {25 satisfying

(T @ T)(ur ®uz) = T (u1)Ta(uz), u; € D(12;), j=1,2.

() [u1] ® [ua] = [u1 ® ug)] for any u; € L*(£2;,1oc), j = 1,2.
(¢) The operation
D/(Ql) X D,(Qz) = (71,72) — T ® T € D/(Ql X 92)
is bilinear.
(d) supp(J1 ® Tz) = (supp T1) X (supp Tz).
(e) (71 ®72) & 3’3 = :Tl [029] (72 X 73) fOI' any g’j S D/(Qj), ] = 1,2,3.
(f) Dg1Dg2 (T ® T) = (D*'T1) ® (D*2T5) for arbitrary a; € Névj, j=12.

5.1.9. Let u € LP(RN), v € LY(RY) with 1 < p,q < +00, 1/p+1/q > 1. Then the function
(ws)a) = [ uta = )oly) £V ()
R
is defined for almost all z € RY and u v € L"(RY), where 1/r = 1/p+ 1/q — 1. The operator

LP(RY) x LYRYN) 3 (u,v) — u*v € L"(RY)

O Feg@y) = Faew).
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is bilinear symmetric and continuous. Moreover,
Ju vl Lr@yy < llullpe@yy [0l Lo @y
If r = oo, then u x v € C(RY).
The function u * v is called the convolution of u and v. The convolution u * v may be also defined under

weaker assumptions on u and v (cf. Property [5.1.11)).
Let @ € C5°(RY,Ry) be such that [y @ dLY = 1. Put

O (x) = Nb(x/e), zeRN e>0.
For u € LP(RY) let
Ue = U *x P,
The function u, is called the e-th regularization of u (with respect to ®); u. € LP(RY) and ||uc||zo@y) <
”u”LP(RN)-

5.1.10. Let u € LP(RY) (1 < p < +0o0) be such that u = 0 outside a compact K C RY. Then:
(a) ue € D(RY), supp(ue) C K + e(supp @);

(b) if u € Co(RY), then u. — u uniformly on RN when ¢ — 0;
LP(RY)
(¢) ue —  u when e — 0;
(d) 1f u € CE(RYN), then Do‘(ua) = (D“u). and D®(u.) — D%u uniformly on RY when ¢ — 0 for any

laf <
5.1.11. Let J; € D'(RY), j = 1,2. Assume that
Vicery @ {(z1,22) € (suppT1) x (suppTo) : x1 + x5 € K} cC R, (5.1.2)
Put o
T+ T)(f) == (T1@T)(foo), feDRY),
where o : RV x RN — RN o(x1,29) := 21 + x5 (cf. Property [5.1.3)). Then T x Ty € D' (RY).
The distribution J7 * Ty is called the convolution of J; and Ts.

5.1.12. (a) The operation (T7,T3) — T * T, is bilinear and symmetric.

(b) Condition (5.1.2)) holds if supp I or supp T2 is compact.
(c) If uy,up € LY(RY loc), suppu; CC RY, then
[uﬂ * [’LLQ] = [Ul * UQ}.

(d) supp(T1 % T2) C (supp T1) + (supp Tz).
(e) If

Vicery @ {(z1, 22, 23) € supp Ty x supp To x suppTs : 1 + 29 + 23 € K} CC RN,
then (J7 x T2) x T3 = T * (T x Ts).
(f) DTy % Ty) = (DTy) * Ty = Ty * (DTy) for any o € NYY.
(8)

(TVD(R )fTO and UsuppiT CCRN):>3' *U —> To*u

v=1

‘(R )

N
(‘.T — U’oand suppUCCRN):>iT * U —> T+ U.

(h) If T € D'(RY) and u € D(RY), then
where

Moreover, by Property v e ERN).
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Define
T, =T x ..

The distribution J7 is called the e-th regularization of T (with respect to ).

5.1.13. (a) If u € L'(RY,loc), then [u]. = [u.].
(b) supp(JT%) C (suppT) + e(supp P).
(c) D*T. = (D*T).. In particular, for any differential operator L with constant coefficients we get (L(J)). =
L(T2).
]RN)
(d) 7. T when ¢ — 0.
(e) 3’ € E(RN)
(f) If suppT CC RY, then J. € D(RY).

5.2. Hormander’s inequality

Let £2 be an open set in C".
For p,q € Ny let ’DEp q)(Q) denote the space of all forms of type (p, q) with coefficients (in the canonical
form) in D'(£2). If

T = Z/ j’[’JdZ[/\dEJ EDEp’q)(Q%

[11=p,|J|=q
then for any sequence S = (s1,...,54), 1 < s1,...,84 < n, we define
0 if #{s1,....8} <g¢q
fTIS = . )
(Sgna)irl,o’(s) if #{51,...,5(1} =4q

where 0 = og is the permutation such that o(S) € Z}; we define 5= a(S).
Ifje{l,...,n}, K€ Z}_;, then we put jK := (j,k1,...,ks1).
Observe that Trjkr = =T k5L
The operators d and 0 defined in § 4.2 on Cl o (§2) can be easily extended to D(p o (£2), namely:

7= 3 ZaTIszj/\dzj/\dzJ, = Y Zm”cr Ndzp N dz.

[I|=p,|J|=q j=1 [|=p,|J|=q =1
Recall the canonical form of 0T
= / NCAEN
7 |I|_p,|2K:|—q+1 (‘76521,21 ..... n}E(L 40 9z, )dZI/\dzm
where e = ¢(I, K, J,j) € {—1,+1} is such that
dz; Ndzr Ndzy = edz; Ndzg
if {k1,..., kgr1} ={4,j1,...,Jq} and (I, K, J, j) := 0 otherwise.

Moreover, we define

wby._ NV (pas n — / ~ 071K
Dy = N (DT g)der Adzy, @, BEN, 9T 3 Z e )dz[/\dEK.
[I1=p,|J|=q [I|=p,|K|=¢—1 Jj=1
(Notice that o is defined if ¢ > 1.) Observe that
9 : D, ) (2) — Diyi1.(2), 9D, 1 (2) — Diyy 11)(2), 008=0, 90d=0, dod=-do0,
D D, ) (2) — Dpp ) (2), D¥Pod=00D* D od=0oD,

. k _ a,B _ Ppa,
0Dy ) (2) — Dy o1y (2), 9:Cl, o (2) — CE 11y (2), D09 =0, doD* =D oy
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Fix a function ¥ € C§°(C, R4 ) such that

supp¥ =D, ¥(z) =¥(|z]), z €C, /Wd[:2 =1,
C

and let
1

D21, o) = W(z1) W (2),  (21,..s2m) € CP, @E(z)::?n@(g), £>0, zeCm

Observe that supp @. = Py () and [, ®. dL*™ =1, ¢ > 0.
Let I € DEWZ)(Q) be such that suppT CC 2 (suppT = UIEB;,) Jezn SUpp J7.7). One may identify J
with an element of Df, +(C").

We define the e-regularization of I by the formula
/
To:= Y (Frs)edz Adz; €D, (C").
[I=p,|J1=q

Recall that supp J. C (supp J)®) (Property [5.1.13(b)). In particular, supp J. C {2 provided 0 < € < 1. By

Property [5.1.13|c), we get
A(T.) = (07, 9(T) = (07)., DP(T.) = (D*PT)., 9(T.) = (IF).. (5.2.1)

Do) (D) o . D'(2) = -
Ife — 0, then . == "T,ie. (T; ) — Ty, forany I € Z and J € =} (Property [5.1.13(d)).

For a continuous function ¢ : 2 — R let

L*(02,¢) = L*(2,e °L*™) ={f: 2 — C: / |f|?e”?dL*™ < +oo}.
Q
It is clear that L%(£2,¢) C L?(£2,loc). The space L?({2, ) with the scalar product

(£.9) — (.90 = /Q fge=dce

is a complex Hilbert space. Let || ||, denote the norm generated by the above product. Observe that the
space D(2) is dense in L2(£2, ).
Let L?p’q)(Q,go) (resp. pr’q)(ﬂ,loc), 1 < r < +00) denote the space of all forms of type (p,q) with

coefficients in L2(§2, ) (resp. L"(§2,1loc)). Obviously,
Dp,g)($2) C (C(])f)(p’tI)(“Q) c Cécp,q)(g) = L€p7q)(Q’IOC) = L%p,Q)(Q’IOC) = Dznq)(g)’
Dip.q)(12) C(CH) (pg) (92) C LT, 4)(2,0) CLE, 1y (82,10¢) C L, ,(£2,10c) CDy, (£2).
For u,v € L%pyq)((Lloc) we define (u,v) : 2 — C and ||ul| : £2 — R by the formulae
/
(o) = > urgvrg, ull = {u,u).
1=p,J]=q

If u,v € L%p q)(Q, ), then we put

/
o) = [ (woeat™ = 3 furs v,
(9]

[I|=p,|J|=q
_ /
lul2 o= {u )y = / JulZeedc? = S furg2.
N _ _
|I|=p,|J|=¢

Note that the space L%pyq)(ﬁ, ¢) with the scalar product ( , ), is a complex Hilbert space and D, 4)(2) is
dense in L7 (£2,¢).

p.q
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By Property |5.1.10(d), for any u € L(2p7q)((l, loc) with suppu CC {2 we have
Lip o () L*(2
Ue (zﬂ) u, ie. VIEE;}, JGE:; : (UI,J)g LQ ur,Jj- (522)

For any n € CE";’S)(Q), TJ e sz’q)(ﬂ) the wedge product n A J (calculated according to standard rules)
is well defined and n AT € D2r+p,s+q) (2).
Notice that the wedge product n A J is also defined in many other cases, for instance if n € L?T,s)(.Q7 loc)
and u € L%p’q)(ﬂ, loc), then n A u € L%rerstrq)(Q,loc). We have
AAT)= () AT+ (=1)""°n A (OT).
One can prove (cf. [6]) that

lu A wf| < ((r:p> (‘9 ;L q>>1/2||u|| oll, we L2 (2,10c), v € L2, ) (2,l0c).
Moreover, if r +s <1 or p+q <1, then ||uAv|| < |ul| - [|v].
Observe that
I(nT) = nIT + Ay (T), n€C(2), T €D, ,(£2), (5.2.3)
where A, : D, 1 (£2) — Dy, 4)(£2),

Ay(T) = Z/ (Z %TI,jK)dZI ANdZg.
|I|=p,|K|=q—1 j=1 7

Suppose that we are given three continuous functions ¢; : 2 — R, j = 1,2, 3. Define operators
T o=
L%p«z)(“o’ 1) D Dom(T) 5 u — du & L%p7q+1)(9’ 2),

s =
pr’qﬂ)((), w2) D Dom(S) > v - dv € L%p,q+2)(“(27 ©3),

where
Dom(T) :={u € L%pyq)(ﬂ, ¢1):0u € L%p’qﬂ)(ﬂ, v2)},
Dom(S) :={v € L%p7q+1)(!2, p2) 1 Qv € L?p7q+2)((), v3)}

Observe that Dy, 4)(£2) C Dom(T) and Dy, 441)(2) € Dom(S). Thus T and S are densely defined. Note

that S oT = 0. In particular, R(T) C Ker(S) (R(T) := T(Dom(T))). It is clear that the operators are

closed. Consequently, F' := Ker(.5) is a closed subspace of L%p’qﬂ)(fl ©v2).

The following lemma will be the main tool used to solve the d-problem.
Lemma 5.2.1. Assume that Hy, Ho are complex Hilbert spaces. Let
H1 > Dom(T) —— Hs

be a linear closed densely defined operator and let F be a closed subspace of Ha such that R(T) C F. Assume
that

Sos0 Il < CIT* (s f € F 0 Dom(T*). (5.2.4)
Then
Voer E|u€Dom(T)ﬁ72(T") : T(u) =1, ”u”'Hl < C”UH'H2'

Proof. Let P : Hy — F denote the orthogonal projection. It is known that Ker(7T*) = R(T**)* = R(T)+*
(cf. [34]). Hence F+ = Ker(P) C Ker(T*) and therefore

T*oP=T"
In particular, R(T*) = T*(F N Dom(T*)). Now, condition (5.2.4) implies that R(T*) is a closed subspace
of Hl.
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Indeed, let T*(f,) — uo € H1 for (f,)52; C FNDom(T™). Then, by (5.2.4), || fo— fulln. < CIT*(fo)—
T*(fu)ll#,, v,pe > 1. Consequently, (f,)o2; is convergent, f, — fo € Ha. Obviously fy € F. Let
u € Dom(T). Then

<UO’U>H1 = lim <T*(fl/)7u>7'll = lim <fl/’T(u)>7'l1 = <f0aT(u)>'Hl'

v——+oo v——+oo

Thus fo € Dom(T™*) and T*(fy) = uo.
We pass to the main part of the proof. Fix a v € F and let L : R(T*) — C,

L(T*(f)) = (v, f)s, [ € FNDom(T).
By L is well defined and
IL(T* ()] < Cllolla 1T (F)l3eas - f € F N Dom(T),

which shows that L is continuous. Since R(T™*) is closed, the Riesz theorem implies that there exists a
u € R(T*) with |lul|z, < C|lv|lx, such that

L(T*(f)) = (w, T*(f))2,, [ € Dom(T™).
Thus v € Dom(T**) = Dom(T") and T%**(u) = T'(u) = v (cf. [34]). O
The above lemma implies that to solve the equation du = v for given v € L%p’q H)(Q,(pg) with u €
L?p q)((), 1), it suffices to prove that there exists a C' > 0 such that

[flleo < CUT*(Nller + I15(Hllgs)s  f € Dom(T™) N Dom(S). (5.2.5)

In the first step we will describe a class of continuous functions ¢;, j = 1,2,3, for which the proof of

(5.2.5)) reduces to f € Dy 441)(£2).

Let a sequence (1,)22; C C§°(£2,[0,1]) be such that
Vicco vyt Yoz @ lx =1, (5.2.6)
and let ¢ € C*°(£2,R) satisfy
lOn,]|?> <e¥, veN. (5.2.7)
Fix a ¢ € C%(2,R) and define ¢; := ¢ — (3 — j)v, H,; := L%p7q+j71)((2,<pj), j=1,2,3.
Proposition 5.2.2. D, ,41)(§2) is dense in Dom(T*) N Dom(S) in the graph norm
Dom(T™) N Dom(S) 5 f — [ flle, + IT"(f)ller + I1S(f)lls-

Proof. We will prove that:
19 Veen; » mof i> f when v — 400, j =1,2,3.
H .
20. erf;.[j: supp fCC#2 - fs — f when ¢ — 0, ] = 1,2,3.
3e. Vne'D(Q)7 feDom(S) 77f S DOII](S).
4°. V¢epom(s) @ S f) s, S(f) when v — +o0.
° H
5°. VfGDom(S): supp fCCR * S(fe) _3> S(f) when e — 0.
6°. v7]":’D(A’2), f€Dom(T*) * 77f € DOHI(T*)
7°. Yiepom(r+) : T*(nu f) T, T*(f) when v — +o0.
8%. D(p,q+1)(§2) C Dom(T™).
9. vfGDom(T*) : T*(f) = (_1)p_1e¢119(€_¢2f)'
o * Hi *
10°. vaDom(T*): supp fCCS2 : T (fE) — T (f) when ¢ — 0.

It is clear that 1° — 10° imply the required result.
Property 1° follows from the Lebesgue dominated convergence theorem.

Property 2° follows from (5.2.2). B B
To prove 3° it suffices to recall that d(nf) = (In) A f + nof.
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To prove 4° observe that, by 3°, for n = n,, we get
1S f) = mS(HIIPe™?* = [(n) A flIPe™#* < [|Om 12| fIIPe™?* < e¥[|f][?e™#* = || f][>e~*=.
Hence, by the Lebesgue theorem, S(n,f) — n,5(f) M5 0 when v — +oo. We already know by 1° that

nS(f) % S(f). Thus St f) 7% S(f).
Property 5° follows from (5.2.1)) and (| -

In particular, we have proved that D(p,q)(£2) is dense in Dom(T") in the norm
ur— [lullg, + 1T ()], -

To prove 6° first observe that by 3° fju € Dom(T) for any u € Dom(T'). Therefore for any u € Dom(T")
we get

f, T(u)g, = (FTT (W) oy = (f,Tu)) gy — (0T ANt) gy = (1T (f), o, — (07 A i)

Hence, using the Holder inequality, we obtain

[0, T(w)g| < T (Nl l[eller + /9 A1 107 - l[ulle™#=dc>"
< T (Nl luller + Sl{l}p{llgﬁlle’w}llfllw [ullo, = const [ully,, u € Dom(T).

Consequently, nf € Dom(7*) and

(T (f)swe, = NT*(f), u)py = =(f, 0N Au)g,, u € Dom(T).
Hence

| / (T*(nf) — nT*(f), uhe— 1| < / 111 171 - Jrulle=#2dL?",  u € Dom(T),
N N

and so
[ ) = (e o we ) ac < [ (e e R e e
2 2

for all u € Dom(T') and, consequently, for all u € L( o2, ¢1). Thus

[ @ @h = e aac < [ 1l R amle e, we 1, (@)
This implies (Exercise) that
T () = 0T (P72 < ==/ B2
In particular, if n = 7, then
T (0, )~ m T (1) e < | 1%
Ha

and therefore, by the Lebesgue theorem, T*(n, f)—n, T*(f) 4 0 when v —» +oo. Thus, T* (nf) — T*(f)
and, consequently, 7° is proved.
To prove 8° take an f € Dy, g41)(£2) and let

g=(=D)P"e?9(e™2f) € (Co)(p.a)(£2).
For any u € D, o)(£2) we get

L0 i) Lo
<gau>tp1 = Z Z / e¥ TUJ’Ke PLdL

[I|=p,|K|=q j=1
ou
- Y Y ? [ e Sntact = (1. 1u),,
[I|=p,|K|=q j=1

Since the space D, q)(§2) is dense in Dom(T) in the graph norm, we conclude that f € Dom(7™) and
T*(f) =9
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To prove 9° fix an f € Dom(7™) and put g := T*(f). Then for any u € D, 4)(2) we have

116

Z /gIKUIKe PLAL = (T (f) w) ey = (f, T(u)gs

[I|=p,|K|=q

— Z Z /e LP2fI,jK ;Kdﬁzn

[I|=p,|K|=q j=1

Hence g = (—1)P~1e®19(e~%2 f) in the sense of distribution, which gives the required formula for 7*.
Finally, to see 10° observe that
(—1)1’*1@“”2*“”1T* =0+ A,
where A: D(, . 1,(2) — Df, .. )(£2) is a linear operator with C' coefficients (cf. (5.2.3)). Consequently,
(1P ~ef2 AT (f) = (9f)e + A(fe)-

Hence T™(f:) KN T*(f) when e — 0.
The proof of the proposition is completed. O

Theorem 5.2.3 (Hérmander’s L?-estimates). Under the above notation we have

/ i — 2n / 2 —¢ 2n
/Q Z Z (%kaz ———frixfrrre ?dL Z 10f1,47e~?dL
|

[I|=p j,k=1 [I|=p
Kl|=q [J]=g+1

<2 T* ()%, + 1S, + 2/Q L1210 ]2e™#dL?", | € Dy gin)(2). (5.2.8)
In particular, if
Lo(zX) > 2(/|09(2) [ + *D) | X|]?, ze 2, X eCm,
then, by Proposition [5.2.3, we get
1A%, < 17O, +IS(HIZ,,  f € Dom(T*) N Dom(S).

Proof. Let
d(ge=%) g Op )
0j(g) =ef——==—"—g—, j=1,...,n.
J 82’]‘ 8zj (’9zj
Then
0
[ ogZevac = - [ auome *at™, g0 € D), (5.2.9)
o 0z n
dg\  9di(g) _ ¢
5; <8Zk> 5o = Gaos 9D (5.2.10)

Observe that

VT (f) = (—1)P~! Z’ > 6i(frix)der Adzk + (—1)P7! Z ZfIJK dzl/\de,

[I|=p,|K|=q j=1 [I|=p,|K|=q =1
fe D(p7q+1)(“(2)'

In particular,

[ X3 sl rae <2 (I, +2 [ 1Ploee e,

[I|=p,|K|=q j,k=1
fe D(p,q+1)(9)~
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For f € D, 4+1)(§2) we have

9 Ofr K @
sor= 3 S 5 5 St

[I|=p,|J|=q+1J=1 [ I|=p,|K|=q j,k=1

Indeed,
LJ ) dzr N\ de
Zj

Sf: ZI ( Z a(IanJaj)a

lI|=p,|Ql=q+2 JeEI,,, je{l,...,n}
(cf. § 4.2). Hence

EIEENED SN 3) SRR PR L Lt (IQLk)af

8Zk
[I|=p,|Q|=q+2 j¢J k&L

- Y TR - z’ >

[Il=p,|J|=q+1j¢J [I|=p,|K|=qj,k¢K, j#k

— —
E(I,ij,kK,J')dI,ij,jK,k)Sgn(akK)Sgn(Uj )= —

_ Ofr,q|? Ofr ek Of1 K
N Z Z‘ ’ B Z Z 0zZ; 0%y

Of1wx Of1 K
Zj (Tk

[I|=p,|J|=q+1j¢J |I|=p,|K|=q j#k
- Z Z‘afIJ‘ B Z Z afLJK afI 219y
|I|=p,|J|=g+1j=1 |T|=p,|K|=q j.k=1

Thus we have proved that

/ Z Z ( (frr)0k(frer) — a‘g;’j:{ a‘g;’;K _“’dﬁgn / Z Z ‘afIJ‘ e~ PdLr2n

[I|=p,|K|=q j.k=1 [I|=p,|J|=g+1 =1

<2[T*(HIZ, + ISHIZ, + 2/9 IF 10w e~ #dL,

which, by (5.2.9) and (5.2.10), implies the required inequality. a

Notice that (5.2.8) holds for arbitrary 1, ¢ € C?(£2). In particular, it holds for ¢ = 1) = 0.

Theorem 5.2.4. Let 2 C C" be pseudoconvex. Then for any p,q € Ny and for any 0-closed form v €
L%p’qﬂ)((),loc), there exist @1,2 € C*(£2) and u € Dom(T) N R(T*) such that T'(u) = v, where

L(p o (£2,1) D Dom(T) N L(p a+1)(£2,92)

is as above.

In particular, for any 0-closed form v € L? £2,loc) there exists a form u € L(p q)((),loc) such that

_ (P, q+1)(
du = .

Proof. Let w be a C* strictly psh exhaustion function (cf. Proposition .

Let x : R — R be a C* convex increasing function. Take a ¢ := x o w and define ¢; := ¢ — (3 — )9,
7 =1,2,3. Let T and S be as above.

We will show that the function x can be found in such a way that:

o Lo(25 X) 2 20|80 + exp() | X%, 2 € 2, X € T,

evE L(p o112, 92) (i.e. v € Ker 5).

Suppose for a moment that y is constructed. Then by Theorem [5.2.3

A5, < 1T HIZ, + 1SN, f € Dom(T*) N Dom(S).
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In particular,
L2, < IT* (IR, f € Dom(T*) N Kex(S).
Now, by Lemma (with F':= Ker S), we find a u € Dom(T) N R(T*) with T'(u) =v
We pass to the construction of x. Let ¢y € C(£2,R~¢) be such that

Lw(z; X) > o] X||?, z€ 02, X €C.
Define
Ki:={z€2:w(z) <t}, 7():= rr}?x{(2/co)(||51/)\|2 +e?)}, a = / |v||? dC®™, teR.
t K\Ki—1
Now take an increasing convex C* function x : R — R such that y > 7 and

x(r—1)> sup ¢+vlog2+loga,, veN.
K N\K,—1

Then

£0xow)( X) = ¥ ()] Y 52|+ () Lz X)

> X' (w(2))eo ()X = 7(w(2)co(2) | X|* = 2([00(2)|* + ), z e, X eC™

Moreover,

oo 0o 50
[olf*e™#2dL®" < a, sup eV X< aye XD gqup e¥ < 277 < +oc0. O
/Q\Ko Z v K \Ky,-1 Z v KN\K,_1 ;

v=1 v=1

5.3. Solution of the Levi Problem

Let 2 C C" be open. For any k € Ny U {00} let W*(£2) (resp. W¥(£2,10c)) denote the Sobolev space of
all functions u € L?(§2) (resp. u € L?(£2,1oc)) such that D*Pu € L2(£2) (resp. D*Pu € L?(§2,loc)) for any
a, B € NI with |a| + (8] < k.

Let W(’“pm(ﬁ) (resp. W(kp,q)(.(l,loc)) be the space of all forms of type (p,q) with coefficients (in the
canonical form) in W¥*(£2) (resp. W*(£2,1oc)).

Remark 5.3.1. (a) Obviously, Céfp’q)(ﬁ) C W(kp’q)(ﬁ, loc). It is known that if & > 2n, then W(knq)((?, loc) C
cfpj;;t(n) (cf. [22]). In particular, WS ) (£2,1oc) = C° 1 (£2).
(b) B(W(k;rql)((), loc)) C W(kp’qﬂ)(!?,loc), k>0.

() DOV L) (92,10c)) € WE, (2, 1oc), k> 0.

The aim of the present section is to prove the following theorem.
Theorem 5.3.2 (Solution of the Levi Problem). Assume that §2 is pseudoconvex. Then

I( (kp-t-ql)((zjoc)) ={ve W(kp,qﬂ)((},loc) :0v=0}, p,¢>0, kecNyU{oo}
Hence

ACEI=2r () D {we Céfp’qﬂ)(ﬁ) :0v=0}, p,qg>0, keNyuU{oco}, k> 2n.

(p,q)

In particular, 2 € S, 4 for any p,q.
Consequently, by Theorem[].2.9, any pseudoconvex open set is holomorphically convex.

The proof requires some preparations.
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Lemma 5.3.3. (a)

W(kp+01)((2 loc) ={u € L%pyo)(Q,loc) :0u € W(kp71)(f2,loc)}, p>0, k&N

(b)
WEH 1 (92,10¢) = {u € LY, 1) (2,10¢) : Ju € WE, ) (£2,10¢), du € W, (2,1oc)},
b, q Z 07 k S N0°

Proof. (a) Take a u = Z 1j=p urdzr € L7, (12, loc) such that du € W, |, (£2,loc). Observe that

(»,0)
Ju = ZI Auy Adzg.

[1|=p
In particular, du; € W(ko 1)(£2,1oc) for any I € Z} (cf. Remark (b)) It suffices to prove that for each T

the function u; belongs to W**1(£2,1oc). Thus we may assume that p = 0.

Now we proceed by induction on k.

k=0.

It suffices to prove that u|y € W1(U) for any domain U CC (2.

Fix such a domain U and let xy € D(§2) be such that y = 1 in a neighborhood of U. Put w := yu. It is
enough to show that w € W(£2). Since dw = (dx)u + xOu, we conclude that dw € L(0 1 (£2).

Thus, without loss of generality, we may assume that K := suppu CC (2.

We have to show that Ju € L(1 0)(£2).

_ Let u. denote the e-regularization of u (cf. § 5.1). Recall that A(ue) = (Ou)e (cf. - Hence, since
Ou € L%0,1)(Q)7 we get
_ L3 (2
O(ue) ([L)g ) Ou when ¢ — 0.
(cf. (5.2.2))). Recall that suppu. C K(). Fix an g9 > 0 such that K(0) c (2.
Observe that for f € D({2) we have
191l 2

. ) = 10112 (5:3.1)

1, 0)

Indeed,

- of 9 92f _
Pl =3 [ ot ae = [ T Face
j=1

(0,1) 3,2] 321 0 62’]‘62’]‘

of of
_ 2n_ 2n R
-3 [ T ac =3 [ T ae ot o

Equality with f = u., — uc,, where g > ¢, \, 0, shows that the sequence (J(uc,));Z; is
convergent in L(LO)(Q) to a form g. Clearly g = Ou in the sense of distribution.

k—1~k

We already know that D*fu L(2p70)(9, loc) for any || + |G| < k. Since

A(D*Pu) = D*P(du) € L%pyl)(ﬂ, loc),

we get (applying the step k = 0 to the form D*Au) that D*fu € VV(lp’O)(Q7 loc) for any |a| +|8] < k. Hence
u € V\/k‘|r1 (£2,10c).

(b ) Suppose that u € L(p g+1)(2,1oc) is such that Ou € W(kp7q+2)((2, loc) and Yu € W(’“pyq)(ﬁ, loc).

First consider the case k = 0. B B B

Observe that for any X € D(£2), if w = xu, then dw = (Ox)u + x0u € Wy 442)(£2) and Jw =
A, (u) + xVu € W (cf. (5.2.3))). Hence, sumﬂarly as in (a), we may assume that suppu CC (2.



Piotr Jakobczak, Marek Jarnicki, Lectures on SCV

120 —
5. Hormander’s solution of the d-problem

By Hormander’s inequality with ¢ = ¢ = 0 we get

/ _
S Bl o <205 o)+ ||af||ifw<m, f € Dipgsn (). (532)
[I|=p,|J|=q+1
Let u. denote the e-regularization of u. We have du. = (Ju). and 9(u.) = (Ju). (cf. (5.2.1)). Hence
_ L? Q) _ L (2
d(uz) .0+3 (1) du,  V(ue) @.0l® .,
By (5.3.2) with f =wu. (0 <e < 1) we get
/
S Bl o <20l g+ Bl )
[I|=p,|J|=q+1
Hence, by (a) (with k = 0), we conclude that u; ; € W'(2) for any I,J. Finally, u € Wp a1y (£2).

k—1~k.
We already know that for any |a| + |8| < k we have D¥Pu € L%p 4+1)(£2,1oc). Observe that

A(D*Pu)y = D*P(Ju) € L}, ;19 (82,10¢), (D" u) = D*P(Wu) € LY, ,(£2,loc).
Hence, applying the case k& = 0 to D%Pu, we obtain D*Pu € W(lp q+l)((2,loc). Consequently, u €

k+1
V\/(quﬂ)(!?7 loc). O
Proof of Theorem[5.3.3 Fixav € W(kp,qﬂ)((), loc) with v =0 (k € Ng U {o0}).
The case ¢ = 0.

By Theorem there exists a u € L?pm((),loc) such that du = v. Hence, by Lemma a),
u € W(kp'fol)(ﬂ, loc).

The case ¢ > 1.

By Theorem there exist functions ¢; € C*(£2,R), j = 1,2, such that if

T: L2, ,(2,01) D Dom(T) %5 L2, .1 (2,2),
then there exists a w € Dom(7") N R(T™*) with T'(u) = v. Recall that
T*(f) = (—=1)P~ e 9(e~?2f), f € Dom(T™).
Since u € R(T*) and 9% = 0, we get ¥(exp(—1)u) = 0. Hence
Yu = Bu, (5.3.3)

where B is a linear operator with C*> coefficients.

In particular, du € L(p »(2,1oc). Now, by Lemma b) (with £ = 0) we conclude that u €
W(p7q+1)((27loc). Suppose that u € W(Z;r;Jrl)(Q,loc) with 0 < £ < k—1. Then, by 1' du € W(”;)(Q loc)

and hence, by Lemma W(b) u € Wf;§+1)(.(2, loc). Induction on £ finishes the proof. O



CHAPTER 6

Cousin problems

6.1. Meromorphic functions

Definition 6.1.1. Let 2 C C™ be open and let S C {2 be thin (Definition and relatively closed in f2.
A function f: 2\ S — C is called meromorphic in 2 (f € M(£2)) E if:

fe0(2\5),

for every point a € S there exist a polydisc P = P(a,r) C 2 and a function m, € O(P), m, # 0, such
that the function ¢, := f - m, extends to a function Za € O(P).

A point a € 2 is called:

— regular (a € R(f)) if there exist P =P(a,r) C 2 and m, € O(P) such that m,(z) # 0 for any z € P,
and the function ¢, := f - m, extends holomorphically to P |(*) |

— a pole (a € P(f)) if there exist P = P(a,r) C 2 and m, € O(P) such that m, # 0, mg(a) = 0, and
the function ¢, := f - m, extends holomorphically to P and Za(a) #0

— a point of indeterminacy (a € J(f)) in the remaining case, i.e. for any P = P(a,r) C 2 and m, € O(P)
such that m, # 0, and the function ¢, := f - m, extends holomorphically to P, we have m,(a) = Za( )=0

Remark 6.1.2. (a) The set R(f) is open and f extends holomorphically onto R(f)

Indeed, if P,mq, {, are as in the definition of a regular point, then we put f(z) := la(2)/ma(z), z € P.
Obviously, f = fin P\ S.
(b) We may put f(z) := o0, z € P(f). If a € I(f), then by Proposition one cannot define the value of
f ata.
(c) For f(z1,22) := 21/22 € M(C?) we have

R(f)=Cx C., P(f) =C.x {0}, I(F) = (0,0).

(d) O(2) Cc M(9).
(e) Meromorphy is a local property. If @ : 2 — ' = $(§2) is biholomorphic, then f € M({?') <= foP €

Proposition 6.1.3. For n = 1 Definition [6.1.1] is equivalent to the standard definition of a meromorphic
function of one complex variable (cf. [4], Definition V.3.8). Moreover, if n = 1, then for every f € M(£2)
we have I(f) = 2.

Proof. Let 2 C C. Suppose that f: 2 — Cis meromorphic in the standard sense. Denote by S the set of
all poles of f and let k(a) be the rank of the pole a € S. Since S consists of isolated points, S is thin and
relatively closed in £2. Moreover, for every a € S, the function f - (z — a)*(®) extends holomorphically to a
neighborhood a. This means that the function f is meromorphic in the sense of Definition [6.1.1

Now, let f: 2\ S — C be meromorphic in {2 in the sense of Definition We may assume that
S := 2\ R(f). Since the set S is thin, it must consist of isolated points. It remains to show S = P(f).

(1) Note that a function meromorphic in 2 need not be defined on whole of 2.
(2) Obviously, 2\ S C RP.

Mo Cs

(4)J

) In partlcular we may always assume that 2\ S = R(f).

121



Piotr Jakobczak, Marek Jarnicki, Lectures on SCV

6. Cousin problems
Indeed, if £, = f-mg in P = K(a,r), where ly,ma € O(P), mq # 0, mg(a) = 0, then the function
ga := [+ (2 — a)*®) where k(a) := ord, m, — ord, £,, extends holomorphically to a neighborhood of a and
Gula) £ 0. 0

Proposition 6.1.4 (Identity principle). Let f,g € M(D), where D C C" is a domain. Then the following
conditions are equivalent:

(i) R(f) = R(g), P(f) = P(g), I(f) = I(g), and f = g on R(F);

(i) f =g on R(f) N R(g);

(i) f =g on a non-empty open subset of R(f) N R(g).

122

Proof. Obviously, (i) = (ii) = (iii).

(iii) = (i). Observe that S := D\ (R(f) N R(g)) = (D \ R(f)) U (D \ R(g)) is thin. In particular,
R(f)NR(g) is a domain and, by the identity principle, f = g on R(f) N R(g). Let a € S and let P = P(a,r)
and mq, € O(P), mq # 0, be such that the function £, := f - m, extends holomorphically to P. Put
lga = g -mq. Then {3, = £y, on P\ S. Hence {;, extends holomorphically to P and Tg,a = Zf,a.
Consequently, we get (i). O

Proposition 6.1.5. Let D C C" be a domain. Then M(D) is a field.

Proof. Let f: D\ Sy — C, g: D\ S; — C be meromorphic functions and let S := Sy U S,. The set S is
clearly thin and closed in D, and the functions f + ¢, f-g: D\ S — C are well defined and holomorphic.
For a € S let P = P(a,r) C D and myq,mgq € O(P), msq # 0, mg,q # 0, be such that the functions
f-mf.a, g-mgyq extend holomorphically to P. Then the functions (f+g)-myq-mgq and (f-g)-mga-mga
also extend holomorphically onto P. Thus M(D) is a ring.

Suppose now that f # 0, i.e. f#0in D\ Sy. Let S := Sy U f71(0). The set S is thin and closed in D,
and the function 1/f : D\ S — C is well defined and holomorphic. Let a € S.

For a € S¢,let P =P(a,r) C D, and mys, € O(P), mysq # 0, be such that the function £f, := f-my,
extends holomorphically onto P. Note that by identity principle we have l f,a 0. We can therefore take
ml/f,a = ff,a.

For a € D\ Sy such that f(a) =0, we can choose P as an arbitrary polydisc P(a,r) C D\ Sy and define
myfq = f|p (by the identity principle my,¢, # 0).

Consequently, 1/f is a meromorphic function, and therefore M(D) is a field. O

6.2. The Mittag—Leffler and Weierstrass theorems
Let us recall two classical theorems of one complex variable (cf. [4], Theorems VIII.3.2, V.5.15).

Theorem 6.2.1 (Mittag—Leffler). For any open subset 2 C C, a set B C 2 without accumulation points in
2, and a family of polynomials (P,)eep C P(C) with P,(0) =0, a € B, there exists a function f € M(£2)
such that f € O(2\ B) and for every a € B the function

f_Pa( !

z—a
extends holomorphically to a neighborhood of a.

)

The above theorem may be reformulated as follows:

Theorem 6.2.2. For any open subset {2 C C, an open covering (24)aca of 2, and a family f, € M(£2,),
a € A, such that

fo—f3€0(Ran2s), a,BeA, [(O]
there exists a function f € M(§2) such that

ffa€O2), acA

(6) That is, the function fo — f3 extends holomorphically to 24 N £23.
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Proof that Theorem [6.2.9 implies Theorem[6.2.1l Let 2, B, and (P,).ecp be as in the assumptions of The-
orem Choose 1, > 0, a € B, so small that K(a,r,) N K(b,ry) = @ for every a # b, a,b € B.
Define

A={x}UB, 2,:=02\B, {,:=K(a,r,), a€B, fe=0, fo:=P,(1/(#—a)), a € B.

One can easily check that all the assumptions of Theorem are satisfied. Let f € M({2) be from the
assertion of Theorem [6.2.2} Then f = f — f. € O(2,) = O(2\ B) and f — Pu(1/(z —a)) = f — fa €
0(2,) C O(K(a,ry,)) for every a € B. O

Proof that Theorem [6.2-1] implies Theorem[6.2.3 Let £2, (24)aca, and (fa)aca be as in the assumptions of
Theorem [6.2.2 Put

123

B, :=P(f.), B:= U Ba.
acA
Since fo — fz € O(£2, N 23), B, N 25 C Bg for any «, 8 € A. In particular, the set B has no accumulation
points in 2. For a € By, let P,, € P(C) be such that P, ,(0) = 0 and f, — Pa,o(1/(z — a)) extends
holomorphically to a neighborhood of a. Since fo — fg € O(£2, N {23), we conclude that P, , is independent
of . Put P, := P, ,. Let f € M({2) be a function from the assertion of Theorem Then P(f) = B
and for any o € A and a € B,, the function

f=Ja=1[f—Fal )]
extends holomorphically to a neighborhood of a. O
Let O*(2):={f € O(2): f(z) #0, z € 2}.

Theorem 6.2.3 (Weierstrass). For any open subset 2 C C, a set S C §2 without accumulation points in (2,
and a function k : S — Z,, there exists a function f € M(§2) such that f € O*(£2\ S) and for every a € S

the function £, := f - (z — a)~*(®) extends holomorphically to a neighborhood of a with £q(a) # 0 E

An equivalent formulation is following.

I VR

zZ—a zZ—a

Theorem 6.2.4. For any open subset {2 C C, an open covering (24)aca of 2, and a family f, € M(£2,),
a € A, such that
folfs € 0" (2.N125), B €A,
there exists a function f € M(S2) such that
flfa € 0O°(£2,), a€A
Proof that Theorem [6.2.]] implies Theorem[6.2.3. Let §2, S and k : S —» Z, be as in the assumptions of
Theorem Choose 14 > 0, a € S, so small that K(a,r,) NK(b,r,) = & for every a # b, a,b € S. Define
A:={}US, 2,:=0\8, 2,:=K(a,r,), a€S, foi=1, for=(z—a)*? aes.

It is easily seen that all the assumptions of Theorem are satisfied. Let f € M(£2) be the function
from the assertion of Theorem Then f = f/f. € O (2,) = O0*(2\ S) and f - (z —a) %) = f/f, €
0*(£2,) = O*(K(a,r,)) for every a € S. O

Proof that Theorem [6.2-3 implies Theorem[6.2.4 Let £2, (24)aca, and (fa)aca be as in the assumptions of

Theorem [6.2.4l Put
S =P (fa) Uf71(0), S:= [ Sa.
a€A
Since fo/fs € O*(£2, N 2g), So N 25 C Sp for any «, f € A. In particular, the set S has no accumulation
points in 2. For a € S, let

k(a, ) == —(order of pole of f, at a) if a € P(fs)
T (order of zero of f, at a) if fo(a) =0 ’

(") That is, the function f has at a a zero of order k(a), if k(a) > 0, and a pole of rank —k(a), if k(a) < 0.
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Since fo/fs € O*(£2, N {25), we conclude that k(a,a) is independent of a. Put k(a) := k(o,a). Let
f € M(£2) be the function from the assertion of Theorem Then f has no zeros or poles outside S,
and for every a € A and a € S, the function

f_fzma)h®
fo o far(z—a) 7K@

extends to a non-vanishing holomorphic function in a neighborhood of a. O

124

6.3. First Cousin Problems

Definition 6.3.1. Let 2 C C™ be open and let U = (£2,)nca be an open covering of 2. We say that the
first holomorphic Cousin problem has a solution for W if for any family of functions

Pa,p € O(2a N12), a,B€A,
such that
VB0 =—Pap &P E A7 a8t Py T Pra=0in2,N2gN,, «a,B,7€A,

there exist functions
Yo € O(82,), a €A,
such that
Va8 =Pp — Yo in 2, N2, «,p €A

The family (¢a,8)a,pca is called the data for the first holomorphic Cousin problem for U.

We say that the first holomorphic Cousin problem has a solution for (2 if it has a solution for any open
covering. We write 2 € CP(O).

In the above definitions the class O of holomorphic functions may be substituted by another class F
(i.e. we assume that ¢, 5 € F(£2, N 23) and we require that ¢, € F(£2,)). For example, F = C*. Then we
can define the first F-Cousin problem for U (resp. the first F-Cousin problem for 2). We write 2 € @P*(F).

We say that the first meromorphic Cousin problem has a solution for W if for every family
fa € M(24), a€ A,
such that
fa—fa€ 024N 12), a,f€A,
there exists a function f € M({2) such that
f—fa€0(2y), aceA.

The family (fo)aca is called the data for the first meromorphic Cousin problem for U.
If the first meromorphic Cousin problem has a solution for any open covering U, then we say that the
first meromorphic Cousin problem has a solution for 2. We write 2 € CP'[M].

Remark 6.3.2. (a) The first holomorphic and meromorphic Cousin problems are invariant under biholo-
morphic mappings, i.e. for every biholomorphic mapping @ : 2 — 2’ = $({2) we have

2 € CPH0) = ' e CPHO), e CP' M| ' cCP' M|
(b) If n =1, then by Theorem 2 € @PY(0) for every 2 C C.
Proposition 6.3.3. 2 € CP'(0) = 2 c CP'[M].

(8) In particular, oo =0, a € A.



Piotr Jakobczak, Marek Jarnicki, Lectures on SCV

6.3. First Cousin Problems 125

Proof. Let (fa)aca be data for the first meromorphic Cousin problem for an open covering U = (§24)aca
of (2. Define

Va8 = fo— fain 2,N 82, o, €A
It is clear that we have defined data for the first holomorphic Cousin problem for W. Let ¢, € O(§2,),

a € A, be a solution of this problem. Put f := f, + ¢q in £2,, & € A. We have (fo + ¢o) — (f3 + ¢5) =
Va8 — (98 — pa) = 0in 2, N 2. Thus the function f is well defined. Moreover, f — fo = po € O(£2,). O

Proposition 6.3.4 (Cartan). For 2 C C?, if 2 € CP'[M], then 2 is a region of holomorphy.

Ry

Figure 6.3.1

Proof. Suppose that for some a = (a1,a2) € 2 we have d(T,g) > r > dgp(a) for any g € O(£2). Choose
b € 92 such that |a —b| = dp(a). Applying a suitable affine biholomorphism we may assume that b = 0 and
a1 =0 (cf. Remark [6.3.2(a)). Put U := {2 ¢,. Note that 0 € OU. Let
lezﬂﬁ(CxU), .QQ:.Q\({O}XU)7
f1(2) == (1/21) exp(1/22), 2 = (21,22) € {1, fa(2) =0, 2 € 2.
It is easy to see that £y U 2y = 2 and f1 — fo € O(£21 N ;). Therefore we have got data for the first
meromorphic Cousin problem. Let f € M(£2) be a solution of this problem. In particular, f = f—fo € O({2)
and hence ¢ := z1f € O(f22). On the other hand, g = 21 (f — f1) + exp(1/z2) € O(f2y). Therefore

g € O(£) and hence g extends holomorphically onto some neighborhood of 0 € C2. In particular, the
function g¢(0, z3) = exp(1/22) extends holomorphically to some neighborhood of 0 € C; contradiction. O

Proposition 6.3.5. 2 € CP'(C™®) for any open set 2 C C".
Proof. Fix an open covering W = (£24)aca and data a3 € C°(2, N §23), o, € A. Let (0j)jes be a
C*-partition of unity subordinated to U and let ¢ : J — A be such that suppo; C §2,;), j € J. Define
o= D 0 Pe(j)a i Pa,
jeJ
where 0;¢,(j),o := 0 in 2, \ suppo;. Then ¢, € C*(f2,) and in 2, N 25 we have
08— Pa =Y 0i(Pe(i)8 — Pelia) = D TiPas = Paup- O
JjeJ jeJ

Theorem 6.3.6. If 2 € Sy (cf. § 4.4), then 2 € CP(O).
In particular, if 2 is a region of holomorphy, then 2 € CP(O) (cf. Theorem .
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Proof. Fix an open covering U = (£24)aca and data ¢o 5 € O(£2, N 23), o, f € A. By Proposition m
there exist 1, € C*(£2,), a € A, such that ¢, g = g —1,. In particular, v := —99, in 2,, is a well-defined
differential form of class C7 ;) (£2). Since £2 € S0, there exists a function u € C*°(£2) such that Ou = v. Put
Vo =V +uin 2,, a € A. Then dp, = 0 and so p, € O(£,). Moreover, pg — po = g — e = Pa,p in
£2, N (23 for any «, B € A. a

6.4. Second Cousin Problems

Definition 6.4.1. Let {2 C C" be open and let W = (£24)aca be an open covering of 2. We say that the
second holomorphic Cousin problem has a solution for W if for any family of functions

Pa,p € 0" (20N ), «,B €A,
such that

PpaPas=1 BEA  Yap Py Pra=1I02N2%N00, opByved [[]
there exist functions
va € 0" (2), «a €A,
such that
Va8 = Pp/pa in 2,N N2, «o,f €A
The family (¢a,8)a,gea is called the data for the second holomorphic Cousin problem for .

We say that the second holomorphic Cousin problem has a solution for {2 if it has a solution for any
open covering. We write 2 € CP?*(0).

In the above definitions the class O* of non-vanishing holomorphic functions may be substituted by
another class F* (we assume that ¢, 5 € F*(24 N ) and we require that ¢, € F*(£2,)|(°) ). Then
we can define the second F-Cousin problem for W (resp. the second F-Cousin problem for {2). We write
2 € CP*(F).

We say that the second meromorphic Cousin problem has a solution for W if for every family

fa EM(2,), a€A,

such that
Jolfs € O (24N 823), «,B €A,
there exists a function f € M({2) such that
[/fa € 0"(£24), ac€A

The family (fo)aca is called the data for the second meromorphic Cousin problem for U.
If the second meromorphic Cousin problem has a solution for any open covering U, then we say that the
second meromorphic Cousin problem has a solution for 2. We write 2 € CP? [M].

Remark 6.4.2. (a) The second holomorphic and meromorphic Cousin problems are invariant under biholo-

morphic mappings (cf. Remark [6.3.2((a)).
(b) If n =1, then by Theorem 2 € CP*[M] for every 2 C C.

Proposition 6.4.3. 2 € CP*(O) = 2 € CP*[M)] (cf. Proposition .

(9) In particular, 90?1704 = @1;7& =11in {24, and hence pq,o = 1.

(10) F*(U) i= {¢ € F(U) : Vocur : f(2) # O},

(11) One can also prove (but it is much more difficult) that if {2 is a region of holomorphy, then the converse implication
is true, namely, 2 € C?Q[M] = 2 € CP?(0); we have the following

Theorem ([I7]). If 2 is a region of holomorphy, then for any data pqp € O*(2a N 23), a,B € A, for the second
holomorphic Cousin problem, there exist functions fo € O(£2a), a € A, such that fo = @a,5- fg in 2a N2 for any a, B € A.

Consequently, the functions fa, o € A, form data for the second meromorphic Cousin problem. If f € M(£2) is such that
f/fa € O*(£24), then the functions o := f/fa, o € A, give a solution of the initial problem.
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Proof. Let (fo)aca be data for the second meromorphic Cousin problem for W = (£2,)aeca. Define

Pa,p = fa/fB in 2, N Qg, a, f € A

We have defined data for the second holomorphic Cousin problem for U. Let ¢, € O*(£2,), a € A, be a
solution of this problem. Put f := fo - ¢qa in 24, o € A. Then (fo - va)/(fs - ©8) = Pa,p - (Pa/ps) =11in
2, N 23 (thus f is well defined) and f/fo = pa € OF(£2,). O

Remark 6.4.4. Let D C C" be a simply connected domain and let f € C*(D). Then there exists a function
f € C(£2) such that f = exp(f). Moreover, f € O*(D) iff f € O(D).

Theorem 6.4.5. If 2 € CP(O) N CP*(C), then 2 € CP*(O).

Proof. Fix a covering U = (£2,)aca and data po 5 € O*(£2, N 23), o, B € A, for the second holomorphic
Cousin problem. Consider two cases.

1°: (2, is simply connected for every o € A.

Let 1, € C*(£24), o € A, be such that 0, 3 = 15 /1 in 2,N02g, o, € A (recall that 2 € €P?(C)). Let
{/;a € C(f2,) be such that ¢, = exp(z’/;a) (Remark , «a € A. Define {/Jvaﬁ = {Eg — Ja in 2, N £23. Since
exp(a.g) = exp(1hs)/ exp(ta) = V3 /e = ©a.ps € OF (2 N 25), we get 1ha 5 € O(£24 N 25). Therefore the
family {Ea,g, a, B € A, gives data for the first holomorphic Cousin problem for U. By our assumptions, this
problem has a solution x, € O(£2), a € A, such that Ja,g = X8 — Xa- Now let ¢, 1= exp(xa) € O*(2,),

a € A. Then pg/o, = exp(Xg — Xa) = exXP(¥a.8) = Va3
2°: the general case.

Let (Uj)jes, be an open covering subordinated to U such that each set U; is simply connected. Let
0:J — Abesuch that U; C £2,), j € J. Define

@j,k = <Pg(j),g(k)|Uijk7 Jik e J

By 1° there exist functions @; € O*(U;), j € J, such that @;, = @r/@; in U; N Uy, j,k € J. Put
Yo = Bj - Po(j),a N 2o NU;. Observe that

Dj * Poi),a

-~ :(ﬁk,"(ﬂ i), 0(k =1in 2, NU; NUy.
Bt - Pok) o J " Po(d),e(k) J

Consequently, ¢, is well defined in 2, and ¢, € O*(£2,). Moreover, in 2, N 25 N U, we have

w5 PiPoi)B _
== = Pagp:
Po  PjPo(),a

Example 6.4.6 (Oka). Let D := A x A C C?, where
A:={2€C:3/4<|z| <b/4}.

Then D is a domain of holomorphy such that D ¢ CP*[M]
Indeed (cf. [19]), suppose that D € @P*(O) and let

M = {(21722) € C2 121 — 29 = 1}
Notice that (z1,22) € M N D iff Rez; — Reze =1, Im2; = Im 2. Put
M_=MnDN{Imz =Imz <0}, My:=MnNnDN{Imz =Imz > 0}.

(12) This is an example of the so-called Oka principle saying that ‘everything’ which can be done continuously in regions
of holomorphy can be also done holomorphically.

(13) By Theorem D¢ C?Q(C).
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Observe that M_ U M, = M N D. In particular, M_ and M, are closed in D. Put
Dy :=DnN{Imz >0, Imzy >0}, Do:=D\ Mg,
fi(z1,22) == 21 — 22— 1, fa(z1,22) == L.

Then Dy U Dy = D and fl/fg S O*(Dl N DQ)

Suppose that there exists a function f € M(D) such that f/f; € O*(D;), j = 1,2. Consequently,
f(z1,22) = (21 — 22 — 1)h(21, 29) for (z1,22) € D1, where h € O*(Dy), and f|p, € O*(D3).

Put

128

F(a, B) == f(e*,e®), a,B€R.
Observe that
{(a, B) € ]0,27] x [0,27] : F(c, 8) =0} = {(n/3,27/3)} =: {c}.
Let v denote the boundary of the square [0, 27] x [0, 27] (considered as a curve with positive orientation
with respect to the square).

21

21/3 <

Qv

/3 27
Figure 6.4.1

Define

F F Oa F op

Since F' is periodic @ we get I = 0. Let 7. denote the boundary of the square [—¢,¢] x [—¢, £] (considered
as a curve). Since the form dF/F is closed in [0, 27] x [0, 27] \ {c}, we get

dF
H:/ —, O<exl.
c+’ygF

Recall that F' = G - H in a neighborhood of ¢, where
G(a,p) =€ —e® —1, H(a,B) = h(e™,e?).
Since dF'/F = dG/G + dH/H and dH/H is closed in a neighborhood of ¢, we get

n::/@:/lﬁidwl@dﬂ
¥ ¥

d
0:11:/ G e«
C+WEG

Observe that
—sina, sin 8
cosa, —cos 3

JrG(a, B) = det [ ] = sin(a — B).

(1) F(a, B) = F(a + 2km, B+ 26r), k, £ € Z.
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Hence JrG(c1,c2) = sin(—n/3) # 0 and, therefore, G is a diffecomorphism in a neighborhood U of c.
Consequently, for 0 < ¢ < 1, the curve o, := G o (¢ + :) is a Jordan curve with (0,0) € int 0. and
dG dz

c+7e G O¢ z
contradiction.
Example 6.4.7 (Serre). Let

D :={(z1,22,23) €C®: |2} + 25 + 23 — 1| < 1}.

Then D is a homotopically simply connected domain of holomorphy such that D ¢ @P*[M] (cf. [I1]).

Proposition 6.4.8. Assume that 2 € CP*[M]. Then for every (n — 1)-dimensional complex submanifold
M C 02, there exists a function f € O(£2) such that
for any open subset U C 2 and g € O(U) with M NU C g—*(0) we have g/f € O(U).

The function f with the above properties is called a defining function for M.

Proof. 1t is well known that M may be locally described (up to a biholomorphism) as {z, = 0}. More
precisely, for every point a € M there exist a neighborhood U, and a biholomorphic mapping @, : U, — D"
such that @,(M NU,) = D"~ x {0}. Moreover, if a € U C U, and g € O(U) are such that M NU C g~*(0),
then the function (1/z,)(g o @,') extends holomorphically to ®,(U)

For a € {2 let

2, =Pla,r,) CN2\M, fo:=1,ifa¢ M,

Q24 :=P(a,7q) CUq, fo:=((Pa)n)la,, ifa€e M.

We have obtained data for the second meromorphic Cousin problem. Now, any solution of this problem
is a defining function for M. O

Proposition 6.4.9. Let {2 € (?fPl((’)) and let M be an (n — 1)-dimensional complex submanifold of 2 for
which there exists a function f € C(£2) such that
M = f1(0),
for every open subset U C 2 and g € O(U), if g is a defining function for M NU, then g/fe c*(U).
Then there exists a defining function for M.

Proof. Let §2,, fa, a € £2 be as in the proof of Proposition It follows from the assumptions that f,/ f €
C*(£2,) for every a € {2. Since 2, is a polydisc (and hence simply connected), Remark implies that
there exists a function g, € C(£2,) such that exp(gq) = fo/f. We have exp(ga — g5) = fu/fo € O (24 N £2)
in 2, N 2, and so (Remark Cab = Ga — gp € O(£2, N ). We have obtained data for the first
holomorphic Cousin problem. Let ¢, € O(£2), a € 2, be such that ¢, , = pp — @, for every a,b € §2. Define
= faexp(pa) w 24. In 2, N 2, we have

fa exp(¢a)

T = exp(gq — ex o — =ex ab) €X o) = 1.

Ty exp(en) P(ga — 96) exP(Pa — ¥b) = exp(Pab) eXP(Pb,a)
Hence f is a well-defined holomorphic function in {2. Directly from the definition of f it follows that f is a
defining function for M. O

Remark 6.4.10. Let M be a k-dimensional complex submanifold of an open set 2 C C" (1 <k <n-—1)
and let f: M — C. Then the following conditions are equivalent:

(i) f € O(M) in the complex manifold sense, i.e. for any point a € M there exists local coordinates
¢ : D¥ — U such that f oy € O(D*), where U is a neighborhood of a;

(ii) for any point a € M there exist P = P, (a,r) C 2 and f, € O(P) such that f, = f on M N P.

(15) This means that (P4)r is a defining function of M N Us.
(16) Recall the Oka principle from Theorem
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Proposition 6.4.11. Let 2 € €P'(O) and let M C 2 be an (n — 1)-dimensional complex submanifold of
02 for which there exists a defining function Fy € O(§2). Then for any function f € O(M) there exists an
feOR) with f = f on M.
Proof. For a € 2 let 2, = P(a,r), where the polydisc P(a,r) is such that
Pla,r) "M =0 ifa ¢ M,
there exists a function f, € O(P(a,r)) such that f, = f on M NP(a,r) if a € M (cf. Remark [6.4.10).
Put f, :=01if a ¢ M. Observe that f, — fp =0 on M N2, N2 (if M N2, NI # ). Since Fy is a
defining function, there exists a function ¢, € O(£2, N (2) such that f, — f, = Fopap on 2,N 2, a,b € 2.
Observe that ¢, 5, a,b € {2, are data for the first holomorphic Cousin problem.
Let v, € O(£2,) be such that v, = @b — @a, a,b € 2. Then

(fa +F080a) - (fb +F090b) = fo—fo— FO(SDb - @a) = FOQOa,b - FO‘Pa,b =0on 2, N .
Consequently, the function f:: fa + Fopq on 24, a € (2, is the required extension.

Exercises

6.1. Let
D :={(z1,22,23) € C3: |zf + z% +z§ —1 <1}
Prove that D is simply connected — complete the following sketch of the proof.
Let
Q := {(w1,ws, w3) € C* : w? + w3 + w3 = 1}.
Then the mapping
1 22 23

2 2, .2
— , Zi+2+25-1)e@Q xD
Fraa VAra g varg.g 2 RTleexd
is a homeomorphism ( Na denotes the principal branch of the square root).
For w = z + iy € C3 with 2,y € R® we have: w € Q iff ||z||> — ||y||*> = 1, (x,y) = 0. Consider the
mapping

D > (Zlv 22, Z3)

0,1] x Q@ 5 (2 +iy) 5 (V1 + 2y, ty) € Q

]
Then H is a homotopy of Q to the 2-dimensional real Euclidean sphere in R3. In particular, Q is simply
connected and, therefore, D is a simply connected domain.

(1") In fact, the following general result is true (cf. [13]).

Let £2 C C™ be a domain of holomorphy and let M be an analytic subset of 2; cf. Ezercise Then O(M) = O(82)|m,
where O(M) denotes the space of all functions f : M — C such that for any point a € M there exist P = Pp(a,r) and
fa € O(P) with fo = f in PN M.
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General symbols

N := the set of natural numbers, 0 ¢ N;

Z := the ring of integers;

Q := the field of rational numbers;

R := the field of real numbers;

C := the field of complex numbers;

C:=Cu {o0} = the Riemann sphere;

Re z := the real part of z € C;

Im z := the imaginary part of z € C;

%z := Rez — ¢Im z := the conjugate of z;

W= (Wy,...,Wy);

A, = A\ {0}, e.g. Cy;

Ay ={a€Ad:a>0},eg Zi Ry,
A_:={a€A:a<0},eg R_;

Asg:={a€ A:a>0}, eg Ryp;

AL = (A" AL = (A", AL := (Aso)™ (to simplify notation);
A+B:={a+b:a€ Abe B}, A,BCCm
A-B:={a-b:ac€ Abe B}, ACC,BcCCm

(e1,...,ep) := the canonical basis in C", e; := (ej1,...,€jn), € s =0for j#kande;; :=1,j=1,...,n;

z,w) = > . z;w; = the Hermitian scalar product in C";
J=17~31"J
Izl =: /(2,2) = /]z1]2 + - - - + |2a|? = the Euclidean norm in C";

a C-linear operator L : C* — C™ is unitary if (L(2'), L(z")) = (2/,2"), 2/,2"” € C™ (or, equivalently,
IL(2) Il = [z, z € C™);

$I(C™) := the group of all unitary isomorphisms of C";

r):={z € C" : ||z — a|]| < r} = the Euclidean ball with center at a € C" and radius r > 0

B(r) = B,(r) :=B,(0,r), r > 0;

B,, :=B,,(1) = the unit Euclidean ball in C";

K(a,r) :=B(a,r),a € C, r > 0; K(a,+00) :=C;

C(a,r) := 0K (a,r), a € C, r > 0; sometimes, we identify C(a,r) with the curve [0,27] > 6 — a + re';
K(r):=By(r) = K(0,r), r > 0;
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C(r):=0K(r), r > 0;
D:=B; :{zGC:|z| < 1} = the unit disc;
T:=0D

<

V; ::(CJ Ix{0}xCricCj=1,...,n
|z| ;== max{|z1],...,|2zn|} = the maximum norm in C";
P(a,r) =P,(a,r) :={z € C" : |z — a| < r} = the polydisc with center at a € C" and radius r > 0;
P(T):Pn< ) = Pn(0,7);

P(a,r) = P,(a,r) = K(al,rl) X -+ X K(ap,r,) = the polydisc with center at a € C"™ and multiradius
(polyradlus) r=(ry,...,m) € RZ;
P(r) =Pn(r) := P(O,'P)

conv(A) := the convex hull of A;

Acc X &4 4 s relatively compact in X;

ox ={AeC:a+XX e}, 2CC"aecC X eCm

faxXN) = fla+AX), A€y x, f: 2 — C™;

dp(a) :==sup{r > 0:P(a,r) C 2}, 2 € topC"™, a € §2;

top {2 := the Euclidean topology of {2, {2 C C™;

int x A := the interior of A in the topology of X, A C X;

clx A := the closure of A in the topology of X, A C X;

0o(A1 X -+- x Ayp) := (0A1) X -+ x (0A,,) := the distinguished boundary of A;

D C C is regular L4 9D consists of a finite union of pairwise disjoint Jordan piecewise C! curves with
positive orientation with respect to D;

R(A) :={(|z1l,---s|2nl) : (z1,..., 2n) € A} := the modular image of A C C";

log A :={(x1,...,x,) € R": (,...,e*) € A} = the logarithmic image of an n-circled set A C C";

p(v) holds for v > 1 L% there exists v such that p(v) holds for v > vy;

p(e) holds for 0 < e < 1 LL there exists g9 > 0 such that p(e) holds for 0 < e < gg;

2% =2t 20 2= (21,...,20) €ECM a= (a1, .., a) €ZT
al:=ai! o, a=(a,...,an) €ZY;
‘Ck| = |O[1|+"'+|Oén|, a:(alv"'aan)ezﬁ;

agﬁgaj<ﬁj,j:1"'vn (a:(alv"'van),B:(ﬁlv"',ﬁn)ezn);
(g) = (Cﬁxi) (,Bn) OZ—(O{l,,an),ﬁ:(ﬁl,,ﬂn)621,5§a,
1:=(1,...,1) e N7

[ flla = sup{|f(@)] :a € 4}, f: A — C;
Fla:={fla: [ € F}, Fisafamily of mappings X — Y and A C X;

supp f := {x : f(x) # 0} = the support of f;
CT(£2) := the set of all upper semicontinuous functions u : 2 — [—00, +oc] (£2 € top C");

LN := Lebesgue measure in RY;
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LP(A) := the space of all Lebesgue measurable functions u : A — C such that [, [u[?dLY < 400, A C RY;
LP(§2,1oc) := the space of all Lebesgue measurable functions u : 2 — C such that f|x € LP(K) for any

compact K C {2 € topR";
P2 loc)
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L7 (K)

LP(Q 10(‘,) = fu fo € LP(Q IOC) <:> ViKcco: fu|K f0|K
Chapter 1

fk(a) := the real Fréchet differential of f at a

ft(a) = f'(a) := the complex Fréchet differential of f at a;

CF(£21, 82;) := the space of all CF-mappings F : 2, — (29; k € Z, U {o0};

CH(2) = CH(2,0);

CH(£2) :={f € C*(12) : supp f CC 2};

()= (L@ -if@), 2 =1(@+ig <>);
[52(a), o, 32 (@), B2 (@), 8 (0) |

0z ’ Ozn ) 0z, 0Zn
0 Ofn () Ofn 0
Jrf(a) = det ozt (@): - 2 (@) 521 (@), - g (a) the real Jacobian of f at a;
R — 14] 6] 16] o = )
Li(a),.... 50 (a), 55 (a), ..., 5 (a)

of af. “3, af.
HLela),..., 52 (), %2 (a), ..., E2 (a)

DB - —(321)5“0 o(a’)o‘"o(aizl)ﬁlo'-'o(a
D := D0 = ()M 0. 0 (52), a € Z7;

g—zfj(a) := limesaso 3 (f(a+ Aej) — f(a)) = the j-th complex partial derivative of f at a;

Jef(a) :=det ([afj(a)L - n) = the complex Jacobian of f at a;

), B € I

(?zk

O, (§2) := the space of all separately holomorphic functions on {2;

D(X) := the domain of convergence of a power series X;

T.f(2) = Zaezi LD f(a)(z — a)® = the Taylor series of f at a;

d(Tof) :=sup{r > 0:P(a,r) C D(T,f)} = the radius of convergence of the series Ty, f;
O(§21, §25) — the set of all holomorphic mappings F' : £2; — (2;

0(2) = 0(2,C);

fa := the germ of f at a;

P(C™) := the space of all complex polynomials of n-complex variables;

H(£2) := the space of all bounded holomorphic functions on (2;

AR(02) = {f € O(2) :Vacz |ai<k * Fp ce@)  Pa=Df in 2}k € Zy U{oo};
LY (02) :== O(£2) N LP(£2).

Chapter 2

Aut(£2) = the group of all automorphisms of 2 C C";
Aut,(2) :={h € Aut(2) : h(a) = a}, a € 1.
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K]-' :{269 Vier fRl < fllkh F <o)

Chapter 3

A= 8%22 + (,fy = 4828* = the Laplacian operator in R?;
H(§2) := the space of all harmonic functions on {2 C C;

s e ) L (2T _r’—|z—a 0y J19-
P(u,a,r,z) =3 Jo mu(a"—?"ez )d@,

J(u;a,r) :=P(u;a,r;a) fo u(a + re') do;

S(u;a,r;z) i= 5 O% 7:291_&_3;11(@ + rei?)do;

SH(£2) := the set of all subharmonic functions on {2 C C;
Aua,r) = L5 fK((”) u dL?;

PH(£2) := the space of all pluriharmonic functions on 2 C C™;

) 1 2m 2 rifz—an)? r2— |z, —an|?
Pluia,m2):= gom o o emi—maanP -+ e (o an)P

u(ay + rie
psh: =plurisubharmonic;
PSH(2) := the set of all plurisubharmonic functions on 2 C C™;
J(u;a,7) :=P(u;a,7;a);
A(u;a,r) = W fp(a U ac*,
Lu(a; X) = Z] k=1 7% de( a)X; X = the Levi form;
N.:={z€NR:dg(z) >e};
u. := the e-regularization of u € PSH(L2).

Chapter 4

Ks:={z€ 2 :Vyes : u(z) < maxg u}, S C PSH(R);

By(a,7) :={2€C":q(z—a)<r},a€C” r>0,q:C*" — Ry is a C-norm;
doq(a) :=sup{r >0: By(a,r) C 2}, a € 2 CC™

do.x(a) =sup{r >0:a+K(r)- X C2},ac 2CC"> X,

By = {I="(i1,...,3p) eNP:1< i <--- < iy <n}
Zm:p“':ZIezgm%

Fip,q)(£2) := the space of all forms of type (p, q);

C(p o) (§2) := the space of all (p, ¢)-forms with coefficients in CF(92);

D(,q)(§2) := the space of all (p, q)-forms with coefficients in C§°(£2);

161
I

Oy Tet?n) doy .

db,;

ou := Z/ Z 8;;’_‘] dz; Ndzp Ndzg; du = Z/ Z 6;;[’_‘] dz; Ndzr AN dzy = the d-operator;

[Tl=p,|J|=q =1 J [I|=p,|J|=q =1 J
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&*(u) : = ZI (ur,g o @) d®;, A--- NdD; NdPj, A--- N dD;,
[I|=p,|J|=¢
= Z/ (u;ﬂ;o@)@@il/\~«~/\8431-p/\87525j1/\~«~/\8745jq.
[I|=p,|J|=q

Sp.q = Spq(C™) := the family of all sets A C C" such that for every open neighborhood G of A and for

every d-closed form v € C(p q+1)

u€Cy (G () such that du = v in G.

Chapter 5
are k() = Lnezy: joj<k Wk [DVf], k € Zy;
D(K) :={f €C§°(§2) :supp f C K};
D(K)> f, D) fo € D(K) PN VaezN D*f, — D fy uniformly on K;
D(£2) = CG’O(Q),
D)3 f, 29 fo e D(2) €5 Fxcca: (1), C DK), fu ™5 fo;
E(92) = ( )
)3 f, 59 e e &L Vaezy : D*f, — D fo locally uniformly in £2;

D’(£2) := the space of all distributions on £2;

Q
T, LQ To <= Viep) : Tu(f) — To(f);

[w](f) := [oufdL", f € D(£2), u e L'(£2,loc);

T ® 3'2 := the tensor product of distributions;

TJ71 * T := the convolution of distributions;

TJ. = T x &, = the e-regularization of ¥;

L2(02, ) :={u € L*(£2,1oc) : [, |ul* exp(—¢) dL* < 400}, £2 € top C";

Vip,q)(£2) — the space of all (p, q)-forms with coefficients in V(2), e.g. DEp)q)(Q), L

7= 3 Zag;‘]dzj/\dzl/\d%; = 3 Zagg’_‘]dzwdzwdfﬁ

N=p =g =1 1=pJ=qi=t 7%
DfT:= N (DT )z Adzy, a8 €T
\T|=p;1J1=q
aTIjK / _
9= > (Z )dz NdzZg; Te= > (Trg)eder Adzs;
N=p|Kl=q—1 j=1 %I ITl=p.lT1=q
Y =@ — ( _¢7>1/Ja (p q+i— 1)(9590j)7 .7 = 17273;

DOII]( ) *{feL(pq( 7301) 8f€qu+1)( a@?)};

T: L%p q)(Q’@l) > Dom(T) > f — 9f € L(p q+1)(97¢2)§

Dom(S) :={f €L pq+1)(97902) of € L(p q+2)(Qa<P3)}§
S L(p g+1)(£2,¢2) O Dom(S) > f — af € L(p g12)(2,03);
R(L) := L(Dom(L)), L : X D Dom(L) — Y is linear;

(G) there exist an open neighborhood G of A (with G C @) and a form

2 2 .
(p,q) (97 IOC), L(p)q) (‘Qa (p)v
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WH(Q) = {u € L2(0) : D*Pu e L2(2), || + |8] < k}, k € Zo U {oo):
Wk(02,1oc) := {u € L3(£2,loc) : D*Pu € L?(£2,loc), |a| + 8] <k}, k € Z, U {oo}.

136

Chapter 6

M(2) := the set of all meromorphic functions on {2 C C;
R(f) := the set of all regular points of f € M(£2);

P(f) := the set of all poles of f € M(£2);

J(f) := the set of all points of indeterminacy of f € M(£2);
F(2)={feF(2): f(z)£0, z € 2}, eg. OF(2);

2 eep!
2 e ep!

F) £ the first Cousin problem with data in F has a solution for any open covering of (2;

0) 2% the first holomorphic Cousin problem has a solution for any open covering of 2;

2 e CPM] 24 the first meromorphic Cousin problem has a solution for any open covering of (2;

2 eeP? (F) £ the second Cousin problem with data in F has a solution for any open covering of (2;
2 e eP*0) 2% the second holomorphic Cousin problem has a solution for any open covering of 2;

2 e ep? (M] 24 the second meromorphic Cousin problem has a solution for any open covering of 2.
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Abel’s lemma, |§|
analytic set, [57]
automorphism group

ofIBn,®
of D", [57]

balanced set, [f]

barrier function, 3]
Bergman boundary, @
biholomorphic mapping, [I2]

canonical representation, @
Cartan theorem, [36} [37]
Cauchy
—Green formula, [97]
inequalities, [[]
integral formula, E]
—Riemann equations, [2]
circular set, [g]
complete n-circled set, @
complex
Hessian, @
Jacobian, [3]
partial derivative, [I]
convolution,
of distributions, [TT0]
Cousin problems,
data for

the first holomorphic Cousin problem, [[24]
the first meromorphic Cousin problem, [124
the second holomorphic Cousin problem, [126]
the second meromorphic Cousin problem,

first F—Cousin problem
for 2,124
for u,

first holomorphic Cousin problem
for £2,[124]
for u,

first meromorphic Cousin problem
for £2,
for u,

second F—Cousin problem

for £2,
for U, [126

second holomorphic Cousin problem

for £2,[126
for U, [126

Index
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second meromorphic Cousin problem

for (2,126
for U,

data for

the first Cousin problem
holomorphic,
meromorphic, @

the second Cousin problem
holomorphic, [[26]
meromorphic,

defining function, @

o-

B-

operator, [95]
stability, @

closed form, [9¢]
equation, [06]
exact form, [06]
operator, [95]
problem,

derivative of a distribution, @
determining set, 28§
Dirichlet problem,

for a disc, @
for an annulus, @

distinguished boundary, []
distribution,
domain

of convergence of a power series,

of existence,
of holomorphy, @

entire function, [I0]
envelope of holomorphy,
e-regularization, [T10]

of a distribution, [TT]]

exhaustion function,

F—

convexity, @
domain of holomorphy,

envelope of holomorphy, [52]
extension, [51]

hull,

region of holomorphy, @

first Cousin problem
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F-Cousin problem form, [T7]
for 2,124 Problem,
for U,M Liouville theorem, [TT]
holomorphic Cousin problem for psh functions,
for 2, [124 for subharmonic functions, [73]
U, J local pseudoconvexity,
meromorphic Cousin problem logarithmic
for 2, [124 convexity, [7]
Uu, image, [7]
formal partial derivative, |I| plurisubharmonicity, @

subharmonicity, [74]
geometric series, [f]

germ, [25] maximal
Green function, [63] F-extension,
group of automorphisms, [35] holomorphic extension, [52]
of By, maximum principle, [I3]
of D™, [37] for harmonic functions,
for psh functions, [30)
Hadamard’s three circles theorem for subharmonic for subharmonic functions,
functions, [75] mean value property for subharmonic functions, [65] [67]
harmonic function, meromorphic function, [[21]
Harnack’s theorem, [63] identity principle for meromorphic functions, [122)
Hartogs point of indeterminacy of a meromorphic function, @
domain, pole of a meromorphic function, @
extension theorem, [32] regular point of a meromorphic function, [121]
—Laurent minimum principle for harmonic
domain, functions,
series, Minkowski functional,
lemma Mittag—Leffler theorem, [[22]
for psh functions, Montel theorem,
for subharmonic functions, morphism of Riemann regions, [50]

on separately holomorphic functions, [I5] [I§]

series, 22] 1] n-circled set, [6]

theorem on separately holomorphic functions, natural Fréchet space,
triangle, @
Hefer’s theorem, [I05] Oka
holomorphic ex.am.ple, 27
convexity, 5] principle, [[27} [129]
extension, [51] theorem for subharmonic functions, [73]
)
function, Osgood’s theorem, [
bull, @ partial derivative, [I]
mapping, [10]

pluriharmonic function, @l

plurisubharmonic function, [7§]

Poincaré theorem, [T4]

point of indeterminacy of a meromorphic function,

mappings on Riemann domains,
Hoérmander’s L2-estimates,
hyperconvexity, [83]

identity principle, [[0} 1] Poisson integral formula, [62]

for harmonic functions, polar set, . )

for liftings pole of a meromorphic function,

’ .

for meromorphic functions, [122] polynoml‘al
implicit mapping theorem, [I2] convexity, 5] [I00]
inhomogeneous Cauchy—Riemann hull, [45]
equation, polyhedron, [T0T]
irreducibility, [57] power series, El -
isomorphism of Riemann regions, pseudoconvexity,
Jacobian, [§] R-analytic function, [T5]

’ radius of convergence of a Taylor
Kontinuitétssatz, [04] series, []
rank theorem, [I3]

Laurent series, @ real

Levi Hessian, [84]
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Jacobian,
region

of existence, @

of holomorphy, 2]
regular

planar domain, @

point, [57]

of a meromorphic function, [[21]

regularity with respect to the Dirichlet problem,
regularization,

of a form, m
removable singularities

of psh functions, [8]]

of subharmonic functions,
Riemann

domain, [50]

region, [50]

removable singularities theorem,
ring of germs,
Runge

domain, [T00]

region, [T00]

schlicht set,
Schwarz lemma for subharmonic
functions, [75]
second Cousin problem
F-Cousin problem
for 2, [126]
for u,
holomorphic Cousin problem
for £2,
for U, [126
meromorphic Cousin problem
for £2, 126}
for U,
separately
harmonic function, [76]
holomorphic function, [
Serre example,
sheaf of germs,
Shilov boundary, @
singular point, [57]
solution of the Dirichlet problem,
strictly plurisubharmonic function,
strong pseudoconvexity, @
subharmonic function, [64]
support
of a distribution, [108
of a form, @

Taylor series, [9]
tensor product of distributions, [[09]
theorem
Cartan theorem, @ @
Hartogs’
extension theorem, [32]
theorem on separately holomorphic functions, E
Hefer’s theorem, [105]
implicit mapping theorem, @
Kontinuitétssatz, [04]

Index

Liouville theorem,
for psh functions, [78]
Mittag—Leffler theorem, [122]
Montel theorem, [I4]
Osgood’s theorem, [4]
Poincaré theorem, [14]
rank theorem,
Riemann removable singularities theorem, [32]
Thullen theorem,
Vitali theorem, [T4]
Weierstrass
Division Theorem,
Preparation Theorem, @
theorem, @ @
thin set, [32]
Thullen theorem, @
transitivity of Aut(D),
type of a differential form, @

univalent set, [50]
upper regularization, @

Vitali theorem, [[4]

weak hyperconvexity,
Weierstrass
Division Theorem,
polynomial, [23]
Preparation Theorem,

theorem, [T2] [[23]

Wermer example, [I103]
Wirtinger derivative, [I]

zp-normalization,
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