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Preface

This book is based on lectures on several complex variables given by the authors at the Jagiellonian
University in Kraków during the period of 1991–1999. The material contains two-semestral course for
graduate students of III and IV year.

The text contains the background theory of several complex variables. Chapter I is of preparatory
nature. In Chapters II-VI we discuss the extension of holomorphic functions, automorphisms, domains of
holomorphy, subharmonic and plurisubharmonic functions, pseudoconvexity, the solution of the ∂-problem
by means of Hörmander’s L2-methods, and Cousin problems. The aim has not been to obtain completeness
in any direction; in particular, several classical topics (like sheaf theory, Cartan’s A and B theorems, local
theory, or theory of analytic subsets) are postponed to the second part of the book, which is planned to be
written in the future.

The treatment of the subject is rather classical and mostly oriented on ∂-problem techniques developed
by Hörmander in [17]. The reader is however encouraged to consult also other monographs on the theory
of several complex variables, e.g.[15], [25] (where the approach is based on the theory of integral formulas),
[13], [12] (where similar results are obtained by means of local theory); cf. also [10], [19], [23], [24], [33], [35].
We would like to stress out that the choice of bibliography reflects only personal preferences of the authors,
and should be by no means treated as the try to valuate the textbooks on complex analysis.

Every chapter begins with a short summary which contains a rough outline of the material. The exercises
which follow some chapters are based on problems proposed to the students during tutorials.

The reader will note that the contents of Chapter III, devoted to the theory of subharmonic and plurisub-
harmonic functions, is much larger than the amount of the material on this subject presented in most of
textbooks on several complex variables. This is due to the traditionally strong position of the theory of
plurisubharmonic functions in the Institute of Mathematics of the Jagiellonian University, and by the in-
creasing importance of this subject to several complex variables, e.g. the recent development of the theory
of the complex Monge-Ampère operator.

The reader is required to be familiar with elements of classical real analysis and complex analysis of one
variable.

The references concerning one-variable theory are directed onto the textbook [4]. Of course, a similar
material on one complex variable can be found in many other classical textbooks, e.g. [2], [26].

It is our great pleasure to record a debt of gratitude to our teacher, Professor Józef Siciak, who introduced
us into complex analysis.

We thank Professor Peter Pflug for numerous helpful discussions and suggestions during writing this
book. We are greatly indebted to our colleagues Armen Edigarian, Sławomir Kołodziej, and Włodzimierz
Zwonek who have been conducting tutorials to our lectures and who helped us in corrections of the text.

Piotr Jakóbczak
Marek Jarnicki
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CHAPTER 1

Holomorphic functions

1.1. Formal derivatives

Let Ω ⊂ Cn be open, let a ∈ Ω, j ∈ {1, . . . , n}, and let

f = (f1, . . . , fm) : Ω −→ Cm

be a mapping such that
∂f

∂xj
(a),

∂f

∂yj
(a)

exist
(

1
)
. Define

∂f

∂zj
(a) :=

1

2

( ∂f
∂xj

(a)− i ∂f
∂yj

(a)
)
,

∂f

∂zj
(a) :=

1

2

( ∂f
∂xj

(a) + i
∂f

∂yj
(a)
)

;

∂f
∂zj

(a) and ∂f
∂zj

(a) are called the j-th formal partial derivatives (or Wirtinger derivatives) of f at a.

Remark 1.1.1. (a)
∂f

∂zj
(a) =

∂f

∂zj
(a).

(
2
)

(b) Assume that the j-th complex partial derivative ∂f
∂zj

(a) of f at a exists, i.e. the limit

∂f

∂zj
(a) := lim

C3λ→0

1

λ
(f(a+ λej)− f(a))

exists and is finite
(

3
)

(observe the difference between the complex partial derivative ∂f
∂zj

(a) and the formal

partial derivative ∂f
∂zj

(a)). Then

∂f

∂xj
(a) =

∂f

∂zj
(a),

∂f

∂yj
(a) = i

∂f

∂zj
(a)

and hence
∂f

∂zj
(a) =

∂f

∂zj
(a),

∂f

∂zj
(a) = 0.

Let K ∈ {R,C}. Recall that the K-(Fréchet) differential f ′K(a) of f at a is the K-linear mapping
f ′K(a) : Cn −→ Cm such that

f(a+ h) = f(a) + f ′K(a)(h) + o(‖h‖) when Cn 3 h −→ 0.

Obviously, if f ′C(a) exists, then f ′R(a) exists and they coincide.

(
1
)
We always use the following identification of Ck and R2k

Ck 3 (x1 + iy1, . . . , xk + iyk) 7−→ (x1, y1, . . . , xk, yk) ∈ R2k.

(
2
)
For w = (w1, . . . , wm) ∈ Cm we put w := (w1, . . . , wm).(

3
)
e1, . . . , en are vectors of the canonical basis in Cn; ej := (ej,1, . . . , ej,n), ej,k = 0 for j 6= k and ej,j := 1, j = 1, . . . , n.

1
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1. Holomorphic functions

If f ′R(a) exists, then ∂f
∂xj

(a), ∂f
∂yj

(a), j = 1, . . . , n, exist and

f ′R(a)(h) =

n∑
j=1

( ∂f
∂xj

(a) Rehj +
∂f

∂yj
(a) Imhj

)
=

n∑
j=1

∂f

∂zj
(a)hj +

n∑
j=1

∂f

∂zj
(a)hj , h = (h1, . . . , hn) ∈ Cn.

If f ′C(a) exists, then ∂f
∂zj

(a), j = 1, . . . , n, exist and

f ′C(a)(h) =

n∑
j=1

∂f

∂zj
(a)hj , h = (h1, . . . , hn) ∈ Cn.

Remark 1.1.2. Assume that f ′R(a) exists. Then the following conditions are equivalent:
(i) f ′R(a) is C-linear;
(ii) f ′C(a) exists;
(iii) ∂f

∂zj
(a) = 0, j = 1, . . . , n (i.e. f satisfies the Cauchy–Riemann equations at a).

Assume that m = n and let

uj := Re fj , vj := Im fj , j = 1, . . . , n.

If ∂f
∂xk

(a) and ∂f
∂yk

(a), k = 1, . . . , n, exist, then we put

JRf(a) := det


∂u1

∂x1
(a), ∂u1

∂y1
(a), . . . , ∂u1

∂xn
(a), ∂u1

∂yn
(a)

∂v1
∂x1

(a), ∂v1∂y1
(a), . . . , ∂v1∂xn

(a), ∂v1∂yn
(a)

. . .
∂un
∂x1

(a), ∂un∂y1
(a), . . . , ∂un∂xn

(a), ∂un∂yn
(a)

∂vn
∂x1

(a), ∂vn∂y1
(a), . . . , ∂vn∂xn

(a), ∂vn∂yn
(a)

det

[[
∂uj
∂xk

(a),
∂uj
∂yk

(a)
∂vj
∂xk

(a),
∂vj
∂yk

(a)

]
j,k=1,...,n

]
.

Observe that

JRf(a) = det



∂u1

∂x1
(a), . . . , ∂u1

∂xn
(a), ∂u1

∂y1
(a), . . . , ∂u1

∂yn
(a)

. . .
∂un
∂x1

(a), . . . , ∂un∂xn
(a), ∂un∂x1

(a), . . . , ∂un∂yn
(a)

∂v1
∂x1

(a), . . . , ∂v1∂xn
(a), ∂v1∂x1

(a), . . . , ∂v1∂yn
(a)

. . .
∂vn
∂x1

(a), . . . , ∂vn∂xn
(a), ∂vn∂y1

(a), . . . , ∂vn∂yn
(a)


= det


[
∂uj
∂xk

(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a)
]
j,k=1,...,n[

∂vj
∂xk

(a)
]
j,k=1,...,n

,
[
∂vj
∂yk

(a)
]
j,k=1,...,n

 .

Define

JR,Wf(a) := det



∂f1
∂z1

(a), . . . , ∂f1∂zn
(a), ∂f1∂z1

(a), . . . , ∂f1∂zn
(a)

. . .
∂fn
∂z1

(a), . . . , ∂fn∂zn
(a), ∂fn∂z1

(a), . . . , ∂fn∂zn
(a)

∂f1

∂z1
(a), . . . , ∂f1

∂zn
(a), ∂f1

∂z1
(a), . . . , ∂f1

∂zn
(a)

. . .
∂fn
∂z1

(a), . . . , ∂fn∂zn
(a), ∂fn∂z1

(a), . . . , ∂fn∂zn
(a)


det


[
∂fj
∂zk

(a)
]
j,k=1,...,n

,
[
∂fj
∂zk

(a)
]
j,k=1,...,n[

∂fj
∂zk

(a)

]
j,k=1,...,n

,
[
∂fj
∂zk

(a)

]
j,k=1,...,n

 .

It is clear that if ∂f
∂zk

(a) = 0, k = 1, . . . , n, then

JR,Wf(a) =

∣∣∣∣∣det

[
∂fj
∂zk

(a)

]
j,k=1,...,n

∣∣∣∣∣
2

.
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If ∂fj
∂zk

(a), j, k = 1, . . . , n, exist, then we define

JCf(a) := det

 ∂f1∂z1
(a), . . . , ∂f1∂zn

(a)

. . .
∂fn
∂z1

(a), . . . , ∂fn∂zn
(a)

 = det

[
∂fj
∂zk

(a)

]
j,k=1,...,n

.

Proposition 1.1.3.

JRf(a) = JR,Wf(a).

In particular, if ∂fk(a), k = 1, . . . , n, exist, then

JRf(a) = |JCf(a)|2.

Proof. JR,Wf(a)

= det


[

1
2

(
∂fj
∂xk

(a)− i ∂fj∂yk
(a)
)]

j,k=1,...,n
,
[

1
2

(
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
)]

j,k=1,...,n[
1
2

(
∂fj
∂xk

(a)− i∂fj∂yk
(a)
)]

j,k=1,...,n
,
[

1
2

(
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
)]

j,k=1,...,n


=

1

4n
det


[
∂fj
∂xk

(a)− i ∂fj∂yk
(a)
]
j,k=1,...,n

,
[
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
]
j,k=1,...,n[

∂fj
∂xk

(a)− i∂fj∂yk
(a)
]
j,k=1,...,n

,
[
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
]
j,k=1,...,n


we add the (n+ k)-th column to the k-th column

=
1

2n
det


[
∂fj
∂xk

(a)
]
j,k=1,...,n

,
[
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
]
j,k=1,...,n[

∂fj
∂xk

(a)

]
j,k=1,...,n

,
[
∂fj
∂xk

(a) + i
∂fj
∂yk

(a)
]
j,k=1,...,n


we subtract the k-th column from the (n+ k)-th column

=
( i

2

)n
det


[
∂fj
∂xk

(a)
]
j,k=1,...,n

,
[
∂fj
∂yk

(a)
]
j,k=1,...,n[

∂fj
∂xk

(a)

]
j,k=1,...,n

,
[
∂fj
∂yk

(a)
]
j,k=1,...,n


=
( i

2

)n
det


[
∂uj
∂xk

(a) + i
∂vj
∂xk

(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a) + i
∂vj
∂yk

(a)
]
j,k=1,...,n[

∂uj
∂xk

(a)− i ∂vj∂xk
(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a)− i ∂vj∂yk
(a)
]
j,k=1,...,n


we add the (n+ k)-th row to the k-th row

=in det


[
∂uj
∂xk

(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a)
]
j,k=1,...,n[

∂uj
∂xk

(a)− i ∂vj∂xk
(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a)− i ∂vj∂yk
(a)
]
j,k=1,...,n


we subtract the k-th row from the (n+ k)-th row

= det


[
∂uj
∂xk

(a)
]
j,k=1,...,n

,
[
∂uj
∂yk

(a)
]
j,k=1,...,n[

∂vj
∂xk

(a)
]
j,k=1,...,n

,
[
∂vj
∂yk

(a)
]
j,k=1,...,n

 = JRf(a). �

In the sequel we will use also the following differential operators

Dα,β : Ck(Ω,Cm) −→ Ck−|α|−|β|(Ω,Cm), Dα,β := (
∂

∂z1
)α1 ◦ · · · ◦ (

∂

∂zn
)αn ◦ (

∂

∂z1
)β1 ◦ · · · ◦ (

∂

∂zn
)βn ,
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where α, β ∈ Nn0
(

4
)
, |α|+ |β| ≤ k. Moreover, we put

Dα := Dα,0 = (
∂

∂z1
)α1 ◦ · · · ◦ (

∂

∂zn
)αn , α ∈ Nn0 , |α| ≤ k.

1.2. Separately holomorphic functions

Let Ω ⊂ Cn be open and let f : Ω −→ Cm. Given a ∈ Cn and X ∈ Cn, define

Ωa,X := {λ ∈ C : a+ λX ∈ Ω}, fa,X(λ) := f(a+ λX), λ ∈ Ωa,X .

Note that Ωa,X is an open subset of C.

Definition 1.2.1. A function f : Ω −→ C is separately holomorphic on Ω (f ∈ Os(Ω)) if

fa,ej ∈ O(Ωa,ej ), a ∈ Ω, j = 1, . . . , n.
(

5
)

Observe that Os(Ω) is a ring. Obviously, if n = 1, then Os(Ω) = O(Ω).

Remark 1.2.2. (a) f ∈ Os(Ω) iff ∂f
∂zj

(a) exists for any a ∈ Ω and j = 1, . . . , n.
(b) A function f : Ω −→ C is separately holomorphic in Ω iff every point a ∈ Ω admits an open neighborhood
Ua ⊂ Ω such that f |Ua ∈ Os(Ua)

(
6
)
.

Proposition 1.2.3 (Osgood). For f ∈ Os(Ω) the following conditions are equivalent:
(i) f ∈ C(Ω);
(ii) f is locally bounded.

Proof. The implication (i) =⇒ (ii) is trivial.
To prove the implication (ii) =⇒ (i) fix an a = (a1, . . . , an) ∈ Ω and r > 0 such that P(a, r) ⊂⊂ Ω

(
7
)
.

Put C := supP(a,r) |f |. Observe that for any (b1, . . . , bn) ∈ P(a, r) the functions

K(aj , r) 3 λ 7−→ f(b1, . . . , bj−1, λ, bj+1, . . . , bn), j = 1, . . . , n,

are holomorphic. Hence, by the classical Schwarz lemma (cf. [4], Th. VI.2.1), we get

|f(z)− f(a)| ≤ |f(z1, a2, . . . , an)− f(a1, a2, . . . , an)|+ · · ·+ |f(z1, . . . , zn−1, zn)− f(z1, . . . , zn−1, an)|

≤ 2C

r
(|z1 − a1|+ · · ·+ |zn − an|), z = (z1, . . . , zn) ∈ P(a, r),

which implies that f is continuous at a. �

Definition 1.2.4. We say that a bounded domain D ⊂ C is regular if ∂D is the finite union of images of
pairwise disjoint Jordan piecewise C1 curves having positive orientation with respect to D.

(
4
)
A+ := {a ∈ A : a ≥ 0}. To simplify notation we write Nn0 instead of (N0)n.(

5
)
If U ⊂ C is open, then O(U) denotes the space of all holomorphic functions on U in the sense of the one-variable

theory.(
6
)
That is, f is separately holomorphic iff f is locally separately holomorphic.(

7
)
P(a, r) = Pn(a, r) := K(a1, r1) × · · · × K(an, rn), where K(a, r) := {z ∈ C : |z − a| < r}; P(a, r) = Pn(a, r) :=

P(a, (r, . . . , r)).
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Figure 1.2.1

Proposition 1.2.5 (Cauchy’s integral formula). Let D1, . . . , Dn ⊂ C be regular domains. Put D := D1 ×
· · · ×Dn, ∂0D := ∂D1 × · · · × ∂Dn and let f ∈ Os(D) ∩ C(D). Then

f(z) =
1

(2πi)n

∫
∂D1

· · ·
∫
∂Dn

f(ζ1, . . . , ζn)

(ζ1 − z1) · · · · · (ζn − zn)
dζ1 . . . dζn =:

1

(2πi)n

∫
∂0D

f(ζ)

ζ − z
dζ,

z = (z1, . . . , zn) ∈ D. (1.2.1)

The set ∂0D is called the distinguished boundary of D. Observe that the integral is well defined and
independent of the order of integration.

Proof. We apply induction with respect to n. For n = 1 the result reduces to the classical Cauchy integral
formula (cf. [4], IV.5).

n− 1 n. Fix an a = (a′, an) ∈ D′ ×Dn := (D1 × · · · ×Dn−1)×Dn. We have

f(a) = f(a′, an) =
1

(2πi)n−1

∫
∂0(D′)

f(ζ ′, an)

ζ ′ − a′
dζ ′. (1.2.2)

Observe that f(ζ ′, ·) ∈ O(Dn) ∩ C(Dn) for any ζ ′ ∈ ∂0D
′.

Indeed, fix a ζ ′ ∈ ∂0D
′ and let D′ 3 ζ ′ν −→ ζ ′. Since f is separately holomorphic, f(ζ ′ν , ·) ∈ O(Dn) for

any ν. Obviously, f(ζ ′ν , ·) −→ f(ζ ′, ·) uniformly on Dn. Hence, by Weierstrass’ theorem (cf. [4], Th. VII.2.1),
f(ζ ′, ·) ∈ O(Dn).

Consequently, by the classical Cauchy formula,

f(ζ ′, an) =
1

2πi

∫
∂Dn

f(ζ ′, ζn)

ζn − an
dζn,

which together with (1.2.2) gives (1.2.1). �

1.3. Domains of convergence of power series

Definition 1.3.1. Any series ∑
α∈Nn0

aα(z − z0)α, z ∈ Cn,

where (aα)α∈Nn0 ⊂ C and z0 ∈ Cn
(

8
)
, is called a power series with center at z0.

In other words, a power series with center at z0 is the series generated by a family (Cn 3 z 7−→
aα(z − z0)α)α∈Nn0 .(

8
)
wα := wα1

1 · · · · · w
αn
n , w = (w1, . . . , wn) ∈ Cn, α = (α1, . . . , αn) ∈ Nn0 ; 00 := 1.
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Example 1.3.2. (a) The geometric series ∑
α∈Nn0

zα

rα
,

where r ∈ Rn>0

(
9
)
, is locally normally convergent in P(r)

(
10
)

to the function

P(r) 3 (z1, . . . , zn) 7−→
n∏
j=1

1

1− zj/rj
.

(b) The series ∑
α∈Zn

(z1

r1

)|α1|
. . .
(zn
rn

)|αn|
,

where r ∈ Rn>0, is locally normally convergent in P(r) to the function

P(r) 3 (z1, . . . , zn) 7−→
n∏
j=1

rj + zj
rj − zj

.

Proposition 1.3.3 (Abel’s lemma). If

|aα|rα ≤ C, α ∈ Nn0 ,

where r ∈ Rn>0, then the series
∑
α∈Nn0

aαz
α is locally normally convergent in P(r).

Proof. Since |aαzα| ≤ C|zα|/rα, the result follows immediately from Example 1.3.2(a). �

Definition 1.3.4. A set A ⊂ Cn is called:
• circular if λa ∈ A for arbitrary λ ∈ T, a ∈ A

(
11
)
;

• n-circled if (λ1a1, . . . , λnan) ∈ A for arbitrary λ1, . . . , λn ∈ T, (a1, . . . , an) ∈ A;
• balanced if λa ∈ A for arbitrary λ ∈ D, a ∈ A;
• complete n-circled if (λ1a1, . . . , λnan) ∈ A for arbitrary λ1, . . . , λn ∈ D, (a1, . . . , an) ∈ A

(
12
)
.

Observe that

A is complete n-circled −−−−→ A is n-circled −−−−→ A is circular

Z
ZZ~ �

��>

A is balanced

Let

Cn 3 (z1, . . . , zn)
R7−→ (|z1|, . . . , |zn|) ∈ Rn+.

Observe that a set A ⊂ Cn is n-circled iff A = R−1(R(A)). Consequently, any n-circled set A ⊂ Cn is
completely determined by the set R(A) ⊂ Rn+. Obviously, if A ⊂ Cn is n-circled, then R(A) = A ∩ Rn+.

(
9
)
A>0 := {a ∈ A : a > 0}. To simplify notation we write Rn>0 instead of (R>0)n.(

10
)
P(r) = Pn(r) := P(0, r), P(r) = Pn(r) := P(0, r).(

11
)
D denotes the unit disc.(

12
)
More generally: if a0 ∈ Cn is fixed, then the set A is called circular with respect to a0 if a0 + λ(a − a0) ∈ A for

arbitrary λ ∈ T, a ∈ A. The other definitions may be generalized similarly.
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Figure 1.3.1

The mapping R is open. Consequently, if A ⊂ Cn is n-circled, then A is open in Cn iff R(A) is open in
Rn+.

Moreover, if B ⊂ Rn+ is arcwise connected, then so is R−1(B). In particular, if A ⊂ Cn is n-circled, then
A is a domain in Cn iff R(A) is a domain in Rn+ (cf. Exercise 1.3).

For every n-circled set A ⊂ Cn put

logA := {(x1, . . . , xn) ∈ Rn : (ex1 , . . . , exn) ∈ A}.

The set logA is called the logarithmic image of A. Note that logA = log(A ∩ Rn>0).
We say that A is logarithmically convex (log-convex) if logA is convex.
Notice that A is logarithmically convex iff for any (x1, . . . , xn), (y1, . . . , yn) ∈ A ∩ Rn>0 and for any

t ∈ [0, 1] the point (x1−t
1 yt1, . . . , x

1−t
n ytn) belongs to A.

We will see (cf. the Riemann removable singularities theorem 2.1.6) that if D ⊂ Cn is a domain, then
D \ {(z1, . . . , zn) ∈ Cn : z1 · · · · · zn = 0} is connected. In particular, if D ⊂ Cn is an n-circled domain, then
logD is a domain in Rn (cf. Exercise 1.15).

Example 1.3.5. Let

D := {(z1, . . . , zn) ∈ Ω(α) : |z1|α1 . . . |zn|αn < C},

where α = (α1, . . . , αn) ∈ Rn, C > 0, and Ω(α) := U(α1)× · · · × U(αn) with

U(x) :=

{
C if x ≥ 0

C∗ if x < 0
, x ∈ R.

Then

logD = {x ∈ Rn : 〈x, α〉 < logC},

where 〈 , 〉 denotes the standard scalar product in Rn.
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Figure 1.3.2

Fix a power series

Σ =
∑
α∈Nn0

aαz
α

and let

B = B(Σ) : = {z ∈ Cn : ∃C>0 : ∀α∈Nn0 : |aαzα| ≤ C},
C = C(Σ) : = {z ∈ Cn : Σ is summable at z},

D = D(Σ) : = intC.

Clearly D ⊂ C ⊂ B. The set D is called the domain of convergence of Σ. We will see (Proposition 1.3.6)
that D is connected and, therefore, is indeed a domain in Cn.

Recall that for n = 1, if ∅ 6= D 6= C, then B = C = D = K(R)
(

13
)
, where R is the radius of

convergence of Σ. For n > 1 the situation is more complicated, for instance if Σ :=
∑∞
ν=0 z

ν
1 z2, then

C× {0} ⊂ C, but D = D× C.

Proposition 1.3.6. (a) The set B is complete n-circled and log-convex.
(b) D = intB. In particular, D is a complete n-circled and log-convex domain

(
14
)
.

(c) The series Σ is locally normally convergent in D.

All the above properties (after formal changes) remain true for power series with an arbitrary center.

Proof. (a) is obvious. Notice that

logB = {x ∈ Rn : ∃C>0 : ∀α∈Nn0 : 〈x, α〉 ≤ logC − log |aα|}.

(b) Since D = intC ⊂ intB, it remains to prove that intB ⊂ D. Let a ∈ intB. Since B is complete
n-circled, there exists an r ∈ Rn>0 ∩B such that a ∈ P(r). Now, by Abel’s lemma, we have P(r) ⊂ C. Hence
a ∈D.

(c) Take a point a ∈ D and let r ∈ Rn>0 ∩B and 0 < θ < 1 be such that a ∈ P(θr). By Abel’s lemma,
the series is convergent normally in P(θr) and, therefore, it is convergent normally in a neighborhood of a.

�

(
13
)
K(r) := K(0, r).(

14
)
Observe that if A ⊂ Cn is n-circled (resp. complete n-circled), then intA is n-circled (resp. complete n-circled).

Moreover, if A ⊂ Cn is n-circled, then int logA = log intA.
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Let f : Ω −→ C be a function having all complex derivatives at any point of Ω. Put

Taf(z) :=
∑
α∈Nn0

Dαf(a)

α!
(z − a)α, a ∈ Ω.

(
15
)

The series Taf is called the Taylor series of f at a. The number

d(Taf) := sup{r > 0 : P(a, r) ⊂D(Taf)}

is called the radius of convergence of Taf .

Proposition 1.3.7. Assume that D = D(Σ) 6= ∅ and let

f(z) :=
∑
α∈Nn0

aαz
α, z ∈ D.

For β ∈ Nn0 let DβΣ denote the series ∑
α∈Nn0 : α≥β

(
α

β

)
β! aα z

α−β .
(

16
)

Then f has all complex derivatives in D, D ⊂D(DβΣ), and

Dβf(z) =
∑

α∈Nn0 : α≥β

(
α

β

)
β! aα z

α−β , z ∈ D, β ∈ Nn0 .

In particular, Σ = T0f and f(z) = T0f(z) for z ∈ D.

All the aforementioned properties of the series Σ remain valid (with obvious changes) for power series
with arbitrary center.

Notice the following difference between one and several variables. For n = 1 the radius of convergence
of Σ is equal to the radius of convergence of the series of derivatives. This is no longer true for n > 1, for
instance if

Σ :=

∞∑
ν=0

zν1 +

∞∑
ν=0

zν2 ,

then D(Σ) = D× D, but D( ∂Σ
∂z1

) = D× C
(

17
)
.

Proof. It is sufficient to consider the case β = ej for some j ∈ {1, . . . , n}. We show first that the series

∂Σ

∂zj
=

∑
α∈Nn0 : α≥ej

αjaα z
α−ej

is locally normally convergent in D. It is sufficient to prove that if r ∈ Rn>0 ∩B(Σ), then the series ∂jΣ is
locally normally convergent in P(r). Let C > 0 be such that |aα|rα ≤ C, α ∈ Nn0 . Then for any 0 < θ < 1
we have ∑

α∈Nn0 : α≥ej

sup
P(θr)

{|αjaα zα−ej |} ≤
C

θrj

∑
α∈Nn0 : α≥ej

αjθ
|α|,

which gives the normal convergence in P(θr).
Now fix a z0 ∈ D. The series ∑

α∈Nn0

(aαz
α)z0,ej (λ) =

∑
α∈Nn0

aα(z0 + λej)
α

(
15
)
α! := α1! · · · · · αn!, α = (α1, . . . , αn) ∈ Nn0 .(

16
) (α

β

)
:=
(α1
β1

)
· · · · ·

(αn
βn

)
, α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn0 , α ≤ β.(

17
)
∂1Σ =

∑∞
ν=1 νz

ν−1
1 .
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converges locally normally inDz0,ej to the function fz0,ej . Hence, by the classical one-dimensional Weierstrass
theorem (cf. [4], Th. VII.2.1), the function fz0,ej is holomorphic (in particular the derivative ∂f

∂zj
(z0) =

(fz0,ej )
′(0) exists) and

∂f

∂zj
(z0) = (fz0,ej )

′(0) =
∑
α∈Nn0

((aαz
α)z0,ej )

′(0) =
∑

α∈Nn0 : α≥ej

αjaα z
α−ej
0 . �

1.4. Holomorphic functions

Definition 1.4.1. Let Ω ⊂ Cn be open. Put

dΩ(a) := sup{r > 0 : P(a, r) ⊂ Ω}, a ∈ Ω.

We say that a function f : Ω −→ C is holomorphic in Ω (f ∈ O(Ω)) if for any a ∈ Ω there exists a power
series ∑

α∈Nn0

aα(z − a)α

and 0 < r ≤ dΩ(a) such that

f(z) =
∑
α∈Nn0

aα(z − a)α, z ∈ P(a, r).
(

18
)

A mapping f = (f1, . . . , fm) : Ω −→ Cm is called holomorphic (f ∈ O(Ω,Cm)) if f1, . . . , fm ∈ O(Ω).
The functions from O(Cn) are called entire functions.

Remark 1.4.2. (a) O(Ω) is a ring.
(b) A function f : Ω −→ C is holomorphic on Ω iff for any point a ∈ Ω there exists a neighborhood Ua such
that f |Ua ∈ O(Ua).
(c) Every polynomial of n complex variables is an entire function, i.e. P(Cn) ⊂ O(Cn).
(d) Holomorphic functions are infinitely differentiable in the complex sense (by Proposition 1.3.7).
(e) If f ∈ O(Ω), then Dαf ∈ O(Ω) for arbitrary α ∈ Nn0 .

Proposition 1.4.3 (Identity principle). Let f, g ∈ O(D), where D ⊂ Cn is a domain. Then the following
conditions are equivalent:
(i) f ≡ g;
(ii) there exists an a ∈ D such that Taf = Tag;
(iii) int({z ∈ D : f(z) = g(z)}) 6= ∅.

Proof. Clearly (i) =⇒ (ii) ⇐⇒ (iii). To prove the implication (ii) =⇒ (i) it is sufficient to note that the set
D0 := {z ∈ D : Tzf = Tzg} is non-empty open and closed in D. �

Lemma 1.4.4. Let γj : [0, 1] −→ C be a piecewise C1 curve. Put γ∗j := γj([0, 1]), j = 1, . . . , n, and let
ϕ : γ∗1 × · · · × γ∗n −→ C be a continuous function. Define

Φ(z) :=
1

(2πi)n

∫
γ1

· · ·
∫
γn

ϕ(ζ1, . . . , ζn)

(ζ1 − z1) · · · · · (ζn − zn)
dζ1 . . . dζn =:

1

(2πi)n

∫
γ1×···×γn

ϕ(ζ)

ζ − z
dζ,

z ∈ Cn \ (γ∗1 × · · · × γ∗n) =: Ω.

Then
(a) Φ ∈ O(Ω);

(
18
)
Here and in the sequel, if we write f(z) =

∑
α∈Nn0

aα(z − a)α, z ∈ A, then we assume that A is contained in the

domain of convergence of the series.
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(b)

DαΦ(z) =
α!

(2πi)n

∫
γ1

· · ·
∫
γn

ϕ(ζ1, . . . , ζn)

(ζ1 − z1)α1+1 · · · · · (ζn − zn)αn+1
dζ1 . . . dζn

=
α!

(2πi)n

∫
γ1×···×γn

ϕ(ζ)

(ζ − z)α+1
dζ, z ∈ Ω, α ∈ Nn0 ,

where 1 := (1, . . . , 1) ∈ Nn;
(c) for any polydisc P(a, r) ⊂ Ω we have

Φ(z) = TaΦ(z), z ∈ P(a, r).

Proof. Fix a P(a, r) ⊂ Ω and observe that for (ζ, z) ∈ (γ∗1 × · · · × γ∗n)× P(a, r)

1

ζ − z
=
∑
α∈Nn0

(z − a)α

(ζ − a)α+1
,

and the series is locally normally convergent. Hence

Φ(z) =
∑
α∈Nn0

[ 1

(2πi)n

∫
γ1×···×γn

ϕ(ζ)

(ζ − a)α+1
dζ
]
(z − a)α, z ∈ P(a, r).

It remains to apply Proposition 1.3.7. �

The above lemma and the Cauchy integral formula (Proposition 1.2.5) imply the following important
corollaries.

Corollary 1.4.5. Let f : Ω −→ C. The following conditions are equivalent:
(i) f ∈ O(Ω);
(ii) f ∈ Os(Ω) ∩ C(Ω);
(iii) f is differentiable in the complex sense at an arbitrary point of Ω.

Corollary 1.4.6. If f ∈ O(Ω), then for every polydisc P(a, r) ⊂ Ω we have

f(z) = Taf(z), z ∈ P(a, r).

In particular,
f(z) = Taf(z), z ∈ P(a, dΩ(a)), a ∈ Ω.

Corollary 1.4.7. Let D ⊂ Cn be a complete n-circled domain. Then

f(z) = T0f(z), z ∈ D.

Corollary 1.4.8 (Cauchy’s inequalities). If f ∈ O(P(a, r)) ∩ C(P(a, r)), then

|Dαf(a)| ≤ α!

rα
‖f‖∂0P(a,r), α ∈ Nn0 .

(
19
)

Similarly as in the case of one complex variable, the following corollary is an easy consequence of the
Cauchy inequalities.

Corollary 1.4.9 (Liouville theorem). Let f ∈ O(Cn), k ∈ N0. Then the following conditions are equivalent:
(i) f is a polynomial of degree ≤ k;
(ii) ∃C,R0

> 0 : |f(z)| ≤ C‖z‖k for ‖z‖ ≥ R0.

For A ⊂ Cn, r ∈ Rn>0, and r > 0 let

A(r) :=
⋃
a∈A

P(a, r), A(r) := A(r,...,r).

Note that if A is compact, then A(r) is also compact.(
19
)
‖f‖A := supA |f |.
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Corollary 1.4.10. For arbitrary compact K ⊂ Ω and polyradius r such that K(r) ⊂ Ω we have

‖Dαf‖K ≤
α!

rα
‖f‖K(r) , f ∈ O(Ω), α ∈ Nn0 .

Hence, using Corollary 1.4.5, we get

Corollary 1.4.11 (Weierstrass theorem). If O(Ω) 3 fν −→ f locally uniformly on Ω, then f ∈ O(Ω) and
Dαfν −→ Dαf locally uniformly on Ω for any α ∈ Nn0 .

In other words, we have

Corollary 1.4.12. The space O(Ω) endowed with the topology defined by seminorms

O(Ω) 3 f 7−→ ‖f‖K , K ⊂⊂ Ω,
is a Fréchet space such that for arbitrary α ∈ Nn0 the mapping

O(Ω) 3 f 7−→ Dαf ∈ O(Ω)

is continuous.

Corollary 1.4.13. (a) Let
H∞(Ω) := {f ∈ O(Ω) : ‖f‖Ω < +∞}.

Then (H∞(Ω), ‖ ‖Ω) is a Banach algebra.
(b) Assume that Ω is bounded, and let

Ak(Ω) := {f ∈ O(Ω) : ∀α∈Nn0 , |α|≤k : ∃ϕα∈C(Ω) : ϕα = Dαf in Ω}, k ∈ N0 ∪ {∞}.

Then Ak(Ω) endowed with the topology defined by seminorms

Ak(Ω) 3 f 7−→ ‖Dαf‖Ω , |α| ≤ k,
is a Fréchet space. If k <∞, then the space Ak(Ω) endowed with the norm

f 7−→
∑

α∈Nn0 : |α|≤k

‖Dαf‖Ω

is a Banach space.

Corollary 1.4.5(iii) implies also

Corollary 1.4.14. The composition of holomorphic mappings is holomorphic.

A bijective holomorphic mapping f : Ω −→ Ω′ (where Ω and Ω′ are open in Cn) is called biholomorphic
if f−1 is also holomorphic (cf. Chapter VII).

Corollary 1.4.15 (Inverse mapping theorem). Let f : Ω −→ Cn be a holomorphic mapping with JCf(a) 6= 0
for some a ∈ Ω. Then there exists an open neighborhood U of a (U ⊂ Ω) such that f(U) is an open set and
f |U : U −→ f(U) is biholomorphic.

Corollary 1.4.16 (Implicit mapping theorem). Let Ω be an open subset of Cn ×Cm and let f : Ω −→ Cm
be a holomorphic mapping. Assume that

det
([ ∂fj
∂wk

(a, b)
]
j,k=1,...,m

)
6= 0

for some (a, b) ∈ Ω, where (z, w) = (z1, . . . , zn, w1, . . . , wm) ∈ Cn × Cm. Then there exist
an open neighborhood U of a,
an open neighborhood V of b, U × V ⊂ Ω,
a holomorphic mapping ϕ : U −→ V ,

such that
{(z, w) ∈ U × V : f(z, w) = f(a, b)} = {(z, ϕ(z)) : z ∈ U}.
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Corollary 1.4.17 (Rank theorem). Let f : Ω −→ Cm be holomorphic and such that rank f ′(z) = r for any
z ∈ Ω. Then for arbitrary a ∈ Ω there exist

an open neighborhood U of a, U ⊂ Ω,
an open neighborhood V of f(a), V ⊂ Cm,
biholomorphic mappings Φ : Dn −→ U , Ψ : V −→ Em,

such that Φ(0) = a, Ψ(f(a)) = 0, f(U) ⊂ V , and

Ψ ◦ f ◦ Φ(z1, . . . , zn) = (z1, . . . , zr, 0, . . . , 0), (z1, . . . , zn) ∈ Dn.

Proposition 1.4.18. Let D ⊂ Cn be a domain and let f ∈ O(D), f 6≡ const. Then f is an open mapping.

Proof. Fix an a ∈ D. By the identity principle, there exists an X ∈ Cn such that fa,X 6≡ const in the
connected component Sa,X of Da,X with 0 ∈ Sa,X . Consequently, the function fa,X : Sa,X −→ C is open.
Hence f(a) ∈ int f(U) for any neighborhood U of a. �

Corollary 1.4.19 (Maximum principle). Let D ⊂ Cn be a domain and let f ∈ O(D), f 6≡ const. Then
(a) |f | does not attain local maxima in D;
(b) if, moreover, D is bounded, then

|f(z)| < sup
ζ∈∂D

{lim sup
D3z→ζ

|f(z)|}, z ∈ D.

Lemma 1.4.20. For any compact K ⊂ Ω and r = (r1, . . . , rn) such that K(r) ⊂ Ω we have

‖f‖K ≤
1

(πr2
1) . . . (πr2

n)

∫
K(r)

|f | dL2n, f ∈ O(Ω),

where L2n denotes Lebesgue measure in Cn. In particular, for arbitrary 1 ≤ p <∞ and for arbitrary compact
K ⊂ Ω there exists a constant C > 0 such that

‖f‖K ≤ C‖f‖Lp , f ∈ Lph(Ω) := O(Ω) ∩ Lp(Ω,L2n),

where
‖f‖Lp :=

( ∫
Ω

|f |pdL2n
)1/p

.

Proof. By Cauchy’s integral formula, for every a = (a1, . . . , an) ∈ K we have

(
1

2
r2
1) . . . (

1

2
r2
n)|f(a)| ≤

∫ r1

0

τ1 dτ1· · ·
∫ rn

0

τn dτn
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

|f(a1+τ1e
iθ1 , . . . , an+τne

iθn)|dθ1 . . . dθn

=
1

(2π)n

∫
P(a,r)

|f | dL2n ≤ 1

(2π)n

∫
K(r)

|f | dL2n.

�

Corollary 1.4.21. For arbitrary 1 ≤ p <∞ (Lph(Ω), ‖ ‖Lp) is a Banach space. The space L2
h(Ω) (with the

scalar product induced from L2(Ω,L2n)
(

20
)
) is a Hilbert space.

Lemma 1.4.22. Assume that a family F ⊂ O(Ω) is locally uniformly bounded in Ω. Then F is equicontin-
uous.

Proof. Fix a P(a, r) ⊂⊂ Ω. Set C := supf∈F{‖f‖P(a,r)}. Now, using the Schwarz lemma, similarly as in the
proof of Proposition 1.2.3, we obtain

|f(z)− f(a)| ≤ 2C

r
(|z1 − a1|+ · · ·+ |zn − an|), f ∈ F , z ∈ P(a, r). �

Having Lemma 1.4.22, we can repeat the proof of the classical (one-dimensional) Montel theorem (cf. [4],
Th. VII.2.9) and we obtain

(
20
)
〈f, g〉L2 :=

∫
Ω fg dL

2n, f, g ∈ L2(Ω,L2n).
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Corollary 1.4.23 (Montel theorem). Let F ⊂ O(Ω) be a family locally uniformly bounded in Ω. Then for
arbitrary sequence (fν)∞ν=1 ⊂ F there exists a subsequence which converges locally uniformly to a holomorphic
function on Ω.

Proposition 1.4.24 (Vitali theorem). Let D ⊂ Cn be a domain and let a sequence (fν)∞ν=1 ⊂ O(D) be
locally uniformly bounded and pointwise convergent on a non-empty open subset U ⊂ D. Then the sequence
(fν)∞ν=1 is convergent locally uniformly in D.

Proof. Similarly as in the case of one complex variable, the main difficulty is to show that the sequence
(fν)∞ν=1 is pointwise convergent in all of D. Let

D0 := {a ∈ D : the sequence (fν)∞ν=1 is pointwise convergent a neighborhood of a}.
The set D0 is non-empty and open. It is sufficient to show that it is closed in D. Fix an accumulation point
b ∈ D of D0. Let P(b, r) ⊂ D and a ∈ D0 ∩ P(b, r). For every X ∈ Cn, X 6= 0, the sequence ((fν)a,X)∞ν=1,
considered on the connected component Sa,X of Da,X with 0 ∈ Sa,X , is locally uniformly bounded and
pointwise convergent in (D0)a,X ∩Sa,X . It is easy to see that this last set is non-empty (because a ∈ D0) and
open. Hence, by the classical one-dimensional Vitali theorem, the sequence (fν)∞ν=1 is pointwise convergent in
S̃a,X := {a+λX : λ ∈ Sa,X}. Therefore the sequence (fν)∞ν=1 is pointwise convergent in the set

⋃
X∈Cn S̃a,X

which is a neighborhood of b. �

Recall that, by the Riemann Mapping Theorem (cf. [4], Th. VII.4.2), any simply connected domain
D  C is biholomorphic to the unit disc D. In other words, if D  C is a domain, then D and D are
biholomorphically equivalent iff they are topologically equivalent.

It is surprising, but for n ≥ 2 the above theorem is not true even in the category of bounded convex
domains.

Theorem 1.4.25 (Poincaré theorem). For n ≥ 2 the unit Euclidean ball Bn is not biholomorphic to the
unit polydisc Dn.

The proof will be based on the following version of the Schwarz lemma (cf. Exercise 4.1).

Lemma 1.4.26. Let ‖ ‖1, ‖ ‖2 : Cn −→ R+ be arbitrary C–norms. Put

Bj := {z ∈ Cn : ‖z‖j < 1}, j = 1, 2,

and let F : B1 −→ B2 be a holomorphic mapping with F (0) = 0. Then

‖F (z)‖2 ≤ ‖z‖1, z ∈ B1.

Proof. Fix a z0 ∈ B1 \ {0}. Let L : Cn −→ C be a C–linear functional with |L| ≤ ‖ ‖2 and |L(F (z0))| =
‖F (z0)‖2 (use the Hahn–Banach theorem). Consider the holomorphic mapping

ϕ(λ) := L(F (λz0)), |λ| < 1/‖z0‖1.
Then by the classical Schwarz lemma, we obtain

|ϕ(λ)| ≤ |λ|‖z0‖1, |λ| < 1/‖z0‖1.
In particular, if λ = 1, then we get ‖F (z0)‖2 ≤ ‖z0‖1. �

Proof of the Poincaré theorem. Suppose that f : Bn −→ Dn is biholomorphic. Let a = (a1, . . . , an) := f(0).
Define

Dn 3 (z1, . . . , zn)
Φ7−→
( z1 − a1

1− a1z1
, . . . ,

zn − an
1− anzn

)
∈ Dn.

It is easy to see that Φ maps biholomorphically Dn onto Dn. Replacing f by Φ ◦ f we may assume that
f(0) = 0. Put g = (g1, . . . , gn) := f−1 : Dn −→ Bn. By Lemma 1.4.26, we conclude that ‖g(w)‖ = |w| for
any w ∈ Dn. Thus

|g1(w)|2 + · · ·+ |gn(w)|2 = max{|w1|2, . . . , |wn|2}, w = (w1, . . . , wn) ∈ Dn.
Observe that the left-hand side defines a function of class C∞, but the right-hand side is even not differentiable
(for n ≥ 2); contradiction. �
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1.5. Hartogs’ theorem

Theorem 1.5.1 (Hartogs’ theorem). O(Ω) = Os(Ω) for an arbitrary open subset Ω ⊂ Cn.

Remark 1.5.2. Observe that there is no analogous theorem for separately R-analytic functions
(

21
)
. For

example, let

f(x1, x2) :=

{
x1x2

x2
1+x2

2
if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0)
.

Then f is separately R-analytic, but is not continuous at (0, 0).

The proof of Hartogs’ theorem will be based on the following

Lemma 1.5.3 (Hartogs’ lemma). Let f : Pn(r) −→ C be such that
f(z, ·) ∈ O(Pn−1(r)) for arbitrary z ∈ K(r),
f ∈ O(K(r)× Pn−1(δ)) for some 0 < δ < r.

Then f ∈ O(Pn(r)).

Remark 1.5.4. The lemma is not true without the assumption that f ∈ O(K(r) × Pn−1(δ)) for some
0 < δ < r (even if f satisfies some additional regularity conditions).

For, let us consider the following counterexample due to Leja (cf. [20]; we are going to construct a
function f ∈ O((C \ R−) × C) such that f(z, ·) ∈ O(C) for any z ∈ C, but f is not holomorphic in any
neighborhood of (0, 0)).

Let

Lk :=
⋃

x∈R: x≤0

K(x, 1/k) ⊂ C,

Ak := K(k) \ Lk, Bk := K(k) ∩ (Lk+1 \ Lk+2), Ck := K(k) ∩ Lk+3, k ∈ N.

Figure 1.5.1

(
21
)
If G ⊂ Rn is open and f : G −→ C, then f is R-analytic if for any x0 ∈ G there exist (aα)α∈Nn0 ⊂ C and

an open neighborhood Ux0 ⊂ G of x0 such that for any x ∈ Ux0 the family (aα(x − x0)α)α∈Nn0 is summable and f(x) =∑
α∈Nn0

aα(x − x0)α. By Abel’s lemma 1.3.3, the series
∑
α∈Nn0

aα(z − x0)α is normally convergent in a Cn-neighborhood

Ũx0 ⊂ Cn of x0 with Ũx0 ∩ Rn ⊂ Ux0 . Put f̃x0 (z) :=
∑
α∈Nn0

aα(z − x0)α, z ∈ Ũx0 . Then f̃x0 ∈ O(Ũx0 ) and f̃x0 = f in

Ũx0 ∩ Rn.
Thus we have the following equivalent definition: f is R-analytic if for any point x0 ∈ G there exist a Cn-neighborhood

Ũx0 ⊂ Cn of x0 with Ũx0 ∩ Rn ⊂ G and f̃ ∈ O(Ũx0 ) such that f̃x0 = f in Ũx0 ∩ Rn.
Obviously, R-analytic functions are of class C∞.
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By the Runge theorem (cf. [4], Th. VIII.1.7) for each k ∈ N there exists a polynomial Pk ∈ P(C) such
that

|Pk(z)| ≤ 1/kk, z ∈ Ak ∪ Ck, |Pk(z)| ≥ kk, z ∈ Bk.
Let

f(z, w) :=

∞∑
k=1

Pk(z)wk, (z, w) ∈ C2.

Observe that f is well defined because for any z ∈ C there exists a k0(z) ∈ N such that z ∈ Ak ∪Ck for any
k ≥ k0(z) and therefore

|Pk(z)wk| ≤ (|w|/k)k, k ≥ k0(z).

In particular, f(z, ·) ∈ O(C) for any z ∈ C.
Moreover, for any z0 ∈ C\R− there exist r0 > 0 and k0 ∈ N such that K(z0, r0) ⊂ Ak for k ≥ k0. Hence

|Pk(z)wk| ≤ (|w|/k)k, (z, w) ∈ K(z0, r0)× C, k ≥ k0,

and consequently, by the Weierstrass theorem, f ∈ O((C \ R−)× C).
Suppose that f is bounded in a neighborhood of (0, 0). Let |f(z, w)| ≤ C for (z, w) ∈ P2(r). Then, by

the Cauchy inequalities, we get
|Pk(z)| ≤ C/rk, k ∈ N, z ∈ K(r).

Consequently, taking z ∈ Bk ∩K(r) with k � 1, we get

kk ≤ |Pk(z)| ≤ C/rk, k � 1;

contradiction.

Proof that Lemma 1.5.3 implies Theorem 1.5.1. We use induction with respect to n. For n = 1 the theorem
is trivial.

n− 1 n. Fix an Ω ⊂ Cn = C× Cn−1 and f ∈ Os(Ω).

Figure 1.5.2

It is sufficient to show that f is holomorphic in a neighborhood of an arbitrary point (z0, w0) ∈ Ω. Let
Pn((z0, w0), 2r) ⊂ Ω, and let

Ak := {w ∈ Pn−1(w0, r) : ∀z∈K(z0,r) : |f(z, w)| ≤ k}.

Clearly Ak ⊂ Ak+1. Since f(z, ·) ∈ C(Pn−1(w0, 2r)) for arbitrary z ∈ K(z0, 2r) (the inductive assumption),
the sets Ak are closed. Since f(·, w) ∈ C(K(z0, 2r)) for any w ∈ Pn−1(w0, r), we get

⋃
k∈NAk = Pn−1(w0, r).

Using Baire’s property we conclude that intAk0 6= ∅ for some k0. Let Pn−1(ξ0, δ) ⊂ Ak0 . In particular, by
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Osgood’s theorem (Proposition 1.2.3), f ∈ O(K(z0, r) × Pn−1(ξ0, δ)). Now we apply Lemma 1.5.3 to the
function

Pn(r) 3 (z, w) 7−→ f(z0 + z, ξ0 + w),

and we conclude that f ∈ O(Pn((z0, ξ0), r)). It remains to observe that (z0, w0) ∈ Pn((z0, ξ0), r). �

Proof of Lemma 1.5.3. Observe that it is sufficient to show that f ∈ O(Pn(r′)) for arbitrary 0 < r′ < r.
Thus we may assume that |f | ≤ c < +∞ in K(r)×Pn−1(δ) and that f(z, ·) is bounded for any z ∈ Pn−1(r).
We have

f(z, w) =
∑

β∈Nn−1
0

fβ(z)wβ , z ∈ K(r), w ∈ Pn−1(r),

where
fβ(z) =

1

β!
(Dβf(z, ·))(0) =

1

β!
(D(0,β)f)(z, 0), β ∈ Nn−1

0 , z ∈ K(r).

The last equality follows from the fact that f ∈ O(K(r)×Pn−1(δ)). In particular, fβ ∈ O(K(r)) for arbitrary
β. Moreover, by Cauchy’s inequalities, we obtain

|fβ | ≤
1

δ|β|
c, β ∈ Nn−1

0 .

Applying once more Cauchy’s inequalities (for the function f(z, ·)), we have

|fβ(z)| ≤ 1

r|β|
‖f(z, ·)‖Pn−1(r), β ∈ Nn−1

0 , z ∈ K(r),

and so
lim sup
|β|→+∞

|fβ(z)|1/|β| ≤ 1

r
, z ∈ K(r).

We need now the following auxiliary

Lemma 1.5.5. Let Ω ⊂ C be open, ϕν ∈ O(Ω), pν > 0, ν ≥ 1. Assume that the sequence (|ϕν |pν )∞ν=1 is
locally uniformly bounded in Ω and

lim sup
ν→+∞

|ϕν(z)|pν ≤ m, z ∈ Ω.

Then for any K ⊂⊂ Ω and ε > 0 there exists a ν0 such that

|ϕν |pν ≤ m+ ε on K for ν ≥ ν0.
(

22
)

Assume for the moment that the lemma is true, and let us finish the main proof.
Write Nn−1

0 = {β1, β2, . . . } so that |βν | ≤ |βν+1|, ν = 1, 2, . . . . Let Ω := K(r), ϕν := fβν , pν := 1/|βν |,
m := 1/r. It is easy to see that all the assumptions of Lemma 1.5.5 are satisfied. Fix a θ ∈ (0, 1) and let ε > 0
be such that (1+rε)θ < 1. Applying Lemma 1.5.5 to the compact K := K(θr) we obtain |ϕν(z)|pν ≤ 1/r+ε
for z ∈ K(θr) and ν ≥ ν0. This means that

|fβ(z)| ≤
(1

r
+ ε
)|β|

, z ∈ K(θr), |β| � 1.

Hence
|fβ(z)wβ | ≤ [(1 + rε)θ]|β|, z ∈ K(θr), w ∈ Pn−1(θr), |β| � 1.

Consequently, the series ∑
β∈Nn−1

0

fβ(z)wβ

is convergent normally in Pn(θr), which by the Weierstrass theorem (Corollary 1.4.11) implies that f ∈
O(Pn(θr)). Since θ was arbitrary, we get f ∈ O(Pn(r)). �

(
22
)
Lemma 1.5.5 will be generalized in Proposition 3.2.20.
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Proof of Lemma 1.5.5. The result is local — it is sufficient to show that for any ε > 0 and a ∈ Ω there exist
a disc K(a, δ) ⊂ Ω and ν0 such that

sup
K(a,δ)

{|ϕν |pν} ≤ m+ ε, ν ≥ ν0.

We may assume that Ω = K(2), a = 0. Let c > 0 be such that |ϕν |pν ≤ c in D for arbitrary ν. We may
also assume that ϕν 6≡ 0, ν ≥ 1. Denote by aν,1, . . . , aν,µ(ν) the zeros of ϕν in the disc D counted with
multiplicities (if ϕν has zeros in D). Define

Bν(z) :=

{∏µ(ν)
j=1

z−aν,j
1−aν,jz , if ϕν has zeros in D

1, otherwise

and let ψν := ϕν/Bν . Observe that |Bν | ≤ 1 in D, and that |Bν | = 1 in T. The function ψν has no zeros in
D. In particular, it admits a branch χν of the pν-th power in D. Given arbitrary ζ ∈ T, we have

lim sup
D3z→ζ

|χν(z)| = lim sup
D3z→ζ

|ψν(z)|pν = lim sup
D3z→ζ

|ϕν(z)|pν ≤ c,

and so |χν | ≤ c in D for arbitrary ν. This means in particular that the family (χν)∞ν=1 is equicontinuous in
D. Fix an ε > 0 and let 0 < δ < 1 be such that |χν(z)− χν(0)| ≤ ε/2 for z ∈ K(δ) and ν ≥ 1. Then

|ϕν(z)|pν = |Bν(z)ψν(z)|pν ≤ |ψν(z)|pν = |χν(z)| ≤ ε/2 + |χν(0)|, z ∈ K(δ), ν ≥ 1.

It remains to estimate χν(0). Since

|χν(0)| ≤ 1

2π

∫ 2π

0

|χν(reiθ)| dθ =
1

2π

∫ 2π

0

|ϕν(reiθ)|pν
|Bν(reiθ)|pν

dθ, 0 < r < 1,

the Lebesgue dominated convergence theorem (recall that |χν(reiθ)| ≤ c and |χν(reiθ)| −→ |ϕν(eiθ)|pν as
r −→ 1) gives

|χν(0)| ≤ 1

2π

∫ 2π

0

|ϕν(eiθ)|pν dθ, ν ≥ 1.

Let
Ak := {θ ∈ [0, 2π] : |ϕν(eiθ)|pν ≤ m+ ε/4, ν ≥ k}.

The sets Ak are closed, Ak ⊂ Ak+1, and
⋃
k∈NAk = [0, 2π]

(
23
)
. In particular, L1(Ak) −→ 2π. For ν ≥ k

we have

|χν(0)| ≤ 1

2π

(∫
Ak

+

∫
[0,2π]\Ak

)
|ϕν(eiθ)|pν dθ ≤ 1

2π
[(m+ ε/4)L1(Ak) + c(2π − L1(Ak))].

Hence |χν(0)| ≤ m+ ε/2 for ν large enough. �

Proposition 1.5.6 (Hartogs’ lemma). Let G be a domain in Cn−k and let D be a domain in G× Ck such
that for each z ∈ G the fiber

Dz := {w ∈ Ck : (z, w) ∈ D}
is connected. Assume that f : D −→ C is such that:

f(z, ·) ∈ O(Dz), z ∈ G, (∗)
f ∈ O(U), where U ⊂ D is an open set such that Uz 6= ∅ for any z ∈ G.

Then f ∈ O(D).

Proof. First, we consider the case where G := Dn−k, D := Dn, U := Dn−k × (δD)k (0 < δ < 1).
The case n− k = 1 reduces to Lemma 1.5.3.
Assume that n− k ≥ 2. By virtue of Hartogs’ theorem, it suffices to prove that f ∈ Os(Dn). In view of

(∗) we only need to check that f(·, w) ∈ Os(Dn−k). Fix a z0 ∈ Dn−k and j ∈ {1, . . . , n− k}. Define

g(ζ, w) := f(z0,1, . . . , z0,j−1, ζ, z0,j+1, . . . , z0,n−k, w), (ζ, w) ∈ D× Dk.
(
23
)
Because lim supν→+∞ |ϕν |pν ≤ m.
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Then g satisfies all the assumptions of the lemma with n = k + 1. Consequently, g ∈ O(D × Dk), which
shows that f is holomorphic as a function of zj .

In the general case let D̃ denote the maximal open subset of D such that f ∈ O(D̃). Obviously U ⊂ D̃.
Suppose that D̃z0  Dz0 for some z0 ∈ G. Since ∅ 6= Uz0 ⊂ D̃z0 and Dz0 is connected, there exists a
w0 ∈ D̃z0 such that dD̃z0 (w0) < dDz0 (w0). Take an r > 0 such that dD̃z0 (w0) < r < dDz0 (w0) and let
0 < ε < r be such that

Pn−k(z0, ε)× Pk(w0, r) ⊂ D, Pn−k(z0, ε)× Pk(w0, ε) ⊂ D̃.

Define
g(z, w) := f(z0 + εz, w0 + rw), (z, w) ∈ Dn−k × Dk.

Then, by the first part of the proof (with δ := ε/r), g ∈ O(Dn). Consequently, f ∈ O(Pn−k(z0, ε)×Pk(w0, r));
contradiction. �

Corollary 1.5.7. Let Gj ⊂ G̃j ⊂ Cnj be domains such that O(Gj) = O(G̃j)|Gj , j = 1, 2. Then O(G̃1 ×
G̃2)|G1×G2

= O(G1 ×G2).

Proof. Let f ∈ O(G1 × G2). For any w ∈ G2 the function f(·, w) extends to a function f̃(·, w) ∈ O(G̃1).
Define g(z, w) := f̃(·, w)(z), (z, w) ∈ G̃1 ×G2. Then, by Proposition 1.5.6, g is holomorphic.

Now, for any z ∈ G̃1 the function g(z, ·) extends holomorphically to g̃(z, ·) ∈ O(G̃2). The same argument
as above shows that the function f̃(z, w) := g̃(z, ·)(w), (z, w) ∈ G̃1 × G̃2, is holomorphic on G̃1 × G̃2. �

1.6. Special domains

Recall (Corollary 1.4.7) that if D ⊂ Cn is a complete n-circled domain, then any function f ∈ O(D) can
be represented by the power series

f(z) =
∑
α∈Nn0

1

α!
Dαf(0)zα, z ∈ D.

Moreover, the series is locally normally convergent in D.
Consider a more general case where D is balanced (i.e. D · D = D). Let hD denote the Minkowski

functional of D, i.e.

hD(z) := inf{t > 0 :
z

t
∈ D}, z ∈ Cn.

Lemma 1.6.1. (a) If D ⊂ Cn is a balanced domain and h := hD, then

h(λz) = |λ|h(z), λ ∈ C, z ∈ Cn, (1.6.1)
D = {z ∈ Cn : h(z) < 1}, (1.6.2)

h is upper semicontinuous on Cn. (1.6.3)

Conversely, if h : Cn −→ R+ satisfies (1.6.1) and (1.6.3), then the set D given by (1.6.2) is a balanced
domain.
(b) If D is a complete n-circled domain and h := hD, then

h(λ1z1, . . . , λnzn) ≤ h(z), λ1, . . . , λn ∈ D, z = (z1, . . . , zn) ∈ Cn, (1.6.4)

h(eiθ1z1, . . . , e
iθnzn) = h(z), θ1, . . . , θn ∈ R, z = (z1, . . . , zn) ∈ Cn, (1.6.5)

h is continuous.

Conversely, if h satisfies (1.6.1), (1.6.3), and (1.6.4), then the set D given by (1.6.2) is a complete
n-circled domain.

In particular, if h satisfies (1.6.1), (1.6.3), and (1.6.4), then h is continuous.
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Proof. (a) Property (1.6.1) is a direct consequence of the definition of the Minkowski functional.
It is clear that {h < 1} ⊂ D. Take an a ∈ D \ {0} and let 0 < θ < 1 be such that a/θ ∈ D (D is open).

Then h(a/θ) ≤ 1, which gives h(a) = θh(a/θ) ≤ θ < 1. Thus (1.6.2) is proved.
Take an a ∈ Cn. To prove that h is upper semicontinuous at a we have to prove that for any C > h(a)

there exists a neighborhood U of a such that h < C in U . Observe that b := a/C ∈ D. Let V be a
neighborhood of b with V ⊂ D. Put U := CV . Then, for z ∈ U we have h(z) = Ch(z/C) < C.

(b) The proof of (1.6.4) is elementary. Property (1.6.5) follows directly from (1.6.4).
To prove that h is continuous it suffices to show that h is lower semicontinuous at any point a ∈ Cn such

that h(a) > 0. Fix such an a = (a1, . . . , an). We may assume that a1 · · · · · as 6= 0, as+1 = · · · = an = 0 for
some 1 ≤ s ≤ n. Fix a z = (z1, . . . , zn) ∈ Cn, put

m := min{| zν
aν
| : j = 1, . . . , s},

and let λj ∈ D be such that
λj
zj
aj

= m, j = 1, . . . , s.

Then conditions (1.6.1) and (1.6.4) give

mh(a) = h(ma1, . . . ,mas, 0, . . . , 0) = h(λ1z1, . . . , λszs, 0zs+1, . . . , 0zn) ≤ h(z).

Consequently,
min{| zν

aν
| : j = 1, . . . , s}h(a) ≤ h(z), z = (z1, . . . , zn) ∈ Cn,

which implies the lower semicontinuity of h at a. �

Proposition 1.6.2. Let D ⊂ Cn be a balanced domain and let f ∈ O(D). Then

f(z) =

∞∑
ν=0

Qν(z), z ∈ D, (1.6.6)

where
Qν(z) :=

∑
α∈Nn0 : |α|=ν

1

α!
Dαf(0)zα.

(
24
)

Moreover, for any compact K ⊂ D there exist C > 0 and θ ∈ (0, 1) such that

|Qν(z)| ≤ Cθν , z ∈ K, ν ∈ N0.

In particular, the series converges locally normally in D.

Proof. Let h := hD. Take an a ∈ D \ {0}. The function

K(1/h(a)) 3 λ ϕa7−→ f(λa)
(

25
)

is holomorphic. Hence

f(a) = ϕa(1) =

∞∑
ν=0

1

ν!
ϕ(ν)
a (0) =

∞∑
ν=0

Qν(a).

Thus the formula (1.6.6) is true (and the series is pointwise convergent in D). It remains to prove the
estimate.

Take a compact K ⊂ D. Let θ ∈ (0, 1) be such that

L := {λz : |λ| ≤ 1/θ, z ∈ K} ⊂ D.
Then, for any a ∈ K, by Cauchy’s inequalities, we get

|Qν(a)| = 1

ν!
|ϕ(ν)
a (0)| ≤ ‖ϕa‖K(1/θ)θ

ν ≤ ‖f‖Lθν , ν ∈ N0.

(
24
)
Observe that Qν : Cn −→ C is a homogeneous polynomial of degree ν.(

25
)
K(1/0) := C.
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Definition 1.6.3. Let D be a domain in Cn, let 1 ≤ k ≤ n− 1, and let G denote the projection of D onto
Cn−k, G := π(D), where

Cn−k × Ck 3 (z, w)
π7−→ z ∈ Cn−k.

We say that D is a Hartogs domain over G with k-dimensional balanced fibers if for any z ∈ G the fiber

Dz := {w ∈ Ck : (z, w) ∈ D}

is balanced.
If Dz is complete k-circled for any z ∈ G, then we say that D is a Hartogs domain over G with complete

k-circled fibers. Of course, if k = 1, then there is no difference between Hartogs domains with 1-dimensional
balanced fibers and Hartogs domains with complete 1-circled fibers

(
26
)
; in this case we simply say that D

is a complete Hartogs domain over G.
If Dz is only k-circled for any z ∈ G, then D is called a Hartogs domain over G with k-circled fibers (we

point out that we do not assume that Dz is connected). If k = 1, then we shortly say D is a Hartogs domain
over G.

Figure 1.6.1

Remark 1.6.4. (a) Let D be a Hartogs domain over G with k-dimensional balanced fibers. Define

H(z, w) = HD(z, w) := hDz (w), (z, w) ∈ G× Ck,

where hDz is the Minkowski functional of Dz, z ∈ G. Observe that

D = {(z, w) ∈ G× Ck : H(z, w) < 1}, (1.6.7)

H(z, λw) = |λ|H(z, w), (z, w) ∈ G× Ck, (1.6.8)

H is upper semicontinuous on G× Ck. (1.6.9)

To prove that H is upper semicontinuous we can argue as in the proof of Lemma 1.6.1(a): if H(z0, w0) < C,
then (z0, w0/C) ∈ D. Hence there exists a neighborhood V of (z0, w0/C) such that V ⊂ D. Put U :=
{(z, Cw) : (z, w) ∈ V }. Then U is a neighborhood of (z0, w0) and H < C in U .

Conversely, if a function H : G×Ck −→ R+ satisfies (1.6.8) and (1.6.9), then the set D given by (1.6.7)
is a Hartogs domain over G with k-dimensional balanced fibers.

(
26
)
If k = 1, then Dz = C or Dz = K(R(z)) for some R(z) > 0.
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(b) D is a Hartogs domain over G with complete k-circled fibers iff the function H = HD from (a) satisfies
additionally the following condition

H(z, λ1w1, . . . , λkwk) ≤ H(z, w), λ1, . . . , λk ∈ D, z ∈ G, w = (w1, . . . , wk) ∈ Ck.
(c) In particular, if k = 1, then D is a complete Hartogs domain over G iff

D = {(z, w) ∈ G× C : |w| < e−u(z)},
where u : G −→ [−∞,+∞) is upper semicontinuous

(
27
)
.

(d) If k = 1, then D is a Hartogs domain over G such that Dz is an annulus
(

28
)

for any z ∈ G iff

D = {(z, w) ∈ G× C : ev(z) < |w| < e−u(z)},
where v, u : G −→ [−∞,+∞) are upper semicontinuous and such that v(z) + u(z) < 0 for any z ∈ G.
Hartogs domains of the above type are sometimes called Hartogs-Laurent domains over G.

Proposition 1.6.5. (a) Let D be a Hartogs domain over G with complete k-circled fibers. Then any f ∈
O(D) can be represented by the Hartogs series

f(z, w) =
∑
β∈Nk0

fβ(z)wβ , (z, w) ∈ D,

where
fβ(z) :=

1

β!
D(0,β)f(z, 0), z ∈ G, β ∈ Nk0 .

Moreover, for any compact K ⊂ D there exist C > 0 and θ ∈ (0, 1) such that

|fβ(z)wβ | ≤ Cθ|β|, (z, w) ∈ K, β ∈ Nk0 .
In particular, the series converges locally normally in D.
(b) If D is a Hartogs domain over G with k-dimensional balanced fibers, then any f ∈ O(D) can be represented
by the Hartogs series

f(z, w) =

∞∑
ν=0

Qν(z, w), (z, w) ∈ D,

where
Qν(z, w) :=

∑
|β|=ν

1

β!
D(0,β)f(z, 0)wβ , (z, w) ∈ G× Ck, ν ∈ N0.

(
29
)

Moreover, for any compact K ⊂ D there exist C > 0 and θ ∈ (0, 1) such that

|Qν(z, w)| ≤ Cθν , (z, w) ∈ K, ν ∈ N0.

In particular, the series converges locally normally in D.

The case of Hartogs domains with k-circled fibers will be considered in Proposition 2.6.3.

Proof. In virtue of Corollary 1.4.7 and Proposition 1.6.2, we only need to check the estimates. Take a
compact K ⊂ D.

(a) Let θ ∈ (0, 1) be such that

L := {(z, λ1w1, . . . , λkwk) : (z, w1, . . . , wk) ∈ K, |λj | ≤ 1/θ, j = 1, . . . , k} ⊂ D.
Now, if (z, w) ∈ K, then by Cauchy’s inequalities we get

|fβ(z)wβ | ≤ ‖f‖Lθ|β|, β ∈ Nk0 .
(b) We argue as in the proof of Proposition 1.6.2. Let θ ∈ (0, 1) be such that

L := {(z, λw) : (z, w) ∈ K, |λ| ≤ 1/θ} ⊂ D.(
27
)
u = logH(·, 1).(

28
)
That is, Dz = {w ∈ C : r(z) < |w| < R(z)} for some 0 ≤ r(z) < R(z) ≤ +∞.(

29
)
Notice that Qν ∈ O(G× Ck) and Qν(z, ·) is a homogeneous polynomial of degree ν.
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Then, by Cauchy’s inequalities, we get

|Qν(z, w)| ≤ ‖f‖Lθν , (z, w) ∈ K, ν ∈ N0.

�

1.7. Weierstrass Preparation and Division Theorems

If f is a function holomorphic in a connected neighborhood of 0 ∈ C with f(0) = 0, f 6≡ 0, then f has a
unique decomposition f = zpg, where g is holomorphic and g(0) 6= 0. The aim of this section is to generalize
the above result to the case of several variables.

Definition 1.7.1. Any function W of the form

W (z′, zn) = zpn +

p∑
j=1

Wj(z
′)zp−jn ,

whereWj is holomorphic in a neighborhood of 0′ ∈ Cn−1 andWj(0
′) = 0, j = 1, . . . , p, is called a Weierstrass

polynomial of degree p with center at 0 ∈ Cn.
(

30
)

Note that if W is a Weierstrass polynomial of degree p, then W (0′, zn) = zpn, and so W (0′, ·) has a zero
of order p at zn = 0.

Theorem 1.7.2 (Weierstrass Preparation Theorem). Let U0 be a neighborhood of 0 ∈ Cn and let f ∈ O(U0)
be such that the function f(0′, ·) has a zero of order p at zn = 0. Then there exists a polydisc P , 0 ∈ P ⊂ U0,
such that the function f has in P a unique decomposition f = h ·W , where h,W ∈ O(P ), h(z) 6= 0, z ∈ P ,
and W is a Weierstrass polynomial of degree p.

The Weierstrass Preparation Theorem will be a consequence of the following theorem.

Theorem 1.7.3 (Weierstrass Division Theorem). Let U0 be a neighborhood of 0 ∈ Cn and let f ∈ O(U0) be
such that the function f(0′, ·) has a zero of order p at zn = 0. Then there exist a polydisc P = P(%) ⊂ U0

and a constant c > 0 such that any function g ∈ H∞(P ) has in P a unique decomposition g = q · f + r,
where q ∈ O(P ), r ∈ O(Pn−1(%′))[Zn]

(
31
)
, degZn r < p, and ‖q‖P ≤ c‖g‖P .

Proof that the Weierstrass Division Theorem implies the Weierstrass Preparation Theorem. Let P = P(%) ⊂
U0 be as in the Weierstrass Division Theorem. Then, taking g := zpn, we obtain the decomposition

zpn = q · f + r in P

with

q ∈ O(P ), r =

p−1∑
j=0

rjZ
j
n ∈ O(Pn−1(%′))[Zn], degZn r < p.

In particular,

zpn = q(0′, zn)f(0′, zn) +

p−1∑
j=0

rj(0
′)zjn, zn ∈ K(%n).

Hence q(0) 6= 0 and rj(0′) = 0, j = 0, . . . , p− 1. Shrinking %, we may assume that q(z) 6= 0, z ∈ P . Setting
h(z) := 1/q(z) and W (z′, zn) := zpn − r(z′, zn), z = (z′, zn) ∈ P , we obtain the required decomposition. The
uniqueness follows from the uniqueness of the decomposition in the Weierstrass Division Theorem.

In fact, if f = h̃ · W̃ in P , then setting q̃ := 1/h̃ and r̃ := zpn − W̃ , we obtain the decomposition
zpn = q̃ · f + r̃ in P . Hence h̃ = h and r̃ = r in a neighborhood of 0 and so, by the identity principle, h̃ = h
and r̃ = r on P . �(

30
)
More generally, a Weierstrass polynomial with center at a = (a′, an) ∈ Cn of degree p is a function W of the form

W (z′, zn) = (zn − an)p +
∑p
j=1Wj(z

′)(zn − an)p−j , where the Wj are holomorphic in a neighborhood of a′ ∈ Cn−1 and
Wj(a

′) = 0, j = 1, . . . , p.(
31
)
A[Z] denotes the ring of polynomials with coefficients in A.
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Lemma 1.7.4. For arbitrary P = P(%) ⊂ Cn and p ∈ N, every function ϕ ∈ O(P ) admits a unique
decomposition

ϕ(z′, zn) = zpnϕ1(z′, zn) + ϕ2(z′, zn), (z′, zn) ∈ P,
with ϕ1 ∈ O(P ), ϕ2 ∈ O(Pn−1(%′))[Zn], degZn ϕ2 < p. Moreover

‖ϕ1‖P ≤
p+ 1

%pn
‖ϕ‖P .

Proof. The existence and uniqueness of the decomposition are obvious. Since

ϕ2(z′, zn) =

p−1∑
j=0

1

j!

∂jϕ

∂zjn
(z′, 0)zjn,

Cauchy’s inequalities imply that ‖ϕ2‖P ≤ p‖ϕ‖P , and hence

sup
P
|zpnϕ1| ≤ (p+ 1)‖ϕ‖P .

Consequently,

‖ϕ1‖P ≤
p+ 1

%pn
‖ϕ‖P .

�

Proof of the Weierstrass Division Theorem. Let P = P(%) ⊂⊂ U0 be an arbitrary polydisc. The polyradius
% will be modified in the sequel. By Lemma 1.7.4, we may assume that f = zpnf1 + f2, where f1, f2 are
holomorphic in a neighborhood of P , f2 is a polynomial of degree < p with respect to zn. In particular,

f(0′, zn) = zpnf1(0′, zn) + f2(0′, zn), zn ∈ K(%n).

Since limzn→0 f(0′, zn)/zpn ∈ C∗, we get f1(0) 6= 0 and f2(0′, ·) ≡ 0. Shrinking %, we may assume that
f1(z) 6= 0 in a neighborhood of P . Let h := f2/f1. Since h(0′, ·) ≡ 0, we may shrink %′ (with fixed %n) so
that

‖h‖P ≤
%pn

2(p+ 1)
. (1.7.1)

From now on % is assumed to be fixed.
Take a g ∈ H∞(P ). Setting f = zpnf1 + f2, we see that the required decomposition g = qf + r is

equivalent to the decomposition g = s(zpn + h) + r, where

s ∈ O(P ), r ∈ O(Pn−1(%′))[Zn], degZn r < p, ‖s‖P ≤ c̃‖g‖P ,
with a constant c̃ independent of g. Moreover, the decomposition g = qf + r is unique iff the decomposition
g = s(zpn + h) + r is unique.

We proceed by recurrence. Let s0 := 0 and let

g − h · sk−1 = zpnsk + rk (1.7.2)

be the decomposition obtained from Lemma 1.7.4, k ≥ 1. Since

h(sk−1 − sk) = zpn(sk+1 − sk) + rk+1 − rk,
the second part of Lemma 1.7.4 (applied to ϕ := h(sk−1 − sk)) and (1.7.1) imply that

‖sk+1 − sk‖P ≤
p+ 1

%pn
‖h(sk − sk−1)‖P ≤

1

2
‖sk − sk−1‖P .

This means that the sequence (sk)∞k=0 is convergent uniformly in P to a holomorphic function s. Applying
(1.7.2) we conclude that rk −→ r uniformly in P (r must be a polynomial of degree < p with respect to zn)
and g = s(zpn + h) + r. Applying once more Lemma 1.7.4 (with ϕ := g − sh) and (1.7.1), we obtain

‖s‖P ≤
p+ 1

%pn
‖g − sh‖P ≤

p+ 1

%pn
‖g‖P +

1

2
‖s‖P ,
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and hence

‖s‖P ≤
2(p+ 1)

%pn
‖g‖P = c̃‖g‖P .

Suppose that there exists another decomposition g = s̃(zpn + h) + r̃. Then (s− s̃)(zpn + h) + r − r̃ ≡ 0, and
therefore, by Lemma 1.7.4 (with ϕ := h(s̃− s)) and (1.7.1), we would have

‖s− s̃‖P ≤
p+ 1

%pn
‖h(s− s̃)‖P ≤

1

2
‖s− s̃‖P .

Hence s̃ ≡ s, and consequently r̃ ≡ r. �

1.8. Elementary properties of the ring of germs of holomorphic functions

Let a ∈ Cn. Define
Õa := {(U, f) : U ∈ B(a), f ∈ O(U)},

where B(a) denotes the family of all open neighborhoods of a. For (U, f), (V, g) ∈ Õa we put

(U, f)
a∼ (V, g)

df⇐⇒ ∃W∈B(a) : W ⊂ U ∩ V, f |W = g|W .

It is clear that a∼ is an equivalence relation. Put

Oa = O(n)
a := Õa/

a∼ .

The class [(U, f)] a∼ is called the germ of f at a. We write f̂a := [(U, f)] a∼. Define

[(U, f)] a∼ + [(V, g)] a∼ := [(U ∩ V, f + g)] a∼, [(U, f)] a∼ · [(V, g)] a∼ := [(U ∩ V, f · g)] a∼.

One can easily check that the operations +, · : Oa × Oa −→ Oa are well defined and that (Oa,+, ·) is a
commutative ring with the unit element (the ring of germs of holomorphic functions at a).

Let f = f̂a ∈ Oa. Observe that the series T fa := Taf is well defined (it is independent of the representant
f). The mapping

Oa 3 f 7−→ Taf ∈ the ring of all power series with center at a
which are convergent in a neighborhood of a

is an isomorphism.
Let O(n) := O(n)

0 .
Let a = (a′, an) ∈ Cn. We say that a germ F ∈ O(n)

a is zn-normalized if there exist r > 0 and a
representation (Pn(a, r), f) of F such that f(a′, ·) 6≡ 0 in K(an, r). Then we will denote by orda,Zn F the
order of zero of f(a′, ·) at an.

Note that the germ F ∈ O(n)
a is an invertible element of the ring O(n)

a (i.e. it is a unit in the ring O(n)
a )

iff F (a) 6= 0
(

32
)
.

Let W(n)
a ⊂ O(n)

a denote the set of all germs of Weierstrass polynomials with center at a. Note that
W(n)
a can be considered as a subset of O(n−1)

a′ [Zn]. According to the general rule, let W(n) :=W(n)
0 .

We have orda,ZnW = degZnW for any W ∈ W(n)
a .

Lemma 1.8.1. (a) Let F , G, W ∈ O(n) be such that F = G ·W . Assume that F ∈ O(n−1)[Zn], W ∈ W(n).
Then G ∈ O(n−1)[Zn].

(
33
)

(b) Assume that a germ F ∈ O(n−1)[Zn] is zn-normalized and irreducible in O(n−1)[Zn]. Then F is also
irreducible in O(n).

(
32
)
The value of the germ F at a point a is well defined.(

33
)
The theorem is not true if W is not a germ of the Weierstrass polynomial; for instance 1 = (1/W ) ·W , where W is a

germ of a polynomial such that W (0) 6= 0.
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Proof. (a) By the division algorithm, we obtain F = G1 ·W + R, where G1, R ∈ O(n−1)[Zn], degZn R <
degZnW . Therefore we have two factorizations: F = G ·W and F = G1 ·W + R. The uniqueness of the
factorization in the Weierstrass Division Theorem implies that G = G1 ∈ O(n−1)[Zn] (and R = 0).

(b) Suppose that F = G ·H, where G, H ∈ O(n), and H is not a unit in O(n), i.e. H(0) = 0. Clearly H
is zn-normalized and ord0,Zn H > 0. By the Weierstrass Preparation Theorem we have H = K ·W , where
W ∈ W(n), degZnW > 0. Therefore F = (G ·K) ·W , and so, by (a), G ·K ∈ O(n−1)[Zn]. We have obtained
a factorization in O(n−1)[Zn]. Since W is not a unit in O(n−1)[Zn], G ·K must be a unit. In particular, G
is a unit in O(n). �

Lemma 1.8.2. Let F , G, W ∈ O(n−1)[Zn] be such that W = F · G. Assume that W ∈ W(n). Then there
exists a unit H ∈ O(n−1) such that H · F , (1/H) ·G ∈ W(n).

Proof. Let r := degZn F , s := degZn G,

F =

r∑
j=0

FjZ
r−j
n , G =

s∑
j=0

GjZ
s−j
n , W =

p∑
j=0

WjZ
p−j
n ,

where W0 = 1, Wj(0
′) = 0, j = 1, . . . , p. In particular,

zpn = W (0′, zn) = F (0′, zn) ·G(0′, zn) =

r∑
j=0

Fj(0
′)zr−jn ×

s∑
j=0

Gj(0
′)zs−jn ,

and hence 1 = F0(0′) ·G0(0′), Fj(0′) = 0, j = 1, . . . , r, Gj(0′) = 0, j = 1, . . . , s. �

Lemma 1.8.3. Let fj ∈ O(Pn(r)), fj(0) = 0, fj 6≡ 0, j ∈ N. Then there exists a unitary transformation
L : Cn −→ Cn such that fj ◦ L is zn-normalized, j ∈ N.

Proof. Let

fj(z) =

∞∑
k=k(j)

Qj,k, z ∈ Pn(r),

where
Qj,k is a homogeneous polynomial of degree k,
Qj,k ≡ 0, k = 0, . . . , k(j)− 1,
Qj,k(j) 6≡ 0, k(j) ≥ 1.
Let Vj := Q−1

j,k(j)(0); Vj is a closed cone with intVj = ∅. Hence, by the Baire property, there exists
an X ∈ Cn, ‖X‖ = 1, such that X /∈ Vj for any j ∈ N. Let L : Cn −→ Cn be a unitary mapping with
L(en) = X. Then

(fj ◦ L)(0′, zn) = fj(L(znen)) = fj(znX) =

∞∑
k=k(j)

Qj,k(X)zkn,

and so (fj ◦ L)(0′, ·) 6≡ 0, j ∈ N. �

Proposition 1.8.4. O(n)
a is a unique factorization domain.

Proof. It is sufficient to consider the case a = 0. We apply induction with respect to n. The case n = 1 is
clear: every germ F ∈ O(1), F 6= 0, has a unique factorization F = zpG, where G is a unit in O(1).

Suppose that the theorem is true for O(n−1). Consequently, O(n−1)[Zn] is also a unique factorization
domain.

Fix a germ F ∈ O(n) which is not a unit. We may assume that it is zn-normalized. By the Weierstrass
Preparation Theorem we have F = G ·W , where G is a unit, and W ∈ W(n). By the inductive hypothesisW
admits a factorization W = W1 · · · · ·Wk, where W1, . . . ,Wk ∈ O(n−1)[Zn] are irreducible. By Lemma 1.8.2
we may assume that W1, . . . ,Wk ∈ W(n). By Lemma 1.8.1(b) the elements W1, . . . ,Wk are also irreducible
in O(n). Therefore we have obtained a factorization F = H ·W1 · · · · ·Wk, where H is a unit andW1, . . . ,Wk ∈
W(n) are irreducible Weierstrass polynomials.
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Suppose that there exists another factorization

F = V1 · · · · · V`,

where V1, . . . , V` ∈ O(n) are irreducible. Then, by the Weierstrass Preparation Theorem, we get F =

Ĥ · Ŵ1 · · · · · Ŵ`, where Ĥ is a unit in O(n) and Ŵ1, . . . , Ŵ` are irreducible Weierstrass polynomials. Recall
that the decomposition in the Weierstrass Preparation Theorem is unique. HenceW1 · · · · ·Wk = Ŵ1 · · · · ·Ŵ`.
Now, since O(n−1)[Zn] is a unique factorization domain, we get k = ` and Wj = Ŵj , j = 1, . . . , k (up to a
permutation). �

Proposition 1.8.5. Let U be a neighborhood of 0 ∈ Cn and let f, g ∈ O(U) be such that f(0) = g(0) = 0.
Assume that the germs F := f̂0 and G := ĝ0 are relatively prime (in O(n)). Then:
(a) There exists a number r > 0 such that the germs f̂z, ĝz are relatively prime in O(n)

z for any z ∈ Pn(r) ⊂ U .
(b) If n ≥ 2, then for any neighborhood of zero V ⊂ U and for any w ∈ C there exists a z ∈ V such that
g(z) 6= 0 and f(z)/g(z) = w.

Proof. (a) We may assume that F andG are zn-normalized. By Lemma 1.8.3 and the Weierstrass Preparation
Theorem we may assume that F , G ∈ W(n). The germs F and G are relatively prime in the ring O(n−1)[Zn].
Hence, by the Gauss lemma, they are relatively prime in k[Zn], where k denotes the quotient field of O(n−1).
Consequently, there exists an r > 0 and f1, g1 ∈ O(Pn−1(r))[Zn], h ∈ O(Pn−1(r)), h 6≡ 0, such that

h(z′) = f1(z)f(z) + g1(z)g(z), z = (z′, zn) ∈ Pn(r). (1.8.1)

Suppose that for some ζ = (ζ ′, ζn) ∈ Pn(r) the germs f̂ζ , ĝζ are not relatively prime, and let C ∈ O(n)
ζ

be their nontrivial divisor. Then clearly C is zn-normalized (in O(n)
ζ ). Consequently, by the Weierstrass

Preparation Theorem, we may assume that C ∈ W(n)
ζ . On the other hand, equality (1.8.1) shows that C must

divide ĥζ . Recall that h depends only on z′. Hence, using Lemma 1.8.1(a), we conclude that degZn C = 0;
contradiction.

(b) Fix a w. Replacing f by f − wg we may assume that w = 0. We may also assume that f and g are
zn-normalized. By the proof of (a) there exist r > 0, f1, g1 ∈ O(Pn(r)), h ∈ O(Pn−1(r)), h 6≡ 0, such that
equality (1.8.1) is true.

Suppose that (b) does not hold, i.e. there exists a neighborhood of zero V ⊂ Pn(r) such that {z ∈ V :
f(z) = 0} ⊂ {z ∈ V : g(z) = 0}. Let P(τ ) ⊂⊂ V be such that f(0′, zn) 6= 0 for 0 < |zn| ≤ τn. Let
ε := min{|f(0′, zn)| : |zn| = τn}. Shrinking τ ′ (with fixed τn) we may assume that |f(z′, zn)− f(0′, zn)| < ε
for z′ ∈ Pn−1(τ ′), |zn| = τn. Now, by Rouché’s theorem (cf. [4], Th. V.3.8), for every z′ ∈ Pn−1(τ ′) the
function f(z′, ·) has a zero in the disc K(τn). In particular, for any z′ ∈ Pn−1(τ ′) there exists a zn ∈ K(τn)
such that f(z′, zn) = g(z′, zn) = 0. Hence, by (1.8.1), h = 0 on Pn(τ ); contradiction. �

Proposition 1.8.6. O(n)
a is Noetherian.

Proof. We may assume that a = 0. We apply induction on n. In the case n = 1 every ideal is principal.
Assume that O(n−1) is Noetherian.

Let I ⊂ O(n) be a nontrivial ideal. We may assume that there exists an F0 ∈ I such that F0 is zn-
normalized. Let p := ord0,Zn F0. Using the Weierstrass Division Theorem, we see that I is generated over
O(n) by {F0} ∪M, where

M := {F ∈ I ∩ O(n−1)[Zn] : degZn F < p}.

Observe thatM is an O(n−1)-module. Hence, by the Hilbert theorem,M is finitely generated over O(n−1).
Let F1, . . . , FN be generators ofM. Then F0, F1, . . . , FN generate I over O(n). �
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Exercises

1.1. Prove the following slight generalization of the Cauchy integral formula. Let P := P(a, r) and let
f ∈ O(P ) ∩ C(P ∪ ∂0P ). Then

f(z) =
1

(2πi)n

∫
∂0P

f(ζ)

ζ − z
dζ, z ∈ P.

Verify whether, in general, the Cauchy integral formula from Proposition 1.2.5 remains true for f ∈
O(D) ∩ C(D ∪ ∂0D).

1.2. Let gk : [0, 1] −→ R,

gk(x) :=


1− 1

k if 0 ≤ x ≤ 1
k+1

1
2 −

1
k + k+1

2 x if 1
k+1 ≤ x ≤

1
k

1− 1
2k if 1

k ≤ x ≤ 1

.

Put fk := gk − gk−1, k ∈ N (g0 := 0). Prove that the series
∑
k∈N fk is uniformly summable on [0, 1], but is

not normally summable on [0, 1].
1.3. Let A ⊂ Cn be n-circled. Prove that A is connected iff R(A) is connected.
1.4. Find the domains of convergence of the following series:

∞∑
n,m=0

znwm,

∞∑
n,m=0

n!znwm,

∞∑
n=0

(zw)n,

∞∑
n,m=1

(n/m!)znwm.

1.5. Check whether the set (D× (2D))∪ ((2D)×D) can be the domain of convergence of a power series.
1.6. Find a power series whose domain of convergence is the ball B2 ⊂ C2.
1.7. Prove the following version of the Cauchy inequalities. If f ∈ O(B(a, r)) ∩ C(B(a, r)), then

‖f (k)(a)‖ ≤ k!

rk
‖f‖B(a,r), k ∈ N0

(recall that for L := f (k)(a) we have ‖L‖ := max{|L(X)| : ‖X‖ = 1}).
1.8. Let D ⊂ Cn be a domain such that D ∩ Rn 6= ∅. Show that if f ∈ O(D) is such that f = 0 in

D ∩ Rn, then f ≡ 0.
1.9. Let D ⊂ Cn be a domain and let D∗ := {z : z ∈ D}. Assume that f ∈ O(D ×D∗) is such that

f(z, z) = 0 for z in a neighborhood of a point p0 ∈ D. Prove that f ≡ 0.
1.10. A set A ⊂ Ω is called a determining set for O(Ω) if for any function f ∈ O(Ω) the following

implication is true f |A = 0 =⇒ f ≡ 0.
Construct a countable set A ⊂ Cn such that A ∩ B(r) is determining for O(B(r)) for any r > 0.
1.11. Suppose that f ∈ O(Cn) is a complex polynomial with respect to each variable separately. Prove

that f is a polynomial.
1.12. Let D ⊂ Cn be a bounded domain. The smallest closed subset A ⊂ D such that

∀f∈O(D)∩C(D) ∃a∈A : |f(a)| = max{|f(z)| : z ∈ D}.
is called the Shilov boundary of D and is denoted by ∂SD. Notice that ∂SD ⊂ ∂D.

Prove that:
(a) ∂SBn = ∂Bn.
(b) If D1, . . . , Dn are fat

(
34
)

bounded planar domains, then ∂S(D1× · · · ×Dn) = ∂0(D1× · · · ×Dn) =
(∂D1)× · · · × (∂Dn). In particular, ∂S(Dn) = ∂0(Dn) = Tn.

1.13. Let D ⊂ Cn be a bounded domain. The smallest closed subset A ⊂ D such that

∀f∈O(Ω): D⊂Ω ∃a∈A : |f(a)| = max{|f(z)| : z ∈ D}
is called the Bergman boundary of D and is denoted by ∂BD. Prove that ∂BD is well defined. Observe that
∂BD ⊂ ∂SD.

Calculate ∂BBn and ∂BDn.(
34
)
Ω is fat if Ω = intΩ.
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Prove that for the domain

D := {(z1, z2) ∈ C2 : 0 < |z1| < 1, |z2| < |z1|− log |z1|}
we have

∂0D2 = ∂BD  ∂SD = {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| = |z1|− log |z1|}.
1.14. Show that a complete Hartogs domain D ⊂ Cn is convex iff the set {(z′, |zn|) ∈ Cn−1 × R :

(z′, zn) ∈ D} is convex in R2n−1.
1.15. Let D ⊂ Cn be an n-circled domain. Prove that D \ {(z1, . . . , zn) ∈ Cn : z1 · · · · · zn = 0} is

connected (without using the Riemann removable singularities theorem).





CHAPTER 2

Extension of holomorphic functions

2.1. Hartogs and Riemann theorems

Theorem 2.1.1. Let D be a domain in Cn = Cn−1 × C, n ≥ 2, and let M be a relatively closed subset of
D such that D \M is connected. Put

Cn−1 × C 3 (z, w)
p7−→ z ∈ Cn−1.

Assume that:
1o for every point a ∈ p(D) there exist an open neighborhood Ua ⊂ p(D) of a and a compact set Ka ⊂ C
such that

p−1(Ua) ∩M ⊂ Ua ×Ka ⊂ D.
2o there exists a point a0 ∈ p(D) such that

p−1(a0) ∩M = ∅.

Then O(D \M) = O(D)|D\M , i.e. any function f ∈ O(D \M) extends holomorphically to D.

Figure 2.1.1

Proof. Fix a function f ∈ O(D \M). Consider the family F of all pairs (P,Ω), where
P is an open convex subset of p(D),
Ω is an open subset of C being a finite union of regular domains (cf. Definition 1.2.4) Ω = G1 ∪ · · · ∪GN

with Gj ∩Gk = ∅ for j 6= k,
such that

p−1(P ) ∩M ⊂⊂ P ×Ω ⊂⊂ D.
Define

f̃P,Ω(z, w) :=
1

2πi

∫
∂Ω

f(z, ζ)

ζ − w
dζ, (z, w) ∈ P ×Ω.

31
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Then f̃P,Ω(z, ·) ∈ O(Ω) for every z ∈ P , and f̃P,Ω(·, w) ∈ Os(P ) for every w ∈ Ω. Moreover, f̃P,Ω is
continuous. Hence, by Osgood’s theorem 1.2.3, f̃P,Ω ∈ O(P ×Ω). Using the Cauchy theorem (cf. [4], IV.5)
we easily conclude that f̃P ′,Ω′ = f̃P ′′,Ω′′ in (P ′ × Ω′) ∩ (P ′′ × Ω′′) for arbitrary two (P ′, Ω′), (P ′′, Ω′′) ∈ F(

1
)
.
Observe that, by 1o, for each (a,w0) ∈ D there exists a pair (P,Ω) ∈ F such that (a,w0) ∈ P ×Ω

(
2
)
.

Thus the formula
f̃(z, w) := f̃P,Ω(z, w), (z, w) ∈ P ×Ω,

defines a function holomorphic on D.
By 2o and the Cauchy integral formula we see that there exists an open neighborhood Ua0 such that

f̃ = f in D ∩ p−1(Ua0) ⊂ D \M . Since D \M is connected, the identity principle implies that f̃ = f in
D \M . �

It is clear that if M ⊂ D is compact then conditions 1o and 2o from Theorem 2.1.1 are always satisfied.
Consequently, we get the following

Corollary 2.1.2 (Hartogs’ extension theorem). Let D be a domain in Cn, n ≥ 2, and let K be a compact
subset of D such that D \K is connected. Then O(D \K) = O(D)|D\K

(
3
)
.

Notice that the above result does not hold for n = 1
(

4
)
.

Corollary 2.1.3. For n ≥ 2 the zeros of holomorphic functions are not isolated.

Proof. Suppose that f ∈ O(Pn(a, r)), n ≥ 2, f(a) = 0, and f(z) 6= 0 for z 6= a. Then, by Hartogs’ extension
theorem, the function 1/f would extend holomorphically onto Pn(a, r); contradiction. �

Definition 2.1.4. A subset M of an open set Ω ⊂ Cn is called thin in Ω if for every point a ∈ Ω there exist
a polydisc P = P(a, r) ⊂ Ω and a function ϕ ∈ O(P ), ϕ 6≡ 0, such that M ∩ P ⊂ ϕ−1(0)

(
5
)
.

Remark 2.1.5. (a) If M is thin, then intM = ∅.
(b) If M is thin in Ω and N ⊂M , then N is thin in Ω.
(c) If M1, M2 are thin in Ω, then M1 ∪M2 is thin in Ω.

Assume that ϕ ∈ O(D), ϕ 6≡ 0, where D ⊂ Cn is a domain. Then ϕ−1(0) is thin in D.

Theorem 2.1.6 (Riemann removable singularities theorem). Let D be a domain in Cn and let M ⊂ D
be thin and relatively closed in D. Then every function f ∈ O(D \M) which is locally bounded in D

(
6
)

extends holomorphically to D.
Moreover, the set D \M is connected.

Proof. Fix a function f ∈ O(D \M) such that f is locally bounded on D. Observe that the problem of
continuation across M is local. In fact, if every point a ∈ D admits a polydisc Pa and a function f̃a ∈ O(Pa)

such that f̃a = f in Pa \M , then by identity principle and Remark 2.1.5(a), the function f̃ defined as f̃ := f̃a
in Pa gives the required extension.

Fix an a ∈ D. We may assume that a = 0 ∈M . Let ϕ ∈ O(P(r)), ϕ 6≡ 0, be such thatM∩P(r) ⊂ ϕ−1(0).
Let r = (r′, rn) = (r1, . . . , rn). Changing the coordinate system if necessary (cf. Lemma 1.8.3) we may
assume that:(

1
)
Assume that (P ′ ×Ω′) ∩ (P ′′ ×Ω′′) 6= ∅ and let (z0, w0) ∈ (P ′ ×Ω′) ∩ (P ′′ ×Ω′′) be fixed. Let Ω′0 be the connected

component of Ω′ ∩ Ω′′ that contains w0. There exists an Ω ⊂ Ω′ ∩ Ω′′ such that (P ′ ∩ P ′′, Ω) ∈ F and Ω ∩ Ω′0 6= ∅. By the
Cauchy theorem, we conclude that fP ′,Ω′ (z0, w) = fP ′∩P ′′,Ω(z0, w) = fP ′′,Ω′′ (z0, w) for any w ∈ Ω. Hence, by the identity
principle, fP ′,Ω′ (z0, w0) = fP ′′,Ω′′ (z0, w0).(

2
)
Let Ua, Ka be as in 1o. It is clear that there exists an Ω as in the definition of F such that Ka ⊂ Ω, w0 ∈ Ω, and

{a} × Ω ⊂⊂ D. Let P ⊂⊂ Ua be an open convex neighborhood of a such that P × Ω ⊂⊂ D. Then (P,Ω) satisfies all the
required conditions.(

3
)
See the end of § 4.2 for another proof.(

4
)
For example, f(z) := 1/z, z ∈ C \ {0}.(

5
)
Note that M need not be closed in Ω.(

6
)
That is, every point a ∈ D has a neighborhood Ua such that f is bounded in Ua \M .
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ϕ is zn-normalized, ϕ(0′, ·) has zero of order p at zn = 0 (p ∈ N),
ϕ is holomorphic in a neighborhood of P(r),
ϕ(0′, zn) 6= 0 for z ∈ K(rn) \ {0}.

Figure 2.1.2

Let ε := min{|ϕ(0′, zn)| : |zn| = rn}. Shrinking r′ (with fixed rn) we may assume that |ϕ(z′, zn) −
ϕ(0′, zn)| < ε for z′ ∈ Pn−1(r′), |zn| = rn. Now, by Rouché’s theorem (cf. [4], Th. V.3.8), for every
z′ ∈ Pn−1(r′) the function ϕ(z′, ·) has exactly p zeros (counted with multiplicities) in the disc K(rn), say
ξ1(z′), . . . , ξp(z

′), and ϕ(z′, ·) does not vanish on the circle C(rn). In particular, for every z′ ∈ Pn−1(r′)

the function f(z′, ·) is holomorphic in K(rn) \ {ξ1(z′), . . . , ξp(z
′)} and locally bounded in K(rn). Hence, by

the classical (one-dimensional) Riemann theorem on removable singularities (cf. [4], V.1), f(z′, ·) extends
holomorphically to a function f̃(z′, ·) ∈ O(K(rn)). Let f̃(z′, zn) := f̃(z′, ·)(zn), (z′, zn) ∈ P(r). By the
Hartogs Lemma 1.5.6 f̃ ∈ O(P(r)). It is clear that f̃ = f in P(r) \M .

It remains to prove that D \M is connected. Suppose that D \M = Ω0 ∪ Ω1, where Ω0 and Ω1 are
non-empty, disjoint, and open. Then the function f := j in Ωj , j = 0, 1, would extend holomorphically onto
D; contradiction. �

Proposition 2.1.7. Let D ⊂ C be a regular domain (cf. Definition 1.2.4), let G ⊂ Cn−1 be an arbitrary
bounded domain, and let w0 ∈ G be fixed. Put

H := (D × {w0}) ∪ (∂D ×G) ⊂ Cn.

Then every function holomorphic in a neighborhood of H extends holomorphically to a neighborhood of D×G.
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Figure 2.1.3

Proof. Note that H is connected. Let f ∈ O(U), where U is a neighborhood of H. Then there exist domains
D0 ⊂ C, G0 ⊂ Cn−1, and a neighborhood V of w0 such that:
• D0 is regular, G0 is bounded,
• D ⊂⊂ D0, G ⊂⊂ G0,
• (D0 × V ) ∪ (∂D0 ×G0) ⊂ U .
Define

f̃(z, w) :=
1

2πi

∫
∂D0

f(ζ, w)

ζ − z
dζ, (z, w) ∈ D0 ×G0.

One can easily check that f̃ ∈ O(D0 ×G0) and f̃ = f in D0 × V (by the Cauchy integral formula). Finally,
by the identity principle, f̃ = f in a neighborhood of H. �

Corollary 2.1.8. Every function holomorphic in a neighborhood of the set

H := (D× {0}) ∪ (T× D) ⊂ C2

extends holomorphically to a neighborhood of D× D.
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2.2. Biholomorphisms

Theorem 2.2.1. Let Ω ⊂ Cn be open and let F = (F1, . . . , Fn) : Ω −→ Cn be holomorphic. Then the
following conditions are equivalent:
(i) F (Ω) is open and F : Ω −→ F (Ω) is biholomorphic;
(ii) F is injective and JCF (z) 6= 0, z ∈ Ω;
(iii) F is injective.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are obvious.
The implication (ii) =⇒ (i) follows from the inverse mapping theorem (cf. Corollary 1.4.15).
(iii) =⇒ (ii) (Cf. [28]). We apply induction on n. The case n = 1 is well known. Assume that the result

is true for n− 1 and let
A := {a ∈ Ω : F ′(a) = 0}.

Take an a ∈ Ω \A. We may assume that a = F (a) = 0 and ∂Fn
∂zn

(0) = c 6= 0. Let

G(z) = G(z′, zn) := (z′, Fn(z)), z = (z′, zn) ∈ Ω ⊂ Cn−1 × C.

Observe that G(0) = 0 and JCG(0) = c 6= 0. Hence, by the inverse mapping theorem (Corollary 1.4.15),
there exists an open neighborhood U of 0, U ⊂ Ω, such that G(U) is open and G|U : U −→ G(U) is
biholomorphic. Let

H = (H1, . . . ,Hn) := F ◦ (G|U )−1 : G(U) −→ Cn.
Then H is an injective holomorphic mapping with Hn(w) = wn. Take a P(r) ⊂ G(U) and define

H̃(w′) := (H1(w′, 0), . . . ,Hn−1(w′, 0)), w′ ∈ Pn−1(r).

Observe that H̃ : Pn−1(r) −→ Cn−1 is injective. Moreover, JCH(0′, 0) = JCH̃(0′). By the inductive
assumption we get JCH̃(0′) 6= 0. Hence JCH(0) 6= 0 and, consequently, JCF (0) 6= 0.

It remains to show that A = ∅. Suppose that A 6= ∅ and let a ∈ A. We may assume that a = F (a) = 0.
Put

u(z) := ‖F (z)‖2 = |F1(z)|2 + · · ·+ |Fn(z)|2, z ∈ Ω.
Notice that u−1(0) = {0}. Fix a ball B(r) ⊂⊂ Ω and let

t0 := min{u(z) : z ∈ ∂B(r)}.

Put Ut := {z ∈ B(r) : u(z) < t}. Observe that Ut ⊂⊂ B(r) for 0 < t < t0. By the Sard theorem (cf. [6],
Th. 3.4.3) there exists a t ∈ (0, t0) such that gradu(z) 6= 0 for all z ∈ Ω with u(z) = t. In particular,
A∩ ∂Ut = ∅. Let D denote the connected component of Ut that contains 0. Then K := A∩D is a compact
thin set with 0 ∈ K. In particular, the set D \K is connected (Theorem 2.1.6). Observe that, by the first
part of the proof, we have A = {z ∈ Ω : JCF (z) = 0}. Consequently, by the Hartogs theorem (Corollary
2.1.2), the function 1/JCF extends holomorphically to D; contradiction (cf. Corollary 2.1.3). �

2.3. Cartan theorems

Given an arbitrary domain D ⊂ Cn set

Aut(D) := {F : D −→ D : F is biholomorphic}, Auta(D) := {F ∈ Aut(D) : F (a) = a}, a ∈ D.

Obviously, Aut(D) is a group and Auta(D) is a subgroup of Aut(D). The group Aut(D) is called the group
of automorphisms of D. We say that Aut(D) acts transitively on D if for arbitrary z′, z′′ ∈ D there exists
an F ∈ Aut(D) such that F (z′) = z′′.

Notice that if Φ : D −→ G is biholomorphic, then

Aut(D) 3 F 7−→ Φ ◦ F ◦ Φ−1 ∈ Aut(G)

is a group isomorphism.
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Remark 2.3.1. (a) (cf. [4])

Aut(Ĉ) = {Ĉ 3 z −→ az + b

cz + d
∈ Ĉ : a, b, c, d ∈ C, det

[
a, b
c, d

]
6= 0},

Aut(C) = {C 3 z 7−→ az + b ∈ C : a, b ∈ C, a 6= 0},

Aut(D) = {D 3 z 7−→ eiθ
z − a
1− az

∈ D : θ ∈ R, a ∈ D};

Aut(Ĉ), Aut(C), Aut(D) act transitively.
(b) Let

A := {z ∈ C :
1

R
< |z| < R}.

Then

Aut(A) = {A 3 z 7−→ eiθz ∈ A : θ ∈ R} ∪ {A 3 z 7−→ eiθ
1

z
∈ A : θ ∈ R};

Aut(A) does not act transitively; cf. [29].
Indeed, fix an F ∈ Aut(A). Let C := C(1) and let A− := {1/R < |z| < 1}, A+ := {1 < |z| < R}. Since

F−1(C) is a compact subset of A, there exists an R′ ∈ (1, R) such that F−1(C) ⊂ {z ∈ C : 1/R′ < |z| < R′}.
Consider the set B+ := F ({z ∈ C : R′ < |z| < R}). Since B+ ∩ C = ∅, the set B+ is contained either in
A+ or in A−. Taking 1/F instead of F (if necessary), we may assume that B+ ⊂ A+. Now consider the set
B− := F ({z ∈ C : 1/R < |z| < 1/R′}). It is clear that B− ⊂ A−. Thus

lim
|z|→1/R

|F (z)| = 1/R, lim
|z|→R

|F (z)| = R.

Hence, by the classical Hadamard three circles theorem (cf. [4], Th. 3.13; see also Proposition 3.2.37), we get

|F (z)| ≤ (1/R)

log R
|z|

log R
1/R R

log
|z|
1/R

log R
1/R = |z|, z ∈ A.

Since F−1 has the same properties, we conclude that |F−1(w)| ≤ |w| for any w ∈ A. Thus |F (z)| = |z| for
any z ∈ A, and, therefore, there exists a θ ∈ R such that F (z) = eiθz, z ∈ A.

Theorem 2.3.2 (Cartan). Let D ⊂ Cn be a bounded domain, let a ∈ D, and assume that F : D −→ D is a
holomorphic mapping such that F (a) = a and F ′(a) = id. Then F ≡ id.

(
7
)

Proof. Without loss of generality we may assume that a = 0. Suppose that F 6≡ id. Fix r,R > 0 such that
P := P(r) ⊂ D ⊂ B(R). We have

F (z) =

∞∑
k=0

Qk(z), z ∈ P,

where Qk : Cn −→ Cn is a homogeneous polynomial of degree k. By our assumptions, Q0 = 0 and Q1 = id.
Let k0 ≥ 2 be such that Q2 = · · · = Qk0−1 = 0, Qk0 6≡ 0. Let F 〈ν〉 denote the ν-th iterate of the mapping
F , i.e. F 〈0〉 := id, F 〈ν+1〉 := F 〈ν〉 ◦ F . Then

F 〈ν〉(z) = z + νQk0 +

∞∑
k=k0+1

Qν,k(z), z ∈ P.

Hence, by the Cauchy integral formula, for any z ∈ P we get

‖νQk0(z)‖ = ‖ 1

2πi

∫
T

F 〈ν〉(ζz)

ζk0+1
dζ‖ ≤ max{‖F 〈ν〉(ζz)‖ : ζ ∈ T} ≤ R, ν ≥ 1.

Letting ν −→ +∞, we obtain Qk0 ≡ 0; contradiction. �

(
7
)
Notice that the assumption that D is bounded is essential (take for instance D = C, F (z) := z(1− z), a := 0).
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Proposition 2.3.3 (Cartan). Let D,G ⊂ Cn be circular domains with 0 ∈ D, 0 ∈ G, such that D is
bounded, and let F : D −→ G be a biholomorphic mapping with F (0) = 0. Then F is a linear isomorphism.(

8
) (

9
)

Proof. For θ ∈ R put
Hθ(z) := F−1(e−iθF (eiθz)), z ∈ D.

Then Hθ is well defined, Hθ ∈ Aut(D), Hθ(0) = 0, and H ′θ(0) = id. Therefore, by Theorem 2.3.2, Hθ = id,
i.e.

F (eiθz) = eiθF (z), z ∈ D, θ ∈ R.
Let

F (z) =

∞∑
k=1

Qk(z), z ∈ P(r),

be the expansion of F into the series of homogeneous polynomials in a polydisc P(r) ⊂ D. Then

F (z) =
∞∑
k=1

ei(k−1)θQk(z), z ∈ D, θ ∈ R.

This means (Exercise) that Qk = 0 in P(r) for k ≥ 2, and so, by the identity principle, F ≡ Q1. Therefore
F is a linear mapping. Since F is biholomorphic, it must be a linear isomorphism. �

2.4. Automorphism group of Dn

Given a ∈ D put

ha(z) :=
z − a
1− az

.

Theorem 2.4.1.

Aut(Dn) = {Dn 3 (z1, . . . , zn) 7−→ (eiθ1ha1(zσ(1)), . . . , e
iθnhan(zσ(n))) ∈ Dn :

θj ∈ R, aj ∈ D, j = 1 . . . , n, σ ∈ Sn} =: G.

Aut0(Dn) = {Dn 3 (z1, . . . , zn) 7−→ (eiθ1zσ(1), . . . , e
iθnzσ(n)) ∈ Dn : θj ∈ R, j = 1 . . . , n, σ ∈ Sn} =: G0,

where Sn denotes the group of all permutations of n-elements.
The group Aut(Dn) acts transitively.

Proof. It is easy to see that G is a subgroup of Aut(Dn), G0 is a subgroup of Aut0(Dn), and G acts transitively
on Dn. It remains to show that Aut0(Dn) ⊂ G0. By Lemma 1.4.26 and Proposition 2.3.3, any automorphism
F ∈ Aut0(Dn) is a linear isomorphism such that |F (z)| = |z|, z ∈ Dn. Let [Lj,k]j,k=1,...,n denote the matrix
representation of F . We have

max
j=1,...,n

{|
n∑
k=1

Lj,kzk|} = max{|z1|, . . . , |zn|}, z = (z1, . . . , zn) ∈ Dn.

In particular,

max{|L1,k|, . . . , |Ln,k|} = 1, k = 1, . . . , n, |Lj,1|+ · · ·+ |Lj,n| ≤ 1, j = 1, . . . , n.

Thus the matrix [Lj,k] has in each row, and each column, exactly one nonzero element (which must have
absolute value 1). This means that F ∈ G0. �

(
8
)
Notice that the assumption that D is bounded is essential (take for instance D = G = C2, F (z1, z2) := (z1 +f(z2), z2),

where f ∈ O(C) is a nonlinear entire function such that f(0) = 0).(
9
)
Cf. Exercise 4.1.
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2.5. Automorphism group of Bn
For a ∈ Bn let

χa(z) : =
1

‖a‖2

√
1− ‖a‖2(‖a‖2z − 〈z, a〉a)− ‖a‖2a+ 〈z, a〉a

1− 〈z, a〉
if a 6= 0,

χ0(z) : = id,

where 〈·, ·〉 denotes the standard complex scalar product in Cn. Let U(Cn) denote the group of unitary
automorphisms of Cn.

Recall that a linear mapping L : Cn −→ Cn is unitary if 〈L(z′), L(z′′)〉 = 〈z′, z′′〉, z′, z′′ ∈ Cn (or,
equivalently, ‖L(z)‖ = ‖z‖, z ∈ Cn).

Notice that the mapping χa is defined in the domain

Da := {z ∈ Cn : 〈z, a〉 6= 1} ⊃ Bn
and χa(a) = 0.

Theorem 2.5.1.

Aut(Bn) = {U ◦ χa : U ∈ U(Cn), a ∈ Bn}, Aut0(Bn) = U(Cn).

The group Aut(Bn) acts transitively.

Proof. The fact that Aut0(Bn) = U(Cn) follows immediately from Lemma 1.4.26 and Proposition 2.3.3.
We move to the characterization of the full group Aut(Bn). Since χa(a) = 0, we only need to prove that

χa ∈ Aut(Bn).
Fix an a ∈ Bn. The case a = 0 is trivial, so assume that a 6= 0.
Direct calculations show (Exercise) that

1− 〈χa(z), χa(w)〉 =
(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a,w〉)

, z, w ∈ Bn

(cf. [30], Th. 2.2.2). Taking w = z, we conclude that χa(Bn) ⊂ Bn and χa(∂Bn) ⊂ ∂Bn.
In particular, χa ◦χ−a is well defined in a neighborhood of Bn. Using once again direct calculations, we

prove (Exercise) that χa ◦ χ−a = id. Hence χa ∈ Aut(Bn) and (χa)−1 = χ−a. �

2.6. Laurent series

Given r− = (r−1 , . . . , r
−
n ), r+ = (r+

1 , . . . , r
+
n ) ∈ Rn+ with r−j < r+

j , j = 1, . . . , n, let

A = A(r−, r+) := A1 × · · · ×An ⊂ Cn,

where
Aj := {z ∈ C : r−j ≤ |z| ≤ r

+
j }.

Let f be holomorphic in a neighborhood of A. Given r = (r1, . . . , rn) ∈ Rn>0 ∩A, define

aα(r) = afα(r) :=
1

(2πi)n

∫
∂0P(r)

f(ζ)

ζα+1
dζ, α ∈ Zn.

Proposition 2.6.1. (a) The number aα = afα := afα(r) is independent of r and

|aα| ≤
‖f‖A
rα

, α ∈ Zn, r ∈ Rn>0 ∩A. (2.6.1)

(b) If r−j = 0 for some j ∈ {1, . . . , n}, then aα = 0 for every α = (α1, . . . , αn) ∈ Zn with αj < 0.

(c) For every 0 < θ < 1 with θ > θ0 := max{
√
r−j /r

+
j : j = 1, . . . , n} we have

‖aαzα‖Aθ ≤ ‖f‖Aθ|α1|+···+|αn|, α = (α1, . . . , αn) ∈ Zn, (2.6.2)



Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
2.6. Laurent series 39

with

Aθ := A(
1

θ
r−, θr+).

(d) The Laurent series
∑
α∈Zn aαz

α converges locally normally in intA.
(e) f(z) =

∑
α∈Zn aαz

α, z ∈ intA.

Proof. (a) We apply induction on n. For n = 1 the result is well known (cf. [4], V.1.11). Assume that it is
true for n− 1. Let r = (r1, . . . , rn), r′ = (r′1, . . . , r

′
n) ∈ Rn>0 ∩A. Then

afα(r′) =
1

2πi

∫
C(r′n)

a
f(·,ζn)
(α1,...,αn−1)((r

′
1, . . . , r

′
n−1))

dζn

ζαn+1
n

=
1

2πi

∫
C(r′n)

a
f(·,ζn)
(α1,...,αn−1)((r1, . . . , rn−1))

dζn

ζαn+1
n

= afα((r1, . . . , rn−1, r
′
n)).

Similar argument with respect to the first variable shows that

afα((r1, . . . , rn−1, r
′
n)) = afα(r).

Directly from the definition of aα(r) we get (2.6.1).
(b) Use (2.6.1) with rj −→ 0.
(c) Fix α = (α1, . . . , αn) ∈ Zn and θ0 < θ < 1. We may assume that α1, . . . , αs ≥ 0, αs+1, . . . , αn < 0

with 0 ≤ s ≤ n. Take a z = (z1, . . . , zn) ∈ Aθ with z1·· · ··zn 6= 0. Let r := (|z1|/θ, . . . , |zs|/θ, θ|zs+1|, . . . , θ|zn|).
Observe that r ∈ Rn>0 ∩A. Using (a), we get:

|aαzα| ≤
‖f‖A
rα
|z1|α1 · · · · · |zn|αn = ‖f‖Aθα1+···+αs−αs+1−···−αn = ‖f‖Aθ|α1|+···+|αn|.

(d) For every compact subset K ⊂ intA there exists 0 < θ < 1 such that K ⊂ Aθ. Now we can apply
(2.6.2)

(
10
)
.

(e) We apply induction on n. For n = 1 the result is well known. Assume that it is true for n− 1. Fix
a z = (z1, z

′) ∈ intA and observe that

f(z) =
∑
α1∈Z

af(·,z′)
α1

zα1
1 =

∑
α1∈Z

( 1

2πi

∫
C(r1)

f(ζ1, z
′)

ζα1+1
1

dζ1

)
zα1

1

=
∑
α1∈Z

( 1

2πi

∫
C(r1)

1

ζα1+1
1

( ∑
α′∈Zn−1

a
f(ζ1,·)
α′ (z′)α

′
)
dζ1

)
zα1

1 =
∑
α∈Zn

( 1

2πi

∫
C(r1)

a
f(ζ1,·)
α′

ζα1+1
1

dζ1

)
zα

=
∑
α∈Zn

( 1

2πi

∫
C(r1)

1

ζα1+1
1

( 1

(2πi)n−1

∫
C(r2)×···×C(rn)

f(ζ1, ζ
′)

(ζ ′)α′+1
dζ ′
)
dζ1

)
zα =

∑
α∈Zn

aαz
α. �

Put
V j := Cj−1 × {0} × Cn−j ⊂ Cn, j = 1, . . . , n.

Proposition 2.6.2. Let D ⊂ Cn be an n-circled domain and let f ∈ O(D). For r ∈ D ∩ Rn>0 put

aα(r) :=
1

(2πi)n

∫
∂0P(r)

f(ζ)

ζα+1
dζ, α ∈ Zn.

Then:
(a) The number aα = aα(r) is independent of r (α ∈ Zn).
(b) For any compact K ⊂ D there exist C > 0 and 0 < θ < 1 such that

‖aαzα‖K ≤ Cθ|α1|+···+|αn|, α ∈ Zn.

In particular, the series
∑
α∈Zn aαz

α converges locally normally in D.

(
10
)
Cf. Example 1.3.2(b).
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(c) f(z) =
∑
α∈Zn aαz

α, z ∈ D. (d) Assume that D ∩ V j 6= ∅ for some j ∈ {1, . . . , n}. Then aα = 0 for
every α = (α1, . . . , αn) ∈ Zn with αj < 0 and, consequently, f extends holomorphically to the domain

D̃(j) := {(z′, λzj , z′′) : (z′, zj , z
′′) ∈ D ⊂ Cj−1 × C× Cn−j , λ ∈ D}.

(e) If 0 ∈ D, then f = T0f in D
(

11
)

and the function f extends holomorphically to the domain

D̃ := {(λ1z1, . . . , λnzn) : λ1, . . . , λn ∈ D, (z1, . . . , zn) ∈ D}.
(

12
)

Figure 2.2.1

Proof. (a) Fix r′ = (r′1, . . . , r
′
n), r′′ = (r′′1 , . . . , r

′′
n) ∈ D ∩ Rn>0. Since D ∩ Rn>0 is connected, there exists a

curve γ : [0, 1] −→ D∩Rn>0 such that γ(0) = r′ and γ(1) = r′′. Since the set γ([0, 1]) is compact, there exist
N ∈ N and annuli A(j) = A(r−(j), r+(j)), j = 1, . . . , N , such that

γ([0, 1]) ⊂ intA(1) ∪ · · · ∪ intA(N) ⊂⊂ D,
r′ ∈ intA(1), r′′ ∈ intA(N),
intA(j) ∩ intA(j+1) 6= ∅, j = 1, . . . , N − 1.
By Proposition 2.6.1(a) we know that for fixed j the coefficient aα(r) is independent of r ∈ A(j) ∩Rn>0.

Put a(j)
α := aα(r) for r ∈ A(j) ∩ Rn>0. Consequently, since intA(j) ∩ intA(j+1) 6= ∅, we get aα(r′) = a

(1)
α =

· · · = a
(N)
α = aα(r′′).

(b) Observe that for every compact subset K ⊂ D there exist N ∈ N, annuli A(j) = A(r−(j), r+(j)),
j = 1, . . . , N , and 0 < θ < 1 such that K ⊂ A(1)

θ ∪ · · · ∪A
(N)
θ ⊂⊂ D. Now we apply Proposition 2.6.1(c).

(c) follows immediately from Proposition 2.6.1(e).
(d) First observe that there exist r− and r+ such that r−j = 0 and A(r−, r+) ⊂ D. Hence, by Propo-

sition 2.6.1(b), aα = 0 whenever αj < 0. By (b), the series converges locally normally in D̃(j)
(

13
)

and,
therefore, its sum defines there a holomorphic extension of f .

(e) follows from (d). �

Proposition 2.6.3. Let D ⊂ Cn be a Hartogs domain over G with k-circled fibers. Then any function
f ∈ O(D) can be represented by a Hartogs–Laurent series

f(z, w) =
∑
β∈Zk

fβ(z, w)wβ , (z, w) ∈ D, (2.6.3)

(
11
)
Cf. Corollary 1.4.7.(

12
)
Observe that D̃ is a complete n-circled domain.(

13
)
If K, C, and θ are as in (b), then ‖aαzα‖K̃(j) ≤ Cθ|α1|+···+|αn|, α ∈ Zn, where K̃(j) := {(z′, λzj , z′′) : (z′, zj , z′′) ∈

K, λ ∈ D}. Moreover,
⋃
K⊂⊂D int K̃(j) = D̃(j).
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where fβ ∈ O(D) and for any z ∈ G the function fβ(z, ·) is constant on any connected component of the
fiber Dz, β ∈ Zk.

For any compact K ⊂ D there exist C > 0 and θ ∈ (0, 1) such that

|fβ(z, w)wβ | ≤ Cθ|β1|+···+|βk|, (z, w) ∈ K, β = (β1, . . . , βk) ∈ Zk.
In particular, the series converges locally normally in D.

Moreover, if D ∩ (G × {0}k) 6= ∅, then fβ ≡ 0 for all β /∈ Nk0 and (2.6.3) reduces to a Hartogs series
(cf. Proposition 1.6.5(a)).

Proof. For (z, w) ∈ D let Dz,w denote the connected component of Dz such that w ∈ Dz,w. By
Proposition 2.6.2 the function f can be represented in the form (2.6.3) with

fβ(z, w) :=
1

(2πi)k

∫
∂0P(r)

f(z, ζ)

ζβ+1
dζ, β ∈ Zk, (2.6.4)

where r is an arbitrary vector from Dz,w∩Rk>0 (we know that the formula is independent of r ∈ Dz,w∩Rk>0).
In particular, fβ(z, ·) is constant on any connected component ofDz. Moreover, if 0 ∈ Dz,w, then fβ(z, w) = 0
for all β /∈ Nk0 .

Observe that r in (2.6.4) can be chosen to be locally independent of (z, w). Hence fβ ∈ O(D), β ∈ Zk.
If D ∩ (G× {0}k) 6= ∅, then by the identity principle, fβ ≡ 0 for all β /∈ Nk0 .
We pass to the proof of the estimate. It suffices to consider only the case where K = K0×A, K0 ⊂⊂ G,

A := {(w1, . . . , wk) ∈ Ck : r−j ≤ |wj | ≤ r
+
j , j = 1, . . . , k}

for some 0 ≤ r−j < r+
j < +∞, j = 1, . . . , k

(
14
)
. Let θ ∈ (0, 1) be such that

L := K0 × {(w1, . . . , wk) ∈ Ck : θr−j ≤ |wj | ≤ r
+
j /θ, j = 1, . . . , k} ⊂ D.

Then, by Proposition 2.6.1, we get

|fβ(z, w)wβ | ≤ ‖f‖Lθ|β1|+···+|βk|, (z, w) ∈ K, β ∈ Zk. �

2.7. Domains of holomorphy

Recall that if Ω  C, then each boundary point of Ω is a singular point for a function holomorphic in
Ω. By virtue of the Hartogs theorem 2.1.2 a similar result is not true for Ω  Cn with n ≥ 2. Thus, it is
natural to look for characterizations of those open sets in Cn, n ≥ 2, which are regions of holomorphy.

On the other hand, even for n = 1, if we restrict the class of all holomorphic functions in Ω to, for
instance, the class of all bounded holomorphic functions in Ω, then not all open sets Ω ⊂ C are regions
of existence of such functions; e.g. each function from H∞(D∗) extends holomorphically to D. The same
situation appears for n ≥ 2 if, for instance, Ω = D \M , where M is a relatively closed thin subset of D
(cf. the Riemann theorem 2.1.6). Thus, it seems to be interesting to consider also the case where an open
set Ω ⊂ Cn is the region of holomorphy with respect to a family F ⊂ O(Ω).

Observe the following additional problem. Let Ω := C \R+ and let f := Log be the principal branch of
the logarithm. Then f cannot be holomorphically continued to a larger plane domain, but it is well known
that f can be holomorphically continued to a Riemann surface which is no longer a plane domain.

One could expect that the above multivaluedness of holomorphic continuation disappears if we simulta-
neously extend all holomorphic functions. Unfortunately, this is not true — cf. Example 2.8.1. Consequently,
to study maximal holomorphic extensions of open sets in Cn we have to consider ‘multivalued’ regions over
Cn (called Riemann regions).

Definition 2.7.1. Let Ω ⊂ Cn be open and let ∅ 6= F ⊂ O(Ω). We say that Ω is an F-region of holomorphy
if there are no domains Ω̃, Ω0 ⊂ Cn such that

Ω̃ 6⊂ Ω,
∅ 6= Ω0 ⊂ Ω ∩ Ω̃,(
14
)
Any compact subset of D can be covered by a finite number of compacts of the above type.



42
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

2. Extension of holomorphic functions

for every f ∈ F there exists an f̃ ∈ O(Ω̃) such that f̃ = f in Ω0.

Figure 2.3.1

Observe that by the identity principle f̃ is uniquely determined by f . Moreover, if Ω is not an F-region
of holomorphy, then we may always assume that Ω0 is a connected component of Ω ∩ Ω̃.

If Ω is an {f}-region of holomorphy, then we say that Ω is the region of existence of f (or that the
function f does not extend beyond Ω).

If Ω is an O(Ω)-region of holomorphy, then we shortly say that Ω is a region of holomorphy.
If Ω is connected, then we will say that Ω is an F-domain of holomorphy (resp. the domain of existence

of f , resp. a domain of holomorphy).

Remark 2.7.2. (a) If Ω is an F-region of holomorphy, then Ω is a G-region of holomorphy for any G ⊃ F .
In particular, any F-region of holomorphy is a region of holomorphy.
(b) Ω is an F-region of holomorphy iff Ω is an [F ]-region of holomorphy, where [F ] is the minimal subalgebra
A of O(Ω) such that
F ⊂ A,
z1, . . . , zn ∈ A,
A is ∂-stable, i.e. ∂f

∂z1
, . . . , ∂f∂zn ∈ A for any f ∈ A.

(c) Ω is an F-region of holomorphy iff any connected component D of Ω is an F|D-domain of holomorphy.
(d) Cn is an F-domain of holomorphy for every ∅ 6= F ⊂ O(Cn).
(e) Every open subset Ω  C is an F-domain of holomorphy with respect to the family

F := {Ω 3 z 7−→ 1

z − a
, a /∈ Ω}.

In particular, every open subset of C is a domain of holomorphy.
(f) Every open and fat subset Ω  C

(
15
)

is an F-domain of holomorphy with respect to the family

F := {Ω 3 z 7−→ 1

z − a
, a /∈ Ω}.

In particular, every open and fat subset of C is an H∞(Ω)-domain of holomorphy.
(g) Let K be a non-empty compact subset of a domain D ⊂ Cn, n ≥ 2, such that D \K is connected. Then,
by Theorem 2.1.2, D \K is not a domain of holomorphy.
(h) Let M be a non-empty closed thin subset of a domain D ⊂ Cn. Then, by Theorem 2.1.6, D \M is not
an H∞(D \M)-domain of holomorphy.
(i) Let D be an n-circled domain with 0 ∈ D such that D is not complete. Then, by Proposition 2.6.2, D is
not a domain of holomorphy.

(
15
)
Ω is fat if Ω = intΩ.
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Proposition 2.7.3. (a) Assume that Ω is not a region of holomorphy and let Ω̃, Ω0 be as in Definition
2.7.1 with F := O(Ω). Then

f̃(Ω̃) ⊂ f(Ω), f ∈ O(Ω).

(b) Assume that Ω is not an H∞(Ω)-region of holomorphy and let Ω̃, Ω0 be as in Definition 2.7.1 with
F := H∞(Ω). Then

‖f̃‖Ω̃ ≤ ‖f‖Ω , f ∈ H∞(Ω).

Proof. (a) Suppose that for f ∈ O(Ω) and a ∈ Ω̃ we have f̃(a) /∈ f(Ω). Let g := 1/(f − f̃(a)). Obviously
g ∈ O(Ω). Since g · (f − f̃(a)) ≡ 1 in Ω, we get g̃ · (f̃ − f̃(a)) ≡ 1 in Ω̃; contradiction.

(b) Suppose that for some f ∈ H∞(Ω) and a ∈ Ω̃ we have |f̃(a)| > ‖f‖Ω . Put g := 1/(f − f̃(a)). Then
g ∈ H∞(Ω) and we can argue as in (a). �

Proposition 2.7.4. (a) Assume that for every a ∈ ∂Ω there exists an fa ∈ O(Ω,D) such that limz→a |fa(z)| =
1 (each such a function fa is called a barrier function). Then Ω is an H∞(Ω)-region of holomorphy.
(b) Every convex domain D ⊂ Cn is an H∞(D)-domain of holomorphy.

Proof. (a) Let Ω̃ and Ω0 be as in Definition 2.7.1 with F = H∞(Ω). We may assume that Ω0 is a connected
component of Ω ∩ Ω̃. Let a ∈ ∂Ω ∩ Ω̃ ∩ ∂Ω0. Then, by Proposition 2.7.3(b), |f̃a| ≤ 1 in Ω̃. Moreover,
|f̃a(a)| = limΩ03z→a |fa(z)| = 1. Hence, by the maximum principle, |fa| = 1 in Ω0; contradiction.

(b) We may assume that D  Cn. We apply (a). Fix an a ∈ ∂D. Since D is convex, there exists a real
affine function ` : Cn −→ R such that ` < 0 in D and `(a) = 0. Let

`(z) = b0 +

n∑
j=1

(bjxj + cjyj), z = (x1 + iy1, . . . , xn + iyn),

with b0, . . . , bn, c1, . . . , cn ∈ R. Put

L(z) := b0 +

n∑
j=1

(bj − icj)zj .

Then ` = ReL. Let fa := eL. We have |fa| = eReL = e` < 1 in D and fa(a) = 1.
�

Proposition 2.7.5. Let A ⊂ Ω be an arbitrary dense subset and let F ⊂ O(Ω). Then the following
conditions are equivalent:
(i) Ω is an F-region of holomorphy;
(ii) for any a ∈ A and r > dΩ(a) there exists an f ∈ F such that d(Taf) < r, i.e.

dΩ(a) = inf{d(Taf) : f ∈ F}, a ∈ A.

Proof. (i) =⇒ (ii). Suppose that for some a ∈ A and r > dΩ(a) condition (ii) does not hold. Then the
polydiscs Ω̃ := P(a, r), Ω0 := P(a, dΩ(a)) satisfy the conditions of Definition 2.7.1; contradiction.

(ii) =⇒ (i). Suppose that Ω is not an F-region of holomorphy and let Ω̃, Ω0 be as in Definition 2.7.1.
Take a point a ∈ A ∩Ω0 such that dΩ(a) < dΩ̃(a). Then d(Taf) = d(Taf̃) ≥ dΩ̃(a) > dΩ(a) for any f ∈ F ;
contradiction. �

Definition 2.7.6. Let F ⊂ O(Ω) be a vector subspace. Assume that F is endowed with a Fréchet space
topology. We say that F is a natural Fréchet space in O(Ω) if the identity id : F −→ O(Ω) is continuous,
i.e. if a sequence (fν)∞ν=1 ⊂ F is convergent to f0 ∈ F in the sense of the topology of F , then fν −→ f0

locally uniformly in Ω.

Remark 2.7.7. O(Ω), H∞(Ω), Ak(Ω), LpH(Ω) are natural Fréchet spaces.

Let
N(F) := {f ∈ F : f does not extend beyond Ω}.
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Proposition 2.7.8. Let F be a natural Fréchet space in O(Ω). Then the following conditions are equivalent:
(i) Ω is an F-region of holomorphy;
(ii) N(F) 6= ∅;
(iii) N(F) is of second Baire category in F

(
16
)
.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) are obvious.
(i) =⇒ (iii). Let A ⊂ Ω be an arbitrary countable dense subset of Ω, A = {a1, a2, . . . }, and let

Fj,k := {f ∈ F : d(Tajf) ≥ dΩ(aj) +
1

k
}, j, k ∈ N.

By Proposition 2.7.5 we have
F \N(F) =

⋃
j,k∈N

Fj,k.

Fj,k is a vector subspace of F and Fj,k  F for every j, k ∈ N (in virtue of (i)).
We define a topology on Fj,k: a sequence (fν)∞ν=1 ⊂ Fj,k is convergent to f0 ∈ Fj,k if fν −→ f0 in F

and Tajfν −→ Tajf0 locally uniformly in the polydisc P(aj , dΩ(aj) + 1/k). The above topology is a Fréchet
topology and the mapping id : Fj,k −→ F is clearly continuous. In particular, by the Banach theorem

(
17
)
,

Fj,k is of the first category in F . Consequently, N(F) is of the second category.
�

Immediately from Definition 2.7.1 we obtain:

Remark 2.7.9. (a) If Ωι is an Fι-region of holomorphy, then Ω := int
⋂
ι∈I Ωι is an F-region of holomorphy,

where F :=
⋃
ι∈I F|Ω .

Indeed,

inf{d(Taf) : f ∈ F} = inf
ι∈I

inf{d(Taf) : f ∈ Fi} = inf
ι∈I

dΩι(a) = dΩ(a), a ∈ Ω.

In particular, if Ωι, ι ∈ I, are regions of holomorphy, then Ω is a region of holomorphy.
(b) If Ωj ⊂ Cnj is an Fj-region of holomorphy, j = 1, . . . , N , then Ω := Ω1 × · · · × ΩN is an F-region of
holomorphy, where

F := {f ◦ πj : f ∈ Fj , j = 1, . . . , N}
and πj : Cn1+···+nN −→ Cnj is the natural projection.

In particular, if Ω1, . . . , ΩN are regions of holomorphy, then Ω is a region of holomorphy.
For example, if Ω1, . . . , Ωn ⊂ C are arbitrary open subsets, then Ω1×· · ·×Ωn is a region of holomorphy

in Cn.
Indeed,

inf{d(Taf) : f ∈ F} = min
j=1,...,N

inf{d(Ta(f ◦ πj)) : f ∈ Fj}

= min
j=1,...,N

inf{d(Tajf) : f ∈ Fj} = min
j=1,...,N

dΩj (aj) = dΩ(a),

a = (a1, . . . , aN ) ∈ Ω.
(c) If Ω is a region of holomorphy, then for arbitrary functions f1, . . . , fN ∈ O(Ω), the set G := {z ∈

Ω : |fj(z)| < 1, j = 1, . . . , N} is a region of holomorphy.
Indeed, if a ∈ G is such that dG(a) = dΩ(a), then

dG(a) = dΩ(a) = inf{d(Taf) : f ∈ O(Ω)} ≥ inf{d(Taf) : f ∈ O(G)} ≥ dG(a).

If dG(a) < dΩ(a), then there exist j ∈ {1, . . . , N} and ζ ∈ T such that

∂P(a, dG(a)) ∩ {z ∈ Ω : fj(z) = ζ} 6= ∅.
(
16
)
Recall that a set A ⊂ X is of the first Baire category in a topological space X if A =

⋃∞
j=1 Aj with intAj = ∅ for

any j. We say that A ⊂ X is of the second Baire category if X \A is of the first category.(
17
)
If X, Y are Fréchet spaces, L : X −→ Y is linear and continuous, then either L(X) = Y or L(X) is of the first Baire

category in Y ; cf. [9], § 5.8.
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Consequently, g := 1/(fj − ζ) ∈ O(G) and d(Tag) = dG(a).
(d) If G is a domain of holomorphy, then for every function f ∈ O(G), the set Ω := G \ f−1(0) is a domain
of holomorphy.

Indeed, if a ∈ Ω is such that dΩ(a) = dG(a), then

dΩ(a) = inf{d(Taf) : f ∈ O(Ω)}

(exactly as above). If dΩ(a) < dG(a), then ∂P(a, dΩ(a)) ∩ f−1(0) 6= ∅. Consequently, d(Ta(1/f)) = dΩ(a).

Definition 2.7.10. Let F ⊂ O(Ω). For every compact K ⊂ Ω put

K̂F := {z ∈ Ω : ∀ f ∈ F : |f(z)| ≤ ‖f‖K}.

The set K̂F is the F-hull of K. If F = O(Ω), then K̂O(Ω) is the holomorphic hull of K. If Ω = Cn and
F = P(Cn), then K̂P(Cn) is the polynomial hull of K. If K = K̂F , then K is F-convex. If K is O(Ω)-convex,
then K is holomorphically convex. If K = K̂P(Cn), then K is polynomially convex; put K̂ := K̂P(Cn).

We say that Ω is F-convex if K̂F is compact for every compact set K ⊂ Ω. If Ω is O(Ω)-convex, then
Ω is holomorphically convex.

Remark 2.7.11. (a) If K1 ⊂ K2 and F1 ⊂ F2, then (K̂1)F2
⊂ (K̂2)F1

.
(b) The set K̂F is closed in Ω.
(c) If z1, . . . , zn ∈ F , then K̂F is bounded.

(d) If K̂F is compact, then (
̂̂
KF )F = K̂F .

(e) K̂F = K̂G , where G denotes the closure in O(Ω) of the family

{afν : a ∈ C, f ∈ F , ν ∈ N}.

In particular, if Ω = Cn, then K̂P(Cn) = K̂O(Cn).
(f) Ω is F-convex iff there exists a sequence (Kν)∞ν=1 of F-convex compact sets such that Kν ⊂ intKν+1 for
any ν and Ω =

⋃∞
ν=1Kν .

Indeed, the implication ⇐= is obvious. To prove =⇒ let (Lj)
∞
j=1 be an arbitrary sequence of compact

sets such that Lj ⊂ intLj+1 and Ω =
⋃∞
j=1 Lj . Put K1 := (̂L1)F . Since Ω =

⋃∞
j=1 intLj , there exists a

j2 > 1 such that K1 ⊂ intLj2 . Put K2 := (̂Lj2)F . Now we take a j3 > j2 such that K2 ⊂ intLj3 etc.
(g) Let Ωj ⊂ Cnj be open and let Kj ⊂ Ωj be compact, j = 1, 2. Then

̂(K1 ×K2)O(Ω1×Ω2) = (̂K1)O(Ω1) × (̂K2)O(Ω2).

In particular,
̂K1 ×K2 = K̂1 × K̂2.

Indeed, let (z0
1 , z

0
2) ∈ ̂(K1 ×K2)O(Ω1×Ω2) and let f ∈ O(Ωj). The function f can be regarded as a

holomorphic function on Ω1 ×Ω2. Thus
|f(z0

j )| ≤ max
Kj
|f |.

Conversely, let (z0
1 , z

0
2) ∈ (̂K1)O(Ω1) × (̂K2)O(Ω2) and let f ∈ O(Ω1 ×Ω2). Then

|f(z0
1 , z

0
2)| ≤ max{|f(z1, z

0
2)| : z1 ∈ K1}

≤ max{max{|f(z1, z2)| : z2 ∈ K2} : z1 ∈ K1} = max
K1×K2

|f |.

(h) Let F : Ω −→ Ω′ be biholomorphic. Then F̂ (K)O(Ω′) = F (K̂O(Ω)) for any compact K ⊂ Ω. In
particular, Ω is holomorphically convex iff Ω′ is holomorphically convex.



46
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

2. Extension of holomorphic functions

Consider the following conditions:
(HC1) Ω is an F-region of holomorphy.
(HC2) Ω is F-convex.
(HC3) For every compact set K ⊂ Ω: dΩ(K̂F ) = dΩ(K).
(HC4) For every compact set K ⊂ Ω: dΩ(K̂F ) > 0.
(HC5) For every infinite subset A ⊂ Ω without accumulation points in Ω, there exists a function f ∈ F

such that supA |f | = +∞.

Theorem 2.7.12. (a) (HC2) =⇒ (HC4), (HC3) =⇒ (HC4), (HC5) =⇒ (HC1).
(b) If z1, . . . , zn ∈ F , then (HC4) =⇒ (HC2).
(c) If F is a closed subalgebra of O(Ω), then (HC2) =⇒ (HC5).
(d) If F is ∂-stable

(
18
)
, then (HC1) =⇒ (HC3).

(e) For F = O(Ω) all the conditions (HC1), (HC2), (HC3), (HC4), (HC5) are equivalent.

(1) ∂-stability−−−−−−→ (3) −−−−→ (4) z1,...,zn∈F−−−−−−−→ (2) closed algebra−−−−−−−−−→ (5) −−−−→ (1)

Proof. (a) is obvious.
(b) follows from Remark 2.7.11(c).
(c) By Remark 2.7.11(f) there exists a sequence of F-convex compact sets such that Kν ⊂ intKν+1 and⋃∞

ν=1Kν = Ω. We may assume that for a sequence (aν)∞ν=1 ⊂ A we have aν ∈ Kν+1 \ Kν , ν ≥ 1. Since
a1 /∈ K1 and K1 is F-convex, there exists a function f1 ∈ F such that |f(a1)| > ‖f‖K1 . Replacing f1 by
(af1)N with suitable a > 0 and N ∈ N, we may assume that |f1(a1)| ≥ 1, and ‖f1‖K1 ≤ 1/2 (here we use
the fact that F is an algebra). Repeating the above argument for other points, we easily find a sequence
(fν)∞ν=1 ⊂ F such that |fν(aν)| ≥ ν +

∑ν−1
µ=1 |fµ(aν)| and ‖fν‖Kν ≤ 1/2ν . Now put f :=

∑∞
ν=1 fν (the series

is locally normally convergent in Ω). Since F is a closed subalgebra we conclude that f ∈ F . Moreover,
|f(aν)| ≥ ν − 1 for every ν.

(d) Suppose that for some a ∈ K̂F we have dΩ(a) < dΩ(K) =: r. Let 0 < σ < r. By the Cauchy
inequalities we obtain

‖Dαf‖K ≤
α!

σ|α|
‖f‖K(σ) , f ∈ F .

Hence (using the ∂-stability of F) we get

|Dαf(a)| ≤ α!

σ|α|
‖f‖K(σ) , f ∈ F .

In particular, d(Taf) ≥ σ and hence d(Taf) ≥ r, f ∈ F . Finally, since Ω is an F-region of holomorphy, we
conclude that P(a, r) ⊂ Ω; contradiction.

(e) is an immediate consequence of (a) — (d). �

Proposition 2.7.13. If Ω1 ⊂ Cn, Ω2 ⊂ Cm are holomorphically convex and f ∈ O(Ω1,Cm), then Ω :=
f−1(Ω2) is holomorphically convex.

(
19
)

Proof. Let K ⊂ Ω be compact. Then

K̂O(Ω) ⊂ Ω ∩ K̂O(Ω1) ⊂⊂ Ω1.

Suppose that there exists a sequence (zν)∞ν=1 ⊂ K̂O(Ω) such that zν −→ z0 ∈ Ω1 ∩ ∂Ω. Observe that for any
z ∈ K̂O(Ω) and g ∈ O(Ω2) we get

|g(f(z))| ≤ sup
K
|g ◦ f | = sup

f(K)

|g|.

Hence
f(K̂O(Ω)) ⊂ f̂(K)O(Ω2) ⊂⊂ Ω2.

(
18
)
Cf. Remark 2.7.2(b).(

19
)
Recall Remark 2.7.9(c), where Ω2 = Dm.
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In particular,
f(zν) ∈ f̂(K)O(Ω2) ⊂⊂ Ω2, ν ≥ 1,

and therefore f(z0) ∈ Ω2; contradiction. �

Proposition 2.7.14. Let Ω ⊂ Cn be a region of holomorphy and let V be an affine subspace of Cn. Then
Ω ∩ V is a region of holomorphy.

Proof. Let V = a+ Cv1 + · · ·+ Cvk (k := dimV ),

Ck 3 (z1, . . . , zk)
f7−→ a+ z1v1 + · · ·+ zkvk ∈ Cn.

Then Ω ∩ V ' f−1(Ω) and we can apply Proposition 2.7.13. �

Proposition 2.7.15. Let D ⊂ Cn be an n-circled domain. Then the following conditions are equivalent:
(i) D is a domain of holomorphy;
(ii) logD is a convex domain and
(∗) for every j ∈ {1, . . . , n}, if D ∩ V j 6= ∅, then D̃(j) ⊂ D

(
20
)
.

Note that the condition (∗) is always satisfied if D is complete.

Proof. (i) =⇒ (ii). Take an f ∈ O(D). Then f can be represented by a Laurent series

f(z) =
∑
α∈Zn

aαz
α, z ∈ D (2.7.1)

(Proposition 2.6.2(c)).
Fix x′0, x′′0 ∈ logD and let U ⊂⊂ logD be a domain with x′0, x′′0 ∈ U . We will prove that Ũ := convU ⊂

logD.
Let G, G̃ ⊂ (C∗)n be such that logG = U and log G̃ = Ũ , respectively. Observe that G ⊂⊂ D. By

Proposition 2.6.2(c) there exist C > 0 and 0 < θ < 1 such that

‖aαzα‖ ≤ Cθ|α1|+···+|αn|, z ∈ G, α ∈ Zn.
For any x′, x′′ ∈ U we get

(
21
)

|aα|e〈α,tx
′+(1−t)x′′〉 = (|aα|e〈α,x

′〉)t(|aα|e〈α,x
′′〉)1−t ≤ Cθ|α1|+···+|αn|, 0 ≤ t ≤ 1, α ∈ Zn.

Hence the series (2.7.1) is normally convergent in G̃ and, therefore, its sum gives there a holomorphic
extension of f . Since D is a domain of holomorphy, we conclude that G̃ ⊂ D and, consequently, Ũ ⊂ logD.

Now, suppose that D ∩ V j 6= ∅. Then, by Proposition 2.6.2(d), the function f has a holomorphic
extension to D̃(j). Since D is a domain of holomorphy, we get D̃(j) ⊂ D, which gives (∗).

(ii) =⇒ (i). Assume additionally that D is bounded.
Suppose that D is not a domain of holomorphy and let D0, D̃ be domains such that D̃ 6⊂ D, ∅ 6= D0 ⊂

D ∩ D̃, and for every function f ∈ O(D) there exists a function f̃ ∈ O(D̃) such that f̃ = f in D0.
Put

V 0 := {(z1, . . . , zn) ∈ Cn : z1 . . . zn = 0}.
First, consider the case where D̃\V 0 6⊂ D. Take an a ∈ (D̃\V 0)\D. Let U ⊂ D̃\V 0 be a neighborhood

of a. Then logU is a neighborhood of the point (log |a1|, . . . , log |an|) /∈ logD. In particular, there exists
a b = (b1, . . . , bn) ∈ U such that x0 := (log |b1|, . . . , log |bn|) /∈ logD. Recall that logD is convex and
logD ⊂ (−∞,M)n for someM ∈ R (because D is bounded). Hence there exists an α = (α1, . . . , αn) ∈ (Zn)∗
such that

logD ⊂ {x ∈ Rn : 〈x− x0, α〉 < 0}. (2.7.2)

(
20
)
V j = Cj−1 × {0} × Cn−j , D̃(j) = {(z′, λzj , z′′) : (z′, zj , z′′) ∈ D, λ ∈ D}.(

21
)
〈 , 〉 denotes the standard scalar product in Rn.
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Consequently,
|zα| ≤ |bα|, z ∈ D \ V 0.

Hence, by (∗), D ∩ V j = ∅ for all j such that αj < 0
(

22
)
. Thus D ⊂ Ω(α) (where Ω(α) is as in

Example 1.3.5) and
|zα| ≤ |bα|, z ∈ D.

Let f̃ ∈ O(D̃) denote the extension of the function D 3 z 7−→ zα. Then, by the identity principle, f̃(z) = zα

for z ∈ D̃ \ V 0. Now, by Proposition 2.7.3(b),

|zα| ≤ |bα|, z ∈ D̃ \ V 0.

Since b ∈ D̃ \ V 0, we get a contradiction.
Now consider the case where D̃ \ V 0 ⊂ D. Fix an a = (a1, . . . , an) ∈ D̃ \D ⊂ V 0. Suppose that there

exists a j ∈ {1, . . . , n} such that aj = 0 and D ∩ V j = ∅. Then obviously the function f(z) := 1/zj , z ∈ D,
is holomorphic in D and cannot be extended to D̃; contradiction.

Thus we may assume that D ∩ V j 6= ∅ for all j such that aj = 0. We may assume that a1, . . . , as 6= 0
and as+1, . . . , an = 0 for some 0 ≤ s ≤ n−1. Using (∗) we easily conclude that (a1, . . . , as, zs+1, . . . , zn) /∈ D
for any zs+1, . . . , zn ∈ C

(
23
)
. In particular, s ≥ 1.

Let π : Cn −→ Cs denote the natural projection (z1, . . . , zn) 7−→ (z1, . . . , zs). Observe that (log |a1|,
. . . , log |as|) /∈ π(logD). Hence there exists a point b = (b1, . . . , bn) ∈ D̃ (in a neighborhood of a) such
that x′0 := (log |b1|, . . . , log |bs|) /∈ π(logD). The set π(logD) is closed and contained in (−∞,M)s for some
M ∈ R. Consequently, there exists an α ∈ (Zs)∗ × {0}n−s such that (2.7.2) holds. Now we can argue as
above.

We pass to the case where D is unbounded. Let DN := D ∩ P(N), N ∈ N. Then each DN is n-circled,
bounded, satisfies (∗), and logDN = (logD) ∩ (−∞, logN)n is convex. In particular, DN \ V 0 is a domain.
Since DN ⊂ DN \ V 0, we conclude that DN is a domain.

Thus, by the first part of the proof, DN is a domain of holomorphy. Obviously, DN ⊂ DN+1.
Now, it would be sufficient to know that the union of an increasing sequence of regions of holomorphy

is a region of holomorphy. This will be done in the sequel (cf. Proposition 4.1.2(c) and Theorem 5.3.2). �

Corollary 2.7.16. If D is an n-circled domain of holomorphy with 0 ∈ D, then D is complete n-circled.

Remark 2.7.17. In the case where D is complete the implication (ii) =⇒ (i) in Proposition 2.7.15 may be
proved in a simpler way. Namely, we prove that D is holomorphically convex.

Fix a compact K ⊂ D and an arbitrary point a = (a1, . . . , an) in the closure (in Cn) of K̂O(D). We want
to show that a ∈ D. Without loss of generality we may assume that a1, . . . , as 6= 0, as+1 = · · · = an = 0,
where 1 ≤ s ≤ n. It is easily seen that there exists a finite number of points ξ(1), . . . , ξ(N) ∈ D ∩ Rn>0 such
that

K ⊂
N⋃
j=1

P(ξ(j)).

By the definition of K̂O(D) we have

|aα1
1 · · · · · aαss | ≤ max{(ξ(j)

1 )α1 · · · · · (ξ(j)
s )αs : j = 1, . . . , N}, α1, . . . , αs ∈ N0.

Hence (we take the log and divide by |α1|+ · · ·+ |αs|) we get
s∑

ν=1

tν log |aν | ≤ max{
s∑

ν=1

tν log ξ(j)
ν : j = 1, . . . , N}, t1, . . . , ts ∈ Q+, t1 + · · ·+ ts = 1,

(
22
)
Indeed, suppose that αj < 0 and D ∩ V j 6= ∅. Fix a z = (z1, . . . , zn) ∈ D \ V 0. Then, by (∗), z(λ) :=

(z1, . . . , zj−1, λzj , zj+1, . . . , zn) ∈ D \ V 0 for any λ ∈ D \ {0}. Consequently, |bα| ≥ |z(λ)α| = |λ|αj |zα|, λ ∈ D \ {0}.
Letting λ −→ 0 we get a contradiction.(

23
)
Otherwise, a = (a1, . . . , as, 0, . . . , 0) ∈ D.
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and, consequently, by continuity, for all t1, . . . , ts ∈ R+ with t1+· · ·+ts = 1. Thus the point (log |a1|, . . . , log |as|)
is in the convex hull Cs of the set

{(η1, . . . , ηs) ∈ Rs : ∃ j ∈ {1, . . . , N} : ην ≤ log ξ(j)
ν , ν = 1, . . . , s}.

Clearly the set Cs is contained in the projection onto Rs of the convex hull Cn of the set

{(η1, . . . , ηn) ∈ Rn : ∃ j ∈ {1, . . . , N} : ην ≤ log ξ(j)
ν , ν = 1, . . . , n}.

Since Cn ⊂ logD, there exists a point x ∈ logD, for which |aν | ≤ exν , ν = 1, . . . , n. Hence a ∈ D.

Example 2.7.18. For 0 < a, b < 1 let

D := {(z, w) ∈ D2 : |z| < a or |w| < b}.

Then the smallest 2-circled domain of holomorphy containing D is of the form

D̃ := {(z1, z2) ∈ D2 : |z1|− log b|z2|− log a < e− log a log b}.

2.8. Riemann regions over Cn

Example 2.8.1. (Cf. [33]) Let
D :=

(
D× (2D)

)
\
(
Q1 ∪Q2 ∪ S

)
,

where

Q1 := {(x+ i0, w) ∈ D× (2D) : x ≥ 0, |w| ≤ 1}, Q2 := {(0 + iy, w) ∈ D× (2D) : y ≥ 0, |w| ≥ 1},
S := {(x+ iy, w) ∈ D× (2D) : x ≥ 0, y ≥ 0, |w| = 1}.

Notice that D is a Hartogs domain over D∗ and

Dx+iy =


{1 < |w| < 2} if x > 0 and y = 0

D ∪ {1 < |w| < 2} if x > 0 and y > 0

D if x = 0 and y > 0

2D if x < 0 or y < 0

, x+ iy ∈ D∗.

Figure 2.4.1

Put
D̃ := {(x+ iy, w) ∈ D× (2D) : x 6= 0 or y /∈ [0, 1)}
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For f ∈ O(D) let

f̃(z, w) :=
1

2πi

∫
C(r)

f(z, ζ)

ζ − w
dζ, (z, w) ∈ D̃, 1 < r < 2, |w| < r;

notice that f̃(z, w) is independent of r with 1 < r < 2, |w| < r. Then f̃ ∈ O(D̃) and f̃ = f in the domain

{(x+ iy, w) ∈ D× (2D) : x < 0 or y < 0} ∪ {(x+ iy, w) ∈ D× (2D) : (x 6= 0 or y /∈ [0, 1)), 1 < |w| < 2}.

Consequently, every function holomorphic in D extends (in the sense of Definition 2.7.1) to D̃.
Let Log : C \ R− −→ C denote the principal branch of the logarithm. Define

`− : C \ R+ −→ C, `−(z) := Log(−z), `+ : C \ iR+ −→ C, `+(z) := Log(iz) + iπ/2.

Observe that `+ = `− in the domain {x + iy : x < 0 or y < 0} and `+ = `− + 2πi in the domain
∆ := {x+ iy : x > 0 and y > 0}.

Define f0 : D −→ C,

f0(z, w) :=

{
exp((1/2)`−(z)) if |w| ≤ 1

exp((1/2)`+(z)) if |w| ≥ 1
.

One can easily prove that f0 is well defined and holomorphic in D. It is also clear that f̃0(z, w) =

exp((1/2)`+(z)), (z, w) ∈ D̃. On the other hand, for (z, w) ∈ ∆ × D we have f̃0(z, w) = exp((1/2)`+(z)) =
− exp((1/2)`−(z)) = −f0(z, w).

Consequently, the extension of the function f0 cannot be univalent on D̃.

A pair (X, p) is called a Riemann region over Cn if:
X is a topological Hausdorff space,
p : X −→ Cn is a local homeomorphism, i.e. an arbitrary point a ∈ X has an open neighborhood U such

that the set p(U) is open in Cn and the mapping p|U : U −→ p(U) is a homeomorphism.
Any open set U with the above property will be called univalent or schlicht.
If X is connected, then we say that (X, p) is a Riemann domain over Cn.

Remark 2.8.2. (a) If Ω is an open subset of Cn, then (Ω, id) is a Riemann region.
(b) If (X, p) is a Riemann region and Y ⊂ X is open, then (Y, p|Y ) is a Riemann region.
(c) If (Xj , pj) is a Riemann region over Cnj , j = 1 . . . , N , then (X1 × · · · ×XN , p1 × · · · × pN ) is a Riemann
region over Cn1+···+nN .

Definition 2.8.3. Let (X, p), (Y, q) be Riemann regions over Cn. A mapping ϕ : X −→ Y is called a
morphism if ϕ is continuous and q ◦ ϕ = p.

X
ϕ−−−−→ Y

J
Ĵ

p 


�

q

Cn
If, moreover, ϕ is bijective and ϕ−1 is also a morphism, then we say that ϕ is an isomorphism.

Remark 2.8.4. (a) The composition of morphisms is a morphism.

X
ϕ−−−−→ Y

ψ−−−−→ Z

Z
ZZ~q

yp �
��= r

Cn
(b) If (X, p) is a Riemann region over Cn, then p is a morphism of (X, p) into (Cn, id).
(c) Every morphism is a local homeomorphism and, therefore, an open mapping. In particular, ϕ(X) is an
open subset of Y . Moreover, if U ⊂ X is univalent, then ϕ(U) is univalent in Y .
(d) If (X, p) is a Riemann region, then p is an open mapping.
(e) If a morphism ϕ is bijective, then it is an isomorphism.
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Definition 2.8.5. Let (X, p), (Y, q) be Riemann regions over Cn and Cm, respectively. A mapping f :
X −→ Y is called holomorphic (f ∈ O(X,Y )) if f is continuous and for any univalent open set U ⊂ X the
mapping

q ◦ f ◦ (p|U )−1 : p(U) −→ Cm

is holomorphic in the standard sense.

X
f−−−−→ Y

(p|U )−1

x yq
U Cm

If (Y, q) = (C, id), then we write f ∈ O(X).

Remark 2.8.6. (a) In the case where (X, p) = (Ω, id) (with Ω ∈ topCn) and (Y, q) = (G, id) (with
G ∈ topCm) the above definition of a holomorphic mapping is equivalent to the standard one.
(b) The composition of holomorphic mappings is holomorphic.
(c) Every morphism is a holomorphic mapping. In particular, if (X, p) is a Riemann region, then p is
holomorphic.

Lemma 2.8.7 (Identity principle for liftings). Let (X, p) be a Riemann region, let T be a connected topological
space, and let γj : T −→ X, j = 1, 2, be continuous mappings such that p ◦ γ1 ≡ p ◦ γ2 and γ1(t0) = γ2(t0)
for some t0 ∈ T . Then γ1 ≡ γ2.

T
γj−−−−→ X

Z
ZZ~p◦γj

yp
Cn

Proof. Let T0 := {t ∈ T : γ1(t) = γ2(t)}. The set T0 is closed and non-empty. It is sufficient to show that it
is open. Fix a t ∈ T0 and put a := γ1(t) = γ2(t). Let U be a univalent neighborhood of a and let V be a
neighborhood of t such that γj(V ) ⊂ U , j = 1, 2. Then (p|U ) ◦ γ1 = (p|U ) ◦ γ2 in V , and hence V ⊂ T0. �

Proposition 2.8.8 (Identity principle). Let (X, p), (Y, q) be Riemann regions over Cn and Cm, respectively,
f, g ∈ O(X,Y ). Assume that X is connected and f = g on some non-empty open subset. Then f ≡ g.

Proof. Because of Lemma 2.8.7 it is sufficient to show that f̃ ≡ g̃, where f̃ := q ◦ f , g̃ := q ◦ g. Put

X0 := {x ∈ X : f̃ = g̃ in some neighborhood of x}.

The set X0 is open and non-empty. It is sufficient to show that it is closed. Let a be an accumulation point
of X0 and let U be a univalent connected neighborhood of a. Note that f̃ ◦ (p|U )−1 = g̃ ◦ (p|U )−1 on a
non-empty and open set p(X0 ∩ U). Hence, by the standard identity principle, f̃ ◦ (p|U )−1 ≡ g̃ ◦ (p|U )−1,
which shows that U ⊂ X0. �

For Riemann regions (X, p), (Y, q) and a morphism ϕ : X −→ Y let

ϕ∗ : O(Y ) −→ O(X), ϕ∗(f) := f ◦ ϕ.

Remark 2.8.9. The mapping ϕ∗ is injective iff every connected component of Y intersects ϕ(X).

Definition 2.8.10. Let (X, p), (Y, q) be Riemann regions over Cn, ∅ 6= F ⊂ O(X). We say that a morphism
ϕ : X −→ Y gives an F-extension if ϕ∗ is injective and F ⊂ ϕ∗(O(Y )).

We shortly write: ϕ : X −→ Y is an F-extension.
O(X)-extensions are called holomorphic extensions.
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An F-extension ϕ : X −→ Y is called a maximal F-extension if for any F-extension ψ : X −→ Z there
exists a morphism σ : Z −→ Y such that σ ◦ ψ = ϕ.

X
ϕ−−−−→ Y

Z
ZZ~ψ

xσ
Z

If ϕ : X −→ Y is a maximal F-extension, then (Y, q) is called an F-envelope of holomorphy of (X, p).
If F = O(X), then we say that ϕ : X −→ Y is a maximal holomorphic extension and that (Y, q) is an

envelope of holomorphy of (X, p).
We say that (X, p) is an F-region of holomorphy if for any F-extension ϕ : X −→ Y the morphism ϕ is

bijective.

Remark 2.8.11. (a) If ϕ : X −→ Y is an F-extension, then it is a G-extension for any ∅ 6= G ⊂ F .
(b) If ϕ : X −→ Y is an F-extension and ψ : Y −→ Z is a (ϕ∗)−1(F)-extension, then ψ ◦ ϕ : X −→ Z is an
F-extension.

Proposition 2.8.12. (a) The maximal F-extension is determined uniquely up to an isomorphism.
(b) If ϕ : X −→ Y is the maximal F-extension, then Y is a G-region of holomorphy with G := (ϕ∗)−1(F).
(c) If ϕ : X −→ Y is the maximal F-extension, then X is an F-region of holomorphy iff ϕ is an isomorphism.

Proof. (a) Suppose that ϕ : X −→ Y and ψ : X −→ Z are two maximal F-extensions. Then there exist
morphisms σ : Z −→ Y and τ : Y −→ Z such that σ ◦ ψ = ϕ, τ ◦ ϕ = ψ.

X
ϕ−−−−→ Y

Z
ZZ~ψ τ

yxσ
Z

Consequently, σ ◦ τ ◦ ϕ = ϕ, i.e. σ ◦ τ = idY on ϕ(X). Since every connected component of Y intersects
ϕ(X), the identity principle implies that σ ◦ τ = idY . Similarly, τ ◦ σ = idZ .

(b) Suppose that ψ : Y −→ Z is a G-extension. Then ψ ◦ ϕ : X −→ Z is an F-extension. Consequently,
since ϕ : X −→ Y is maximal, there exists a morphism σ : Z −→ Y such that σ ◦ (ψ ◦ ϕ) = ϕ. Hence,
similarly as in (a), σ ◦ ψ = idY , ψ ◦ σ = idZ . In particular, ψ is an isomorphism.

(c) The implication =⇒ is trivial. To prove ⇐= suppose that ψ : X −→ Z is an arbitrary F-extension.
Since ϕ : X −→ Y is maximal, there exists a morphism σ : Z −→ Y such that σ ◦ ψ = ϕ. We know that ϕ
is an isomorphism. Consequently, ψ is an isomorphism with ψ−1 = ϕ−1 ◦ σ. �

Example 2.8.13 (Sheaf of germs). (Cf. § 1.8.) Let I 6= ∅ be arbitrary. For a ∈ Cn let (I)Õa denote the set
of all pairs (U,F) such that U is a neighborhood of a and F : I −→ O(U). We define an equivalence relation
in (I)Õa:

(U,F)
a∼ (V,G)

df⇐⇒ there exists a neighborhood W of a (W ⊂ U ∩ V )

such that F(ι) = G(ι) in W for any ι ∈ I.
Put

(I)Oa := (I)Õa/
a∼ , (I)O :=

⋃
a∈Cn
{a} × (I)Oa, πI : (I)O −→ Cn, πI(a, f) := a.

We endow (I)O with the topology in which the basis of neighborhoods of a point (a, f) ∈ (I)O consists of all
sets of the form

U(a, f, U) := {(z, [(U,F)] z∼) : z ∈ U},
where (U,F) is a representant of f. One can easily check that the topology is well defined and Hausdorff.

Indeed, if (a, f) 6= (b, g), f = [(U,F)] a∼, g = [(V,G)] b∼
then:
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if a 6= b, then U(a, f, U ′) ∩ U(b, g, V ′) = ∅ provided that U ′ ⊂ U , V ′ ⊂ V , and U ′ ∩ V ′ = ∅,
if a = b, then, by the identity principle for holomorphic functions, U(a, f,W ) ∩ U(a, g,W ) = ∅ for any

connected neighborhood W of a such that W ⊂ U ∩ V .
Moreover, the projection πI maps homeomorphically U(a, f, U) onto U and

(πI |U(a,f,U))
−1(z) = (z, [(U,F)] z∼), z ∈ U.

Consequently, πI is a local homeomorphism and ((I)O, πI) is a Riemann region over Cn.
Fix a ι ∈ I and let Fι : (I)O −→ C be given by the formula

Fι(a, f) := F(ι)(a),

where (U,F) is a representant of f. Note that Fι is well defined and

Fι ◦ (πI |U(a,f,U))
−1 = F(ι).

Thus Fι is holomorphic on (I)O.

Theorem 2.8.14 (Thullen theorem). For any Riemann region (X, p) and a family ∅ 6= F ⊂ O(X) there
exists the maximal F-extension.

Proof. Fix (X, p) and F . First we define a morphism ϕ : X −→ (F)O (where ((F)O, πF ) is the Riemann
region constructed in Example 2.8.13 with I := F). For x ∈ X we put

ϕ(x) := (p(x), [(p(Ux),F)]p(x)∼
),

where
Ux is a univalent neighborhood of x,
F(f) := f ◦ (p|Ux)−1, f ∈ F .
Observe that ϕ is well defined, πF ◦ ϕ = p, and ϕ is continuous. Thus ϕ is a morphism.
Moreover, for an arbitrary f ∈ F the mapping Ff (constructed in Example 2.8.13) is holomorphic on

(F)O and Ff ◦ ϕ = f .
Let Y denote the union of those connected components of (F)O that intersect ϕ(X) and put q := πF |Y .

We have proved that ϕ : X −→ Y is an F-extension.
Now we show that the above extension is maximal. Let ψ : X −→ Z be another F-extension. Put

G := (ψ∗)−1(F) and let σ : Z −→ (G)O be constructed in the same way as ϕ. Observe ((G)O, πG) = ((F)O, πF )
(because the mapping G 3 g 7−→ g ◦ ψ ∈ F is bijective). For x ∈ X we have

σ(ψ(x)) = (r(ψ(x)), [(r(ψ(Ux)),G)]r(ψ(x))∼
) = (p(x), [(p(Ux),F)]p(x)∼

) = ϕ(x),

where
Ux is a univalent neighborhood of x,
G(g) := g ◦ (r|ψ(Ux))

−1 = g ◦ ψ ◦ (p|Ux)−1, g ∈ G,
F(f) := f ◦ (p|Ux)−1, f ∈ F .
Moreover, since any connected component of Z intersects ψ(X), we conclude that σ(Z) ⊂ Y . �

Proposition 2.8.15. Let Ω ⊂ Cn be open and let ∅ 6= F ⊂ O(Ω). Then Ω is an F-region of holomorphy
in the sense of Definition 2.7.1 iff (Ω, id) is an F-region of holomorphy in the sense of Definition 2.8.10.

Proof. =⇒. Let ψ : Ω −→ Z be an F-extension. We have to show that ψ is bijective. Since r ◦ ψ = id,
the mapping ψ must be injective. Suppose that ψ is not surjective and let b ∈ Z be an arbitrary boundary
point of ψ(Ω). Let V ⊂ Z be a univalent and connected neighborhood of b. Put Ω̃ := r(V ), Ω0 := r(V 0),
where V 0 is a connected component of V ∩ ψ(Ω). Take an f ∈ F . Let g ∈ O(Z) be such that g ◦ ψ = f .
Put f̃ := g ◦ (r|V )−1. Then f̃ ∈ O(Ω̃) and f̃ = f on Ω0. Consequently, Ω̃ ⊂ Ω; contradiction.
⇐=. Suppose that Ω is not an F-region of holomorphy and let Ω̃, Ω0 be as in Definition 2.7.1 (for any

f ∈ F there exists an f̃ ∈ O(Ω̃) such that f̃ = f on Ω0). Let ϕ : Ω −→ Y be the F-maximal extension
constructed in the proof of the Thullen theorem. For a ∈ Ω0 we have

ϕ(a) = (a, [(Ω0,F)] a∼),
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where F(f) := f , f ∈ F . Hence
{(a, [(Ω̃,G)] a∼) : a ∈ Ω̃} ⊂ Y,

where G(f) := f̃ , f ∈ F . In particular, Ω̃ ⊂ q(Y ). Consequently, ϕ cannot be an isomorphism; contradic-
tion. �

Directly from the proof of the Thullen theorem we get the following corollaries.

Corollary 2.8.16. Let (X, p), (Y, q) be Riemann domains over Cn, let τ : X −→ Y be a morphism, and
let G ⊂ O(Y ), τ∗(G) ⊂ F ⊂ O(X). Assume that ϕ : X −→ X̂ and ψ : Y −→ Ŷ are the maximal F-
and G-extension, respectively, where (X̂, p̂) and (Ŷ , q̂) are Riemann domains over Cn. Then there exists a
morphism τ̂ : X̂ −→ Ŷ such that τ̂ ◦ ϕ = ψ ◦ τ . In particular, p̂(X̂) ⊂ q̂(Ŷ ).

X
τ−−−−→ Y

ϕ

y yψ
X̂

τ̂−−−−→ Ŷ

Definition 2.8.17. If (X, p) is a Riemann region over Cn and f ∈ O(X), then for any α ∈ Nn0 define

Dαf(x) := Dα(f ◦ (p|Ux)−1)(p(x)), x ∈ X,
where Ux is an arbitrary univalent neighborhood of x.

Observe that Dαf is well defined and holomorphic on X.

Corollary 2.8.18. Let (X, p) be a Riemann region over Cn, let F ⊂ O(X), and let ϕ : X −→ Y be the
maximal F-extension. Then ϕ is injective iff for any points x1, x2 ∈ X with x1 6= x2 and p(x1) = p(x2)
there exist f ∈ F and α ∈ Nn0 such that Dαf(x1) 6= Dαf(x2).

In particular, if F = O(X), then ϕ is injective iff O(X) separates points in X.
Consequently, if (X, p) is a region of holomorphy, then O(X) separates points in X.

Proposition 2.8.19. Let (X, p), (Y, q) be Riemann domains over Cn, let F ⊂ O(X), and let τ : X −→ Y be
an F-extension. Assume that (Y, q) is a G-domain of holomorphy, where G := (τ∗)−1(F). Then τ : X −→ Y
is the maximal F-extension.

Proof. Let ϕ : X −→ X̂ be the maximal F-extension. By definition there exists a morphism σ : Y −→ X̂

such that σ ◦ τ = ϕ. On the other hand, by Corollary 2.8.16, there exists a morphism τ̂ : X̂ −→ Y such
that τ̂ ◦ ϕ = τ . Consequently, (τ̂ ◦ σ) ◦ τ = τ and (σ ◦ τ̂) ◦ ϕ = ϕ. Hence, by the identity principle, σ is an
isomorphism and σ−1 = τ̂ . �

It is clear that the notion of the natural Fréchet space (Definition 2.7.6) extends to Riemann regions
over Cn. Observe that if X is countable at infinity (i.e. X =

⋃∞
ν=1Kν , where Kν ⊂ intKν+1 and Kν is

compact, ν ∈ N), then O(X) with the topology of locally uniform convergence is a Fréchet space.
It is well known that any Riemann domain over Cn is countable at infinity (cf. [22]).

Remark 2.8.20. (a) Let (X, p), (Y, q) be countable at infinity Riemann regions over Cn, let F ⊂ O(X) and
let ϕ : X −→ Y be an F-extension. Assume that F is a natural Fréchet space in O(X) and let qk : F −→ R+,
k ∈ N, be a family of seminorms defining the topology of F . Let (Lk)∞k=1 be a sequence of compact subsets
of Y such that Lk ⊂ intLk+1 and Y =

⋃∞
k=1 Lk. Put G := (ϕ∗)−1(F). We endow G with the topology

generated by the following seminorms:

G 3 g 7−→ qk(g ◦ ϕ), G 3 g 7−→ ‖g‖Lk , k ∈ N.
Then G is a Fréchet space. Moreover, by the Banach theorem, ϕ∗|G : G −→ F is a topological isomorphism.

Indeed, let (gν)∞ν=1 ⊂ G be a Cauchy sequence. Then (gν◦ϕ)∞ν=1 is a Cauchy sequence in F . Consequently,
gν ◦ ϕ −→ f0 in F . On the other hand, (gν)∞ν=1 ⊂ O(Y ) is a Cauchy sequence in the topology of locally
uniform convergence on Y . Thus gν −→ g0 locally uniformly in Y . Clearly, g0 ◦ ϕ = f0. Thus g0 ∈ G and
gν −→ g0 in G.
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(b) In the case where F = O(X) (with the topology of locally uniform convergence on X) the continuity of
(ϕ∗)−1 means that for any compact L ⊂ Y there exists a compact K ⊂ X such that

‖g‖L ≤ ‖g ◦ ϕ‖K , g ∈ O(Y ).

Indeed, since (ϕ∗)−1 is continuous, for any compact L ⊂ Y there exist C > 0 and a compact K ⊂ X
such that

‖g‖L ≤ C‖g ◦ ϕ‖K , g ∈ O(Y ).

In particular, taking gk instead of g, we get

‖g‖L ≤ C1/k‖g ◦ ϕ‖K , g ∈ O(Y ), k ∈ N.
Letting k −→ +∞ we get the required estimate.

For any domain D ⊂ Cn define
D̂ := int

⋂
U

U,

where the intersection is taken over all domains of holomorphy U ⊂ Cn with D ⊂ U . Observe that D̂ is the
smallest domain of holomorphy containing D (Remark 2.7.9(a)).

Remark 2.8.21. (a) By Corollary 2.8.16, if ϕ : D −→ X̂ is the maximal holomorphic extension ((X̂, p̂) is
a Riemann domain over Cn), then p̂(X̂) ⊂ D̂.

Indeed, we take (X, p) := (D, id), τ := id, G := O(D̂), F := O(D), (Ŷ , q̂) := (D̂, id), ψ := id (Proposition
2.8.12). Then, by Corollary 2.8.16, there exists a morphism τ̂ : X̂ −→ D̂ such that τ̂◦ϕ = id onD. Obviously,
τ̂ = p̂. Hence p̂(X̂) = τ̂(X̂) ⊂ D̂.
(b) If X̂ is univalent, then p̂(X̂) = D̂. Consequently, if the envelope of holomorphy of D is univalent, then
D̂ is the envelope of holomorphy of D.

Indeed, if X̂ is univalent, then by Proposition 2.8.12(b) p̂(X̂) is a domain of holomorphy containing D(
24
)
. Hence D̂ ⊂ p̂(X̂).

(c) The envelope of D is univalent iff O(D̂)|D = O(D).
Indeed, the implication ⇐= follows from Proposition 2.8.19.

Proposition 2.8.22. Let D ⊂ U be domains such that U has the univalent envelope of holomorphy and
O(U)|D is dense in O(D) in the topology of locally uniform convergence. Then the envelope of holomorphy
of D is also univalent.

Proof. Let ϕ : D −→ X̂ be the maximal holomorphic extension with (X̂, p̂) being a Riemann domain over Cn

(the Thullen theorem). Recall (Corollary 2.8.18) that O(X̂) separates points in X̂. Thus, to prove that X̂
univalent it suffices to prove that the space p̂∗(O(p̂(X̂))) is dense in O(X̂) in the topology of locally uniform
convergence on X̂.

Take a g ∈ O(X̂), let f := g◦ϕ ∈ O(D), and let (fν)∞ν=1 ⊂ O(U) be such that fν −→ f locally uniformly
in D. Let f̂ν ∈ O(Û) denote the continuation of fν . Recall that p̂(X̂) ⊂ D̂ ⊂ Û (Remark 2.8.21). Put
gν := f̂ν ◦ p̂ ∈ p̂∗(O(p̂(X̂))). Then gν ◦ ϕ = fν −→ f = g ◦ ϕ. Consequently, by Remark 2.8.20, gν −→ g

locally uniformly in X̂. �

Remark 2.8.23. Let D ⊂ U ⊂ Cn be domains such that U is a domain of holomorphy, and let F : U −→ U

be biholomorphic such that F (D) = D. Then F (D̂) = D̂.

Lemma 2.8.24. (a) Let D ⊂ Cn be a domain. Then the following implications are true:
D is n-circled =⇒ D̂ is n-circled.
D is complete n-circled =⇒ D̂ is complete n-circled.
D is balanced =⇒ D̂ is balanced.(
24
)

(p̂(X̂), id) is isomorphic with (X̂, p̂).



56
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

2. Extension of holomorphic functions

(b) Let D ⊂ Cn be a Hartogs domain over a domain of holomorphy G ⊂ Cn−k. Then the following implica-
tions are true:
∀z∈G Dz is k-circled =⇒ ∀z∈G D̂z is k-circled.
∀z∈G Dz is complete k-circled =⇒ ∀z∈G D̂z is complete k-circled.
∀z∈G Dz is balanced =⇒ ∀z∈G D̂z is balanced.

Proof. (a) See the proof of (b).
(b) We apply Proposition 2.8.22 with U = G × Ck. In the first case we take F (z, w) := (z, eiθ1w1, . . . ,

eiθkwk) with θ1, . . . , θk ∈ R.
In the third case we put F (z, w) := (z, λw) with 0 < |λ| ≤ 1.
In the second case we already know that the fibers of D̂ are k-circled and balanced. By Proposition

2.7.14, D̂z is a domain of holomorphy for any z ∈ G. Now we can use Corollary 2.7.16. �

Corollary 2.8.25. (a) Any n-circled or balanced domain D ⊂ Cn has the univalent envelope of holomorphy.
(b) Let D ⊂ Cn be a Hartogs domain over a domain G ⊂ Cn−k such that the envelope of holomorphy of G
is univalent. Each of the following conditions implies that the envelope of holomorphy of D is univalent:
∀z∈G Dz is connected, k-circled, and D ∩ (G× {0}) 6= ∅

(
25
)
.

∀z∈G Dz is balanced.
∀z∈G Dz is connected, k-circled, and Dz ⊂ (C∗)k

(
26
)
.

Proof. In all the cases we will apply Proposition 2.8.22.
(a) In the first case we put U = U1 × · · · × Un, where

Uj :=

{
C∗ if D ∩ V j = ∅
C if D ∩ V j 6= ∅

, j = 1, . . . , n

where V j := Cj−1 × {0} × Cn−j , j = 1, . . . , n. Note that U is a domain of holomorphy. Now, Proposition
2.6.2 implies that O(U)|D is dense in O(D).

In the second case we put U := Cn and we use Proposition 1.6.2 to check that O(U)|D is dense in O(D).
(b) In the first case we take U := G× Ck. By Corollary 1.5.7 Ĝ× Ck is the envelope of holomorphy of

G× Ck. Now, by Proposition 2.6.3, O(U)|D is dense in O(D).
In the second case take U := G× Ck and use Proposition 1.6.5(b).
In the third case put U := G× (C∗)k and apply once again Proposition 2.6.3.

�

Exercises

2.1. LetK ⊂ Cn, n ≥ 2, be compact and let a function f ∈ O(Cn\K) be such that lim sup|z|→∞ |f(z)| <
+∞. Does it follow that f = const?

2.2. Let D be a domain in Cn and let F : D −→ Cn be a locally biholomorphic mapping (i.e. any point
a ∈ D has a neighborhood U such that F (U) is open and F |U : U −→ F (U) is biholomorphic). Let K ⊂ D
be compact such that D \ K is a domain. Assume that F |D\K : D \ K −→ F (D \ K) is biholomorphic.
Prove that F : D −→ F (D) is biholomorphic.

2.3. Let
E(1,m) := {(z1, z2) ∈ C2 : |z1|2 + |z2|2m < 1}, m > 0.

Given a ∈ D put

ψ : E(1,m) 3 (z1, z2) −→ (
z1 − a
1− az1

,
(1− |a|2)

1
2m

(1− az1)
1
m

z2) ∈ C2.

Prove that ψ ∈ Aut(E(1,m)).(
25
)
Notice that if the fibers Dz , z ∈ G, are not connected, then the envelope of holomorphy of D need not be univalent

(Example 2.8.1).(
26
)
For instance, D is a Hartogs–Laurent domain over a domain with univalent envelope of holomorphy; cf. Remark

1.6.4(d).
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2.4. Determine Aut(T ), where T is Hartogs’ triangle

T := {(z1, z2) ∈ C2 : |z1| < |z2| < 1}.

2.5. Find Aut(D2 \ ((1/2)D)2).
2.6. Does there exist a compact set K ⊂ D2, such that intK 6= ∅, 0 /∈ K, and 0 is not a fixed point of

Aut(D2 \K)?
2.7. (Analytic sets, cf. [3].) A subset M of an open set Ω ⊂ Cn is an analytic subset of Ω if for

any point a ∈ Ω there exist an open neighborhood U ⊂ Ω and f1, . . . , fN ∈ O(U) (N = N(a)) such that
M ∩ Ua = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

Let M be an analytic subset of Ω. A point a ∈ M is regular (we write a ∈ Reg(M)) if there exists a
neighborhood Ua ⊂ Ω such that M ∩ Ua is a complex manifold. Points from Sing(M) := M \ Reg(M) are
called singular. Notice that if n = 1, then Sing(M) = ∅.

We say that M is irreducible if there are no analytic subsets M1,M2 of Ω such that M = M1 ∪M2 and
Mj 6= M , j = 1, 2.

Verify the following statements:
(a) M is an analytic subset of Ω iff M ∩ C is an analytic subset of C for any connected component C

of Ω.
(b) ∅ and Ω are analytic subsets of Ω. Any analytic subset of Ω is closed in Ω.
(c) If M is a complex submanifold of Ω, then M is an analytic subset of Ω with Sing(M) = ∅.
(d) If M is an analytic subset of a domain D ⊂ Cn, then either M = D or M is thin in D (Definition

2.1.4). Consequently, D \M is a domain.
In particular, if M is an analytic subset of a domain D ⊂ C, then either M = D or M is a discrete

subset of Ω.
(e) If M1, . . . ,MN are analytic subsets of Ω, then M1 ∩ · · · ∩MN is an analytic subset of Ω.
(f) If M1, . . . ,MN are analytic subsets of Ω, then M1 ∪ · · · ∪MN is an analytic subset of Ω.
(g) If F : Ω1 −→ Ω2 is holomorphic (Ωj is an open set in Cnj , j = 1, 2) and M is an analytic subset of

Ω2, then F−1(M) is an analytic subset of Ω1.
In particular, if F : Ω1 −→ Ω2 is biholomorphic (n1 = n2), then M is an analytic subset of Ω2 iff

F−1(M) is an analytic subset of Ω1.
(h) If Mj is an analytic subset of Ωj ⊂ Cnj , j = 1, . . . , N , then M1 × · · · ×MN is an analytic subset of

Ω1 × · · · ×ΩN .
(i) Let M := f−1(0), f ∈ O(Ω). Then the set Reg(M) is dense in M .
2.8. Verify whether the sets

{(z1, z2) ∈ C2 : z2
1 = z3

2}, {(z1, z2, z3) ∈ C3 : z1z2 = z2
3}

are reducible. Determine their singular points.
2.9. Let g : C→ C2, g(z) := (z2−z, z3−z). Is g(C)∩U an analytic subset of U for some neighborhood

U of (0, 0) ∈ C2?
2.10. Let U be a neighborhood of a point a ∈ ∂Bn (n ≥ 2) and let D := U \ Bn. Then there exists a

neighborhood W of the point a such that every function holomorphic in D extends holomorphically to W .
2.11. Let D and G be convex domains in C containing 0 and let

K := [0, 1] · (∂D × ∂G).

Prove that any function f holomorphic in a neighborhood of K, extends holomorphically to a neighborhood
of D ×G.

2.12. LetM be a C1 submanifold of a domain D ⊂ Cn, dimRM ≤ 2n−1. Show that O(D\M)∩C(D) =
O(D), i.e. every function holomorphic in D \M and continuous in D is holomorphic in D.

2.13. Let f ∈ O(Bn) ∩ C(Bn), n ≥ 2. Suppose that |f | = 1 in ∂Bn. Does it follow that f = const?
2.14. Check whether Proposition 2.7.4(a) remains true if the barrier function fa exists only for all

points a from a dense subset of ∂Ω.
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2.15. Let a domain D be bounded and convex. Construct a holomorphic function which does not
extend beyond D (cf. Proposition 2.7.4(b)).

2.16. Let Ω ⊂ Cn be open and let ϕ : Ω −→ R be continuous. Put

L2
h(Ω,ϕ) := {f ∈ O(Ω) :

∫
Ω

|f |2e−ϕdL2n < +∞}.

(a) Prove that L2
h(Ω,ϕ) with the scalar product

L2
h(Ω,ϕ)× L2

h(Ω,ϕ) 3 (f, g) −→ 〈f, g〉ϕ :=

∫
Ω

fge−ϕdL2n ∈ C

is a complex Hilbert space; let ‖ ‖ϕ denote the norm induced by the scalar product.
Moreover, L2

h(Ω,ϕ) is a natural Hilbert space in O(Ω).
(b) Let F ⊂ O(Ω) be locally uniformly bounded. Then there exists a continuous (even C∞) function

ϕ : Ω −→ R such that

F ⊂ {f ∈ L2
h(Ω,ϕ) :

∫
Ω

|f |2e−ϕdL2n ≤ 1}.

(c) If Ω = Ω1 ×Ω2, then the function ϕ in (b) can be found in the form ϕ(z1, z2) = (ϕ1 ⊕ϕ2)(z1, z2) :=
ϕ1(z1) + ϕ2(z2), (z1, z2) ∈ Ω1 ×Ω2.

2.17. Let b ∈ L2
h(Ω1, ϕ1), f ∈ L2

h(Ω1 ×Ω2, ϕ1 ⊕ ϕ2),

g(z2) :=

∫
Ω1

f(·, z2)be−ϕ1dL2n1 , z2 ∈ Ω2.

Prove that g ∈ L2
h(Ω2, ϕ2).

2.18. Let (bj,k)k∈Aj ⊂ L2
h(Ω,ϕj) be an othonormal basis (#Aj ≤ ℵ0), j = 1, 2. Prove that (b1,k ⊗

b2,`)(k,`)∈A1×A2

(
27
)

is an orthonormal basis in L2
h(Ω1 ×Ω2, ϕ1 ⊕ ϕ2).

2.19. For Fj ⊂ O(Ωj), j = 1, 2, let F1 ⊗F2 denote the vector subspace of O(Ω1 ×Ω2) spanned by the
set

{f1 ⊗ f2 : (f1, f2) ∈ F1 ×F2}.
Using Exercise 2.18 prove that the space L2

h(Ω1, ϕ1)⊗ L2
h(Ω2, ϕ2) is dense in L2

h(Ω1 ×Ω2, ϕ1 ⊕ ϕ2).
2.20. Using Exercises 2.16 and 2.18 prove that the space O(Ω1) ⊗ O(Ω2) is dense in O(Ω1 × Ω2) (in

the topology of locally uniform convergence).
2.21. Prove that the set {(z, w) ∈ C2 : |z|2 + (Imw)2 > 1} is not holomorphically convex.
2.22. Prove that every compact set K ⊂ Rn ⊂ Cn is polynomially convex.
2.23. Let G := {z ∈ Cn : 1 < |z| < 3}, K := {z ∈ Cn : |z| = 2}. Determine the set K̂O(G).
2.24. Let Ω = D2 \ P(1/2). Verify that for

K := {(0, 3eit/4) : 0 ≤ t < 2π}
we have

K̂O(Ω) = {(0, reit) : 0 ≤ t < 2π, 1/2 < r ≤ 3/4}
(and, therefore, the set Ω is not holomorphically convex).

2.25. Let G := {(z, w) ∈ C2 : 0 < |z| < |w| < 1}. Is the set G holomorphically convex? Is it true that
G has a neighborhood basis consisting of polynomially convex sets?

(
27
)

(f ⊗ g)(x, y) := f(x)g(y).



CHAPTER 3

Plurisubharmonic functions

Summary. In this chapter we consider properties of subharmonic and plurisubharmonic functions (cf. [18], [35]).
In Section 3.1 we collect the basic properties of harmonic functions. The results are standard, perhaps except

Proposition 3.1.13 on the Dirichlet problem for the annulus.
Section 3.2 summarizes basic properties of subharmonic functions, e.g. the mean value property and the maximum

principle. A more advanced result contained there is the removable singularities theorem for subharmonic functions.
Various properties of subharmonic functions are obtained by their regularization. Another advanced result is the
Oka theorem (Propositions 3.2.31, 3.2.32). The final part of Section 3.2 is devoted to results concerning logarithmic
subharmonicity. The notions of harmonicity and subharmonicity (as well as main parts of Sections 3.1 and 3.2) can
be generalized from open sets in C = R2 to open sets in RN (cf. [14], [18]).

In a short Section 3.3 we present basic properties of pluriharmonic functions.
In the next Section 3.4 plurisubharmonic functions are presented. Many of the basic properties of those func-

tions, like the mean value property, the removable singularities theorem, the maximum principle, follow from their
counterparts for subharmonic functions. § 3.4 ends with the introduction of strictly plurisubharmonic functions; the
detailed discussion of this important class will not be pursued in this chapter.

3.1. Harmonic functions

Let Ω ⊂ R2 ' C be open and let h ∈ C2(Ω,R). The function h is called harmonic in Ω (h ∈ H(Ω)) if

∆h =
∂2h

∂x2
+
∂2h

∂y2
= 0 on Ω.

Remark 3.1.1. (a) H(Ω) is a vector space.
(b) If h : Ω −→ R is such that every point a ∈ Ω has a neighborhood Ua ⊂ Ω such that h|Ua ∈ H(Ua), then
h ∈ H(Ω).
(c) ∆ = 4 ∂2

∂z∂z .
(d) If f = u+ iv ∈ O(Ω), then u, v ∈ H(Ω).

Indeed, by (c) we have ∆u+ i∆v = ∆f = 4 ∂
∂z (∂f∂z ) ≡ 0.

(e) If f ∈ O(Ω) and 0 /∈ f(Ω), then log |f | ∈ H(Ω).
Indeed, log |f | = Re `, where ` is a local branch of the logarithm. Now we apply (d).

(f) Let Ω and Ω′ be open sets in C, h ∈ H(Ω′), f ∈ O(Ω,Ω′). Then h ◦ f ∈ H(Ω).
Indeed,

∆(h ◦ f) = ((∆h) ◦ f)|f ′|2 = 0.

Proposition 3.1.2. Let D ⊂ C be a simply connected domain and let h : D −→ R. Then h ∈ H(D) iff
there exists f ∈ O(D) such that h = Re f .

In particular, each harmonic function is locally the real part of a holomorphic function.

Proof. The implication ⇐= follows from Remark 3.1.1(d).
To prove =⇒ we assume first that D is star-shaped with respect to a point a0 ∈ D, i.e. [a0, a] ⊂ D for

every a ∈ D
(

1
)
.

(
1
)

[a0, a] := {a0 + t(a− a0) : t ∈ [0, 1]}.

59
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We may assume that a0 = 0. Define

k(z) =

∫ 1

0

(
− ∂h

∂y
(tz)x+

∂h

∂x
(tz)y

)
dt, z = x+ iy ∈ D.

Then k ∈ C1(D,R). Moreover, differentiating under the integral sign, and using the fact that ∆u = 0, we
obtain

∂k

∂x
(z) =

∫ 1

0

(
− ∂2h

∂x∂y
(tz)tx− ∂h

∂y
(tz) +

∂2h

∂x2
(tz)ty

)
dt

= −
∫ 1

0

(
∂2h

∂x∂y
(tz)x+

∂2h

∂y2
(tz)y

)
t dt−

∫ 1

0

∂h

∂y
(tz) dt = −

∫ 1

0

t
d

dt

(
∂h

∂y
(tz)

)
dt−

∫ 1

0

∂h

∂y
(tz) dt

= −t∂h
∂y

(tz)

∣∣∣∣1
0

+

∫ 1

0

∂h

∂y
(tz) dt−

∫ 1

0

∂h

∂y
(tz) dt = −∂h

∂y
(z).

Similarly we check that ∂k
∂y = ∂h

∂x . This means that h and k satisfy the Cauchy–Riemann equations in D.
Consequently, f = h+ ik ∈ O(D).

Now let D  C be an arbitrary simply connected domain. By the Riemann mapping theorem (cf. [4],
Th. VII.4.2) there exists a biholomorphic mapping ϕ : D −→ D. By Remark 3.1.1(f), h ◦ ϕ ∈ H(D). Since
D is star-shaped, there exists g ∈ O(D) such that Re g = h ◦ ϕ. Finally, h = Re(g ◦ ϕ−1). �

Corollary 3.1.3. H(Ω) ⊂ C∞(Ω).

Proposition 3.1.4 (Identity principle). Let D ⊂ C be a domain and let h ∈ H(D). If int(h−1(0)) 6= ∅,
then h ≡ 0 in D. In particular, if h1, h2 ∈ H(D) are equal on a non-empty open subset, then h1 ≡ h2 in D.(

2
)

Proof. Let D0 = {a ∈ D : h = 0 in a neighborhood of a}. Obviously, D0 is open and D0 6= ∅. To end the
proof we need to show that D0 is relatively closed in D. Suppose that z0 ∈ D is an accumulation point of D0

in D. Take any r > 0 such that K(z0, r) ⊂ D. By Proposition 3.1.2 there exists f ∈ O(K(z0, r)) such that
Re f = h. Then we have Re f = h = 0 on the non-empty and open set D0 ∩K(z0, r). By the usual identity
principle for holomorphic functions ([4], Th. IV.3.7), f ≡ const in K(z0, r). Since h = 0 in D0 ∩K(z0, r), we
have h = 0 in K(z0, r). Hence z0 ∈ D0. �

Proposition 3.1.5 (Maximum principle). Let D ⊂ C be a domain and let h ∈ H(D), h 6≡ const. Then h
has no local maxima in D. If, moreover, D is bounded, then

h(z) < sup
ζ∈∂D

{lim sup
D3w→ζ

h(w)}, z ∈ D.

If we replace h by −h, then we obtain the minimum principle.

Proof. Suppose that there exist z0 ∈ D and r > 0 such that h(z) ≤ h(z0) for every z ∈ K(z0, r). By
Proposition 3.1.2, there exists f ∈ O(K(z0, r)) such that h = Re f . Then, for z ∈ K(z0, r), we get

|ef(z)| = eh(z) ≤ eh(z0) = |ef(z0)|.

Hence, by the maximum principle for holomorphic functions (cf. [4], Th. IV.3.11), ef = const in K(z0, r).
Consequently, h = h(z0) inK(z0, r) and, finally, by the identity principle (Proposition 3.1.4), we get h ≡ h(z0)
in D; contradiction. �

(
2
)
Note that the function h(x+ iy) = x is harmonic in C and h = 0 on the line iR. Therefore the assumption on the zero

set of harmonic function cannot be so weak as in the identity principle for holomorphic functions.
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Let u : C(a, r) −→ [−∞,+∞) be measurable
(

3
)

and bounded from above. Define

P(u; a, r; z) :=
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
u(a+ reiθ) dθ, z ∈ K(a, r),

J(u; a, r) := P(u; a, r; a) =
1

2π

∫ 2π

0

u(a+ reiθ) dθ;

J(u; a, r) is the integral mean value of u over the circle C(a, r).

Proposition 3.1.6. Let u : C(a, r) −→ R be continuous. Then the function K(a, r) 3 z 7−→ P(u; a, r; z) is
harmonic.

Proof. Consider the function

S(u; a, r; z) :=
1

2π

∫ 2π

0

reiθ + (z − a)

reiθ − (z − a)
u(a+ reiθ)dθ, z ∈ K(a, r).

Since u is real-valued, we have

ReS(u; a, r; z) =
1

2π

∫ 2π

0

Re

(
reiθ + (z − a)

reiθ − (z − a)

)
u(a+ reiθ) dθ

=
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
u(a+ reiθ) dθ = P(u; a, r; z).

Moreover, the function S(u; a, r; ·) is holomorphic in K(a, r). Now, the result follows from Remark 3.1.1(d).
�

Lemma 3.1.7.

P(1; a, r; z) =
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
dθ = 1, z ∈ K(a, r).

Proof. Since P(1; a, r; z) = ReS(1; a, r; z), it suffices to show that S(1; a, r; z) = 1. We have

reiθ + (z − a)

reiθ − (z − a)
= (reiθ + (z − a))

∞∑
n=0

(z − a)n

rn+1ei(n+1)θ
,

and for every z ∈ K(a, r), the series converges uniformly for θ ∈ [0, 2π]. Then

S(1; a, r; z) =
1

2π

∫ 2π

0

reiθ + (z − a)

reiθ − (z − a)
dθ

=
1

2π

∞∑
n=0

(z − a)n

rn

∫ 2π

0

e−inθdθ +
1

2π

∞∑
n=0

(z − a)n+1

rn+1

∫ 2π

0

e−i(n+1)θdθ.

The only non-vanishing term is the term for n = 0 in the first sum, which is equal to

1

2π

∫ 2π

0

1 dθ = 1. �

Definition 3.1.8. Let D be a bounded domain in C and let b ∈ C(∂D,R). The Dirichlet problem for D and
b is to find a function h ∈ C(D) ∩H(D) such that h = b on ∂D.

By the maximum principle h is uniquely determined. It is called the solution of the Dirichlet problem
for D with boundary data b. If the Dirichlet problem for D has a solution for any boundary data b, then we
say that D is regular with respect to the Dirichlet problem.

In the sequel we need a solution of the Dirichlet problem in the case when D is a disc or an annulus in
C. In the first case the Dirichlet problem can be solved fairly explicitly.

(
3
)
That is, the function [0, 2π) 3 θ −→ u(a+ reiθ) is Lebesgue measurable; C(a, r) := ∂K(a, r).
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Proposition 3.1.9. Let b : C(a, r) −→ R be continuous. Put

h(z) :=

{
b(z), z ∈ C(a, r)

P(b; a, r; z), z ∈ K(a, r)
.

Then h is the solution of the Dirichlet problem for K(a, r) with boundary data b.

Thus all discs are regular with respect to the Dirichlet problem.

Proof. By Proposition 3.1.6 h is harmonic in K(a, r). It remains to show that

lim
K(a,r)3z→z0

P(b; a, r; z) = b(z0), z0 ∈ C(a, r).

Fix z0 ∈ C(a, r) and observe that for z ∈ K(a, r) we have by Lemma 3.1.7

|P(b; a, r; z)− b(z0)| =
∣∣∣∣ 1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
(b(a+ reiθ)− b(z0)) dθ

∣∣∣∣. (3.1.1)

We have z0 = a+reiθ0 for some θ0 ∈ R. Fix ε > 0. There exists δ > 0 such that for every θ with |θ−θ0| < δ,
|b(a+ reiθ)− b(a+ reiθ0)| < ε/2. Let Γ1 := {a+ reiθ : |θ− θ0| < δ}, Γ2 := C(a, r) \Γ1. Then the right-hand
side of (3.1.1) is bounded by

1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
|b(a+ reiθ)− b(a+ reiθ0)|dθ =

1

2π

(∫
|θ−θ0|≤δ

· · ·+
∫
|θ−θ0|≥δ

. . .

)
. (3.1.2)

Moreover,

1

2π

∫
|θ−θ0|≤δ

· · · ≤ 1

2π

∫
|θ−θ0|≤δ

r2 − |z − a|2

|reiθ − (z − a)|2
ε

2
dθ ≤ ε

2

1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
dθ =

ε

2

by Lemma 3.1.7 (note that the estimate is independent of z ∈ K(a, r)).
To estimate the second integral in the right-hand side of (3.1.2) consider only z = a + %eiτ ∈ K(a, r)

with |τ − θ0| < δ/2, and %0 < % < r, where %0 is to be chosen. Put

m := inf{|reiθ − (z − a)| : z = a+ %eiτ , |τ − θ0| < δ/2, 0 < % < r, a+ reiθ ∈ Γ2}.
Then m > 0 and

1

2π

∫
|θ−θ0|≥δ

· · · ≤ 1

2π

∫ 2π

0

r2 − %2
0

m2
2‖b‖C(a,r) =

2‖b‖C(a,r)

m2
(r2 − %2

0).

The last expression is smaller than ε/2 provided %0 is chosen sufficiently close to r. Thus, if z ∈ K(a, r) is
sufficiently close to z0, then

|P(b; a, r; z)− b(z0)| < ε. �

From the above proposition we obtain the following reproducing integral formula.

Proposition 3.1.10 (Poisson’s formula). If h ∈ C(K(a, r)) ∩H(K(a, r)), then

h(z) = P(h; a, r; z) =
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
h(a+ reiθ) dθ, z ∈ K(a, r).

In particular,

h(a) = J(h; a, r) =
1

2π

∫ 2π

0

h(a+ reiθ) dθ.

Proof. By Proposition 3.1.9, if

H(z) :=

{
h(z), z ∈ C(a, r)

P(h; a, r; z), z ∈ K(a, r)
,

then H ∈ C(K(a, r))∩H(K(a, r)). Consequently, by the maximum principle for harmonic functions, h ≡ H
in K(a, r). �
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Proposition 3.1.11 (1-st Harnack’s theorem). Let Ω ⊂ C be open and let (hν)∞ν=1 ⊂ H(Ω). If hν −→ h
locally uniformly in Ω, then h ∈ H(Ω).

Proof. Fix a ∈ Ω and r > 0 such that K(a, r) ⊂ Ω. Then, by Proposition 3.1.10, we get

hν(z) = P(hν ; a, r; z), z ∈ K(a, r), ν ∈ N.
Since hν −→ h uniformly on C(a, r), we get P(hν ; a, r; z) −→ P(h; a, r; z). On the other hand hν(z) −→ h(z).
Thus

h(z) = P(h; a, r; z), z ∈ K(a, r).

Now, by Proposition 3.1.6, h ∈ H(K(a, r)). �

Proposition 3.1.12 (2-nd Harnack’s theorem). Let D be a domain in C, (hν)∞ν=1 ⊂ H(D), and hν ≤ hν+1,
ν ≥ 1. If there exists a ∈ D such that limν→+∞ hν(a) exists and is finite, then (hν)∞ν=1 converges locally
uniformly in D.

Proof. Let
D0 = {z ∈ D : (hν)∞ν=1 is convergent uniformly in a neighborhood of z}.

If we show that D0 is non-empty open and closed in D, then D0 = D, which will end the proof.
The set D0 is open by definition. To prove that D0 6= ∅ we show that a ∈ D0. Choose r > 0 such that

K(a, r) ⊂ D. Note that

r2 − |z − a|2

|reiθ − (z − a)|2
≤ r2 − |z − a|2

(r − |z − a|)2
=
r + |z − a|
r − |z − a|

, z ∈ K(a, r). (3.1.3)

Moreover, for z ∈ K(a, r) and ν, µ ∈ N, by Proposition 3.1.10 and (3.1.3), we have

0 ≤ hν+µ(z)− hν(z) =
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
(hν+µ(a+ reiθ)− hν(a+ reiθ)) dθ

≤ 1

2π

∫ 2π

0

r + |z − a|
r − |z − a|

(hν+µ(a+ reiθ)− hν(a+ reiθ)) dθ =
r + |z − a|
r − |z − a|

(hν+µ(a)− hν(a)).

For |z−a| < r/2 this last expression is not greater than 3(hν+µ(a)−hν(a)). Therefore the sequence (hν)∞ν=1

satisfies the uniform Cauchy condition in K(a, r/2), and hence converges uniformly there. Thus a ∈ D0.
Suppose now that z0 ∈ D is an accumulation point of the set D0. Choose r > 0 such that K(z0, r) ⊂ D.

There exists b ∈ D0∩K(z0, r/3). HenceK(b, 2r/3) ⊂ D. Since b ∈ D0, the sequence (hν(b))∞ν=1 is convergent.
Similarly as above we prove that (hν)∞ν=1 is convergent uniformly in K(b, r/3). Hence (hν)∞ν=1 is convergent
uniformly in a neighborhood of z0, and so z0 ∈ D0, which proves that D0 is relatively closed. �

Proposition 3.1.13. Any annulus

A := {z ∈ C : r− < |z| < r+}, 0 < r− < r+ < +∞,
is regular with respect to the Dirichlet problem.

Proof. First observe that the mapping

C 3 z 7−→ z/
√
r−r+ ∈ C

maps biholomorphically A onto the “symmetric” annulus

{z ∈ C : 1/R < |z| < R}
with R :=

√
r+/r−. Consequently, using Remark 3.1.1(f), we may assume that r− = 1/R and r+ = R for

some R > 1.
By virtue of [14], it suffices to find the Green function for A, i.e. a function gA : A×A −→ (0,+∞] such

that:
• gA(·, a) ∈ H(A \ {a}),
• limA3z→ζ gA(z, a) = 0, ζ ∈ ∂A,
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• limA\{a}3z→a[gA(z, a) + log |z − a|] exists and is finite, a ∈ A.
By Remark 3.1.1(f) it suffices to construct gA(·, a) only for a ∈ A ∩ R+.
Fix 1/R < a < R, put q := 1/R2, and define

f(a, z) := (1− z

a
)Π(a, z),

where

Π(a, z) :=

∏∞
ν=1(1− z

aq
2ν)(1− a

z q
2ν)∏∞

ν=1(1− azq2ν−1)(1− 1
az q

2ν−1)
.

One can prove (cf. [5]) that:
• f(a, ·) is meromorphic on C∗,
• f(a, ·) has simple poles at z = R4k−2/a, k ∈ Z,
• f(a, ·) has simple zeros at z = aR4k, k ∈ Z.
In particular, f(a, ·) is holomorphic on A and the only zero of f(a, ·) in A is the simple zero at z = a.

Moreover,
f(a, z)f(a, 1/(R2z)) = 1, f(a, z)f(a,R2/z) = R2/a2, f(a, z) = f(a, z)

and hence

|f(a, z)| =

{
1 if |z| = 1/R

R/a if |z| = R
. (3.1.4)

Put

s(a) :=
1

2

(
1− log a

logR

)
.

Then
gA(z, a) = − log |f(a, z)|+ s(a) log(R|z|), z ∈ A.

Indeed,
• gA(·, a) ∈ H(A \ {a}),
• gA(z, a) = 0 if z ∈ ∂A (by (3.1.4)),
• limA\{a}3z→a[gA(z, a) + log |z − a|] = log(a/Π(a, a)) + s(a) log(Ra). �

Proposition 3.1.14 ([31]). Let u ∈ L1(Ω, loc)
(

4
)

be such that ∆u = 0 in the sense of distribution, i.e.∫
Ω

u · (∆ϕ) dL2 = 0, ϕ ∈ C∞0 (Ω).

Then there exists h ∈ H(Ω) such that u = h L2-a.e. on Ω.

3.2. Subharmonic functions

Definition 3.2.1. Let Ω ⊂ C be open. A function u : Ω −→ [−∞,+∞) is called subharmonic in Ω (we
write u ∈ SH(Ω)) if:
• u is upper semicontinuous in Ω (u ∈ C↑(Ω)),
• for every domain D ⊂⊂ Ω and for every function h ∈ C(D)∩H(D), if u ≤ h on ∂D, then u ≤ h in D.

In particular, the function u ≡ −∞ is subharmonic.
The following properties are immediate consequences of the above definition and of the maximum prin-

ciple for harmonic functions:
H(Ω) ⊂ SH(Ω),
SH(Ω) +H(Ω) = SH(Ω),
R>0 · SH(Ω) = SH(Ω).

(
4
)
L1(Ω, loc) := {u : ∀K⊂⊂Ω : u|K ∈ L1(K,L2)}.
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Proposition 3.2.2 (Mean value property). If u ∈ SH(Ω), then

u(a) ≤ J(u; a, r) =
1

2π

∫ 2π

0

u(a+ reiθ) dθ, a ∈ Ω, 0 < r < dΩ(a).

Proof. Fix an a ∈ Ω and 0 < r < dΩ(a). Let bν : C(a, r) −→ R, ν ∈ N, be a sequence of continuous functions
such that bν ↘ u pointwise on C(a, r) (cf. [21]). Let hν be the solution of the Dirichlet problem for K(a, r)
with hν = bν on C(a, r) (cf. Proposition 3.1.9). Then u ≤ hν on C(a, r) and hence on K(a, r). Consequently,
by Proposition 3.1.10, we get

u(a) ≤ hν(a) = J(hν ; a, r) = J(bν ; a, r), ν ≥ 1.

Since bν ↘ u on C(a, r), the monotone convergence theorem implies that

J(bν ; a, r) −→ J(u; a, r). �

Lemma 3.2.3. Let D ⊂ C be a domain and let v ∈ C↑(D, [−∞,+∞)), v 6≡ const. Assume that for every
a ∈ D there exists a number 0 < R(a) ≤ dD(a) such that

v(a) ≤ J(v; a, r), 0 < r < R(a).

Then v does not attain its global maximum in D.

Proof. Suppose that v(z) ≤ v(z0), z ∈ D (for some z0 ∈ D). Let D0 := v−1(v(z0)). Then D0 6= ∅. Note
that for every accumulation point a ∈ D of D0 we have

v(z0) = lim sup
D03z→a

v(z) ≤ lim sup
D3z→a

v(z) = v(a) ≤ v(z0).

Hence a ∈ D0, which means that D0 is relatively closed in D. On the other hand, if a ∈ D0, then

v(z0) = v(a) ≤ J(v; a, r) ≤ v(z0), 0 < r < R(a).

Now, since v is upper semicontinuous, we conclude that v = v(z0) on C(a, r) with 0 < r < R(a). This
implies that K(a,R(a)) ⊂ D0, and therefore D0 is open. Since D is connected, we have D0 = D, which
shows that v ≡ v(z0); contradiction. �

From Proposition 3.2.2 and Lemma 3.2.3 we immediately obtain

Corollary 3.2.4 (Maximum principle). Let D ⊂ C be a domain and let u ∈ SH(D), u 6≡ const. Then u
does not attain its global maximum in D. Moreover, if D is bounded, then

u(z) < sup
ζ∈∂D

{lim sup
D3w→ζ

u(w)}, z ∈ D.

Notice that a subharmonic function can attain its global minimum.

Proposition 3.2.5. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for every a ∈ Ω there
exists an R(a), 0 < R(a) ≤ dΩ(a), such that

u(a) ≤ J(u; a, r), 0 < r < R(a). (3.2.1)

Proof. The implication =⇒ follows from Proposition 3.2.2.
To prove the opposite, fix a domain D ⊂⊂ Ω and a function h ∈ C(D) ∩H(D) such that u ≤ h on ∂D.

Put v(z) := u(z)− h(z), z ∈ D. By Proposition 3.1.10 and (3.2.1) we have

v(a) ≤ J(v; a, r), 0 < r < min{R(a), dD(a)}, a ∈ D.
Using Lemma 3.2.3, we conclude that v ≤ 0 in D, which shows that u ≤ h in D. �

Corollary 3.2.6. (a) Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff every point a ∈ Ω admits an open
neighborhood Ua ⊂ Ω such that u|Ua ∈ SH(Ua). In other words, subharmonicity is a local property.
(b) SH(Ω) + SH(Ω) = SH(Ω).

Proposition 3.2.7. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for any a ∈ Ω,
0 < r < dΩ(a), and p ∈ P(C), if u ≤ Re p on C(a, r), then u ≤ Re p in K(a, r).
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Proof. Since the function Re p is harmonic, the implication =⇒ is obvious.
We prove now the opposite. Fix a ∈ Ω and 0 < r < dΩ(a). In virtue of Proposition 3.2.5 and the proof

of Proposition 3.2.2, it is sufficient to prove that for every continuous function b : C(a, r) −→ R such that
u ≤ b we have u(a) ≤ J(b; a, r). Fix a function b and let ϕν : R −→ R, ν ≥ 1, be a sequence of trigonometric
polynomials

(
5
)

such that

|b(a+ reiθ) +
1

ν
− ϕν(θ)| < 1

ν
, θ ∈ R

(cf. [29], the Fejèr theorem). Let pν ∈ P(C) be such that ϕν(θ) = Re pν(a + reiθ), θ ∈ R, ν ≥ 1. Then
u ≤ Re pν on C(a, r) and hence

u(a) ≤ Re pν(a) = J(Re pν ; a, r) ≤ J(b; a, r) +
2

ν
, ν ≥ 1.

(the first equality follows from the fact that the function Re pν is harmonic). Letting ν −→ +∞, we end the
proof. �

Proposition 3.2.8. If f ∈ O(Ω), then log |f | ∈ SH(Ω).

Proof. Let u := log |f |. Then u ∈ C↑(Ω). By Proposition 3.2.5, it is enough to check that u(a) ≤ J(u; a, r),
a ∈ Ω, 0 < r < R(a). This is evident if f(a) = 0. If f(a) 6= 0, then u ∈ H(K(a,R(a))), where R(a) :=
dΩ\f−1(0)(a) (cf. Remark 3.1.1(e)). �

Proposition 3.2.9. (a) If SH(Ω) 3 uν ↘ u, then u ∈ SH(Ω).
(b) If SH(Ω) 3 uν −→ u locally uniformly in Ω, then u ∈ SH(Ω).

Proof. It is clear that in both cases u ∈ C↑(Ω). For each ν we have

uν(a) ≤ J(uν ; a, r), a ∈ Ω, 0 < r < dΩ(a).

Letting ν −→ +∞ proves that u satisfies (3.2.1). �

Proposition 3.2.10. If a family (uι)ι∈I ⊂ SH(Ω) is locally bounded from above
(

6
)
, then the function

u := (sup
ι∈I

uι)
∗,

is subharmonic, where ∗ denotes the upper regularization.
(

7
)

In particular, max{u1, . . . , uN} ∈ SH(Ω) for any u1, . . . , uN ∈ SH(Ω).

Proof. It is clear that u is upper semicontinuous. Let D ⊂⊂ Ω, h ∈ C(D) ∩ H(D), u ≤ h on ∂D. Then
uι ≤ h on ∂D for every ι ∈ I, and hence supι∈I uι ≤ h in D. Finally, since h is continuous, we get u ≤ h in
D. �

(
5
)
Recall that ϕ : R −→ R is a trigonometric polynomial if

ϕ(θ) = α0 +
k∑
j=1

(αj cos jθ + βj sin jθ), θ ∈ R,

for some α0, . . . , αk, β1, . . . , βk ∈ R. Observe that ϕ(θ) = Re p(a+ reiθ), where

p(z) := q(
z − a
r

), q(z) := α0 +

k∑
j=1

(αj − iβj)zj .

(
6
)
Note that in general the function supι∈I uι need not be upper semicontinuous.(

7
)
If v : Ω −→ [−∞,+∞) is locally bounded from above, then (cf. [21])

v∗(z) := lim sup
z′→z

v(z′) = inf{ϕ(z) : ϕ ∈ C(Ω,R), v ≤ ϕ}, z ∈ Ω.
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Proposition 3.2.11. Let G ⊂ Ω ⊂ C be open and let v ∈ SH(G), u ∈ SH(Ω). Assume that

lim sup
G3z→ζ

v(z) ≤ u(ζ), ζ ∈ (∂G) ∩Ω.

Let

ũ(z) :=

{
max{v(z), u(z)}, z ∈ G
u(z), z ∈ Ω \G

.

Then ũ ∈ SH(Ω).

Proof. It is evident that ũ ∈ C↑(Ω) and ũ ∈ SH(Ω \ ∂G). For a ∈ Ω ∩ ∂G we have

ũ(a) = u(a) ≤ J(u; a, r) ≤ J(ũ; a, r), 0 < r < dΩ(a). �

Proposition 3.2.12. Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and for every a ∈ Ω there
exists an R(a), 0 < R(a) ≤ dΩ(a), such that

u(z) ≤ P(u; a, r; z) =
1

2π

∫ 2π

0

r2 − |z − a|2

|reiθ − (z − a)|2
u(a+ reiθ) dθ, 0 < r < R(a), z ∈ K(a, r). (3.2.2)

Proof. Since P(u; a, r; a) = J(u; a; r), the implication ⇐= follows from Proposition 3.2.5.
To prove the opposite, it is sufficient to argue as in the proof of Proposition 3.2.2 and use the Poisson

formula

u(z) ≤ hν(z) = P(hν ; a, r; z) = P(bν ; a, r; z)↘ P(u; a, r, z). �

By Propositions 3.1.6 and 3.2.12 we get

Corollary 3.2.13. SH(Ω) ∩ (−SH(Ω)) = H(Ω).

Proposition 3.2.14. If a sequence (uν)∞ν=1 ⊂ SH(Ω) is locally bounded from above, then the function

u := (lim sup
ν→+∞

uν)∗.

is subharmonic.
(

8
)

Proof. Of course, the function u is upper semicontinuous. Fix a ∈ Ω and 0 < r < dΩ(a). By Proposi-
tion 3.2.12 and Fatou’s lemma we get

lim sup
ν→+∞

uν(z) ≤ lim sup
ν→+∞

P(uν ; a, r; z) ≤ P(lim sup
ν→+∞

uν ; a, r; z) ≤ P(u; a, r; z), z ∈ K(a, r).

Since the right–hand side is a continuous function of z, we get u(z) ≤ P(u; a, r; z), z ∈ K(a, r). �

Let u : K(a, r) −→ [−∞,+∞) be bounded from above and measurable. Define

A(u; a, r) :=
1

πr2

∫
K(a,r)

u dL2;

A(u; a, r) is the mean value of u on the disc K(a, r).

Proposition 3.2.15 (Mean value property). Let u : Ω −→ [−∞,+∞). Then u ∈ SH(Ω) iff u ∈ C↑(Ω) and
for every a ∈ D there exists an R(a), 0 < R(a) ≤ dD(a), such that

u(a) ≤ A(u; a, r), 0 < r < R(a).

(
8
)
Note that in general the function lim supν→+∞ uν need not be upper semicontinuous.
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Proof. Let u ∈ SH(Ω). Using polar coordinates, we have by Proposition 3.2.2

A(u; a, r) =
1

πr2

∫ r

0

∫ 2π

0

u(a+ τeiθ)τ dθ dτ

=
2

r2

∫ r

0

J(u; a, τ)τ dτ ≥ 2

r2

∫ r

0

u(a)τ dτ = u(a), a ∈ Ω, 0 < r < dΩ(a).

To prove the opposite we check first that u does not attain its maximum (like in the proof of Lemma 3.2.3),
and then we proceed as in the proof of Proposition 3.2.5. �

Proposition 3.2.16. Let D ⊂ C be a domain and let u ∈ SH(D), u 6≡ −∞. Then u ∈ L1(D, loc). In
particular, L2(u−1(−∞)) = 0.

Proof. Suppose that for some z0 ∈ D we have
∫
U
u dL2 = −∞ for any neighborhood U of z0. Let 2r :=

dD(z0). By Proposition 3.2.15

u(z) ≤ A(u; z, r) = −∞, z ∈ K(z0, r).

Let D0 := {z ∈ D : u = −∞ in a neighborhood of z}. The set D0 is clearly open. We have already shown
that it is non-empty (z0 ∈ D0). To obtain a contradiction, it is sufficient to note that proceeding exactly as
above, we can prove that D0 is relatively closed in D. �

Proposition 3.2.17 (Removable singularities). Let D ⊂ C be a domain and let M ⊂ D be a relatively
closed subset of D such that for every point a ∈ M there exist a connected open neighborhood Ua ⊂ D of
a and a function va ∈ SH(Ua), va 6≡ −∞, such that M ∩ Ua = v−1

a (−∞). Let u ∈ SH(D \M) be locally
bounded from above in D

(
9
)
. Define

ũ(z) := lim sup
D\M3z′→z

u(z′), z ∈ D.

Then ũ ∈ SH(D). In particular, the set D \M is connected.

Proof. By Proposition 3.2.16 the set M is nowhere dense and hence the function ũ is well defined for every
z ∈ D. Note that ũ = (u0)∗, where u0 := u on D \M and u0 := −∞ on M . In particular, ũ ∈ C↑(D).
Moreover, ũ = u on D \M .

It remains to prove that ũ is subharmonic. We may assume that M = v−1(−∞), where v ∈ SH(D),
v 6≡ −∞ and v ≤ 0 in D. For ε > 0 let

uε(z) :=

{
u(z) + εv(z), z ∈ D \M
−∞, z ∈M

.

It is easy to see that uε ∈ SH(D) and that the family (uε)ε>0 is locally bounded from above in D. Observe
that u0 = supε>0 uε. Hence, by Proposition 3.2.10, ũ = (u0)∗ ∈ SH(D).

To prove that D \M is connected, suppose that D \M = U1 ∪ U2, where U1 and U2 are disjoint and
non–empty open sets. Then the function u(z) := j for z ∈ Uj would extend to a subharmonic function on
D; contradiction. �

The above result can be generalized in the following way:
We say that a set M ⊂ C is polar if for every point a ∈M there exist a connected open neighborhood Ua and a

function va ∈ SH(Ua), va 6≡ −∞, such that M ∩ Ua ⊂ v−1
a (−∞).

Note that the set M from Proposition 3.2.17 is polar. Every polar set has measure zero (by Proposition 3.2.16).

Lemma 3.2.18. Let M ⊂ C be a polar set. Then for every a ∈ C there exists an R(a) > 0 such that

L1({θ ∈ [0, 2π) : a+ reiθ ∈M}) = 0, 0 < r < R(a).

(
9
)
That is, every point a ∈ D admits an open neighborhood Va ⊂ D such that u is bounded from above in Va \M .
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Proof. Suppose that for some a ∈ C it is not the case. Fix a disc K(a,R) and a function v ∈ SH(K(a,R)), v 6≡ −∞,
such that M ∩K(a,R) ⊂ v−1(−∞). Let 0 < r < R be such that

L1({θ ∈ [0, 2π) : a+ reiθ ∈M}) > 0.

This means that v(a + reiθ) = −∞ for θ in a set of positive measure. In particular, v(z) ≤ P(v; a, r; z) = −∞ for
z ∈ K(a, r), and so v ≡ −∞ in K(a, r); contradiction. �

Proposition 3.2.19 (Removable singularities). Let D ⊂ C be a domain and let M ⊂ D be a polar set. Assume that
u ∈ C↑(D\M) is locally bounded from above in D and for arbitrary a ∈ D\M there exists an R(a), 0 < R(a) ≤ dD(a),
such that

u(a) ≤ J(u; a, r), 0 < r < R(a).
(
10
)

Put
ũ(z) := lim sup

D\M3z′→z
u(z′), z ∈ D.

Then ũ ∈ SH(D). In particular, if M is closed in D, then D \M is a domain.

Proof. The function ũ is upper semicontinuous and ũ = u in D \M . Let G ⊂⊂ D be an arbitrary domain and let
h ∈ H(G)∩C(G) be such that ũ ≤ h on ∂G. It is sufficient to check that ũ ≤ h in G \M . Fix an a ∈ G \M . One can
prove (see for instance [14], Th. 5.11), that there exists a function v subharmonic in the neighborhood of G and such
that M ∩ G ⊂ v−1(−∞), v ≤ 0, and v(a) > −∞. Define hε := ũ + εv − h, ε > 0. Then hε ∈ C↑(G) and hε ≤ 0 on
∂G. One can easily check that hε ∈ SH(G)

(
11
)
. By the maximum principle (Corollary 3.2.4) it follows that hε ≤ 0

in G, ε > 0. In particular, ũ(a)− h(a) = supε>0{hε(a)} ≤ 0.
�

Proposition 3.2.20 (Hartogs lemma). Let (uν)∞ν=1 ⊂ SH(Ω) be locally bounded from above. Assume that
for some m ∈ R

lim sup
ν→+∞

uν ≤ m.

Then for any compact K ⊂ Ω and ε > 0 there exists a ν0 such that

max
K

uν ≤ m+ ε, ν ≥ ν0; cf. Lemma 1.5.5.

Proof. It is sufficient to show that for every a ∈ Ω the assertion holds for K := K(a, δ(a)), where δ(a) > 0 is
sufficiently small. Fix a and 0 < R < dΩ(a)/2. We may assume that uν ≤ 0 in K(a, 2R), ν ≥ 1, and m < 0.
By Fatou’s lemma we have

lim sup
ν→+∞

A(uν ; a,R) ≤ A(lim sup
ν→+∞

uν ; a,R) ≤ A(m; a,R) = m.

Let 0 < δ < R/2. By the above inequality, since uν ≤ 0 on K(a, 2R), we get

lim sup
ν→+∞

max
z∈K(a,δ)

uν(z) ≤ lim sup
ν→+∞

sup
z∈K(a,δ)

A(uν ; z,R+ δ) ≤ lim sup
ν→+∞

R2

(R+ δ)2
A(uν ; a,R) ≤ R2

(R+ δ)2
m.

Now it is sufficient to take a δ = δ(a) so small that the last term is smaller than m+ ε. �

Proposition 3.2.21. Let I ⊂ R be an open interval and let ϕ : I −→ R be non-decreasing and convex. Then
ϕ ◦ u ∈ SH(Ω) for any subharmonic function u : Ω −→ I. In particular,

eu ∈ SH(Ω) for any function u ∈ SH(Ω)
(

12
)
,

up ∈ SH(Ω) for any subharmonic function u : Ω −→ R+ and p ≥ 1
(

13
)
.

(
10
)
Note that if M is a closed subset of D, then every function u ∈ SH(D \M) satisfies this condition (with R(a) :=

dD\M (a)). Moreover, by Lemma 3.2.18, the integral J(u; a, r) is well defined for small r.(
11
)
We apply for instance Proposition 3.2.5: since hε = −∞ on M , it is sufficient to observe that hε(z0) ≤ J(hε; z0, r)

for z0 ∈ G \M .(
12
)
First we consider u : Ω −→ R and next we observe that in the general case we have emax{u,−ν} ↘ eu when ν ↗ +∞.(

13
)
First we consider u : Ω −→ R>0 and next we observe that in the general case we have (u+ ε)p ↘ up when ε↘ 0.
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Proof. Since ϕ is convex, it is continuous (cf. [32]), and therefore ϕ◦u ∈ C↑(Ω). Fix a ∈ Ω and 0 < r < dΩ(a).
By the monotonicity and convexity of ϕ and by Jensen’s inequality (cf. [29]), we obtain

ϕ(u(a)) ≤ ϕ(J(u; a, r)) ≤ J(ϕ ◦ u; a, r). �

Proposition 3.2.22. Let u ∈ SH(Ω), a ∈ Ω. Then the functions

(−∞, log dΩ(a)) 3 t 7−→ J(u; a, et), (−∞, log dΩ(a)) 3 t 7−→ A(u; a, et)

are non–decreasing and convex. Moreover,

J(u; a, r)↘ u(a) when r ↘ 0, A(u; a, r)↘ u(a) when r ↘ 0.

Proof. We show first that it is sufficient to consider only the function J. Note that if the function J(u; a, ·)
is convex with respect to log r, then it is continuous, and therefore we have

A(u; a, r) =
2

r2

∫ r

0

J(u; a, τ)τ dτ = lim
N→+∞

2

N2

N∑
j=1

jJ(u; a,
jr

N
) =: lim

N→+∞
ϕN (r).

If the function J(u; a, ·) is non–decreasing and convex with respect to log r, then the same properties has
every function ϕN , and so also the limit function A(u; a, .). Moreover,

u(a) ≤ A(u; a, r) =
2

r2

∫ r

0

J(u; a, τ)τ dτ ≤ sup
0<τ<r

J(u; a, τ) ≤ J(u; a, r).

Therefore, if J(u; a, r) −→ u(a), then the same property has the function A.
Now consider the function J. Let 0 < r1 < r2 < dΩ(a), let bν ∈ C(C(a, r2),R), bν ↘ u, and denote

by hν the solution of the Dirichlet problem for K(a, r2) with boundary condition bν (cf. Proposition 3.1.9).
Then

J(u; a, r1) ≤ J(hν ; a, r1) = hν(a) = J(hν ; a, r2) = J(bν ; a, r2).

The last integral converges to J(u; a, r2) when ν −→ +∞. Letting ν −→ +∞ we get the monotonicity of
the function J(u; a, ·).

Note that by Fatou’s lemma we have

u(a) ≤ lim
r→0

J(u; a, r) ≤ 1

2π

∫ 2π

0

lim sup
r→0

u(a+ reiθ) dθ ≤ u(a).

This proves that J(u; a, r)↘ u(a) when r ↘ 0.
It remains to check the convexity with respect to log r, i.e. we want to prove the inequality

J(u; a, r) ≤ J(u; a, r1) +
J(u; a, r2)− J(u; a, r1)

log r2
r1

log
r

r1
, 0 < r1 < r < r2 < dΩ(a).

Fix 0 < r1 < r2 < dΩ(a). Let A := {z ∈ C : r1 < |z| < r2}, let bν ∈ C(∂A,R), bν ↘ u, and let hν be
the solution of the Dirichlet problem for the annulus A with boundary condition bν (cf. Proposition 3.1.13).
Differentiating under the integral sign, we obtain

d

dt
J(hν ; a, et) =

d

dt

1

2π

∫ 2π

0

hν(a+ eteiθ) dθ =
1

2π

∫ 2π

0

(∂hν
∂x

(a+ eteiθ)et cos θ +
∂hν
∂y

(a+ eteiθ)et sin θ
)
dθ

=
1

2π

∫
C(a,et)

−∂hν
∂y

dx+
∂hν
∂x

dy = const(ν).

The last equality follows from the fact that the form

−∂hν
∂y

dx+
∂hν
∂x

dy

is closed. Consequently, there exist αν , βν ∈ R such that

J(hν ; a, r) = αν log r + βν , r1 < r < r2.
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Finally,

J(u; a, r) ≤ J(hν ; a, r) = J(hν ; a, r1) +
J(hν ; a, r2)− J(hν ; a, r1)

log r2
r1

log
r

r1

= J(bν ; a, r1) +
J(bν ; a, r2)− J(bν ; a, r1)

log r2
r1

log
r

r1
, r1 < r < r2.

Letting ν −→ +∞ we end the proof. �

Corollary 3.2.23. Let u1, u2 ∈ SH(Ω). If u1 = u2 L2-almost everywhere in Ω, then u1 ≡ u2 in Ω.

Corollary 3.2.24. Let D and M be as in Proposition 3.2.17 or 3.2.19. Then for every function u ∈ SH(D)
we have

u(z) = lim sup
D\M3z′→z

u(z′), z ∈ D.

Fix a function Ψ ∈ C∞0 (C,R+) such that
• suppΨ = D,
• Ψ(z) = Ψ(|z|), z ∈ C,
•
∫
Ψ dL2 = 1.

Let

Ψε(z) :=
1

ε2
Ψ(
z

ε
), z ∈ C, ε > 0.

For every function u ∈ L1(Ω, loc), we put

uε(z) :=

∫
Ω

u(w)Ψε(z − w) dL2(w) =

∫
D
u(z + εw)Ψ(w) dL2(w), z ∈ Ωε := {z ∈ Ω : dΩ(z) > ε}.

The function uε is called the ε-regularization of u.

Proposition 3.2.25. If u ∈ SH(Ω) ∩ L1(Ω, loc), then uε ∈ SH(Ωε) ∩ C∞(Ωε) and uε ↘ u when ε↘ 0.

Proof. Since we can differentiate under the integral sign in the first integral above, it is clear that uε ∈
C∞(Ωε). For a ∈ Ωε and 0 < r < dΩε(a) we have

J(uε; a, r) =
1

2π

∫ 2π

0

∫
D
u(a+ reiθ + εw)Ψ(w) dL2(w) dθ

=

∫
D
J(u; a+ εw, r)Ψ(w) dL2(w) ≥

∫
D
u(a+ εw)Ψ(w) dL2(w) = uε(a),

which shows that uε ∈ SH(Ωε). Note that

uε(a) =

∫
D
u(a+ εw)Ψ(w) dL2(w) =

∫ 1

0

∫ 2π

0

u(a+ ετeiθ)Ψ(τ)τ dθ dτ = 2π

∫ 1

0

J(u; a, ετ)Ψ(τ)τ dτ.

Now, by Proposition 3.2.22 and monotone convergence theorem, we get uε(a)↘ u(a) when ε↘ 0 for every
a ∈ Ω. �

Remark 3.2.26. It follows from the proof of Proposition 3.2.25 that for an arbitrary function Ψ ∈ C∞0 (C,R+)
such that suppΨ = D and for every function u ∈ SH(Ω), the functions

uε(z) :=

∫
D
u(z + εw)Ψ(w) dL2(w), z ∈ Ωε, ε > 0,

are subharmonic.

Proposition 3.2.27. Let u ∈ C2(Ω,R). Then u ∈ SH(Ω) iff ∆u ≥ 0 in Ω.



72
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

3. Plurisubharmonic functions

Proof. ⇐=. Assume first that ∆u > 0 in Ω. Let D ⊂⊂ Ω, h ∈ C(D) ∩H(D), u ≤ h on ∂D. Put v := u− h
and let z0 ∈ D be such that v(z0) = maxD v. Suppose that v(z0) > 0 (in particular, z0 ∈ D). Then
(∆u)(z0) ≤ 0; contradiction.

For arbitrary u, take the sequence vε(z) := u(z) + ε|z|2, z ∈ Ω, ε > 0, and note that ∆vε = ∆u+ 4ε > 0
and vε ↘ u.

=⇒. Suppose that ∆u < 0 on some domain D ⊂ Ω. Then, by the previous part of the proof, −u ∈
SH(D). Hence u ∈ H(D); contradiction. �

Proposition 3.2.28. If u ∈ SH(D) (D is a domain in C), u 6≡ −∞, then ∆u ≥ 0 in D in the distribution
sense, i.e. for every function ϕ ∈ C∞0 (D,R+) we have∫

D

u · (∆ϕ) dL2 ≥ 0.

Conversely, if u ∈ L1(D, loc) is such that ∆u ≥ 0 in D in the distribution sense, then there exists a function
v ∈ SH(D) such that u = v L2-almost everywhere in D; cf. Proposition 3.1.14.

Proof. Note first that if u ∈ C2(D), then, by the Stokes theorem, ∆u ≥ 0 in D in the distribution sense iff
∆u ≥ 0 in D in the usual sense.

=⇒. Let uε denote the regularization of the function u (as in Proposition 3.2.25). By Propositions 3.2.25
and 3.2.27, ∆uε ≥ 0 in Dε in the distribution sense, i.e.∫

Dε

uε · (∆ϕ) dL2 ≥ 0

for every test function ϕ ∈ C∞0 (Dε,R+). Since uε ↘ u (Proposition 3.2.25), we get∫
D

u · (∆ϕ) dL2 ≥ 0, ϕ ∈ C∞0 (D,R+).

⇐=. For every function ϕ ∈ C∞0 (Dε,R+) we have∫
Dε

uε · (∆ϕ) dL2 =

∫
Dε

(∆uε)ϕ dL2 =

∫
Dε

(∫
D

u(w)(∆Ψε)(z − w) dL2(w)
)
ϕ(z) dL2(z)

=

∫
Dε

(∫
D

u(w)(∆(Ψε(z − ·)))(w) dL2(w)
)
ϕ(z) dL2(z) ≥ 0.

This proves that uε ∈ SH(Dε).
We show now that uε ↘ when ε ↘ 0. Let 0 < ε1 < ε2. By Proposition 3.2.25 applied for z ∈ Dε2 we

have

uε2(z) = lim
ε→0

(uε2)ε(z) = lim
ε→0

∫
D

∫
D
u(z + εw + ε2ξ)Ψ(ξ) dL2(ξ)Ψ(w) dL2(w)

= lim
ε→0

∫
D

∫
D
u(z + εw + ε2ξ)Ψ(w) dL2(w)Ψ(ξ) dL2(ξ)

= lim
ε→0

(uε)ε2(z) ≥ lim
ε→0

(uε)ε1(z) = lim
ε→0

(uε1)ε(z) = uε1(z).

Let v := limε→0 uε. Then v ∈ SH(D). On the other hand, it is well known (cf. [29]) that uε −→ u in
L1(D, loc). In particular, uε −→ u L2-almost everywhere in D. Hence u = v L2-almost everywhere D.

�

Proposition 3.2.29. For every f ∈ O(Ω,G) (G is an open subset of C) and u ∈ SH(G) we have u ◦ f ∈
SH(Ω).

Proof. If u ∈ C2(G) it is sufficient to note that

∆(u ◦ f) = ((∆u) ◦ f) · |f ′|2,
and use Proposition 3.2.27. For the general case we use the regularizations (uε)ε>0, cf. Proposition 3.2.25. Let
vε := uε ◦f . Then vε ∈ SH(f−1(Gε)), and vε ↘ u◦f in G, and so, by Proposition 3.2.9(a), u◦f ∈ SH(Ω).�
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Proposition 3.2.30 (Liouville type theorem). If u ∈ SH(C) is bounded from above, then u ≡ const.

Proof. Let v(z) := u(1/z), z ∈ C∗. Then, by Proposition 3.2.29, v ∈ SH(C∗) and v is bounded from above.
Hence, by Proposition 3.2.17, v extends to a function ṽ ∈ SH(C). Now, by the maximum principle, for
arbitrary z ∈ C, we have

u(z) ≤ max{max
T

u,max
T

v} = u(z0)

for some z0 ∈ T. Using once again the maximum principle we conclude that u ≡ const. �

Proposition 3.2.31 (Oka theorem). For every function u ∈ SH(Ω), and for every R-analytic curve γ :
[0, 1] −→ Ω it holds

u(γ(0)) = lim sup
t→0+

u(γ(t)).

Proof. Since the curve γ is R-analytic, there exists a function f ∈ O(G), where G ⊂ C is an open neighbor-
hood of the interval [0, 1], such that f = γ on [0, 1] and f(G) ⊂ Ω. Put u1 := u ◦ f . To prove the assertion,
it is sufficient to show that lim supx→0+ u1(x) = u1(0). Moreover, we may assume that u1 ≤ 0.

Suppose that lim supx→0+ u1(x) < C < u1(0). Let

u2 := − 1

C
max{u1, C}+ 1.

Then u2 ∈ SH(G), 0 ≤ u2 ≤ 1, u2(0) > 0, and u2 = 0 on (0, δ] for some 0 < δ � 1. We may assume that
δD ⊂ G. Define v(z) := u2(δz), z ∈ D. Then v ∈ SH, 0 ≤ v ≤ 1, v(0) > 0, and v = 0 on (0, 1]. Let

Sν := {reiθ : 0 < r < 1, 0 < θ <
2π

ν
},

vν(z) :=

{
v(zν), for z ∈ Sν
0, for z ∈ D∗ \ Sν

, ν ∈ N.

It is not difficult to check that vν ∈ SH(D∗) (cf. Proposition 3.2.11). Since vν ≤ 1, the function vν extends
to a subharmonic function on D; denote the extension also by vν . Observe that

vν(0) = lim sup
D∗3z→0

vν(z) = lim sup
Sν3z→0

v(zν) = lim sup
D∗3z→0

v(z) = v(0).

Finally, for any 0 < r < 1, we have

v(0) = vν(0) ≤ J(vν ; 0, r) =
1

2π

∫ 2π/ν

0

v(rνeiνθ) dθ =
1

2π

∫ 2π

0

v(rνeiθ)
1

ν
dθ ≤ 1

ν
.

Letting ν −→ +∞ we obtain v(0) = 0; contradiction. �

The above result can be generalized as follows:

Proposition 3.2.32 (Oka theorem). For any u ∈ SH(Ω) and a curve γ : [0, 1] −→ Ω we have

u(γ(0)) = lim sup
t→0+

u(γ(t)).

Proof. Cf. [35]. We may assume that γ(0) = 0 ∈ Ω. Suppose that

u(0) > A > lim sup
t→0+

u(γ(t)).

Take r > 0 and 0 < t0 ≤ 1 such that:
• K(r) ⊂⊂ Ω,
• |γ(t)| < r for 0 ≤ t < t0,
• |γ(t0)| = r,
• u(γ(t)) < A for 0 < t ≤ t0.
We may assume that t0 = 1. Let Ω0 := {z ∈ Ω : u(z) < A}. Observe that Ω0 is open and γ((0, 1]) ⊂ Ω0. Let G

denote the connected component of Ω0 that contains γ((0, 1]). For 0 < % < r let 0 < t% < 1 be such that |γ(t%)| = %.
Take a Jordan arc σ% : [0, 1] −→ G such that σ%(0) = γ(t%), σ%(1) = γ(1). There exist 0 ≤ τ0 < τ1 ≤ 1 such that
• |σ%(τ0)| = %,
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• % < |σ%(t)| < r for τ0 < t < τ1,
• |σ%(τ1)| = r.
We may assume that τ0 = 0, τ1 = 1. Let L% := σ%([0, 1]), D% := K(r) \ L%. One can prove that D% is simply

connected (Exercise). Let ϕ% : D −→ D% be a biholomorphic mapping (from the Riemann theorem) with ϕ%(0) = 0

and ϕ′%(0) ∈ R>0. By the Carathéodory theorem (cf. [35]), the mapping ϕ% extends continuously to D (we denote
this extension also by ϕ%) and ϕ%(T) ⊂ ∂D%. Let

T% := {θ ∈ [0, 2π) : ϕ%(e
iθ) ∈ L%}

(observe that T% is relatively closed in [0, 2π)) and let m% := L1(T%)/(2π). Notice that |ϕ%(eiθ)| = r for θ ∈ T ′% :=
[0, 2π) \ T%. The function

ψ%(z) :=

{
ϕ%(z)/z, z 6= 0

ϕ′%(0), z = 0

is holomorphic in D and continuous on D. Moreover, ψ%(z) 6= 0, z ∈ D. In particular, log |ψ%| is harmonic in D and
continuous on D and, therefore,

logϕ′%(0) = log |ψ%(0)| = J(log |ψ%|; 0, 1) = J(log |ϕ%|; 0, 1)

=
1

2π

(∫
T%

log |ϕ%(eiθ)| dθ +
∫
T ′%

log |ϕ%(eiθ)| dθ
)
≥ m% log %+ (1−m%) log r.

On the other hand, by the Koebe theorem (cf. [35]), since K(%) 6⊂ ϕ%(D), we get ϕ′%(0) ≤ 4%. Hence

4%1−m% ≥ r1−m% ,

and, consequently, lim%→0m% = 1.
Since u ◦ ϕ% is subharmonic in D and upper semicontinuous in D, we get

u(0) ≤ J(u ◦ ϕ%; 0, 1) =
1

2π

(∫
T%

u(ϕ%(e
iθ)) dθ +

∫
T ′%

u(ϕ%(e
iθ)) dθ

)
≤ m%A+ (1−m%)c,

where c := supK(r) u. Letting % −→ 0 gives u(0) ≤ A; contradiction �

Proposition 3.2.33. Let u ∈ C↑(Ω,R+). Then log u ∈ SH(Ω)
(

14
)

iff for every polynomial p ∈ P(C) the
function |ep|u is subharmonic. In particular, if log u1, log u2 ∈ SH(Ω), then log(u1 + u2) ∈ SH(Ω).

Proof. =⇒. Let v(z) := |ep(z)|u(z), z ∈ Ω. Then log v = Re p + log u and hence log v ∈ SH(Ω); therefore
also v ∈ SH(Ω).
⇐=. We use Proposition 3.2.7. Let a ∈ Ω, 0 < r < dΩ(a) and let p ∈ P(C) be such that log u ≤ Re p on

C(a, r). Then v := |e−p|u ≤ 1 on C(a, r). Since the function v is subharmonic, it follows from the maximum
principle that v ≤ 1 in K(a, r), which means that log u ≤ Re p in K(a, r). �

Proposition 3.2.33 can be generalized in the following way:

Proposition 3.2.34. Let u ∈ C↑(Ω,R+). Then log u ∈ SH(Ω) iff for every a ∈ C the function |eaz|u(z) is
subharmonic.

Proof. It is clear that the problem is to prove ⇐=. Suppose first that u ∈ C2(Ω,R>0). It is sufficient to
check that ∆ log u ≥ 0 in Ω. Note that

∆ log u =
1

u

(
∆u−

(∂u∂x )2 + (∂u∂y )2

u

)
.

Let a = α+ iβ and put va := |eaz|u. Then

0 ≤ ∆va = |eaz|
(
∆u+ |a|2u+ 2(α

∂u

∂x
− β ∂u

∂y
)
)
.

(
14
)
That is u is logarithmically subharmonic.
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Fix a z0 ∈ Ω and put

α := −
∂u
∂x (z0)

u(z0)
, β :=

∂u
∂y (z0)

u(z0)
.

Then

(∆ log u)(z0) =
|e−az0 |
u(z0)

∆va(z0) ≥ 0.

Now consider the general case. Note that the function u is subharmonic (because u = |e0z|u). Let (uε)ε>0

denote the regularizations of the function u. Since uε+ ε↘ u, it suffices to show that log(uε+ ε) ∈ SH(Ωε),
ε > 0. Fix an ε > 0. In virtue of the first part of the proof it remains to show that |eaz|uε ∈ SH(Ωε) for
every a ∈ C. Fix an a ∈ C. Then

|eaz|uε(z) =

∫
D
|ea(z+εw)|u(z + εw)Ψ(w)|e−aεw| dL2(w), z ∈ Ωε.

Now we apply Corollary 3.2.26. �

Proposition 3.2.35 (Schwarz type lemma). Let u : D −→ [0, 1] be such that log u ∈ SH(D), u(0) = 0, and

lim sup
D∗3z→0

u(z)

|z|
< +∞.

Then
u(z) ≤ |z|, z ∈ D, and lim sup

D∗3z→0

u(z)

|z|
≤ 1.

Moreover, if

∃z0∈D∗ : u(z0) = |z0| or lim sup
D∗3z→0

u(z)

|z|
= 1,

then u(z) = |z| for all z ∈ D.

Proof. Let v(z) := u(z)/|z|, z ∈ D∗. Since log v = log u − log |z|, it follows that log v ∈ SH(D∗), and hence
v ∈ SH(D∗). By the assumption we conclude that the function v is locally bounded in D. Hence, putting
v(0) := lim supD∗3z→0 v(z), and using Proposition 3.2.17, we obtain a function subharmonic in D. By the
maximum principle we get v ≤ 1, which gives the required inequalities.

Moreover, if v(z0) = 1 for some z0 ∈ D, then v ≡ 1. �

Proposition 3.2.36. Let D ⊂ C be a convex domain and let u : D −→ R be a convex function
(

15
)
. Then

u ∈ SH(D).

Proof. Since u is convex, it is also continuous (cf. [32]). Fix a ∈ D and 0 < r < dD(a). Then we have

J(u; a, r) = lim
N→+∞

N∑
j=1

1

N
u(a+ rei

2πj
N ) ≥ lim

N→+∞
u
( N∑
j=1

1

N
(a+ rei

2πj
N )
)

= u(a).

It remains to apply Proposition 3.2.5. �

Proposition 3.2.37 (Hadamard’s three circles theorem). Let

A := {z ∈ C : r1 < |z| < r2}
(0 < r1 < r2 < +∞) and let log u ∈ SH(A). Assume that

lim sup
|z|→rj

u(z) ≤Mj , j = 1, 2.

Then

u(z) ≤M

log
r2
|z|

log
r2
r1

1 M

log
|z|
r1

log
r2
r1

2 , z ∈ A.(
15
)
That is, u(t1z1+· · ·+tNzN ) ≤ t1u(z1)+· · ·+tNu(zN ) for any z1, . . . , zN ∈ D and t1, . . . , tN ≥ 0 with t1+· · ·+tN = 1;

cf. Exercise 3.11.
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Proof. For α ∈ R put uα(z) := |z|αu(z), z ∈ A. Observe that uα is logarithmically subharmonic on A. Now,
by the maximum principle (Corollary 3.2.4), we get

|z|αu(z) = uα(z) ≤ max{rα1M1, r
α
2M2}, z ∈ A.

Taking α ∈ R so that rα1M1 = rα2M2, we get the required estimate. �

3.3. Pluriharmonic functions

Definition 3.3.1. Let Ω be an open subset of Cn. A function u ∈ C2(Ω,R) is pluriharmonic on Ω
(u ∈ PH(Ω)) if

∂2u

∂zj∂zk
(z) = 0, z ∈ Ω, j, k = 1, . . . , n. (3.3.1)

Remark 3.3.2. (a) If n = 1, then PH(Ω) = H(Ω) (cf. § 3.1).
(b) PH(Ω) is a vector space.
(c) Condition (3.3.1) is equivalent to the following system of equations

∂2u

∂xj∂yk
(z) =

∂2u

∂xk∂yj
(z),

∂2u

∂xj∂xk
(z) +

∂2u

∂yj∂yk
(z) = 0, z ∈ Ω, j, k = 1, . . . , n.

In particular,
∂2u

∂x2
j

(z) +
∂2u

∂y2
j

(z) = 0, z ∈ Ω, j = 1, . . . , n,

which shows that any function u ∈ PH(Ω) is separately harmonic on Ω, i.e.

PH(Ω) ⊂ Hs(Ω) := {u ∈ C2(Ω,R) : ∀a∈Ω ∀j∈{1,...,n} : ua,ej ∈ H(Ωa,ej )}.
(

16
)

Obviously every separately harmonic function is harmonic as a function of (2n)-variables. Thus PH(Ω) ⊂
Hs(Ω) ⊂ H(Ω). In particular, PH(Ω) ⊂ C∞(Ω). Notice that for n = 1 we have PH(Ω) = Hs(Ω) = H(Ω).
If n ≥ 2, then PH(Ω)  Hs(Ω)  H(Ω)

(
17
)
.

(d) If f = u+ iv ∈ O(Ω), then u ∈ PH(Ω).

Proposition 3.3.3. If D ⊂ Cn is a star-shaped domain with respect to a point a ∈ D, then for any
u ∈ PH(D) there exists an f ∈ O(D) such that u = Re f .

In particular, any pluriharmonic function is locally the real part of a holomorphic function
(

18
)
.

Proof. Observe that the function z −→ u(z+a) is pluriharmonic onD−a and the domainD−a is star-shaped
with respect to 0. Thus we may assume that a = 0. Define

v(z) := −i
∫ 1

0

n∑
j=1

(
zj
∂u

∂zj
(tz)− zj

∂u

∂zj
(tz)

)
dt, z ∈ D.

Then v ∈ C1(D) and using (3.3.1) we get

∂(u+ iv)

∂zk
(z) =

∂u

∂zk
+

∫ 1

0

( n∑
j=1

(
zj

∂2u

∂zk∂zj
(tz)t− zj

∂2u

∂zk∂zj
(tz)t

)
− ∂u

∂zk
(tz)

)
dt

=
∂u

∂zk
−
∫ 1

0

(
t

n∑
j=1

(
zj

∂2u

∂zj∂zk
(tz) + zj

∂2u

∂zj∂zk
(tz)

)
+

∂u

∂zk
(tz)

)
dt =

∂u

∂zk
(z)−

∫ 1

0

d

dt

(
t
∂u

∂zk
(tz)

)
dt = 0,

k = 1, . . . , n. �(
16
)
One can prove (but it is much more difficult) that if u : Ω −→ R is such that ua,ej ∈ H(Ωa,ej ) for any a ∈ Ω and

j = 1, . . . , n, then u ∈ C2(Ω,R).(
17
)
Let u1(z1, z2) = u1(x1, y1, x2, y2) := x1x2, u2(z1, z2) = u2(x1, y1, x2, y2) := x21 − x22. Then u1 ∈ Hs(C2) \ PH(C2),

u2 ∈ H(C2) \ Hs(C2).(
18
)
We have got another proof of the inclusion PH(Ω) ⊂ C∞(Ω).
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Corollary 3.3.4. Let Ωj ⊂ Cnj be open, j = 1, 2, and let F ∈ O(Ω1, Ω2). Then u ◦ F ∈ PH(Ω1) for any
u ∈ PH(Ω2).

For an arbitrary function u ∈ C2(Ω) denote by Lu : Ω×Cn −→ C the Levi form (called also the complex
Hessian) of u, i.e.

(Lu)(a;X) :=

n∑
j,k=1

∂2u

∂zj∂zk
(a)XjXk.

Observe that

(Lu)(a;X) =
∂2ua,X

∂λ∂λ
(0).

In particular, if n = 1, then

(Lu)(a;X) =
1

4
(∆u(a))|X|2.

Remark 3.3.5. For a function u ∈ C2(Ω,R) the following conditions are equivalent:
(i) u ∈ PH(Ω);
(ii) ua,X ∈ H(Ωa,X) for any a ∈ Ω and X ∈ Cn;
(iii) Lu(a;X) = 0 for any a ∈ Ω and X ∈ Cn.

Let u : ∂0P(a, r) −→ [−∞,+∞) be bounded from above and measurable
(

19
)
. For z = (z1, . . . , zn) ∈

P(a, r), a = (a1, . . . , an), r = (r1, . . . , rn), define

P(u; a, r; z) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

r2
1 − |z1 − a1|2

|r1eiθ1 − (z1 − a1)|2
. . .

r2
n − |zn − an|2

|rneiθn − (zn − an)|2
×

u(a1 + r1e
iθ1 , . . . , an + rne

iθn) dθ1 . . . dθn.

Remark 3.3.6. P(u; a, r; ·) ∈ Hs(P(a, r)).

For any affine C-isomorphism L : Cn −→ Cn, put
ΩL := L−1(Ω), uL(z) := u(L(z)), z ∈ ΩL.

By Corollary 3.3.4 we have u ∈ PH(Ω) iff uL ∈ PH(ΩL).

Proposition 3.3.7. For u ∈ C(Ω,R) the following conditions are equivalent:
(i) u ∈ PH(Ω);
(ii) for every affine isomorphism L and for every a ∈ ΩL there exists an R(a), 0 < R(a) ≤ dΩL(a), such that
for any r = (r1, . . . , rn) with 0 < rj < R(a), j = 1, . . . , n, we have

uL(z) = P(uL; a, r; z), z ∈ P(a, r). (3.3.2)

Moreover, if u ∈ PH(Ω), then (3.3.2) holds for any P(a, r) ⊂⊂ ΩL.

Proof. Assume that u ∈ PH(Ω). Fix an affine isomorphism L. Recall that uL ∈ PH(ΩL) ⊂ Hs(Ω). Take a
P(a, r) ⊂⊂ ΩL. Then, by the Poisson formula (Proposition 3.1.10), for z = (z1, . . . , zn) ∈ P(a, r) we have

uL(z) = P(uL(·, z2, . . . , zn); a1, r1; z1) =
1

2π

∫ 2π

0

r2
1 − |z1 − a1|2

|r1eiθ1 − (z1 − a1)|2
uL(a1 + r1e

iθ1 , z2, . . . , zn) dθ1

=
1

2π

∫ 2π

0

r2
1 − |z1 − a1|2

|r1eiθ1 − (z1 − a1)|2
1

2π

∫ 2π

0

r2
2 − |z2 − a2|2

|r2eiθ2 − (z2 − a2)|2
uL(a1 + r1e

iθ1 , a2 + r2e
iθ2 , z3, . . . , zn) dθ2dθ1

= · · · = P(uL; a, r; z).

Conversely, assume that (ii) is satisfied. In particular, u ∈ C2(Ω,R). By Remark 3.3.5 it suffices to prove
that ua,X ∈ H(Ωa,X) for any a ∈ Ω and X ∈ Cn. Fix a and X 6= 0. Let L be an affine isomorphism such
that ua,X = uL(0′, ·). Now, by virtue of (3.3.2) and Remark 3.3.6, uL(0′, ·) is harmonic. �(

19
)
That is, the function [0, 2π)n 3 (θ1, . . . , θn) −→ u(a1 + r1eiθ1 , . . . , an + rneiθn ) is Lebesgue measurable.
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3.4. Plurisubharmonic functions

Definition 3.4.1. Let Ω ⊂ Cn be open. A function u : Ω −→ [−∞,+∞) is called plurisubharmonic (shortly
psh) in Ω (u ∈ PSH(Ω)) if:
• u ∈ C↑(Ω),
• for every a ∈ Ω and X ∈ Cn the function

Ωa,X 3 λ
ua,X−→ u(a+ λX)

is subharmonic.

Notice that the function u ≡ −∞ is psh.
The properties of psh functions mentioned just below follow directly from the definition and correspond-

ing properties of subharmonic functions.

Proposition 3.4.2. PH(Ω) ⊂ PSH(Ω), PSH(Ω) + PSH(Ω) = PSH(Ω), R>0 · PSH(Ω) = PSH(Ω).

Proposition 3.4.3. Plurisubharmonicity is a local property, i.e. a function u : Ω −→ [−∞,+∞) is psh in
Ω iff every point a ∈ Ω admits an open neighborhood Ua ⊂ Ω such that u|Ua ∈ PSH(Ua).

Proposition 3.4.4. Let u : Ω −→ [−∞,+∞) be upper semicontinuous. Then u ∈ PSH(Ω) iff for any
a ∈ Ω, X ∈ Cn, and r > 0 such that a+ rD ·X ⊂ Ω we have

u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθX) dθ.

Proposition 3.4.5. Let f ∈ O(Ω). Then log |f | ∈ PSH(Ω).

Proposition 3.4.6. Let I ⊂ R be an open interval and let ϕ : I −→ R be convex and non–decreasing. Then
for every psh function u : Ω −→ I, the function ϕ ◦ u is psh. In particular,

— if u ∈ PSH(Ω), then eu ∈ PSH(Ω),
— if u : Ω −→ R+ is psh, then for every p ≥ 1, the function up is psh in Ω.

Proposition 3.4.7. If log u1, log u2 ∈ PSH(Ω), then log(u1 + u2) ∈ PSH(Ω).
(

20
)

Proposition 3.4.8. If (uν)∞ν=1 ⊂ PSH(Ω) and uν ↘ u, then u ∈ PSH(Ω).

Proposition 3.4.9. If (uν)∞ν=1 ⊂ PSH(Ω) and uν −→ u locally uniformly in Ω, then u ∈ PSH(Ω).

Proposition 3.4.10 (Liouville type theorem). If a function u ∈ PSH(Cn) is globally bounded from above,
then u ≡ const.

Proposition 3.4.11. Let u ∈ C2(Ω,R). Then u ∈ PSH(Ω) iff (Lu)(a;X) ≥ 0 for any a ∈ Ω and X ∈ Cn;
cf. Proposition 3.3.5.

Proposition 3.4.12. Let G ⊂ Ω be open subsets of Cn and let v ∈ PSH(G), u ∈ PSH(Ω). Assume that

lim sup
G3z→ζ

v(z) ≤ u(ζ), ζ ∈ (∂G) ∩Ω.

Let

ũ(z) :=

{
max{v(z), u(z)}, z ∈ G
u(z), z ∈ Ω \G

.

Then ũ ∈ PSH(Ω).

Proof. Exercise — cf. the proof of Proposition 3.2.11 (use Proposition 3.4.4). �

(
20
)
If log u ∈ PSH(Ω), then u is called logarithmically plurisubharmonic.
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We move now to more advanced properties of psh functions. Recall that the most part of the properties
of subharmonic functions follows from Propositions 3.2.5, 3.2.12, and 3.2.15, i.e. from characterization of
subharmonic functions by different mean value theorems. We try to obtain a similar characterization for psh
functions.

Let u : ∂0P(a, r) −→ [−∞,+∞) be bounded from above and measurable. Define

J(u; a, r) := P(u; a, r; a).

If u : P(a, r) −→ [−∞,+∞) is bounded from above and measurable, a = (a1, . . . , an) ∈ Cn, and
r = (r1, . . . , rn) ∈ (R>0)n, then we put

A(u; a, r) :=
1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

u dL2n.

Note that u ∈ PSH(Ω) iff uL ∈ PSH(ΩL) for an arbitrary affine C-isomorphism L : Cn −→ Cn
(

21
)
.

Proposition 3.4.13. Let u : Ω −→ [−∞,+∞) be upper semicontinuous. Then the following conditions are
equivalent:

(i) u ∈ PSH(Ω);
(ii) for every affine isomorphism L and every a ∈ ΩL, there exists an R(a), 0 < R(a) ≤ dΩL(a), such

that for every r = (r1, . . . , rn), 0 < rj < R(a), j = 1, . . . , n, we have

uL(z) ≤ P(uL; a, r; z), z ∈ P(a, r);

(iii) for every affine isomorphism L and for every a ∈ ΩL, there exists an R(a), 0 < R(a) ≤ dΩL(a),
such that for every r = (r1, . . . , rn), 0 < rj < R(a), j = 1, . . . , n, we have

uL(a) ≤ J(uL; a, r);

(iv) for every affine isomorphism L and for every a ∈ ΩL, there exists an R(a), 0 < R(a) ≤ dΩL(a),
such that for every r = (r1, . . . , rn), 0 < rj < R(a), j = 1, . . . , n, we have

uL(a) ≤ A(uL; a, r).

Moreover, if u ∈ PSH(Ω), then the inequalities in (ii), (iii), and (iv) hold for every r = (r1, . . . , rn) such
that P(a, r) ⊂ ΩL.

Proof. (i) =⇒ (ii). Fix L, a, r = (r1, . . . rn) such that P(a, r) ⊂ ΩL, and z = (z1, . . . , zn) ∈ P(a, r). Since
uL ∈ PSH(ΩL), we obtain (applying n-times Proposition 3.2.12)

uL(z) ≤ P(uL(·, z2, . . . , zn); a1, r1; z1) ≤ 1

2π

∫ 2π

0

r2
1 − |z1 − a1|2

|r1eiθ1 − (z1 − a1)|2
uL(a1 + r1e

iθ1 , z2, . . . , zn) dθ1

≤ 1

2π

∫ 2π

0

r2
1 − |z1 − a1|2

|r1eiθ1 − (z1 − a1)|2
1

2π

∫ 2π

0

r2
2 − |z2 − a2|2

|r2eiθ2 − (z2 − a2)|2
uL(a1 + r1e

iθ1 , a2 + r2e
iθ2 , z3, . . . , zn) dθ2dθ1

≤ · · · ≤ P(uL; a, r; z).

The implication (ii) =⇒ (iii) is evident.
(iii) =⇒ (iv).

uL(a) =
2

r2
1

. . .
2

r2
n

∫ r1

0

· · ·
∫ rn

0

uL(a)τ1 . . . τn dτ1 . . . dτn

≤ 2

r2
1

. . .
2

r2
n

∫ r1

0

· · ·
∫ rn

0

J(uL; a, (τ1, . . . , τn))τ1 . . . τn dτ1 . . . dτn = A(uL; a, r).

(
21
)
Recall that ΩL := L−1(Ω), uL := u ◦ L.
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(iv) =⇒ (i). Fix a ∈ Ω, X ∈ Cn, ‖X‖ = 1. It is sufficient to show that u(a) ≤ A(ua,X ; 0, r) for r > 0
sufficiently small. Let L be an affine isometry such that L(a + λen) = a + λX, λ ∈ C. By Fatou’s lemma,
for rn > 0 sufficiently small, we have

u(a) = uL(a) ≤ lim sup
r1,...,rn−1→0

A(uL; a, (r1, . . . , rn−1, rn))

= lim sup
r1,...,rn−1→0

1

πn

∫ 2π

0

· · ·
∫ 2π

0

∫ 1

0

· · ·
∫ 1

0

uL(a1 + t1r1e
iθ1 , . . . , an + tnrne

iθn)t1 . . . tn dt1 . . . dtn dθ1 . . . dθn

≤ 1

πn

∫ 2π

0

· · ·
∫ 2π

0

∫ 1

0

· · ·
∫ 1

0

lim sup
r1,...,rn−1→0

uL(a1 + t1r1e
iθ1 , . . . , an + tnrne

iθn)t1 . . . tn dt1 . . . dtn dθ1 . . . dθn

≤ 1

πn

∫ 2π

0

· · ·
∫ 2π

0

∫ 1

0

· · ·
∫ 1

0

uL(a1, . . . , an−1, an + tnrne
iθn)t1 . . . tn dt1 . . . dtn dθ1 . . . dθn

=
1

π

∫ 2π

0

∫ 1

0

uL(a1, . . . , an−1, an + tnrne
iθn)tn dtn dθn = A(ua,X ; 0, rn).

�

Propositions 3.4.13 and 3.3.7 imply the following corollary (cf. Corollary 3.2.13).

Corollary 3.4.14. PSH(Ω) ∩ (−PSH(Ω)) = PH(Ω).

Proposition 3.4.15. Let D ⊂ Cn be a domain and let u ∈ PSH(D), u 6≡ −∞. Then u ∈ L1(D, loc).
Consequently, L2n(u−1(−∞)) = 0.

In particular, if M is a thin subset of an open set Ω ⊂ Cn (cf. Definition 2.1.4), then L2n(M) = 0.

Proof. It is sufficient to apply the method of the proof of Proposition 3.2.16 and use Proposition 3.4.13(iv)
(with L = id). �

Proposition 3.4.16 (Maximum principle). Let D ⊂ Cn be a domain and let u ∈ PSH(D), u 6≡ const.
Then u does not attain its global maximum in D. If, moreover, D is bounded, then

u(z) < sup
ζ∈∂D

{lim sup
D3z→ζ

u(z)}, z ∈ D.

Proof. Exercise — cf. the proof of Lemma 3.2.3. �

Proposition 3.4.17. If a family (uι)ι∈I ⊂ PSH(Ω) is locally bounded from above, then the function

u := (sup
ι∈I

uι)
∗

is psh in Ω.
In particular, max{u1, . . . , uN} ∈ PSH(Ω) for any u1, . . . , uN ∈ PSH(Ω).

Proof. We use Proposition 3.4.13(ii). Fix L, a ∈ ΩL, and r = (r1, . . . , rn), 0 < rj < dΩL(a), j = 1, . . . , n.
Note that uL = (supι∈I(uι)L)∗. For every ι ∈ I we have (uι)L(z) ≤ P((uι)L; a, r, z), z ∈ P(a, r), and
consequently, supι∈I(uι)L(z) ≤ P(uL; a, r; z), z ∈ P(a, r). Now it is sufficient to observe that the right-hand
side is a continuous function of the variable z, and hence uL(z) ≤ P(uL; a, r; z), z ∈ P(a, r). �

Proposition 3.4.18. If a sequence (uν)∞ν=1 ⊂ PSH(Ω) is locally bounded from above, then the function

u := (lim sup
ν→∞

uν)∗

is psh on Ω.

Proof. Exercise — cf. the proof of Proposition 3.2.14. �
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Proposition 3.4.19 (Removable singularities). Let D ⊂ Cn be a domain, and let M ⊂ D be a closed subset
of D such that for every point a ∈ M there exist a connected open neighborhood Ua ⊂ D and a function
va ∈ PSH(Ua), va 6≡ −∞, such that M ∩Ua = v−1

a (−∞). Assume also that u ∈ PSH(D\M) is an arbitrary
function locally bounded from above in D. Let

ũ(z) := lim sup
D\M3z′→z

u(z′), z ∈ D.

Then ũ ∈ SH(D). In particular, the set D \M is connected.

Proof. Exercise — cf. the proof of Proposition 3.2.17. �

Proposition 3.4.20 (Hartogs lemma). Let (uν)∞ν=1 ⊂ PSH(Ω) be a sequence locally bounded from above.
Assume that for some m ∈ R

lim sup
ν→+∞

uν ≤ m.

Then for every compact subset K ⊂ Ω and for every ε > 0, there exists a ν0 such that

max
K

uν ≤ m+ ε, ν ≥ ν0.

Proof. Exercise; cf. the proof of Proposition 3.2.20 (use Proposition 3.4.13(iv)).
�

Proposition 3.4.21. Let u ∈ PSH(Ω), a ∈ Ω. Then

J(u; a, r′) ≤ J(u; a, r′′) for r′ ≤ r′′ and J(u; a, r) −→ u(a) when r −→ 0,

A(u; a, r′) ≤ A(u; a, r′′) for r′ ≤ r′′ and A(u; a, r) −→ u(a) when r −→ 0.

Proof. Exercise — cf. Proposition 3.2.22. �

Corollary 3.4.22. Let u1, u2 ∈ PSH(Ω). If u1 = u2 L2n-almost everywhere in Ω, then u1 ≡ u2 in Ω.

Corollary 3.4.23. Let D and M be as in Proposition 3.4.19. Then for every function u ∈ PSH(D) we
have

u(z) := lim sup
D\M3z′→z

u(z′), z ∈ D.

Let Φ(z1, . . . , zn) := Ψ(z1) · · · · · Ψ(zn), z = (z1, . . . , zn) ∈ Cn, where Ψ is a regularization function from
§ 3.2. Put

Φε(z) :=
1

ε2n
Φ(
z

ε
), z ∈ Cn, ε > 0.

Notice that:
• Φε ∈ C∞0 (Cn,R+),
• suppΦε = P(ε),
• Φε(z1, . . . , zn) = Φε(|z1|, . . . , |zn|), z = (z1, . . . , zn) ∈ Cn,
•
∫
Cn ΦεdL

2n = 1.
For every function u ∈ L1(Ω, loc), define

uε(z) :=

∫
Ω

u(w)Φε(z − w) dL2n(w) =

∫
Dn
u(z + εw)Φ(w) dL2n(w), z ∈ Ωε := {z ∈ Ω : dΩ(z) > ε}.

The function uε is called the ε-regularization of u.

Proposition 3.4.24. If u ∈ PSH(Ω) ∩ L1(Ω, loc), then uε ∈ PSH(Ωε) ∩ C∞(Ωε) and uε ↘ u in Ω when
ε↘ 0.
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Proof. We have uε ∈ C∞(Ωε). The monotonicity and convergence follow from the identity

uε(a) = (2π)n
∫ 1

0

· · ·
∫ 1

0

J(u; a, ε(τ1, . . . , τn))Φ(τ1, . . . , τn)τ1 . . . τn dτ1 . . . dτn

and from Proposition 3.4.21. To show that the function uε is psh, we use Proposition 3.4.4. Fix a ∈ Ωε,
X ∈ Cn, and r > 0 such that a+ r · D ·X ⊂ Ωε. Then

1

2π

∫ 2π

0

uε(a+ reiθX) dθ =

∫
Dn

( 1

2π

∫ 2π

0

u(a+ reiθX + εw) dθ
)
Φ(w) dL2n(w)

≥
∫
Dn
u(a+ εw)Φ(w) dL2n(w) = uε(a). �

Proposition 3.4.25. Let Ωj be an open subset of Cnj , j = 1, 2, and suppose that F : Ω1 −→ Ω2 is a
holomorphic mapping. Then for any u ∈ PSH(Ω2), the function u ◦ F is in PSH(Ω1).

Proof. Exercise — cf. the proof of Proposition 3.2.29; we consider first the case u ∈ C2(Ω) and use the
formula

(L(u ◦ F ))(a;X) = (Lu)(F (a);F ′(a)(X)).

In the general case we apply the regularization (Proposition 3.4.24). �

Proposition 3.4.26. If q : Cn −→ R+ is a C-seminorm, then log q ∈ PSH(Cn).

Proof. Given arbitrary a, X ∈ Cn, the function C 3 λ −→ q(a + λX) is convex, and hence subharmonic
(Proposition 3.2.36). This means that q ∈ PSH(Cn). Moreover, for every polynomial p ∈ P(C) we have

v(λ) := |ep(λ)|q(a+ λX) = q(ep(λ)(a+ λX))

and so, by Proposition 3.4.25, v ∈ SH(C). Consequently, by Proposition 3.2.33, log q ∈ PSH(Cn). �

Proposition 3.4.27. Let h : Cn −→ R+ be such that h(λz) = |λ|h(z), λ ∈ C, z ∈ Cn. Then h is psh in Cn
iff log h is psh in Cn.

Proof. Exercise — cf. the proof of Proposition 3.4.26. �

Proposition 3.4.28. If u ∈ PSH(D) (D is a domain in Cn), u 6≡ −∞, then Lu ≥ 0 in D in the distribution
sense, i.e. for every ϕ ∈ C∞0 (D,R+) we have∫

D

u(z)(Lϕ)(z;X) dL2n(z) ≥ 0, X ∈ Cn.

Conversely, if u ∈ L1(D, loc) is such that Lu ≥ 0 in D in the distribution sense, then there exists a function
v ∈ PSH(D) such that u = v L2n-almost everywhere in D.

Proof. Exercise — cf. the proof of Proposition 3.2.28. �

Definition 3.4.29. A function u ∈ C(Ω,R) is called strictly plurisubharmonic if for every domain D ⊂⊂ Ω
there exists an ε > 0 such that the function D 3 z −→ u(z)− ε‖z‖2 is psh.

Proposition 3.4.30. A function u ∈ C2(Ω) is strictly psh iff

(Lu)(a;X) > 0, a ∈ Ω, X ∈ Cn, X 6= 0.

Proof. ⇐=. Fix a domain D ⊂⊂ Ω and let

ε := min{(Lu)(a;X) : a ∈ D, ‖X‖ = 1}, v(z) := u(z)− ε‖z‖2, z ∈ D.

Then
(Lv)(a;X) = (Lu)(a;X)− ε‖X‖2 ≥ 0, a ∈ Ω, X ∈ Cn,

and so v ∈ PSH(D) (Proposition 3.4.11).
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=⇒. Fix an a ∈ Ω and let D ⊂⊂ Ω, ε > 0 be such that a ∈ D and the function v(z) = u(z) − ε‖z‖2,
z ∈ D, is psh in D. Then

(Lu)(a;X) = (Lv)(a;X) + ε‖X‖2 ≥ ε‖X‖2 > 0, X 6= 0. �

Remark 3.4.31. In the case where u ∈ PSH(Ω) is continuous Proposition 3.4.24 may be generalized in
the following way (cf. [27]):

If u ∈ PSH(Ω) is continuous, then for any continuous function η : Ω −→ R>0 there exists a strictly psh
function v ∈ C∞(Ω) such that u ≤ v ≤ u+ η on Ω.

Proposition 3.4.24 may be also ‘globalized’ in the case where Ω is a region of holomorphy (cf. [7]):
If Ω is a region of holomorphy, then for any u ∈ PSH(Ω) there exists a sequence (uν)∞ν=1 ⊂ PSH(Ω)∩

C∞(Ω) such that uν ↘ u pointwise on Ω.

Definition 3.4.32. We say that a bounded domain D ⊂ Cn is hyperconvex if there exists a psh continuous
function u : D −→ (−∞, 0) such that
{z ∈ D : u(z) ≤ t} ⊂⊂ D for any t < 0. (*)
We say that D is weakly hyperconvex if there exists a u : D −→ [−∞, 0) with (*).

It is clear that any hyperconvex domain is weakly hyperconvex.

Proposition 3.4.33. Let D be a bounded domain in Cn. Then D is hyperconvex iff D is weakly hyperconvex.

Proof. (Cf. [36].) Let u : D −→ [−∞, 0) be a psh function with (*). We will construct a continuous psh
function v0 : D −→ (−∞, 0) with (*).

Fix a ball K := B(a, r) ⊂ D and let

hD,K(z) := sup{h(z) : h ∈ PSH(D), h ≤ 1, h|K ≤ 0}, z ∈ D.

Obviously 0 ≤ hD,K ≤ 1 and hD,K = 0 on K. Put v := h∗D,K . It is clear that v = 0 in B(a, r). Observe that
v ∈ PSH(D) (Proposition 3.4.17) and hence, by the maximum principle (Proposition 3.4.16) v(z) < 1 for
any z ∈ D.

Fix a t0 > 0 such that u ≤ −t0 on K and put h := (1/t0)u + 1. Then h ∈ PSH(D), h ≤ 1, and h ≤ 0
on K. Hence h ≤ hD,K ≤ v. Consequently, v− 1 is a negative psh function with (*). We will show that v is
continuous (then v0 := v − 1 satisfies all the required conditions).

By the Oka theorem (Proposition 3.2.31), for any point b ∈ ∂B(a, r) we get

v(b) = lim
[0,1)3t→1

v(a+ t(b− a)) = 0.

Thus v = 0 on K.
For α ∈ (0, 1) let Dα := {z ∈ D : v(z) < α}. Notice that K ⊂ Dα ⊂⊂ D and Dα ↗ D when α ↗ 1.

The same proof as above shows that h∗Dα,K = 0 on K. Observe that

αh∗Dα,K ≤ v on Dα.

Indeed, define

h :=

{
max{αh∗Dα,K , v} on Dα

v on D \Dα

.

Then
lim sup
Dα3z→ζ

αh∗D,K(z) ≤ α ≤ v(ζ), ζ ∈ ∂Dα.

Hence, by Proposition 3.2.11, h ∈ PSH(D). Obviously h ≤ 1 on D and h = 0 on K. Thus h ≤ hD,K ≤ v.
In particular, αh∗Dα,K ≤ h ≤ v on Dα.

Fix a point z0 ∈ D. We want to prove that v is continuous at z0. Let β(α) := maxDα v. Observe that
α ≤ β(α) < 1. In particular, β(α) −→ 1 when α −→ 1. Fix η > 0 and α ∈ (0, 1) such that z0 ∈ Dα and
β/α− 1 ≤ η, where β := β(α).
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Let (vε)0<ε≤ε0 be a family of C∞ psh functions defined in a neighborhood Ω of Dα, Ω ⊂ D, such that
vε ↘ v on Ω when ε ↘ 0 (Proposition 3.4.24). By the Hartogs lemma (Proposition 3.4.20), one can find a
function w ∈ PSH(Ω) ∩ C∞(Ω) such that w ≥ v on Ω, w ≤ η on K, and w ≤ β + η on Dα. Consequently,

(w − η)/β ≤ h∗Dα,K on Dα.

Hence,
0 ≤ w − v ≤ βh∗Dα,K + η − v ≤ (β/α− 1)v + η ≤ β/α− 1 + η ≤ 2η on Dα.

Now, by the continuity of w, there exists a neighborhood U od z0, U ⊂ Dα, such that |w(z) − w(z0)| ≤ η
for z ∈ U . Finally, |v(z)− v(z0)| ≤ 5η for z ∈ U . �

Exercises

3.1. Let D ⊂ C be a domain, h ∈ H(D), h 6≡ const. Prove that h2 /∈ H(D).
3.2. Let h ∈ H(D), h ≥ 0. Prove that

1− |z|
1 + |z|

h(0) ≤ h(z) ≤ 1 + |z|
1− |z|

h(0), z ∈ D.

3.3. Determine the set {h(1/2) : h ∈ H(D), h ≥ 0, h(0) = 1}.
3.4. Let Ω ⊂ C be open and let (hι)ι∈I ⊂ H(Ω) be locally uniformly bounded. Show that the function

supι∈I hι is continuous.
3.5. Let Ω ⊂ C be open. Prove that − log dΩ ∈ SH(Ω).
3.6. Given a domain D ⊂ C, find a continuous subharmonic function u : D −→ R such that {z ∈ D :

u(z) ≤ t} ⊂⊂ D for any t ∈ R.
3.7. Let Ω ⊂ Cn, u : Ω −→ R+. Prove that log u ∈ PSH(Ω) iff for any a ∈ Cn the function

Ω 3 z 7−→ |e〈z,a〉|u(z)

is psh (cf. Proposition 3.2.34)
(

22
)
.

3.8. Construct a function u ∈ PSH(Cn), u 6≡ 0, such that u = 0 on dense subset of Cn.
3.9. Let D := {(z1, z2) ∈ C2 : |z1z2| < 1}, u ∈ PSH(D), u ≤ 0. Prove that there exists a v ∈ SH(D)

such that u(z1, z2) = v(z1z2), (z1, z2) ∈ D.
3.10. Let u ∈ C2(Ω,R). Prove that

2n∑
j,k=1

∂2u

∂xj∂xk
(z)YjYk = 2 Re

( n∑
j,k=1

∂2u

∂zj∂zk
(z)XjXk

)
+ 2Lu(z;X),

where

z = (z1, . . . , zn) = (x1 + ix2, . . . , x2n−1 + ix2n) ∈ Ω,
X = (X1, . . . , Xn) = (Y1 + iY2, . . . , Y2n−1 + iY2n) ∈ Cn.

3.11. (Convex functions.) Let D ⊂ RN be a convex domain and let CV(D) denote the set of all convex
functions u : D −→ [−∞,∞).

(a) Let u ∈ CV(D). Prove that either u ≡ −∞ or u ∈ C(D,R).
(b) Let (uι)ι∈I ⊂ CV(D) be locally bounded from above in D. Prove that u := supι∈I uι ∈ CV(D)

(cf. Propositions 3.2.10, 3.4.17).
(c) Let (uν)∞ν=1 ⊂ CV(D) be locally bounded from above inD. Prove that u := lim supν→+∞ uν ∈ CV(D)

(cf. Propositions 3.2.14, 3.4.18).
(d) Let u ∈ C2(D,R). Prove that u ∈ CV(D) iff Hu(x;X) ≥ 0 for any x ∈ D and X ∈ RN , where Hu

denotes the real Hessian of u,

Hu(x;X) :=

N∑
j,k=1

∂2u

∂xj∂xk
(x)XjXk, x ∈ D, X = (X1, . . . , XN ) ∈ RN .

(
22
)
〈z, a〉 =

∑n
j=1 zjaj .
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(e) Let %D denote the distance to the boundary of D with respect to the Euclidean norm. Prove that
− log %D ∈ CV(D).

(f) Let Φ ∈ C∞0 (RN ,R+) be such that
suppΦ = BN = the unit Euclidean ball in RN ,
Φ(x) = Φ(|x1|, . . . , |xN |), x = (x1, . . . , xN ) ∈ RN ,∫
RN Φ dL

N = 1.
Define

Dε := {x ∈ D : %D(x) > ε}, uε(x) :=

∫
BN

u(x+ εy)Φ(y) dLN (y), x ∈ Dε, ε > 0.

Prove that if u ∈ CV(D), u 6≡ 0, then uε ∈ CV(Dε) ∩ C∞(Dε), ε > 0, and uε ↘ u when ε ↘ 0 (cf.
Propositions 3.2.25 and 3.4.24).

(g) Let u ∈ C(D,R). Prove that u ∈ CV(D) iff Hu ≥ 0 in the sense of distributions, i.e. for any function
ϕ ∈ C∞0 (D,R+) we have ∫

D

u(x)Hϕ(x;X) dLN (x) ≥ 0, X ∈ RN

(cf. Propositions 3.2.28, 3.4.28).
(h) Let u : D −→ [−∞,∞). Put

D̃ := D + iRN ⊂ CN , ũ(x+ iy) := u(x), x+ iy ∈ D̃.

Prove that u ∈ CV(D) iff ũ ∈ PSH(D̃).
(i) Let u : D −→ R+. Prove that log u ∈ CV(D) iff for any a ∈ RN the function

D 3 x 7−→ e〈x,a〉u(x)

is convex (cf. Exercise 3.7).





CHAPTER 4

Pseudoconvexity and the ∂-problem

4.1. Pseudoconvexity

Definition 4.1.1. An open set Ω ⊂ Cn is called pseudoconvex if

− log dΩ ∈ PSH(Ω).

Notice that Cn is pseudoconvex (because − log dCn ≡ −∞). The empty set ∅ is pseudoconvex by
definition.

Observe that Ω is pseudoconvex iff each connected component of Ω is pseudoconvex. We will see
(Corollary 4.1.6(a)) that any convex domain is pseudoconvex, which partially justifies the terminology.

Proposition 4.1.2. (a) Every open set Ω ⊂ C is pseudoconvex.
(b) If (Ωι)ι∈I is a family of pseudoconvex open subsets of Cn, then

Ω := int
⋂
ι∈I

Ωι

is pseudoconvex.
(c) If (Ωj)

∞
j=1 is a sequence of pseudoconvex subsets of Cn such that Ωj ⊂ Ωj+1, j ≥ 1, then

Ω :=

∞⋃
j=1

Ωj

is pseudoconvex.
(d) If Ωj is a pseudoconvex subset of Cnj , j = 1, . . . , N , then

Ω := Ω1 × · · · ×ΩN
is pseudoconvex in Cn1+···+nN (cf. Corollary 4.1.10).

In particular, for any open sets Ω1, . . . , Ωn ⊂ C, the set Ω := Ω1 × · · · ×Ωn is pseudoconvex in Cn.

Proof. (a) If Ω  C, then
dΩ(z) = inf{|z − ζ| : ζ /∈ Ω}, z ∈ Ω.

Hence, by Propositions 3.2.8 and 3.2.10, − log dΩ ∈ SH(Ω).
(b) One can prove that

dΩ = inf{dΩι : ι ∈ I}.
Hence, by Proposition 3.4.17, − log dΩ ∈ PSH(Ω).

(c) Since − log dΩj ↘ − log dΩ , we use Proposition 3.4.8.
(d) We have

dΩ(z1, . . . , zn) = min{dΩj (zj) : j = 1, . . . , N}, (z1, . . . , zn) ∈ Ω.
Hence, by Proposition 3.4.17, − log dΩ ∈ PSH(Ω). �

For an open set Ω ⊂ Cn, put
δΩ,X(a) := sup{r > 0 : a+K(r) ·X ⊂ Ω}, X ∈ Cn, a ∈ Ω.

Obviously, if n = 1, then δΩ,X = dΩ/|X|.

87
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Note that

δΩ,X(a+ λX) = dΩa,X (λ), λ ∈ Ωa,X .

Lemma 4.1.3. The function

Ω × Cn 3 (a,X) −→ δΩ,X(a) ∈ (0,+∞]

is lower semicontinuous.

Proof. Fix (a0, X0) ∈ Ω×Cn and 0 < r0 < δΩ,X0
(a0). Since the set a0 +K(r0) ·X0 is compact, there exists

an ε > 0 such that a + K(r0) ·X ⊂ Ω for any (a,X) ∈ U := B(a0, ε) × B(X0, ε) ⊂ Ω × Cn. Consequently,
δΩ,X(a) > r0 for any (a,X) ∈ U . �

Given a C-norm q : Cn −→ R+, define

dΩ,q(a) = sup{r > 0 : Bq(a, r) ⊂ Ω}, a ∈ Ω,
where Bq(a, r) := {z ∈ Cn : q(z − a) < r}. Obviously, dΩ,| | = dΩ . Notice that the function dΩ,q is
continuous.

Remark 4.1.4. dΩ,q = inf{δΩ,X : X ∈ Cn, q(X) = 1}.

For a compact K ⊂ Ω and a family S ⊂ PSH(Ω) let

K̃S := {z ∈ Ω : ∀u∈S : u(z) ≤ max
K

u}.

By Proposition 3.4.5 K̃PSH(Ω) ⊂ K̂O(Ω).
Moreover, K̃PSH(Ω) ⊂ K̃PSH(Ω)∩C(Ω) and the set K̃PSH(Ω)∩C(Ω) is relatively closed in Ω.
A function u : Ω −→ R is called an exhaustion function if for any t ∈ R the set {z ∈ Ω : u(z) ≤ t} is

relatively compact in Ω.

Theorem 4.1.5. Let Ω be an open subset of Cn. Then the following conditions are equivalent:
(PC1) − log δΩ,X ∈ PSH(Ω) for every X ∈ Cn;
(PC2) − log dΩ,q ∈ PSH(Ω) for every C-norm q;
(PC3) Ω is pseudoconvex;
(PC4) there exists an exhaustion function u ∈ PSH(Ω) ∩ C(Ω);
(PC5) there exists an exhaustion function u ∈ PSH(Ω);
(PC6) K̃PSH(Ω)∩C(Ω) is compact in Ω for every compact K ⊂ Ω;
(PC7) K̃PSH(Ω) is relatively compact in Ω for every compact K ⊂ Ω;
(PC8) every point a ∈ ∂Ω has an open neighborhood Ua such that Ua ∩Ω is pseudoconvex.

(
1
)

Proof.
(6)

�
��> Z

ZZ~

(1) −−−−→ (2) −−−−→ (3) −−−−→ (4) −−−−→ (5) −−−−→ (7) −−−−→ (1)

Z
ZZ~

x
(8)

The case Ω = Cn is obvious (in (PC4) we can take for instance u(z) := ‖z‖, z ∈ Cn (cf. Proposi-
tion 3.4.26)). Thus we may assume that Ω  Cn.

(PC1) =⇒ (PC2) follows from Remark 4.1.4 and Proposition 3.4.17.
The implication (PC2) =⇒ (PC3) is trivial.
For the proof of (PC3) =⇒ (PC4) we can take u(z) := max{− log dΩ(z), ‖z‖}, z ∈ Ω.
The implications (PC4) =⇒ (PC5) and (PC6) =⇒ (PC7) are trivial.(
1
)
That is, Ω is locally pseudoconvex.
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For the proof of (PC5) =⇒ (PC7) observe that if u is as in (PC5), then

K̃PSH(Ω) ⊂ {z ∈ Ω : u(z) ≤ max
K

u} ⊂⊂ Ω.

In the same way we check that (PC4) =⇒ (PC6).
(PC7) =⇒ (PC1) (This is the main part of the proof.) Fix a ∈ Ω, X,Y ∈ Cn \ {0}. We want to show

that the function
Ωa,Y 3 λ 7−→ − log δΩ,X(a+ λY )

is subharmonic.
First consider the case where X and Y are linearly dependent. We may assume that X = Y . Since

δΩ,X(a+ λX) = dΩa,X (λ), λ ∈ Ωa,X , we can use Proposition 4.1.2(a).
Now assume that X,Y are linearly independent. It is sufficient to prove (cf. Proposition 3.2.7) that if

K(r) ⊂ Ωa,Y , and if p ∈ P(C) is such that

− log δΩ,X(a+ λY ) ≤ Re p(λ), λ ∈ ∂K(r),

then the same inequality holds for all λ ∈ K(r). In other words, if

δΩ,X(a+ λY ) ≥ e−Re p(λ), λ ∈ ∂K(r),

then the same is true for all λ ∈ K(r). Thus we have to show that if

a+ λY +K(|e−p(λ)|) ·X ⊂ Ω, λ ∈ ∂K(r),

then the same inclusion holds for all λ ∈ K(r).
For 0 ≤ θ < 1 let

Kθ := {a+ λY +K(θ|e−p(λ)|) ·X : λ ∈ ∂K(r)},

Mθ := {a+ λY +K(θ|e−p(λ)|) ·X : λ ∈ K(r)}.
Observe that Kθ and Mθ are compact. Our problem is to show that if Kθ ⊂ Ω for all 0 ≤ θ < 1, then
Mθ ⊂ Ω for all 0 ≤ θ < 1. Thus assume that Kθ ⊂ Ω for all 0 ≤ θ < 1 and let I0 := {θ ∈ [0, 1) : Mθ ⊂ Ω}.

Notice that M0 = a + K(r)Y ⊂ Ω. Hence I0 6= ∅. Suppose that θ0 ∈ I0. Since Mθ0 is compact, there
exists a θ ∈ (θ0, 1) such that Mθ ⊂ Ω. Consequently, I0 is open. It remains to prove that I0 is closed in
[0, 1), i.e. if Mθ ⊂ Ω for 0 < θ < θ0 < 1, then Mθ0 ⊂ Ω.

Fix 0 < θ < θ0. Observe that

Mθ = {a+ λY + ζe−p(λ)X : |λ| ≤ r, |ζ| ≤ θ} ⊂⊂ Ω.
Take a u ∈ PSH(Ω) and define

vζ(λ) := u(a+ λY + ζe−p(λ)X), ζ ∈ K(θ), λ ∈ K(r).

Then vζ is subharmonic and, therefore, the maximum principle gives

vζ(λ) ≤ max
∂K(r)

vζ ≤ max
Kθ

u ≤ max
Kθ0

u.

Consequently, Mθ ⊂ (K̃θ0)PSH(Ω) ⊂⊂ Ω for any 0 < θ < θ0 and hence Mθ0 ⊂ Ω.
The implication (PC3) =⇒ (PC8) is trivial.
(PC8) =⇒ (PC4). For a ∈ ∂Ω let Ua be a neighborhood of a such that Ua ∩ Ω is pseudoconvex.

Clearly, there exists a smaller neighborhood Va ⊂ Ua such that dΩ = dUa∩Ω in Va ∩ Ω (Exercise). In
particular, − log dΩ ∈ PSH(Va ∩Ω). Consequently, there exists a closed set F ⊂ Cn such that F ⊂ Ω and
− log dΩ ∈ PSH(Ω \ F ). Let

ϕ0(t) := max{− log dΩ(z) : z ∈ F, ‖z‖ ≤ t}, t ∈ R
(with max∅ = −∞). One can easily prove (Exercise) that there exists an increasing convex function
ϕ : R −→ R+ such that ϕ(t) > max{t, ϕ0(t)}, t ∈ R. Put

u(z) := max{− log dΩ(z), ϕ(‖z‖)}, z ∈ Ω.
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The function u is obviously continuous. Since ϕ(‖z‖) > − log dΩ(z) for z in a neighborhood of F , the
function u is plurisubharmonic in Ω (cf. Proposition 3.4.6). Moreover,

{z ∈ Ω : u(z) ≤ t} ⊂ {z ∈ Ω : dΩ(z) ≥ e−t, ‖z‖ ≤ t} ⊂⊂ Ω, t ∈ R. �

Corollary 4.1.6. (a) Any holomorphically convex open set Ω ⊂ Cn is pseudoconvex.
(

2
)

In particular,
any convex domain is pseudoconvex.
(b) Any hyperconvex domain D ⊂ Cn (Definition 3.4.32) is pseudoconvex (cf. Exercise 4.2).

Proof. (a) K̃PSH(Ω) ⊂ K̂O(Ω)

(b) Let u : D −→ (−∞, 0) be a continuous psh function such that

{z ∈ D : u(z) ≤ t} ⊂⊂ D
for any t < 0. Then for any compact K ⊂ D we get

K̃PSH(D) ⊂ {z ∈ D : u(z) ≤ max
K

u} ⊂⊂ D.

�

Proposition 4.1.7. If Ω1 ⊂ Cn, Ω2 ⊂ Cm are pseudoconvex and f ∈ O(Ω1,Cm), then Ω := f−1(Ω2) is
pseudoconvex (cf. Proposition 2.7.13).

Proof. (Cf. the proof of Proposition 2.7.13.) Let K ⊂ Ω be compact. Then

K̃PSH(Ω) ⊂ Ω ∩ K̃PSH(Ω1) ⊂⊂ Ω1.

Suppose that there exists a sequence (zν)∞ν=1 ⊂ K̃PSH(Ω) such that zν −→ z0 ∈ Ω1 ∩ ∂Ω. Observe that for
any z ∈ K̃PSH(Ω) and v ∈ PSH(Ω2) we get

v(f(z)) ≤ max
K

v ◦ f = max
f(K)

v.

Hence
f(K̃PSH(Ω)) ⊂ f̃(K)PSH(Ω2) ⊂⊂ Ω2.

In particular,
f(zν) ∈ f̃(K)PSH(Ω2) ⊂⊂ Ω2, ν ≥ 1,

and so f(z0) ∈ Ω2; contradiction. �

Proposition 4.1.8. Ω is pseudoconvex iff the function

Ω × Cn 3 (z,X) 7−→ − log δΩ,X(z)

is psh.

Proof. The implication ⇐= is obvious. To prove =⇒ let

Ω × Cn 3 (z,X)
g7−→ (z,X, 0) ∈ Ω × Cn × C 3 (z,X, λ)

f7−→ z + λX ∈ Cn.
Put G := f−1(Ω). Note that g(Ω × Cn) ⊂ G. By Proposition 4.1.7, G is pseudoconvex. In particular, by
(PC1) the function − log δG,Y0

is psh in G, where Y0 := (0, 0, 1) ∈ Cn ×Cn ×C. Now we only need to prove
that

δΩ,X(z) = δG,Y0(g(z,X)), (z,X) ∈ Ω × Cn.
Indeed, we have

δΩ,X(z) = sup{r > 0 : z +K(r) ·X ⊂ Ω} = sup{r > 0 : {z} × {X} ×K(r) ⊂ G}
= sup{r > 0 : (z,X, 0) +K(r) · Y0 ⊂ G} = δG,Y0

(g(z,X)). �(
2
)
It is natural to ask whether the converse implication is also true. This is the famous Levi Problem, which will be solved

in Chapter 5.
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Proposition 4.1.9. Let Ω ⊂ Cn be pseudoconvex. Then for any complex affine subspace V ⊂ Cn the set
Ω ∩ V is pseudoconvex in V , i.e. for any a ∈ Cn and linearly independent vectors v1, . . . , vk the set

G := {(λ1, . . . , λk) ∈ Ck : a+ λ1v1 + · · ·+ λkvk ∈ Ω}
is pseudoconvex in Ck.

Proof. If u is a psh exhaustion function for Ω (cf. (PC5)), then the function

v(λ) := u(a+ λ1v1 + · · ·+ λkvk), λ = (λ1, . . . , λk) ∈ G,
is a psh exhaustion function for G.

(
3
)

�

Corollary 4.1.10. Let Ωj be open in Cnj , j = 1, . . . , N . Then Ω1 × · · · ×ΩN is pseudoconvex iff each Ωj
is pseudoconvex, j = 1, . . . , N .

Proposition 4.1.11. Let Ω ⊂ Cn be pseudoconvex. Then for any biholomorphic mapping Φ : Ω −→ Φ(Ω)
the set Φ(Ω) is pseudoconvex.

Proof. If u is a psh exhaustion function for Ω, then u ◦ Φ−1 is a psh exhaustion function for Φ(Ω). �

Proposition 4.1.12. Let Ω ⊂ Cn be pseudoconvex and let u ∈ PSH(Ω). Then

G := {z ∈ Ω : u(z) < 0}
is pseudoconvex.

Proof. First assume additionally that u is continuous. Take an arbitrary compact K ⊂ G. Then
K̃PSH(Ω) ⊂ {z ∈ Ω : u(z) ≤ max

K
u} ⊂ G.

Consequently, K̃PSH(G) ⊂ K̃PSH(Ω) ⊂⊂ G.
Now, let u be arbitrary. Put

Ωε := {z ∈ Ω : dΩ(z) > ε}, ε > 0.

By the first part of the proof Ωε is pseudoconvex for any ε > 0. Let uε ∈ PSH(Ωε) ∩ C∞(Ωε) be the
ε-regularization of u (cf. Proposition 3.4.24). Define

Gε := {z ∈ Ωε : uε(z) < 0}, ε > 0.

By the first part of the proof we know that Gε is pseudoconvex for any ε > 0. It remains to observe that
Gε ↗ G as ε↘ 0 and use Proposition 4.1.2(c). �

Corollary 4.1.13. An open set Ω ⊂ Cn is pseudoconvex iff for arbitrary ε > 0 the set {z ∈ Ω : dΩ(z) > ε}
is pseudoconvex.

Proposition 4.1.14. Let
D = {(z, w) ∈ G× Ck : H(z, w) < 1}

be a Hartogs domain over G with k-dimensional balanced fibers (Definition 1.6.3), where H is as in Remark
1.6.4(a). Then D is pseudoconvex iff G is pseudoconvex and logH ∈ PSH(G× Ck).

In particular, we get the following results:
(a) A balanced domain

D = {z ∈ Cn : h(z) < 1},
where h is the Minkowski functional of D, is pseudoconvex iff log h is psh on Cn (cf. Proposition 3.4.27).
(b) A complete Hartogs domain

D := {(z, w) ∈ G× C : |w| < e−u(z)},(
3
)
Observe that the result follows also from Proposition 4.1.7 with

Ck 3 (λ1, . . . , λk)
f7−→ a+ λ1v1 + · · ·+ λkvk ∈ Cn.
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where G ⊂ Cn−1 is a domain and u : G −→ [−∞,+∞) is upper semicontinuous (cf. Remark 1.6.4(c)), is
pseudoconvex iff G is pseudoconvex and u ∈ PSH(G).

Proof. ⇐=. Observe that G× Ck is pseudoconvex and

D = {(z, w) ∈ G× Ck : logH(z, w) < 0}.

It remains to use Proposition 4.1.12.
=⇒. We have G× {0} = D ∩ {w = 0}. Hence, by Proposition 4.1.9, G is pseudoconvex. Moreover,

δD,(0,w)(z, 0) =
1

H(z, w)
, z ∈ G, w ∈ Ck.

Hence, by Proposition 4.1.8, logH ∈ PSH(G× Ck). �

Proposition 4.1.15. Let Ω ⊂ Cn be pseudoconvex open set, let K ⊂ Ω be a compact set, and let U ⊂ Ω

be an open neighborhood of K̃PSH(Ω). Then there exists a strictly psh exhaustion function u ∈ C∞(Ω) such
that

u < 0 on K, u > 0 on Ω \ U.

Proof. Let u0 be a continuous psh exhaustion function on Ω (cf. (PC4)). We may assume that u0 < 0 on
K. Define

L := {z ∈ Ω : u0(z) ≤ 2}, M := {z ∈ Ω \ U : u0(z) ≤ 0}.
The sets L, M are compact, M ⊂ L.

Suppose that M 6= ∅. Since M ∩ K̃PSH(Ω) = ∅, for any point a ∈ M there exists a function ua ∈
PSH(Ω) such that ua < 0 on K and ua(a) > 0. Let Ωε := {z ∈ Ω : dΩ(z) > ε} and let (ua)ε ∈ PSH(Ωε) ∩
C∞(Ωε) denote the ε-regularization of ua. It is clear that there exists an ε(a) > 0 such that L ⊂ Ωε(a),
(ua)ε(a) < 0 onK and (ua)ε(a)(a) > 0. Put va := (ua)ε(a). Since va is continuous, there exists a neighborhood
Va ⊂ Ωε(a) of a such that va > 0 in Va. Since M is compact, there exist points a1, . . . , aN ∈ M such that
M ⊂ Va1 ∪ · · · ∪ VaN . Define ε := max{ε(a1), . . . , ε(aN )}, w := max{va1 , . . . , vaN } ∈ PSH(Ωε) ∩ C(Ωε) and
observe that L ⊂ Ωε, w < 0 on K and w > 0 on M . Let c := max{1,maxL w} and put

v(z) :=

{
max{w(z), cu0(z)} if u0(z) < 2

cu0(z) if u0(z) > 1
.

Then v is a well-defined continuous psh function on Ω. Observe that {v < t} ⊂ {u0 < 2}∪{u0 < t/c} ⊂⊂ Ω
for any t ∈ R, so v is an exhaustion function. Clearly, v < 0 on K. Moreover, if z ∈ Ω \ U and u0(z) > 0,
then v(z) ≥ cu0(z) > 0; if z ∈ Ω \ U and u0(z) ≤ 0, then z ∈M and therefore v(z) ≥ w(z) > 0. Thus v > 0
on Ω \ U .

If M = ∅ we put v := u0.
It remains to smooth v. Put

Gν := {z ∈ Ω : v(z) < ν}, ν ∈ Z.

Let ṽε ∈ PSH(Ωε)∩C∞(Ωε) be the ε-regularization of v and let vε := ṽε+ ε‖z‖2 + ε. Then vε is strictly psh
and vε ↘ v as ε ↘ 0 on Ω. Since v is continuous, vε −→ v locally uniformly on Ω (use the Dini theorem).
For each ν ∈ N0 let ε(ν) > 0 be such that Gν ⊂⊂ Ωε(ν), v < vε(ν) < v + 1 on Gν and vε(ν) < 0 on K. Let
ϕν ∈ C∞0 (Ω, [0, 1]) be such that suppϕν ⊂ Ωε(ν) and ϕν = 1 in a neighborhood of Gν . Define ψν := ϕν ·vε(ν)

on Gν and ψν = 0 on Ω \ suppϕν . Observe that ψν is a well-defined C∞ function on Ω and ψν = vε(ν) in a
neighborhood of Gν , ν ∈ N0.

Let χ : R −→ R+ be a C∞ increasing convex function such that χ(t) = 0 for t ≤ 0 and χ′(t) > 0 for
t > 0. Define Vν := χ(ψν + 1− ν) ∈ C∞(Ω,R+). Observe that:

(a) Vν is psh in a neighborhood of Gν .
(b) Vν = 0 on Gν−2. Indeed, if z ∈ Gν−2, then ψν(z) + 1− ν < v(z) + 1 + 1− ν ≤ 0.
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(c) Vν is strictly psh and > 0 in a neighborhood of Gν \ Gν−1. Indeed, if z ∈ Gν \ Gν−1, then
ψν(z) + 1− ν > v(z) + 1− ν ≥ 0. Hence Vν(z) > 0 and for X ∈ (Cn)∗ we get

LVν(z;X) = χ′′(ψν(z) + 1− ν)
∣∣∣ n∑
j=1

∂ψν
∂zj

(z)Xj

∣∣∣2 + χ′(ψν(z) + 1− ν)Lψν(z;X)

≥ χ′(ψν(z) + 1− ν)Lψν(z;X) > 0

We are going to construct a sequence (cν)∞ν=1 ⊂ R>0 such that for each ν ∈ N the function Wν :=
ψ0 + c1V1 + · · · + cνVν is > v and strictly psh in a neighborhood of Gν . We proceed by induction over
ν. Put W0 := ψ0 and suppose that c1, . . . , cν are already constructed for some ν ≥ 0 (this condition
is empty for ν = 0). By (a), for any cν+1 > 0, the function Wν+1 = Wν + cν+1Vν+1 is strictly psh
and > v in a neighborhood of Gν . We have to find cν+1 such that Wν+1 is strictly psh and > v in a
neighborhood of H := Gν+1 \ Gν . Fix an A > 0 such that LWν(z;X) ≥ −A‖X‖2, z ∈ H, X ∈ Cn. In
virtue of (c) there exists a constant B > 0 such that LVν+1(z;X) ≥ B‖X‖2, z ∈ H, X ∈ Cn. Hence
LWν+1(z;X) = LWν(z;X) + cν+1LVν+1(z;X) ≥ (−A + cν+1B)‖X‖2, z ∈ H, X ∈ Cn, which shows that
with cν+1 � 0 the function Wν+1 is strictly psh on Gν+1. Recall that Vν+1 > 0 on H (cf. (c)). Hence, if
cν+1 � 0, then Wν+1 > v on H.

Observe that Wν = Wµ on Gµ−1 for any ν > µ (use (b)). Thus u := limν→+∞Wν is a well-defined C∞
strictly psh function on Ω. If z ∈ K ⊂ G0, then we get u(z) = W1(z) = ψ0(z) + c1χ(ψ1(z)) = ψ0(z) < 0.
Moreover, u > v and therefore u is an exhaustion function. �

Corollary 4.1.16. Let Ω ⊂ Cn be a pseudoconvex open set and let K ⊂ Ω be a compact set. Then
K̃PSH(Ω) = K̃PSH(Ω)∩C∞(Ω). In particular, the set K̃PSH(Ω) is closed.

Proof. Obviously, K̃PSH(Ω) ⊂ K̃PSH(Ω)∩C∞(Ω). Take an a /∈ K̃PSH(Ω) and let U := Ω \ {a}. Then by
Proposition 4.1.15 there exists a function u ∈ PSH(Ω) ∩ C∞(Ω) such that u < 0 on K and u(a) > 0.
Consequently, a /∈ K̃PSH(Ω)∩C∞(Ω). �

Definition 4.1.17. We say that an open bounded set Ω ⊂ Cn is strongly pseudoconvex if for any point
a ∈ ∂Ω there exist a polydisc P ⊂ Cn and a strictly psh function u ∈ C2(P,R) (cf. § 3.4) such that
• a ∈ P ,
• Ω ∩ P = {z ∈ P : u(z) < 0},
• P \Ω = {z ∈ P : u(z) > 0},
• gradu(z) 6= 0 for any z ∈ P ∩ ∂Ω.

Observe that, by (PC8) and Proposition 4.1.12, any strongly pseudoconvex open set is pseudoconvex.

Proposition 4.1.18. Assume that Ω is holomorphically convex open set.
(a) Let K ⊂ Ω be compact and let U be an open neighborhood of K̂O(Ω). Then there exists a strictly psh real
analytic exhaustion function u : Ω −→ R such that u < 0 on K and u > 0 on Ω \ U .
(b) Ω =

⋃∞
k=1Ωk, where

Ωk is a relatively compact open subset of Ω with Ωk ⊂ Ωk+1, and
Ωk is strongly pseudoconvex with real analytic boundary, k ≥ 1.

Proof. (a) There exists a sequence of holomorphically convex compact sets (Kj)
∞
j=1 such that K1 = K̂O(Ω),

Kj ⊂ intKj+1, j ≥ 1, and Ω =
⋃∞
j=1Kj ; cf. Remark 2.7.11(g). Fix open sets Uj , j ≥ 1, such that U1 ⊂ U ,

Kj ⊂ Uj ⊂ Kj+1, j ≥ 1. Fix a j ≥ 1. For any point z ∈ Kj+2 \ Uj there exists an fz ∈ O(Ω) such that
|fz(z)| > 1 > ‖fz‖Kj . Let Vz be a neighborhood of z such that |fz(w)| > 1 for w ∈ V z. There exist points
z1, . . . , zk(j) such that Kj+2 \ Uj ⊂ Vz1 ∪ · · · ∪ Vzk(j) . Define fj,ν := f `zν , ν = 1, . . . , k(j), where ` = `(j) is
such that

k(j)∑
ν=1

|fj,ν(z)|2 < 1

2j+1
, z ∈ Kj ,

k(j)∑
ν=1

|fj,ν(z)|2 > j, z ∈ Kj+2 \ Uj .
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Put

v := −1 +

∞∑
j=1

k(j)∑
ν=1

|fj,ν |2.

Observe that the series converges locally normally in Ω. It is clear that v ∈ PSH(Ω), v < 0 on K, and that
v > j − 1 on Ω \ Uj , j ≥ 1. In particular, v > 0 on Ω \ U and v is an exhaustion function.

To prove that v is real analytic we proceed as follows.
Define Ω∗ := {z : z ∈ Ω} and ϕ : Ω ×Ω∗ −→ C,

ϕ(z, w) := −1 +

∞∑
j=1

k(j)∑
ν=1

fj,ν(z)fj,ν(w).

The series converges locally normally in Ω ×Ω∗ and therefore ϕ ∈ O(Ω ×Ω∗). Since v(z) = ϕ(z, z), z ∈ Ω,
the function v is real analytic.

Finally, we put u := v + ε‖z‖2, where ε > 0 is so small that u < 0 on K. It is clear that u satisfies all
the required conditions.

(b) Let u be as in (a). By the Sard theorem (cf. [6], Th. 3.4.3)
(

4
)

there exists a sequence R 3 tk ↗ +∞
such that tk /∈ u({z ∈ Ω : gradu(z) = 0}). We put Ωk := {z ∈ Ω : u(z) < tk}, k ≥ 1. �

Let (Aν)∞ν=0 be an arbitrary sequence of subsets of Cn. Define

A0 = lim
ν→+∞

Aν
def⇐⇒ ∀ε>0 ∃ν0 : ∀ν≥ν0 : Aν ⊂ (A0)(ε), A0 ⊂ (Aν)(ε).

(
5
)

One can easily check that if Aν −→ A0, A0 is bounded, and u ∈ C(Cn,R), then infAν u −→ infA0
u.

Theorem 4.1.19 (Kontinuitätssatz). Let Ω be an open subset of Cn. Then the following conditions are
equivalent:
(PC3) Ω is pseudoconvex;
(PC9) for any k ∈ N, a bounded domain D ⊂ Ck, and a sequence (γν)∞ν=1 ⊂ O(D,Ω)∩C(D,Ω), the following
implication is true:
if γν(D) −→ A and γν(∂D) −→ A0, where A is bounded and A0 ⊂⊂ Ω, then A ⊂⊂ Ω;
(PC10) for every sequence of injective holomorphic mappings (γν)∞ν=1 ⊂ O(C,Cn) such that

⋃∞
ν=1 γν(D) ⊂ Ω,

the following implication is true:
if γν(D) −→ A and γν(T) −→ A0, where A is bounded and A0 ⊂⊂ Ω, then A ⊂⊂ Ω.

Proof. (PC3) =⇒ (PC9). Let uν := − log dΩ ◦ γν . Then uν ∈ PSH(D) ∩ C(D) (cf. Proposition 3.4.25). In
particular, by the maximum principle we have

max
D

uν = max
∂D

uν , ν ≥ 1.

This means that
inf
γν(D)

dΩ = inf
γν(∂D)

dΩ , ν ≥ 1.

Put dΩ := 0 on Cn \Ω. Then dΩ ∈ C(Cn). We get

inf
γν(D)

dΩ −→ inf
A
dΩ , inf

γν(∂D)
dΩ −→ inf

A0

dΩ ,

which proves that infA dΩ = infA0
dΩ > 0, and so A ⊂⊂ Ω.

The implication (PC9) =⇒ (PC10) is obvious.
(PC10) =⇒ (PC3). We keep all the notations from the proof of the implication (PC7) =⇒ (PC1)

in Theorem 4.1.5. Recall that the only problem is to show that the set I0 is closed in [0, 1). Take an
I0 3 θν −→ θ0 ∈ [0, 1) and fix a ζ ∈ D. Define

γν(λ) := a+ rλY + θνζe
−p(rλ)X, λ ∈ C, ν ≥ 1.(

4
)
For any u ∈ C2n(Ω,R), the set u({z ∈ Ω : gradu(z) = 0}) ⊂ R is of Lebesgue measure zero.(

5
)
Recall that A(ε) :=

⋃
a∈A P(a, ε).
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Then γν is injective (because X and Y are linearly independent). Obviously,

Ω ⊃ γν(D) −→ A, γν(T) −→ A0,

where

A := {a+ rλY + θ0ζe
−p(rλ)X : |λ| ≤ 1} ⊂Mθ0 ,

A0 := {a+ rλY + θ0ζe
−p(rλ)X : |λ| = 1} ⊂ Kθ0 ⊂⊂ Ω.

Consequently, A ⊂ Ω and hence (since ζ is arbitrary) θ0 ∈ I0. �

4.2. The ∂-problem

Let Ω ⊂ Cn be open, p, q ∈ N0, and let u be a differential form on Ω of order p+ q. We say that u is of
type (p, q) (u ∈ F(p,q)(Ω)) if

u =
∑

I∈Ξnp ,J∈Ξnq

uI,JdzI ∧ dzJ , (4.2.1)

where
Ξnp := {I = (i1, . . . , ip) ∈ Np : 1 ≤ i1 < · · · < ip ≤ n},
uI,J : Ω −→ C,
dzI := dzi1 ∧ · · · ∧ dzip , dzJ := dzj1 ∧ · · · ∧ dzjq .
To simplify notation, we will write ∑′

|I|=p,|J|=q

. . .

instead of ∑
I∈Ξnp ,J∈Ξnq

. . . .

The representation (4.2.1) is uniquely determined; it is called the canonical representation of u.
Notice that F(p,q)(Ω) = {0} for p > n or q > n.
Let

Ck(p,q)(Ω) := {u ∈ F(p,q)(Ω) : ∀I∈Ξnp , J∈Ξnq
: uI,J ∈ Ck(Ω)}, 0 ≤ k ≤ ∞.

For u ∈ C1
(p,q)(Ω) in the form (4.2.1) define

∂u :=
∑′

|I|=p,|J|=q

n∑
j=1

∂uI,J
∂zj

dzj ∧ dzI ∧ dzJ , (4.2.2)

∂u :=
∑′

|I|=p,|J|=q

n∑
j=1

∂uI,J
∂zj

dzj ∧ dzI ∧ dzJ . (4.2.3)

Note that the right-hand sides of (4.2.2) and (4.2.3) are not in the canonical form. For instance, the canonical
form of (4.2.3) is the following one

∂u =
∑′

|I|=p,|K|=q+1

( ∑
J∈Ξnq , j∈{1,...,n}

ε(I,K, J, j)
∂uI,J
∂zj

)
dzI ∧ dzK ,

where for K = (k1, . . . , kq+1) and J = (j1, . . . , jq),

ε(I,K, J, j) := 0

if {k1, . . . , kq+1} 6= {j, j1, . . . , jq}, and

ε(I,K, J, j) ∈ {−1,+1} is such that dzj ∧ dzI ∧ dzJ = ε(I,K, J, j)dzI ∧ dzK
if {k1, . . . , kq+1} = {j, j1, . . . , jq}.
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Observe that

∂ : Ck(p,q)(Ω) −→ Ck−1
(p+1,q)(Ω), ∂ : Ck(p,q)(Ω) −→ Ck−1

(p,q+1)(Ω), ∂ + ∂ = d,

where d denotes the standard exterior differentiation operator.
A form u ∈ C1

(p,q)(Ω) is called ∂-closed if ∂u = 0.
A form v ∈ C(p,q+1)(Ω) is called ∂-exact if there exists a u ∈ C1

(p,q)(Ω) such that ∂u = v.
The equation ∂u = v is called the inhomogeneous Cauchy–Riemann equation or the ∂-equation or the

∂-problem.

Remark 4.2.1. (a) Since ∂ + ∂ = d, we get

(∂ ◦ ∂)(u) = 0, (∂ ◦ ∂)(u) = 0, (∂ ◦ ∂)(u) = −(∂ ◦ ∂)(u), u ∈ C2
(p,q)(Ω).

In particular, if v ∈ C1
(p,q+1)(Ω) and v = ∂u for a form u ∈ C2

(p,q)(Ω), then ∂v = 0, i.e. v must be ∂-closed.
(b) For f ∈ C1(Ω) we have

f ∈ O(Ω)⇐⇒ ∂f = 0.

More generally, if u =
∑′
|I|=p uIdzI ∈ C1

(p,0)(Ω), then

∂u = 0⇐⇒ ∀I∈Ξnp
: uI ∈ O(Ω).

(c) If u ∈ F(p,q)(Ω), v ∈ F(r,s)(Ω), then u ∧ v ∈ F(p+r,q+s)(Ω).
(d) Let Φ = (Φ1, . . . , Φn) : Ω′ −→ Ω be a holomorphic mapping, where Ω′ is an open set in Cm. Then

Φ∗(F(p,q)(Ω)) ⊂ F(p,q)(Ω
′),

where for u =
∑′
|I|=p,|J|=q uI,JdzI ∧ dzJ we put

Φ∗(u) : =
∑′

|I|=p,|J|=q

(uI,J ◦ Φ) dΦi1 ∧ · · · ∧ dΦip ∧ dΦj1 ∧ · · · ∧ dΦjq

=
∑′

|I|=p,|J|=q

(uI,J ◦ Φ) ∂Φi1 ∧ · · · ∧ ∂Φip ∧ ∂Φj1 ∧ · · · ∧ ∂Φjq .

Moreover,

Φ∗(Ck(p,q)(Ω)) ⊂ Ck(p,q)(Ω
′), (Φ∗ ◦ ∂)(u) = (∂ ◦ Φ∗)(u), u ∈ C1

(p,q)(Ω).

Ck(p,q)(Ω)
Φ∗−−−−→ Ck(p,q)(Ω

′)

∂

y y∂
Ck−1

(p,q+1)(Ω)
Φ∗−−−−→ Ck−1

(p,q+1)(Ω
′)

In particular, if ∂u = v, then ∂(Φ∗(u)) = Φ∗(v). Consequently, if u ∈ C1
(p,q)(Ω) is ∂-closed, then Φ∗(u)

is also ∂-closed.
(e)

∂(u ∧ v) = (∂u) ∧ v + (−1)p+qu ∧ (∂v), u ∈ C1
(p,q)(Ω), v ∈ C1

(r,s)(Ω).

For u as in (4.2.1) we define the support of u by the formula

suppu :=
⋃

I∈Ξnp , J∈Ξnq

suppuI,J .

Proposition 4.2.2. Let v ∈ Ck(0,1)(C
n) be a ∂-closed form with k ≥ 1, n ≥ 2, and supp v ⊂⊂ Cn. Then

there exists a function u ∈ Ck0 (Cn) such that ∂u = v and u = 0 in the unbounded connected component of the
set Cn \ supp v.
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Remark 4.2.3. The above result is not true for n = 1.
Indeed, let v = v0dz ∈ C∞(0,1)(C) be such that supp v0 ⊂⊂ C and

∫
C v0 dL2 6= 0. Suppose that v0 = ∂u

∂z

for a function u ∈ C1
0(C). Then, by the Stokes theorem, for sufficiently large R > 0 we have

0 =

∫
∂K(R)

udz =

∫
K(R)

∂u

∂z
(z)dz ∧ dz = 2i

∫
K(R)

v0dL2 6= 0;

contradiction.

Lemma 4.2.4 (The Cauchy–Green formula). Let D ⊂ C be a regular domain (cf. Definition 1.2.4) and let
f ∈ C1(D). Then

f(z) =
1

2πi

(∫
∂D

f(ζ)

ζ − z
dζ +

∫
D

∂f

∂ζ
(ζ)

ζ − z
dζ ∧ dζ

)
, z ∈ D.

Proof. Fix an a ∈ D and take a disc K(a, ε) ⊂⊂ D. Then, by the Stokes theorem (applied to the domain
Dε := D \K(a, ε)), we have∫

∂D

f(ζ)

ζ − a
dζ −

∫
C(a,ε)

f(ζ)

ζ − a
dζ =

∫
∂Dε

f(ζ)

ζ − a
dζ =

∫
Dε

d
( f(ζ)

ζ − a
dζ
)

= −
∫
Dε

∂f

∂ζ
(ζ)

ζ − a
dζ ∧ dζ −→

ε−→0
−
∫
D

∂f

∂ζ
(ζ)

ζ − a
dζ ∧ dζ.

On the other hand,

lim
ε−→0

∣∣∣ 1

2πi

∫
C(a,ε)

f(ζ)

ζ − a
dζ − f(a)

∣∣∣ ≤ lim
ε−→0

(
max{|f(ζ)− f(a)| : ζ ∈ C(a, ε)}

)
= 0.

�

Proof of Proposition 4.2.2. Let v =
∑n
j=1 vjdzj . Note that the condition ∂v = 0 means that

∂vj
∂zk

=
∂vk
∂zj

, j, k = 1, . . . , n. (4.2.4)

Suppose that supp v ⊂ P(R). For z = (z1, . . . , zn) ∈ Cn define

u(z) :=
1

2πi

∫
C

v1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ = − 1

2πi

∫
C

v1(z1 − ζ, z2, . . . , zn)

ζ
dζ ∧ dζ.

Observe that u(z) = 0 for (z2, . . . , zn) /∈ Pn−1(R). It is clear that u ∈ Ck(Cn). Moreover, by (4.2.4), we get

∂u

∂zj
(z) = − 1

2πi

∫
C

∂v1
∂zj

(z1 − ζ, z2, . . . , zn)

ζ
dζ ∧ dζ = − 1

2πi

∫
C

∂vj
∂z1

(z1 − ζ, z2, . . . , zn)

ζ
dζ ∧ dζ

=
1

2πi

∫
C

∂vj
∂z1

(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ =

1

2πi

∫
K(R)

∂vj
∂ζ

(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ, z ∈ Cn, j = 1, . . . , n.

Now we apply the Cauchy–Green formula (with D := K(R)) and we get
∂u

∂zj
(z) = vj(z)−

1

2πi

∫
C(R)

vj(ζ, z2, . . . , zn)

ζ − z1
dζ = vj(z), z ∈ Cn, j = 1, . . . , n.

Hence ∂u = v. In particular, ∂u = 0 outside supp v, i.e. u ∈ O(Cn \ supp v). Consequently, by the
identity principle, u = 0 in the unbounded connected component of the set Cn \ supp v. �

Proposition 4.2.2 permits us to give a new elegant proof of the Hartogs extension theorem (cf. Theo-
rem 2.1.2).

Theorem 4.2.5. Let D be a domain in Cn, n ≥ 2, and let K be a compact subset of D such that D \K is
connected. Then O(D \K) = O(D)|D\K .
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Proof. Fix an f ∈ O(D \K). Let ϕ ∈ C∞0 (D) be such that ϕ = 1 in a neighborhood U of K. Put

F :=

{
(1− ϕ) · f in D \K
0 in U

.

Then clearly F is well defined and F ∈ C∞(D). Define

v :=

{
∂F in D
0 in Cn \ suppϕ

.

Then v is well defined, v ∈ C∞(0,1)(D), ∂v = 0, and supp v ⊂ suppϕ ⊂⊂ D. By Proposition 4.2.2 there exists
a function u ∈ C∞0 (Cn) such that ∂u = v and u = 0 in the unbounded connected component Ω∞ of the set
Cn \ supp v.

Put f̃ := F − u. Then f̃ ∈ C∞(D) and ∂f̃ = 0. Thus f̃ ∈ O(D). Moreover f̃ = F = f in (D \ suppϕ)∩
Ω∞ 6= ∅. Hence, by the identity principle, f̃ = f in D \K. �

Definition 4.2.6. Let Sp,q = Sp,q(Cn) denote the family of all sets A ⊂ Cn such that for every open
neighborhood G of A and for every ∂-closed form v ∈ C∞(p,q+1)(G) there exist an open neighborhood G̃ of A
(with G̃ ⊂ G) and a form u ∈ C∞(p,q)(G̃) such that ∂u = v in G̃.

Remark 4.2.7. (a) If Ω ⊂ Cn is open, then Ω ∈ Sp,q iff for any ∂-closed form v ∈ C∞(p,q+1)(Ω) there exists
a u ∈ C∞(p,q)(Ω) such that ∂u = v.
(b) Let Φ : Ω −→ Ω′ be biholomorphic, where Ω,Ω′ ⊂ Cn are open. Then for any A ⊂ Ω we have:
A ∈ Sp,q ⇐⇒ Φ(A) ∈ Sp,q.

Indeed, let v′ ∈ C∞(p,q+1)(G
′) be ∂-closed, where G′ is an open neighborhood of Φ(A). Then v := Φ∗(v′) ∈

C∞(p,q+1)(G) and ∂v = 0, where G := Φ−1(G′) ⊃ A (cf. Remark 4.2.1(d)). Since A ∈ Sp,q, there exist an
open neighborhood G̃ of A (G̃ ⊂ G) and u ∈ C∞(p,q)(G̃) such that ∂u = v in G̃. Put u′ := (Φ−1)∗(u). Then
u′ ∈ C∞(p,q)(G̃

′) with G̃′ := Φ(G̃) ⊂ G′ and

∂u′ = (Φ−1)∗(∂u) = (Φ−1)∗(v) = (Φ−1)∗(Φ∗(v′)) = v′.

Proposition 4.2.8. Let ϕ1, . . . , ϕm ∈ O(Cn−m) (1 ≤ m ≤ n− 1) and let

Cn−m 3 z′ µ7−→ (z′, ϕ1(z′), . . . , ϕm(z′)) ∈ Cn.

Take a set A ⊂ Cn and put A′ := µ−1(A) ⊂ Cn−m.
(a) If

A ∈ Sp,q ∩ · · · ∩ Sp,q+m−1,

then for any ∂-closed form w′ ∈ C∞(p,q)(G
′), where G′ is an open neighborhood of A′, there exist an open

neighborhood G of A and a ∂-closed form w ∈ C∞(p,q)(G) such that w′ = µ∗(w) in µ−1(G) ⊂ G′.
In particular, if Ω ⊂ Cn is open and Ω ∈ S0,0 ∩ · · · ∩ S0,m−1, then for any f ′ ∈ O(Ω′) there exists an

f ∈ O(Ω) such that f ′ = f ◦ µ.
(b) If

A ∈ Sp,q ∩ · · · ∩ Sp,q+m,

then A′ ∈ Sp,q(Cn−m).

Proof. We will use finite induction on m (with an arbitrary n).
m = 1.
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Figure 4.2.1

(a) Define π : Cn −→ Cn−1, π(z′, zn) := z′. Fix a ∂-closed form w′ ∈ C∞(p,q)(G
′), where G′ is an open

neighborhood of A′. Put Ω := (G′ × C) ∪ (Cn \ µ(Cn−1)). Observe that Ω is an open neighborhood of A.
Put

M0 := {z ∈ Ω : π(z) /∈ G′}, M1 := µ(G′) = Ω ∩ µ(Cn−1).

Note that the sets M0, M1 are relatively closed in Ω and disjoint. In particular, there exists a function
χ ∈ C∞(Ω) such that χ = j in an open neighborhood Uj of Mj , j = 0, 1 (cf. [32]). Let

w̃ :=

{
χ · π∗(w′) in G′ × C
0 in U0

.

Obviously, w̃ is well defined and w̃ ∈ C∞(p,q)(Ω). We have

µ∗(w̃) = µ∗(χ · π∗(w′)) = (χ ◦ µ) · (π ◦ µ)∗(w′) = (χ ◦ µ) · w′ = w′ in G′.

The form w̃ need not be ∂-closed. Therefore, we take w := w̃ − Q · u with Q(z) := ϕ1(z′) − zn, where
u ∈ C∞(p,q)(G) will be chosen below. Independently of a choice of u, we have

µ∗(w) = µ∗(w̃)− µ∗(Q · u) = µ∗(w̃) = w′.

Observe that

∂w =

{
(∂χ) ∧ π∗(w′)−Q∂u in G′ × C

−Q∂u in U0

.

To get ∂w = 0 we only need to find u such that

v := ∂u =

{
(1/Q) · (∂χ) ∧ π∗(w′) in (G′ × C) \M1

0 in U0 ∪ U1

.

It is easy to check that v ∈ C∞(p,q+1)(Ω) and ∂v = 0. Since A ∈ Sp,q, there exist an open neighborhood G of
A (with G ⊂ Ω) and u ∈ C∞(p,q)(G) such that ∂u = v in G. Consequently, w is ∂-closed in G and w′ = µ∗(w)

in µ−1(G) ⊂ G′.
(b) Take a ∂-closed form v′ ∈ C∞(p,q+1)(G

′), where G′ is an open neighborhood of A′. Since A ∈ Sp,q+1,
assertion (a) implies that there exist an open neighborhood G of A and a ∂-closed form v ∈ C∞(p,q+1)(G)

such that v′ = µ∗(v) in µ−1(G). Since A ∈ Sp,q, there exist an open neighborhood G̃ of A (with G̃ ⊂ G)
and u ∈ C∞(p,q)(G̃) such that ∂u = v in G̃. Put u′ := µ∗(u) in G̃′ := µ−1(G̃). Then u′ ∈ C∞(p,q)(G̃

′) and
∂u′ = µ∗(∂u) = µ∗(v) = v′ in G̃′.

m− 1 m.
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Observe that µ = µ2 ◦ µ1, where

Cn−m 3 z′ µ1−→ (z′, ϕ1(z′)) ∈ Cn−m × C,

Cn−m × C 3 (z′, z′′)
µ2−→ (z′, z′′, ϕ2(z′), . . . , ϕm(z′)) ∈ Cn.

(a) Take a ∂-closed form w′ ∈ C∞(p,q)(G
′), where G′ is an open neighborhood of A′. Since (b) is true for

m−1, the set A1 := µ−1
2 (A) belongs to Sp,q(Cn−m+1). Note that A′ = µ−1

1 (A1). Since (a) is true for m = 1,
there exist an open neighborhood G1 of A1 and a ∂-closed form w1 ∈ C∞(p,q)(G1) such that w′ = µ∗1(w1) in
µ−1

1 (G1) ⊂ G′. Now, since (a) is true for m − 1, there exist a neighborhood G of A and a ∂-closed form
w ∈ C∞(p,q)(G) such that w1 = µ∗2(w) in µ−1

2 (G) ⊂ G1. Then w′ = µ∗1(µ∗2(w)) = µ∗(w) in µ−1(G) ⊂ G′.
(b) Since (b) is true for m − 1, the set A1 := µ−1

2 (A) belongs to Sp,q ∩ Sp,q+1. Now we apply the case
m = 1 to A1 and we conclude that A′ = µ−1

1 (A1) ∈ Sp,q.
�

Theorem 4.2.9. Let Ω ⊂ Cn be open, n ≥ 2. If

Ω ∈ S0,0 ∩ · · · ∩ S0,n−2,

then Ω is holomorphically convex.

Proof. It is sufficient to show that for any a ∈ Ω there exists an f ∈ O(Ω) such that d(Taf) = dΩ(a)
(Proposition 2.7.5). Fix an a = (a1, . . . , an) ∈ Ω, let P := P(a, dΩ(a)), and let b ∈ ∂Ω ∩P . Using a complex
affine isomorphism of Cn, we may assume that b = 0 and a2 = · · · = an = 0 (cf. Remark 4.2.7(b)). Let

Ω′ := {z′ ∈ C : (z′, 0, . . . , 0) ∈ Ω}.
Note that 0 ∈ ∂Ω. By Proposition 4.2.8 (with f ′(z′) := 1/z′) there exists an f ∈ O(Ω) such that f(z′, 0) =
1/z′. Obviously, f cannot be extended across b. �

Remark 4.2.10. To solve the Levi problem it suffices to show that any pseudoconvex domain
belongs to S0,0 ∩ · · · ∩ S0,n−2.

4.3. Runge domains

Definition 4.3.1. A region of holomorphy Ω ⊂ Cn is called a Runge region if every function f ∈ O(Ω) can
be approximated uniformly on every compact subset of Ω by polynomials of n complex variables.

If Ω is a connected Runge region, then we say that Ω is a Runge domain.
Obviously, if Ω is a Runge region, then each connected component of Ω is a Runge domain.
Note that in the above definition the space of polynomials can be replaced by the space of entire functions.
Let K be a compact subset of Cn. Recall (Remark 2.7.11(e)) that

K̂ := K̂O(Cn) = K̂P(Cn) = {z ∈ Cn : ∀P∈P(Cn) : |P(z)| ≤ ‖P‖K}.

If K = K̂, then we say that K is polynomially convex.

Remark 4.3.2. (a) If Ω ⊂ C, then Ω is a Runge region iff any connected component of Ω is simply
connected (cf. [4], VIII.1).
(b) By Proposition 1.6.2 any balanced domain of holomorphy is a Runge domain.
(c) Let G be a Runge domain in Cn−k and let D ⊂ Cn be a Hartogs domain of holomorphy over G (cf.
Definition 1.6.3) such that one of the following conditions is satisfied:
∀z∈G Dz is connected, k-circled, and D ∩ (G× {0}k) 6= ∅.
∀z∈G Dz is balanced.

Then, by Propositions 2.6.3 and 1.6.5(b) D is a Runge domain
(d) Let F : Cn −→ Cn be a polynomial mapping and let Ω′ ⊂ Cn be a Runge region. Put Ω := F−1(Ω′).
Assume that F |Ω : Ω −→ Ω′ is biholomorphic. Then Ω is also a Runge region (cf. Example 4.3.8).

Indeed, let g ∈ O(Ω),K ⊂⊂ Ω, and let (pν)∞ν=1 be a sequence of polynomials such that pν −→ g◦(F |Ω)−1

uniformly on F (K). Then pν ◦ F −→ g uniformly on K.
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Theorem 4.3.3. Let Ω be a region of holomorphy in Cn. The following conditions are equivalent:
(i) Ω is a Runge region;
(ii) K̂ = K̂O(Ω) for any compact K ⊂ Ω;
(iii) K̂ ∩Ω = K̂O(Ω) for any compact K ⊂ Ω;
(iv) K̂ ∩Ω ⊂⊂ Ω for any compact K ⊂ Ω.

(ii)

�
��=

y
Z

ZZ}

(i) −−−−→ (iii) −−−−→ (iv)
The implication (i) =⇒ (iii) follows immediately from the fact that polynomials are dense in O(Ω).
The implication (ii) =⇒ (iii) is obvious.
The implication (iii) =⇒ (iv) follows from Theorem 2.7.12.
In the sequel (after Proposition 4.3.6) we will prove that (iv) =⇒ (ii) =⇒ (i).

Lemma 4.3.4. Let G be a neighborhood of a polynomially convex compact set K ⊂ Cn. Then there exist
m ∈ N and P1, . . . , Pm ∈ P(Cn) such that

K ⊂ {z ∈ Cn : |Pj(z)| ≤ 1, j = 1, . . . ,m} =: L ⊂⊂ G.

The set L is called a polynomial polyhedron. Note that L is polynomially convex.

Proof. Let ε > 0 be such that K ⊂ P(1/ε). Put Pj(z) := εzj , j = 1, . . . , n. Let M := P(1/ε) \ G. Since
K is polynomially convex, for every point z ∈ M there exists a polynomial P such that |P(z)| > 1 and
‖P‖K ≤ 1. Consequently, there exists a finite number of polynomials Pn+1, . . . , Pm such that ‖Pj‖K ≤ 1,
j = n + 1, . . . ,m, and max{|Pj | : j = n + 1, . . . ,m} > 1 on M . The polynomials P1, . . . , Pm satisfy all the
required conditions. �

Proposition 4.3.5. Let v ∈ C∞(p,q+1)(Pn(a, r)) be ∂-closed. Then for every polydisc Pn(a, r′) ⊂⊂ Pn(a, r)

there exists a u ∈ C∞(p,q)(Pn(a, r′)) such that ∂u = v in Pn(a, r′).
In particular, every closed polydisc Π belongs to Sp,q for any p, q ∈ N0.

Proof. We use induction on k, where k is such that v is independent of dzk+1, . . . , dzn (the case k = n will
give the required result). If k = 0, then v = 0 and therefore the situation is trivial.

Suppose that the result has been proved for k − 1, and let v be independent of dzk+1, . . . , dzn. Write

v = dzk ∧ g + h, (4.3.1)

where g ∈ C∞(p,q)(Pn(a, r)), h ∈ C∞(p,q+1)(Pn(a, r)), and g and h are independent of dzk, . . . , dzn. Write g in
the canonical form

g =
∑′

|I|=p,|J|=q

gI,JdzI ∧ dzJ .

Since ∂v = 0, we easily conclude that for any I, J we have
∂gI,J
∂zj

= 0, j > k.

In other words, the functions gI,J are holomorphic with respect to zk+1, . . . , zn.
Choose a function ψ ∈ C∞0 (K(ak, rk)) such that ψ(zk) = 1 on K(ak, r

′′
k) with r′k < r′′k < rk. Let

GI,J(z) : =
1

2πi

∫
C

ψ(τ)

τ − zk
gI,J(z1, . . . , zk−1, τ, zk+1, . . . , zn)dτ ∧ dτ

= − 1

2πi

∫
C

ψ(zk − τ)

τ
gI,J(z1, . . . , zk−1, zk − τ, zk+1, . . . , zn)dτ ∧ dτ.
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The function GI,J is well defined for z ∈ P(a, r) and GI,J ∈ C∞(P(a, r)). Observe that

∂GI,J
∂zj

(z) = 0, j > k, z ∈ P(a, r).

Moreover, by the Cauchy–Green formula (cf. Lemma 4.2.4), we obtain
∂GI,J
∂zk

(z) =
1

2πi

∫
K(ak,rk)

∂

∂τ
(ψ(τ)gI,J(z1, . . . , zk−1, τ, zk+1, . . . , zn))

dτ ∧ dτ
τ − zk

= gI,J(z), z ∈ P(a, r′′).

Define
G :=

∑′
|I|=p,|J|=q

GI,JdzI ∧ dzJ .

Then

∂G =
∑′

|I|=p,|J|=q

n∑
j=1

∂GI,J
∂zj

dzj ∧ dzI ∧ dzJ = dzk ∧ g + h1 in P(a, r′′), (4.3.2)

where h1 is independent of dzk, . . . , dzn. Consider in P(a, r′′) the form v − ∂G. In virtue of (4.3.1) and
(4.3.2) we have v − ∂G = h − h1. Hence v − ∂G is independent of dzk, . . . , dzn. Moreover, ∂(v − ∂G) =
∂v = 0. Therefore, there exists a ũ ∈ C∞(p,q)(P(a, r′)) such that ∂ũ = v − ∂G. Define u := ũ + G. Then
∂u = ∂ũ+ ∂G = v. �

Proposition 4.3.6. Let K ⊂⊂ Cn be polynomially convex and let f be holomorphic in a neighborhood of
K. Then there exists a sequence (fj)

∞
j=1 ⊂ P(Cn) such that fj −→ f uniformly on K.

Proof. By Lemma 4.3.4 there exists a polynomial polyhedron L such that K ⊂ L and f is holomorphic in a
neighborhood of L. Choose a closed polydisc Π ⊃ L so that

L = {z ∈ Π : |Pj(z)| ≤ 1, j = 1, . . . ,m}.

By Proposition 4.3.5 Π × Dm ∈ S0,0 ∩ · · · ∩ S0,m−1. Hence, by Proposition 4.2.8 with A := Π × Dm, there
exists a function F holomorphic in a neighborhood of Π× Dm ⊂ Cn × Cm such that

f(z) = F (z, P1(z), . . . , Pm(z))

in a neighborhood of L. Let Fk be the k-th partial sum of the Taylor expansion of F in a neighborhood of
Π× Dm, k ≥ 0. Then Fk −→ F uniformly on Π× Dm. Therefore

Fk(z, P1, . . . , Pm) −→ F (z, P1, . . . , Pm) = f uniformly on L.

�

The end of the proof of Theorem 4.3.3. The implication (ii) =⇒ (i) can be obtained by an immediate appli-
cation of Proposition 4.3.6.

Now we prove that (iv) =⇒ (ii). Define

K1 := K̂ ∩Ω, K2 := K̂ \Ω.

By (iv), the set K1 is compact. Since K2 is a closed subset of K̂, K2 is also compact. Moreover, K1∩K2 = ∅.
Let f := 0 in a neighborhood of K1 and f := 1 in a neighborhood of K2. Then f is holomorphic in a
neighborhood of K̂. Since K̂ is polynomially convex, Proposition 4.3.6 implies that there exists a polynomial
g such that |g − f | < 1/2 on K̂. Hence |g| < 1/2 on K1 and |g| > 1/2 on K2. Since K ⊂ K1 and K2 ⊂ K̂,
it must hold K2 = ∅. Therefore K̂ = K1 ⊂ Ω. Let f ∈ O(Ω). By Proposition 4.3.6, the function f can
be approximated uniformly on K̂ = K1 (in particular, on K) by polynomials of n complex variables. This
means that Ω is a Runge domain, i.e. condition (i) of Theorem 4.3.3 is fulfilled. We already know that (i)
=⇒ (iii). Hence K̂ ∩Ω = K̂O(Ω). Finally, K̂ = K̂O(Ω). �

Theorem 4.3.3 and Remark 2.7.11(f) give
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Corollary 4.3.7. Ωj is a Runge region in Cnj , j = 1, 2, iff Ω1 ×Ω2 is a Runge region in Cn1+n2 .
In particular, if Dj ⊂ C is simply connected, j = 1, . . . , n, then D1×· · ·×Dn is a Runge domain in Cn.

Example 4.3.8 (Wermer). Recall (Remark 4.3.2(a)) that for n = 1 Runge regions are characterized in a
purely topological way. This is no longer true for n ≥ 2. We will show that Runge regions in Cn with
n ≥ 2 are not invariant under biholomorphic mappings. Namely, for n ≥ 2 we will find a domain Dn ⊂ Cn
biholomorphic to Dn and such that Dn is not a Runge domain.

First, following [8], we will construct a domain D ⊂ C2 biholomorphic to D2 such that T×{0} ⊂ D but
(1/2, 0) /∈ D.

Assume for a moment that such a domain is already constructed. Then for any n ≥ 2 put Dn :=
D × Dn−2. The domain Dn is obviously biholomorphic to Dn. Moreover, Kn := T × {(0, . . . , 0)} ⊂ Dn,
(1/2, 0, . . . , 0) /∈ Dn. Suppose that Dn is a Runge domain. Then, by Theorem 4.3.3, K̂n ⊂ Dn. On the other
hand, by the maximum principle, D× {(0, . . . , 0)} ⊂ K̂n. In particular, (1/2, 0, . . . , 0) ∈ Dn; contradiction.

We pass to the construction. Let

A0 := ([−1, 1] + i0)× ([−1, 1] + i0) ⊂ C2, A := {(x+ iy, x− iy) ∈ C2 : x, y ∈ [−1, 1]}.
Let U be an arbitrary open neighborhood of A0. Then there exist open rectangles R1, R2 ⊂ C such that
A0 ⊂ R1 ×R2 ⊂ U . By the Riemann mapping theorem, the domain R1 ×R2 is biholomorphic to D2. Thus
A0 has a neighborhood basis consisting of domains biholomorphic to D2. Observe that the mapping

C2 3 (z1, z2) 7−→ (z1 + iz2, z1 − iz2) ∈ C2

maps biholomorphically A0 onto A. Consequently, A has a neighborhood basis consisting of domains biholo-
morphic to D2.

Put
F (z, w) := (z, P (z, w)), P (z, w) := (1 + i)w − izw2 − z2w3.

Observe that:
• For any ζ ∈ T we have (ζ, ζ) ∈ A and F (ζ, ζ) = (ζ, 0). Hence (T)× {0} ⊂ F (A).
• (1/2, 0) /∈ F (A). Indeed, P (1/2, 1/2) = (1 + i)/2− i/8− 1/32 6= 0.
• F |A is injective.
• JCF 6= 0 on A. Indeed, we have JCF (z, w) = ∂P

∂w (z, w) = 1 + i− 2izw− 3z2w2 and hence JCF (z, z) =

1 + i− 2i|z|2 − 3|z|4 6= 0.
In particular, there exists an open neighborhood U0 of A such that F |U0

is biholomorphic.
Now, since A has a neighborhood basis consisting of domains biholomorphic to D2, we find a domain U

biholomorphic to D2 such that A ⊂ U ⊂ U0 and (1/2, 0) /∈ F (U). Finally, we put D := F (U).
Notice that for n ≥ 3 the construction of the required domain Dn may be essentially simplified. Instead

of Dn = D × Dn−2 (as above) we will construct (in a simpler way) a domain G ⊂ C3 biholomorphic to a
polydisc such that (T) × {(1, 0)} ⊂ G but (0, 1, 0) /∈ G. Next, for n ≥ 3 we take Dn := G × Dn−3 and we
repeat the above argument showing that Dn is not Runge.

The example is also due to Wermer (cf. [13]). Let

F : C3 −→ C3, F (x, y, z) = (x, xy + z, xy2 − y + 2yz).

Then JCF (x, y, z) = 1− 2z. In particular, F is locally biholomorphic on C3 \ {z = 1/2}. We will show that
F is injective on U := C× C×K(1/2).

Let (x1, y1, z1), (x2, y2, z2) ∈ U be such that F (x1, y1, z1) = F (x2, y2, z2). Then obviously x1 = x2 =: x
and

xy1 + z1 = xy2 + z2, xy2
1 − y1 + 2y1z1 = xy2

2 − y2 + 2y2z2.

In other words,

x(y1 − y2) = z2 − z1, x(y1 − y2)(y1 + y2)− y1 + y2 + 2y1z1 − 2y2z2 = 0.

Thus (z2 − z1)(y1 + y2) − y1 + y2 + 2y1z1 − 2y2z2 = 0 and hence (y1 − y2)(z1 + z2 − 1) = 0. Now, since
|z1|+ |z2| < 1, we conclude that y1 = y2 and z1 = z2.
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In particular, F |P(0,(2,2,1/2)) is injective. Let G := F (P(0, (2, 2, 1/2))). Observe that F (x, 1/x, 0) =

(x, 1, 0). Hence (T)× {(1, 0)} ⊂ G. Obviously, (0, 1, 0) /∈ G.

4.4. Hefer’s theorem

Let Ω ⊂ Cn, n ≥ 2, be open. Assume that 0 ∈ Ω and let

Ωk := {z′ ∈ Ck : (z′, 0, . . . , 0) ∈ Ω}, Mk := Ω ∩ (Ck × {0}n−k), k = 1, . . . , n− 1.

Let, moreover, M0 := {0}. Observe that if

f(z) :=

n∑
j=k+1

zjfj(z), z = (z1, . . . , zn) ∈ Ω,

where fj ∈ O(Ω), j = k + 1, . . . , n, then f = 0 on Mk (k = 0, . . . , n− 1).
Our aim is to prove a converse theorem.

Remark 4.4.1. The case k = n− 1 is elementary.
Indeed, let f ∈ O(Ω) be such that f = 0 on Mn−1, i.e. f(z′, 0) = 0 for any z′ ∈ Ωn−1. Define

fn(z) := f(z)/zn, z ∈ Ω \Mn−1.

It remains to observe that fn extends holomorphically to Ω.

Remark 4.4.2. Assume that Ω is a star-shaped domain with respect to 0 and k = 0. Let f ∈ O(Ω) be
such that f(0) = 0. Then we have

f(z) =

∫ 1

0

d

dt
f(tz)dt =

∫ 1

0

n∑
j=1

zj
∂f

∂zj
(tz)dt =:

n∑
j=1

zjfj(z), z ∈ Ω.

It is clear that f1, . . . , fn ∈ O(Ω).

Proposition 4.4.3. Assume that
Ω ∈ S0,0 ∩ · · · ∩ S0,n−k−2

for some k ∈ {0, . . . , n− 1}
(

6
)
. Then for any f ∈ O(Ω) such that f = 0 on Mk there exist fk+1, . . . , fn ∈

O(Ω) such that

f =

n∑
j=k+1

zjfj .

Proof. We apply finite induction on n− k. The case n− k = 1 has been solved in Remark 4.4.1.
n− k  n− k + 1.
Assume that Ω ∈ S0,0 ∩ · · · ∩ S0,n−(k−1)−2(Cn). By Proposition 4.2.8,

Ωn−1 ∈ S0,0 ∩ · · · ∩ S0,(n−1)−(k−1)−2(Cn−1).

Consequently, there exist Fk, . . . , Fn−1 ∈ O(Ωn−1) such that

f(z′, 0) =

n−1∑
j=k

zjFj(z
′), z′ = (z1, . . . , zn−1) ∈ Ωn−1.

By Proposition 4.2.8 there exist fk, . . . , fn−1 ∈ O(Ω) such that Fj(z′) = fj(z
′, 0), j = k, . . . , n− 1. Put

f̃ := f −
n−1∑
j=k

zjfj .

(
6
)
If k = n− 1, then Ω is arbitrary.
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Then f̃ ∈ O(Ω) and f̃ = 0 on Mn−1. Hence f̃ = znfn for a function fn ∈ O(Ω). Finally,

f =

n∑
j=k

zjfj on Ω. �

Theorem 4.4.4. Assume that Ω ⊂ Cn is an open set such that

Ω ×Ω ∈ S0,0 ∩ · · · ∩ S0,n−2(C2n).

(a) For any f ∈ O(Ω ×Ω) with
f(z, z) = 0, z ∈ Ω,

there exist f1, . . . , fn ∈ O(Ω ×Ω) such that

f(z, w) =

n∑
j=1

(zj − wj)fj(z, w), z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Ω.

(b) (Hefer’s theorem) For any f0 ∈ O(Ω) there exist f1, . . . , fn ∈ O(Ω ×Ω) such that

f0(z)− f0(w) =
n∑
j=1

(zj − wj)fj(z, w), z, w ∈ Ω.

Proof. (a) Let Φ : C2n −→ C2n be given by the formula

Φ(ξ1, . . . , ξ2n) := (ξ1, . . . , ξn, ξ1 − ξn+1, . . . , ξn − ξ2n).

The mapping Φ is a C-linear isomorphism. Let Ψ := Φ−1. Then Ψ(z, w) = (z, z − w). Observe that
Ψ(Ω × Ω) ∈ S0,0 ∩ · · · ∩ S0,n−2 (cf. Remark 4.2.7(b)). Now we apply to Ψ(Ω × Ω) Proposition 4.4.3 with
k = n. Consequently, there exist f̃n+1, . . . , f̃2n ∈ O(Ψ(Ω ×Ω)) such that

f ◦ Φ =

2n∑
j=n+1

ξj f̃j .

Let fj := f̃n+j ◦ Ψ , j = 1, . . . , n. Then

f = (f ◦ Φ) ◦ Ψ =
( 2n∑
j=n+1

ξj f̃j

)
◦ Ψ =

n∑
j=1

(zj − wj)fj .

(b) follows directly from (a) with f(z, w) := f0(z)− f0(w). �

Exercises

4.1. Schwarz type lemma (cf. Lemma 1.4.26): Let Dj ⊂ Cnj be a balanced domain and let hj denote
the Minkowski functional of Dj , j = 1, 2. Assume that D2 is pseudoconvex. Let F : D1 −→ D2 be a
holomorphic mapping with F (0) = 0. Using Propositions 3.2.35 and 4.1.14, prove the following results:

(a) h2 ◦ F ≤ h1 on D1 and h2 ◦ F ′(0) ≤ h1. In particular, F ′(0) maps D1 into D2.
(b) If F is biholomorphic, then h2 ◦F = h1 on D1 and h2 ◦F ′(0) = h1. In particular, F ′(0) is a C-linear

isomorphism which maps D1 onto D2.
4.2. Let T be the Hartogs triangle, T := {(z1, z2) ∈ C2 : |z1| < |z2| < 1}. Prove that T is pseudoconvex

but not hyperconvex.
4.3. Let F : D −→ D′ be a proper mapping, where D,D′ ⊂ Cn are domains. Suppose that D′ is

pseudoconvex. Show that D is pseudoconvex.
4.4. Let ω ⊂ Rn be a domain. Define

Tω := {z ∈ Cn : Re z ∈ ω}.
Prove that the following conditions are equivalent:

(i) ω is convex;
(ii) Tω is pseudoconvex.
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4.5. Give an example of a pseudoconvex domain in Cn, n ≥ 2, which is not biholomorphically equivalent

to a convex domain.
4.6. Let D := {(z1, z2) ∈ C2 : |z1z2| < 1}. Does there exist ϕ ∈ O(D) ∩ C(D) such that ϕ(1, 1) = 1,

|ϕ| < 1 in D \ {(1, 1)}?



CHAPTER 5

Hörmander’s solution of the ∂-problem

Summary. In this chapter, following [17], we present a detailed proof of Hörmander’s solution of the Levi
problem. Section 5.1 contains basic facts from the distribution theory, which are used in the sequel; details are
omitted, and it is assumed that the reader who requires to check the proofs, will consult classical monographs on the
subject.

The exposition of Hörmander’s solution of the Levi problem begins in Section 5.2. The proof is based on the
theory of (unbounded) operators in Hilbert spaces, and the solution of the ∂-problem for pseudoconvex domains in
appropriately chosen spaces of differential forms with coefficients which are L2-integrable with respect to convenient
weight functions. The main result of this section is Hörmander’s L2-estimate. This makes possible to solve the
∂-problem in pseudoconvex domains for differential forms with coefficients which are locally square integrable.

This enables in turn to do similar, but for differential forms with coefficients in Sobolev spaces, and thus, by the
Sobolev inclusion, for forms with smooth coefficients. Thus, in virtue of results in Section 4.2, we obtain the solution
of the Levi problem; the details are presented in Section 5.3.

5.1. Distributions

For the reader’s convenience we collect below basic facts from distribution theory (the details may be
found for instance in [31]).

For K ⊂ RN let

D(K) := {f ∈ C∞0 (RN ,C) : supp f ⊂ K}, qK,k(f) :=
∑

α∈NN0 : |α|≤k

sup
K
|Dαf |, k ∈ N0,

where
Dα :=

( ∂

∂x1

)α1

◦ · · · ◦
( ∂

∂xN

)αN
, α = (α1, . . . , αN ) ∈ NN0 .

The seminorms (qK,k)k∈N0 generate on D(K) a Fréchet topology; we have

fν
D(K)−→ f0 ⇐⇒ ∀α∈NN0 : Dαfν −→ Dαf0 uniformly on K.

For an open set Ω ⊂ RN let

D(Ω) := C∞0 (Ω,C) =
⋃

K⊂⊂Ω
D(K).

We define
fν
D(Ω)−→ f0

def⇐⇒ ∃K⊂⊂Ω : (fν)∞ν=1 ⊂ D(K), fν
D(K)−→ f0.

Let E(Ω) := C∞(Ω). The seminorms (qK,k)K⊂⊂Ω, k∈N0 generate on E(Ω) a Fréchet topology; we have

fν
E(Ω)−→ f0 ⇐⇒ ∀α∈NN0 : Dαfν −→ Dαf0 locally uniformly in Ω.

A linear functional T : D(Ω) −→ C is a distribution on Ω (T ∈ D′(Ω)) if for any compact K ⊂ Ω the
mapping T|D(K) : D(K) −→ C is continuous.

5.1.1. For a linear operator T : D(Ω) −→ C the following conditions are equivalent:
(i) T ∈ D′(Ω);
(ii) for any compact K ⊂ Ω there exist C > 0 and k ∈ N0 such that

|T(f)| ≤ CqK,k(f), f ∈ D(K);

107
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(iii) if fν
D(Ω)−→ f0, then T(fν) −→ T(f0).

We endow D′(Ω) with the weak topology, i.e.

Tν
D′(Ω)−→ T0 ⇐⇒ ∀f∈D(Ω) : Tν(f) −→ T0(f).

5.1.2. For u ∈ L1(Ω, loc) let

[u](f) :=

∫
Ω

uf dLN , f ∈ D(Ω).

Then [u] ∈ D′(Ω). Moreover, the mapping

L1(Ω, loc) 3 u 7−→ [u] ∈ D′(Ω) (5.1.1)

is injective. Consequently, we may identify L1(Ω, loc) with a subspace of D′(Ω) and we will frequently write
u instead of [u].

If we consider on L1(Ω, loc) the standard topology, i.e.

uν
L1(Ω,loc)−→ u0 ⇐⇒ ∀K⊂⊂Ω : uν |K

L1(K)−→ u0|K ,
then the mapping (5.1.1) is continuous.

Let T ∈ D′(Ω). We say that T = 0 on an open set U ⊂ Ω if T|D(U) = 0.
The support suppT of T is the set of all a ∈ Ω such that T 6= 0 on any neighborhood of a; suppT is

relatively closed in Ω; T = 0 on Ω \ suppT; if f1, f2 ∈ D(Ω) are such that f1 = f2 in a neighborhood of
suppT, then T(f1) = T(f2).

If suppT ⊂⊂ Ω, then T extends to a distribution on RN .

5.1.3. For T ∈ D′(Ω) let

Dom(T) := {f ∈ E(Ω) : suppT ∩ supp f ⊂⊂ Ω}.
Then Dom(T) is a linear subspace of E(Ω). Obviously, D(Ω) ⊂ Dom(T). If suppT ⊂⊂ Ω, then Dom(T) =
E(Ω). Define

T̃ : Dom(T) −→ C, T̃(f) := T(ϕf),

where ϕ ∈ D(Ω) and ϕ = 1 in a neighborhood of Kf := suppT ∩ supp f . Then the definition of T̃(f) is
independent of ϕ and T̃ = T on D(Ω). The operator T̃ is also continuous in the following sense:(

Dom(T) 3 fν
E(Ω)−→ f0 ∈ Dom(T) and

∞⋃
ν=1

Kfν ⊂⊂ Ω
)

=⇒ T̃(fν) −→ T̃(f0).

In particular, if suppT ⊂⊂ Ω, then T̃ is continuous in the standard sense.
Consequently, T extends to continuous linear functional on E(Ω) iff suppT ⊂⊂ Ω.

Let T ∈ D′(Ω). For α ∈ NN0 define

(DαT)(f) := (−1)|α|T(Dαf), f ∈ D(Ω).

The mapping DαT is called the α-th derivative of T.

5.1.4. (a) The mapping D(Ω) 3 f −→ Dαf ∈ D(Ω) is continuous. Consequently, DαT ∈ D′(Ω).
In particular, any function u ∈ L1(Ω, loc) has all derivatives in the sense of distribution.

(b) Dα(DβT) = Dα+βT.
(c) The mapping D′(Ω) 3 T −→ DαT ∈ D′(Ω) is linear and continuous.
(d) If u ∈ Ck(Ω), then

Dα[u] = [Dαu], |α| ≤ k.

For η ∈ E(Ω) define
(ηT)(f) := T(ηf), f ∈ D(Ω).
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5.1.5. (a) The mapping E(Ω)×D(Ω) 3 (η, f) −→ ηf ∈ D(Ω) is continuous. Consequently, ηT ∈ D′(Ω).
(b) The mapping E(Ω)×D′(Ω) 3 (η,T) −→ ηT ∈ D′(Ω) is bilinear and continuous.
(c) ϑ(ηT) = (ϑη)T (ϑ, η ∈ E(Ω)).
(d) If u ∈ L1(Ω, loc), then η[u] = [ηu].

5.1.6. Let Ωj be open in RNj , j = 1, 2, let T ∈ D′(Ω1), and let f ∈ E(Ω1 ×Ω2) be such that⋃
x2∈Ω2

supp f(·, x2) ⊂⊂ Ω1

(note that the last condition is satisfied if f ∈ D(Ω1 ×Ω2)). Put

F (x2) = Ff (x2) := T(f(·, x2)), x2 ∈ Ω2.

Then F ∈ E(Ω2) and
DαF (x2) = T(Dα

x2
f(·, x2)), x2 ∈ Ω2, α ∈ NN2

0 .

Moreover, if f ∈ D(Ω1 ×Ω2), then F ∈ D(Ω2) and the mapping

D(Ω1 ×Ω2) 3 f 7−→ Ff ∈ D(Ω2)

is continuous.

Observe that if uj ∈ L1(Ωj , loc), j = 1, 2, then u1⊗u2 ∈ L1(Ω1×Ω2, loc)
(

1
)
. Moreover, if uj ∈ D(Ωj),

j = 1, 2, then u1 ⊗ u2 ∈ D(Ω1 ×Ω2) and supp(u1 ⊗ u2) = (suppu1)× (suppu2). Let D(Ω1)⊗D(Ω2) denote
the subspace of D(Ω1 ×Ω2) generated by all functions u1 ⊗ u2 with uj ∈ D(Ωj), j = 1, 2.

5.1.7. D(Ω1)⊗D(Ω2) is dense in D(Ω1 ×Ω2).

5.1.8. (a) Let Tj ∈ D′(Ωj), j = 1, 2. For f ∈ D(Ω1 ×Ω2) define

F1(x1) := T2(f(x1, ·)), x1 ∈ Ω1, F2(x2) := T1(f(·, x2)), x2 ∈ Ω2,

U1(f) := T1(F1), U2(f) := T2(F2)

(note that, by Property 5.1.6, Uj ∈ D′(Ω1 ×Ω2), j = 1, 2). Then

U1(u1 ⊗ u2) = U2(u1 ⊗ u2) = T1(u1)T2(u2), uj ∈ D(Ωj), j = 1, 2.

Consequently, by Property 5.1.7, U1 = U2. Put T1 ⊗ T2 := U1(= U2). The distribution T1 ⊗ T2 is called
the tensor product of T1 and T2. It is the only distribution on Ω1 ×Ω2 satisfying

(T1 ⊗ T2)(u1 ⊗ u2) = T1(u1)T2(u2), uj ∈ D(Ωj), j = 1, 2.

(b) [u1]⊗ [u2] = [u1 ⊗ u2] for any uj ∈ L1(Ωj , loc), j = 1, 2.
(c) The operation

D′(Ω1)×D′(Ω2) 3 (T1,T2) 7−→ T1 ⊗ T2 ∈ D′(Ω1 ×Ω2)

is bilinear.
(d) supp(T1 ⊗ T2) = (suppT1)× (suppT2).
(e) (T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3) for any Tj ∈ D′(Ωj), j = 1, 2, 3.
(f) Dα1

x1
Dα2
x2

(T1 ⊗ T2) = (Dα1T1)⊗ (Dα2T2) for arbitrary αj ∈ N
Nj
0 , j = 1, 2.

5.1.9. Let u ∈ Lp(RN ), v ∈ Lq(RN ) with 1 ≤ p, q ≤ +∞, 1/p+ 1/q ≥ 1. Then the function

(u ∗ v)(x) :=

∫
RN

u(x− y)v(y) dLN (y)

is defined for almost all x ∈ RN and u ∗ v ∈ Lr(RN ), where 1/r = 1/p+ 1/q − 1. The operator

Lp(RN )× Lq(RN ) 3 (u, v) 7−→ u ∗ v ∈ Lr(RN )

(
1
)

(f ⊗ g)(x, y) = f(x)g(y).
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is bilinear symmetric and continuous. Moreover,

‖u ∗ v‖Lr(RN ) ≤ ‖u‖Lp(RN )‖v‖Lq(RN ).

If r =∞, then u ∗ v ∈ C(RN ).

The function u ∗ v is called the convolution of u and v. The convolution u ∗ v may be also defined under
weaker assumptions on u and v (cf. Property 5.1.11).

Let Φ ∈ C∞0 (RN ,R+) be such that
∫
RN Φ dL

N = 1. Put

Φε(x) := ε−NΦ(x/ε), x ∈ RN , ε > 0.

For u ∈ Lp(RN ) let
uε := u ∗ Φε.

The function uε is called the ε-th regularization of u (with respect to Φ); uε ∈ Lp(RN ) and ‖uε‖Lp(RN ) ≤
‖u‖Lp(RN ).

5.1.10. Let u ∈ Lp(RN ) (1 ≤ p < +∞) be such that u = 0 outside a compact K ⊂ RN . Then:
(a) uε ∈ D(RN ), supp(uε) ⊂ K + ε(suppΦ);
(b) if u ∈ C0(RN ), then uε −→ u uniformly on RN when ε −→ 0;

(c) uε
Lp(RN )−→ u when ε −→ 0;

(d) if u ∈ Ck0 (RN ), then Dα(uε) = (Dαu)ε and Dα(uε) −→ Dαu uniformly on RN when ε −→ 0 for any
|α| ≤ k.

5.1.11. Let Tj ∈ D′(RN ), j = 1, 2. Assume that

∀K⊂⊂RN : {(x1, x2) ∈ (suppT1)× (suppT2) : x1 + x2 ∈ K} ⊂⊂ R2N . (5.1.2)

Put
(T1 ∗ T2)(f) := (T̃1 ⊗ T2)(f ◦ σ), f ∈ D(RN ),

where σ : RN × RN −→ RN , σ(x1, x2) := x1 + x2 (cf. Property 5.1.3). Then T1 ∗ T2 ∈ D′(RN ).

The distribution T1 ∗ T2 is called the convolution of T1 and T2.

5.1.12. (a) The operation (T1,T2) −→ T1 ∗ T2 is bilinear and symmetric.
(b) Condition (5.1.2) holds if suppT1 or suppT2 is compact.
(c) If u1, u2 ∈ L1(RN , loc), suppu1 ⊂⊂ RN , then

[u1] ∗ [u2] = [u1 ∗ u2].

(d) supp(T1 ∗ T2) ⊂ (suppT1) + (suppT2).
(e) If

∀K⊂⊂RN : {(x1, x2, x3) ∈ suppT1 × suppT2 × suppT3 : x1 + x2 + x3 ∈ K} ⊂⊂ R3N ,

then (T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).
(f) Dα(T1 ∗ T2) = (DαT1) ∗ T2 = T1 ∗ (DαT2) for any α ∈ NN0 .
(g) (

Tν
D′(RN )−→ T0 and

∞⋃
ν=1

suppTν ⊂⊂ RN
)

=⇒ Tν ∗U
D′(RN )−→ T0 ∗U,(

Tν
D′(RN )−→ T0 and suppU ⊂⊂ RN

)
=⇒ Tν ∗U

D′(RN )−→ T0 ∗U.

(h) If T ∈ D′(RN ) and u ∈ D(RN ), then
T ∗ [u] = [v],

where
v(x) := T(u(x− ·)), x ∈ RN .

Moreover, by Property 5.1.6, v ∈ E(RN ).
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Define
Tε := T ∗ Φε.

The distribution Tε is called the ε-th regularization of T (with respect to Φ).

5.1.13. (a) If u ∈ L1(RN , loc), then [u]ε = [uε].
(b) supp(Tε) ⊂ (suppT) + ε(suppΦ).
(c) DαTε = (DαT)ε. In particular, for any differential operator L with constant coefficients we get (L(T))ε =
L(Tε).

(d) Tε
D′(RN )−→ T when ε −→ 0.

(e) Tε ∈ E(RN ).
(f) If suppT ⊂⊂ RN , then Tε ∈ D(RN ).

5.2. Hörmander’s inequality

Let Ω be an open set in Cn.
For p, q ∈ N0 let D′(p,q)(Ω) denote the space of all forms of type (p, q) with coefficients (in the canonical

form) in D′(Ω). If

T =
∑′

|I|=p,|J|=q

TI,JdzI ∧ dzJ ∈ D′(p,q)(Ω),

then for any sequence S = (s1, . . . , sq), 1 ≤ s1, . . . , sq ≤ n, we define

TI,S :=

{
0 if #{s1, . . . , sq} < q

(sgnσ)TI,σ(S) if #{s1, . . . , sq} = q
,

where σ = σS is the permutation such that σ(S) ∈ Ξnq ; we define
→
S := σ(S).

If j ∈ {1, . . . , n}, K ∈ Ξnq−1, then we put jK := (j, k1, . . . , kq−1).
Observe that TI,jkL = −TI,kjL.
The operators ∂ and ∂ defined in § 4.2 on C1

(p,q)(Ω) can be easily extended to D′(p,q)(Ω), namely:

∂T :=
∑′

|I|=p,|J|=q

n∑
j=1

∂TI,J
∂zj

dzj ∧ dzI ∧ dzJ , ∂T :=
∑′

|I|=p,|J|=q

n∑
j=1

∂TI,J
∂zj

dzj ∧ dzI ∧ dzJ .

Recall the canonical form of ∂T:

∂T =
∑′

|I|=p,|K|=q+1

( ∑
J∈Ξnq , j∈{1,...,n}

ε(I,K, J, j)
∂TI,J
∂zj

)
dzI ∧ dzK ,

where ε = ε(I,K, J, j) ∈ {−1,+1} is such that

dzj ∧ dzI ∧ dzJ = εdzI ∧ dzK
if {k1, . . . , kq+1} = {j, j1, . . . , jq} and ε(I,K, J, j) := 0 otherwise.

Moreover, we define

Dα,βT :=
∑′

|I|=p,|J|=q

(Dα,βTI,J)dzI ∧ dzJ , α, β ∈ Nn0 , ϑT :=
∑′

|I|=p,|K|=q−1

( n∑
j=1

∂TI,jK
∂zj

)
dzI ∧ dzK .

(Notice that ϑ is defined if q ≥ 1.) Observe that

∂ : D′(p,q)(Ω) −→ D′(p+1,q)(Ω), ∂ : D′(p,q)(Ω) −→ D′(p,q+1)(Ω), ∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0, ∂ ◦ ∂ = −∂ ◦ ∂,

Dα,β : D′(p,q)(Ω) −→ D′(p,q)(Ω), Dα,β ◦ ∂ = ∂ ◦Dα,β , Dα,β ◦ ∂ = ∂ ◦Dα,β ,

ϑ : D′(p,q)(Ω) −→ D′(p,q−1)(Ω), ϑ : Ck(p,q)(Ω) −→ Ck−1
(p,q−1)(Ω), ϑ ◦ ϑ = 0, ϑ ◦Dα,β = Dα,β ◦ ϑ.
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Fix a function Ψ ∈ C∞0 (C,R+) such that

suppΨ = D, Ψ(z) = Ψ(|z|), z ∈ C,
∫
C
ΨdL2 = 1,

and let

Φ(z1, . . . , zn) := Ψ(z1) · · · · · Ψ(zn), (z1, . . . , zn) ∈ Cn, Φε(z) :=
1

ε2n
Φ(
z

ε
), ε > 0, z ∈ Cn.

Observe that suppΦε = Pn(ε) and
∫
Cn Φε dL

2n = 1, ε > 0.
Let T ∈ D′(p,q)(Ω) be such that suppT ⊂⊂ Ω (suppT =

⋃
I∈Ξnp , J∈Ξnq

suppTI,J). One may identify T

with an element of D′(p,q)(C
n).

We define the ε-regularization of T by the formula

Tε :=
∑′

|I|=p,|J|=q

(TI,J)εdzI ∧ dzJ ∈ D′(p,q)(C
n).

Recall that suppTε ⊂ (suppT)(ε) (Property 5.1.13(b)). In particular, suppTε ⊂ Ω provided 0 < ε� 1. By
Property 5.1.13(c), we get

∂(Tε) = (∂T)ε, ∂(Tε) = (∂T)ε, Dα,β(Tε) = (Dα,βT)ε, ϑ(Tε) = (ϑT)ε. (5.2.1)

If ε −→ 0, then Tε
D′(p,q)(Ω)
−→ T, i.e. (TI,J)ε

D′(Ω)−→ TI,J for any I ∈ Ξnp and J ∈ Ξnq (Property 5.1.13(d)).
For a continuous function ϕ : Ω −→ R let

L2(Ω,ϕ) := L2(Ω, e−ϕL2n) = {f : Ω −→ C :

∫
Ω

|f |2e−ϕdL2n < +∞}.

It is clear that L2(Ω,ϕ) ⊂ L2(Ω, loc). The space L2(Ω,ϕ) with the scalar product

(f, g) 7−→ 〈f, g〉ϕ :=

∫
Ω

fge−ϕdL2n

is a complex Hilbert space. Let ‖ ‖ϕ denote the norm generated by the above product. Observe that the
space D(Ω) is dense in L2(Ω,ϕ).

Let L2
(p,q)(Ω,ϕ) (resp. Lr(p,q)(Ω, loc), 1 ≤ r ≤ +∞) denote the space of all forms of type (p, q) with

coefficients in L2(Ω,ϕ) (resp. Lr(Ω, loc)). Obviously,

D(p,q)(Ω) ⊂ (Ck0 )(p,q)(Ω) ⊂ Ck(p,q)(Ω) ⊂ Lr(p,q)(Ω, loc) ⊂ L1
(p,q)(Ω, loc) ⊂ D′(p,q)(Ω),

D(p,q)(Ω) ⊂(Ck0 )(p,q)(Ω) ⊂L2
(p,q)(Ω,ϕ) ⊂L2

(p,q)(Ω, loc) ⊂L1
(p,q)(Ω, loc) ⊂D′(p,q)(Ω).

For u, v ∈ L1
(p,q)(Ω, loc) we define 〈u, v〉 : Ω −→ C and ‖u‖ : Ω −→ R+ by the formulae

〈u, v〉 :=
∑′

|I|=p,|J|=q

uI,JvI,J , ‖u‖ :=
√
〈u, u〉.

If u, v ∈ L2
(p,q)(Ω,ϕ), then we put

〈u, v〉ϕ :=

∫
Ω

〈u, v〉e−ϕdL2n =
∑′

|I|=p,|J|=q

〈uI,J , vI,J〉ϕ,

‖u‖2ϕ := 〈u, u〉ϕ =

∫
Ω

‖u‖2e−ϕdL2n =
∑′

|I|=p,|J|=q

‖uI,J‖2ϕ.

Note that the space L2
(p,q)(Ω,ϕ) with the scalar product 〈 , 〉ϕ is a complex Hilbert space and D(p,q)(Ω) is

dense in L2
(p,q)(Ω,ϕ).
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By Property 5.1.10(d), for any u ∈ L2
(p,q)(Ω, loc) with suppu ⊂⊂ Ω we have

uε
L2

(p,q)(Ω)
−→ u, i.e. ∀I∈Ξnp , J∈Ξnq

: (uI,J)ε
L2(Ω)−→ uI,J . (5.2.2)

For any η ∈ C∞(r,s)(Ω), T ∈ D′(p,q)(Ω) the wedge product η ∧ T (calculated according to standard rules)
is well defined and η ∧ T ∈ D′(r+p,s+q)(Ω).

Notice that the wedge product η∧T is also defined in many other cases, for instance if η ∈ L2
(r,s)(Ω, loc)

and u ∈ L2
(p,q)(Ω, loc), then η ∧ u ∈ L1

(r+p,s+q)(Ω, loc). We have

∂(η ∧ T) = (∂η) ∧ T + (−1)r+sη ∧ (∂T).

One can prove (cf. [6]) that

‖u ∧ v‖ ≤
((r + p

r

)(
s+ q

s

))1/2

‖u‖ · ‖v‖, u ∈ L2
(r,s)(Ω, loc), v ∈ L2

(p,q)(Ω, loc).

Moreover, if r + s ≤ 1 or p+ q ≤ 1, then ‖u ∧ v‖ ≤ ‖u‖ · ‖v‖.
Observe that

ϑ(ηT) = ηϑT +Aη(T), η ∈ C∞(Ω), T ∈ D′(p,q)(Ω), (5.2.3)

where Aη : D′(p,q)(Ω) −→ D′(p,q−1)(Ω),

Aη(T) :=
∑′

|I|=p,|K|=q−1

( n∑
j=1

∂η

∂zj
TI,jK

)
dzI ∧ dzK .

Suppose that we are given three continuous functions ϕj : Ω −→ R, j = 1, 2, 3. Define operators

L2
(p,q)(Ω,ϕ1) ⊃ Dom(T ) 3 u T−→ ∂u ∈ L2

(p,q+1)(Ω,ϕ2),

L2
(p,q+1)(Ω,ϕ2) ⊃ Dom(S) 3 v S−→ ∂v ∈ L2

(p,q+2)(Ω,ϕ3),

where

Dom(T ) := {u ∈ L2
(p,q)(Ω,ϕ1) : ∂u ∈ L2

(p,q+1)(Ω,ϕ2)},

Dom(S) := {v ∈ L2
(p,q+1)(Ω,ϕ2) : ∂v ∈ L2

(p,q+2)(Ω,ϕ3)}.

Observe that D(p,q)(Ω) ⊂ Dom(T ) and D(p,q+1)(Ω) ⊂ Dom(S). Thus T and S are densely defined. Note
that S ◦ T = 0. In particular, R(T ) ⊂ Ker(S) (R(T ) := T (Dom(T ))). It is clear that the operators are
closed. Consequently, F := Ker(S) is a closed subspace of L2

(p,q+1)(Ω,ϕ2).
The following lemma will be the main tool used to solve the ∂-problem.

Lemma 5.2.1. Assume that H1, H2 are complex Hilbert spaces. Let

H1 ⊃ Dom(T )
T−→ H2

be a linear closed densely defined operator and let F be a closed subspace of H2 such that R(T ) ⊂ F . Assume
that

∃C>0 : ‖f‖H2 ≤ C‖T ∗(f)‖H1 , f ∈ F ∩Dom(T ∗). (5.2.4)

Then
∀v∈F ∃u∈Dom(T )∩R(T∗) : T (u) = v, ‖u‖H1

≤ C‖v‖H2
.

Proof. Let P : H2 −→ F denote the orthogonal projection. It is known that Ker(T ∗) = R(T ∗∗)⊥ = R(T )⊥

(cf. [34]). Hence F⊥ = Ker(P ) ⊂ Ker(T ∗) and therefore

T ∗ ◦ P = T ∗.

In particular, R(T ∗) = T ∗(F ∩ Dom(T ∗)). Now, condition (5.2.4) implies that R(T ∗) is a closed subspace
of H1.
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Indeed, let T ∗(fν) −→ u0 ∈ H1 for (fν)∞ν=1 ⊂ F ∩Dom(T ∗). Then, by (5.2.4), ‖fν−fµ‖H2

≤ C‖T ∗(fν)−
T ∗(fµ)‖H1 , ν, µ ≥ 1. Consequently, (fν)∞ν=1 is convergent, fν −→ f0 ∈ H2. Obviously f0 ∈ F . Let
u ∈ Dom(T ). Then

〈u0, u〉H1
= lim
ν→+∞

〈T ∗(fν), u〉H1
= lim
ν→+∞

〈fν , T (u)〉H1
= 〈f0, T (u)〉H1

.

Thus f0 ∈ Dom(T ∗) and T ∗(f0) = u0.
We pass to the main part of the proof. Fix a v ∈ F and let L : R(T ∗) −→ C,

L(T ∗(f)) := 〈v, f〉H2 , f ∈ F ∩Dom(T ∗).

By (5.2.4) L is well defined and

|L(T ∗(f))| ≤ C‖v‖H2‖T ∗(f)‖H1 , f ∈ F ∩Dom(T ∗),

which shows that L is continuous. Since R(T ∗) is closed, the Riesz theorem implies that there exists a
u ∈ R(T ∗) with ‖u‖H1

≤ C‖v‖H2
such that

L(T ∗(f)) = 〈u, T ∗(f)〉H1 , f ∈ Dom(T ∗).

Thus u ∈ Dom(T ∗∗) = Dom(T ) and T ∗∗(u) = T (u) = v (cf. [34]). �

The above lemma implies that to solve the equation ∂u = v for given v ∈ L2
(p,q+1)(Ω,ϕ2) with u ∈

L2
(p,q)(Ω,ϕ1), it suffices to prove that there exists a C > 0 such that

‖f‖ϕ2
≤ C(‖T ∗(f)‖ϕ1

+ ‖S(f)‖ϕ3
), f ∈ Dom(T ∗) ∩Dom(S). (5.2.5)

In the first step we will describe a class of continuous functions ϕj , j = 1, 2, 3, for which the proof of
(5.2.5) reduces to f ∈ D(p,q+1)(Ω).

Let a sequence (ην)∞ν=1 ⊂ C∞0 (Ω, [0, 1]) be such that

∀K⊂⊂Ω ∃ν0 : ∀ν≥ν0 : ην |K ≡ 1, (5.2.6)

and let ψ ∈ C∞(Ω,R) satisfy

‖∂ην‖2 ≤ eψ, ν ∈ N. (5.2.7)

Fix a ϕ ∈ C2(Ω,R) and define ϕj := ϕ− (3− j)ψ, Hj := L2
(p,q+j−1)(Ω,ϕj), j = 1, 2, 3.

Proposition 5.2.2. D(p,q+1)(Ω) is dense in Dom(T ∗) ∩Dom(S) in the graph norm

Dom(T ∗) ∩Dom(S) 3 f 7−→ ‖f‖ϕ2
+ ‖T ∗(f)‖ϕ1

+ ‖S(f)‖ϕ3
.

Proof. We will prove that:
1o. ∀f∈Hj : ηνf

Hj−→ f when ν −→ +∞, j = 1, 2, 3.

2o. ∀f∈Hj : supp f⊂⊂Ω : fε
Hj−→ f when ε −→ 0, j = 1, 2, 3.

3o. ∀η∈D(Ω), f∈Dom(S) : ηf ∈ Dom(S).

4o. ∀f∈Dom(S) : S(ηνf)
H3−→ S(f) when ν −→ +∞.

5o. ∀f∈Dom(S): supp f⊂⊂Ω : S(fε)
H3−→ S(f) when ε −→ 0.

6o. ∀η∈D(Ω), f∈Dom(T∗) : ηf ∈ Dom(T ∗).

7o. ∀f∈Dom(T∗) : T ∗(ηνf)
H1−→ T ∗(f) when ν −→ +∞.

8o. D(p,q+1)(Ω) ⊂ Dom(T ∗).
9o. ∀f∈Dom(T∗) : T ∗(f) = (−1)p−1eϕ1ϑ(e−ϕ2f).

10o. ∀f∈Dom(T∗): supp f⊂⊂Ω : T ∗(fε)
H1−→ T ∗(f) when ε −→ 0.

It is clear that 1o — 10o imply the required result.
Property 1o follows from the Lebesgue dominated convergence theorem.
Property 2o follows from (5.2.2).
To prove 3o it suffices to recall that ∂(ηf) = (∂η) ∧ f + η∂f .
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To prove 4o observe that, by 3o, for η = ην , we get

‖S(ηνf)− ηνS(f)‖2e−ϕ3 = ‖(∂ην) ∧ f‖2e−ϕ3 ≤ ‖∂ην‖2‖f‖2e−ϕ3 ≤ eψ‖f‖2e−ϕ3 = ‖f‖2e−ϕ2 .

Hence, by the Lebesgue theorem, S(ηνf) − ηνS(f)
H3−→ 0 when ν −→ +∞. We already know by 1o that

ηνS(f)
H3−→ S(f). Thus S(ηνf)

H3−→ S(f).
Property 5o follows from (5.2.1) and (5.2.2).
In particular, we have proved that D(p,q)(Ω) is dense in Dom(T ) in the norm

u 7−→ ‖u‖ϕ1 + ‖T (u)‖ϕ1 .

To prove 6o first observe that by 3o ηu ∈ Dom(T ) for any u ∈ Dom(T ). Therefore for any u ∈ Dom(T )
we get

〈ηf, T (u)〉ϕ2
= 〈f, ηT (u)〉ϕ1

= 〈f, T (ηu)〉ϕ2
− 〈f, ∂η ∧ u〉ϕ2

= 〈ηT ∗(f), u〉ϕ1
− 〈f, ∂η ∧ u〉ϕ2

.

Hence, using the Hölder inequality, we obtain

|〈ηf, T (u)〉ϕ2
| ≤ ‖ηT ∗(f)‖ϕ1

‖u‖ϕ1
+

∫
Ω

‖f‖ · ‖∂η‖ · ‖u‖e−ϕ2dL2n

≤ ‖ηT ∗(f)‖ϕ1
‖u‖ϕ1

+ sup
Ω
{‖∂η‖e−ψ/2}‖f‖ϕ2

‖u‖ϕ1
= const ‖u‖ϕ1

, u ∈ Dom(T ).

Consequently, ηf ∈ Dom(T ∗) and

〈T ∗(ηf), u〉ϕ1
− 〈ηT ∗(f), u〉ϕ1

= −〈f, ∂η ∧ u〉ϕ2
, u ∈ Dom(T ).

Hence
|
∫
Ω

〈T ∗(ηf)− ηT ∗(f), u〉e−ϕ1dL2n| ≤
∫
Ω

‖f‖ · ‖∂η‖ · ‖u‖e−ϕ2dL2n, u ∈ Dom(T ),

and so

|
∫
Ω

〈
(T ∗(ηf)− ηT ∗(f))e−ϕ1/2, ue−ϕ1/2

〉
dL2n| ≤

∫
Ω

‖f‖e−ϕ2/2‖∂η‖e−ψ/2‖u‖e−ϕ1/2dL2n

for all u ∈ Dom(T ) and, consequently, for all u ∈ L2
(p,q)(Ω,ϕ1). Thus

|
∫
Ω

〈
(T ∗(ηf)− ηT ∗(f))e−ϕ1/2, u

〉
dL2n| ≤

∫
Ω

‖f‖e−ϕ2/2‖∂η‖e−ψ/2‖u‖dL2n, u ∈ L2
(p,q)(Ω).

This implies (Exercise) that

‖T ∗(ηf)− ηT ∗(f)‖e−ϕ1/2 ≤ ‖f‖e−ϕ2/2‖∂η‖e−ψ/2.
In particular, if η = ην , then

‖T ∗(ηνf)− ηνT ∗(f)‖2e−ϕ1 ≤ ‖f‖2e−ϕ2

and therefore, by the Lebesgue theorem, T ∗(ηνf)−ηνT ∗(f)
H1−→ 0 when ν −→ +∞. Thus, T ∗(ηνf)

H1−→ T ∗(f)
and, consequently, 7o is proved.

To prove 8o take an f ∈ D(p,q+1)(Ω) and let

g := (−1)p−1eϕ1ϑ(e−ϕ2f) ∈ (C0)(p,q)(Ω).

For any u ∈ D(p,q)(Ω) we get

〈g, u〉ϕ1
=

∑′
|I|=p,|K|=q

n∑
j=1

(−1)p−1

∫
Ω

eϕ1
∂(e−ϕ2fI,jK)

∂zj
uI,Ke

−ϕ1dL2n

=
∑′

|I|=p,|K|=q

n∑
j=1

(−1)p
∫
Ω

e−ϕ2fI,jK
∂uI,K
∂zj

dL2n = 〈f, Tu〉ϕ2 .

Since the space D(p,q)(Ω) is dense in Dom(T ) in the graph norm, we conclude that f ∈ Dom(T ∗) and
T ∗(f) = g.
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5. Hörmander’s solution of the ∂-problem
To prove 9o fix an f ∈ Dom(T ∗) and put g := T ∗(f). Then for any u ∈ D(p,q)(Ω) we have∑′
|I|=p,|K|=q

∫
Ω

gI,KuI,Ke
−ϕ1dL2n = 〈T ∗(f), u〉ϕ1

= 〈f, T (u)〉ϕ2

=
∑′

|I|=p,|K|=q

n∑
j=1

(−1)p
∫
Ω

e−ϕ2fI,jK
∂uI,K
∂zj

dL2n.

Hence g = (−1)p−1eϕ1ϑ(e−ϕ2f) in the sense of distribution, which gives the required formula for T ∗.
Finally, to see 10o observe that

(−1)p−1eϕ2−ϕ1T ∗ = ϑ+A,
where A : D′(p,q+1)(Ω) −→ D′(p,q+1)(Ω) is a linear operator with C1 coefficients (cf. (5.2.3)). Consequently,

(−1)p−1eϕ2−ϕ1T ∗(fε) = (ϑf)ε +A(fε).

Hence T ∗(fε)
H1−→ T ∗(f) when ε −→ 0.

The proof of the proposition is completed. �

Theorem 5.2.3 (Hörmander’s L2-estimates). Under the above notation we have∫
Ω

∑′
|I|=p
|K|=q

n∑
j,k=1

∂2ϕ

∂zk∂zj
fI,jKfI,kKe

−ϕdL2n +

∫
Ω

∑′
|I|=p
|J|=q+1

‖∂fI,J‖2e−ϕdL2n

≤ 2‖T ∗(f)‖2ϕ1
+ ‖S(f)‖2ϕ3

+ 2

∫
Ω

‖f‖2‖∂ψ‖2e−ϕdL2n, f ∈ D(p,q+1)(Ω). (5.2.8)

In particular, if
Lϕ(z;X) ≥ 2(‖∂ψ(z)‖2 + eψ(z))‖X‖2, z ∈ Ω, X ∈ Cn,

then, by Proposition 5.2.2, we get

‖f‖2ϕ2
≤ ‖T ∗(f)‖2ϕ1

+ ‖S(f)‖2ϕ3
, f ∈ Dom(T ∗) ∩Dom(S).

Proof. Let

δj(g) := eϕ
∂(ge−ϕ)

∂zj
=

∂g

∂zj
− g ∂ϕ

∂zj
, j = 1, . . . , n.

Then ∫
Ω

g1
∂g2

∂zk
e−ϕdL2n = −

∫
Ω

δk(g1)g2e
−ϕdL2n, g1, g2 ∈ D(Ω), (5.2.9)

δj

( ∂g
∂zk

)
− ∂δj(g)

∂zk
=

∂2ϕ

∂zk∂zj
g, g ∈ D(Ω). (5.2.10)

Observe that

eψT ∗(f) = (−1)p−1
∑′

|I|=p,|K|=q

n∑
j=1

δj(fI,jK)dzI ∧ dzK + (−1)p−1
∑′

|I|=p,|K|=q

n∑
j=1

fI,jK
∂ψ

∂zj
dzI ∧ dzK ,

f ∈ D(p,q+1)(Ω).

In particular,∫
Ω

∑′
|I|=p,|K|=q

n∑
j,k=1

δj(fI,kK)δk(fI,jK)e−ϕdL2n ≤ 2‖T ∗(f)‖2ϕ1
+ 2

∫
Ω

‖f‖2‖∂ψ‖2e−ϕdL2n,

f ∈ D(p,q+1)(Ω).
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For f ∈ D(p,q+1)(Ω) we have

‖S(f)‖2 =
∑′

|I|=p,|J|=q+1

n∑
j=1

∣∣∣∂fI,J
∂zj

∣∣∣2 − ∑′
|I|=p,|K|=q

n∑
j,k=1

∂fI,jK
∂zk

∂fI,kK
∂zj

.

Indeed,

Sf =
∑′

|I|=p,|Q|=q+2

( ∑
J∈Ξnq+1, j∈{1,...,n}

ε(I,Q, J, j)
∂fI,J
∂zj

)
dzI ∧ dzQ

(cf. § 4.2). Hence

‖Sf‖2 =
∑′

|I|=p,|Q|=q+2

∑
j /∈J

∑
k/∈L

ε(I,Q, J, j)
∂fI,J
∂zj

ε(I,Q, L, k)
∂fI,L
∂zk

=
∑′

|I|=p,|J|=q+1

∑
j /∈J

∣∣∣∂fI,J
∂zj

∣∣∣2 +
∑′

|I|=p,|K|=q

∑
j,k/∈K, j 6=k

ε(I,
−→
jkK,

−→
kK, j)ε(I,

−→
jkK,

−→
jK, k) sgn(σkK) sgn(σjK)

∂fI,kK
∂zj

∂fI,jK
∂zk

=
∑′

|I|=p,|J|=q+1

∑
j /∈J

∣∣∣∂fI,J
∂zj

∣∣∣2 − ∑′
|I|=p,|K|=q

∑
j 6=k

∂fI,kK
∂zj

∂fI,jK
∂zk

=
∑′

|I|=p,|J|=q+1

n∑
j=1

∣∣∣∂fI,J
∂zj

∣∣∣2 − ∑′
|I|=p,|K|=q

n∑
j,k=1

∂fI,jK
∂zk

∂fI,kK
∂zj

.

Thus we have proved that∫
Ω

∑′
|I|=p,|K|=q

n∑
j,k=1

(
δj(fI,jK)δk(fI,kK)− ∂fI,jK

∂zk

∂fI,kK
∂zj

)
e−ϕdL2n +

∫
Ω

∑′
|I|=p,|J|=q+1

n∑
j=1

∣∣∣∂fI,J
∂zj

∣∣∣2e−ϕdL2n

≤ 2‖T ∗(f)‖2ϕ1
+ ‖S(f)‖2ϕ3

+ 2

∫
Ω

‖f‖2‖∂ψ‖2e−ϕdL2n,

which, by (5.2.9) and (5.2.10), implies the required inequality. �

Notice that (5.2.8) holds for arbitrary ψ,ϕ ∈ C2(Ω). In particular, it holds for ϕ = ψ = 0.

Theorem 5.2.4. Let Ω ⊂ Cn be pseudoconvex. Then for any p, q ∈ N0 and for any ∂-closed form v ∈
L2

(p,q+1)(Ω, loc), there exist ϕ1, ϕ2 ∈ C∞(Ω) and u ∈ Dom(T ) ∩R(T ∗) such that T (u) = v, where

L2
(p,q)(Ω,ϕ1) ⊃ Dom(T )

T−→ L2
(p,q+1)(Ω,ϕ2)

is as above.
In particular, for any ∂-closed form v ∈ L2

(p,q+1)(Ω, loc) there exists a form u ∈ L2
(p,q)(Ω, loc) such that

∂u = v.

Proof. Let w be a C∞ strictly psh exhaustion function (cf. Proposition 4.1.15).
Let χ : R −→ R be a C∞ convex increasing function. Take a ϕ := χ ◦ w and define ϕj := ϕ− (3− j)ψ,

j = 1, 2, 3. Let T and S be as above.
We will show that the function χ can be found in such a way that:
• Lϕ(z;X) ≥ 2(‖∂ψ‖2 + exp(ψ))‖X‖2, z ∈ Ω, X ∈ Cn,
• v ∈ L2

(p,q+1)(Ω,ϕ2) (i.e. v ∈ KerS).
Suppose for a moment that χ is constructed. Then by Theorem 5.2.3

‖f‖2ϕ2
≤ ‖T ∗(f)‖2ϕ1

+ ‖S(f)‖2ϕ3
, f ∈ Dom(T ∗) ∩Dom(S).
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5. Hörmander’s solution of the ∂-problem
In particular,

‖f‖2ϕ2
≤ ‖T ∗(f)‖2ϕ1

, f ∈ Dom(T ∗) ∩Ker(S).

Now, by Lemma 5.2.1 (with F := KerS), we find a u ∈ Dom(T ) ∩R(T ∗) with T (u) = v
We pass to the construction of χ. Let c0 ∈ C(Ω,R>0) be such that

Lw(z;X) ≥ c0‖X‖2, z ∈ Ω, X ∈ Cn.

Define

Kt := {z ∈ Ω : w(z) ≤ t}, τ(t) := max
Kt
{(2/c0)(‖∂ψ‖2 + eψ)}, at :=

∫
Kt\Kt−1

‖v‖2 dL2n, t ∈ R.

Now take an increasing convex C∞ function χ : R −→ R such that χ ≥ τ and

χ(ν − 1) ≥ sup
Kν\Kν−1

ψ + ν log 2 + log aν , ν ∈ N.

Then

L(χ ◦ w)(z;X) = χ′′(w(z))
∣∣∣ n∑
j=1

∂w

∂zj
(z)Xj

∣∣∣2 + χ′(w(z))Lw(z;X)

≥ χ′(w(z))c0(z)‖X‖2 ≥ τ(w(z))c0(z)‖X‖2 ≥ 2(‖∂ψ(z)‖2 + eψ(z)), z ∈ Ω, X ∈ Cn.

Moreover,∫
Ω\K0

‖v‖2e−ϕ2dL2n ≤
∞∑
ν=1

aν sup
Kν\Kν−1

eψ−χ◦w ≤
∞∑
ν=1

aνe
−χ(ν−1) sup

Kν\Kν−1

eψ ≤
∞∑
ν=1

2−ν < +∞. �

5.3. Solution of the Levi Problem

Let Ω ⊂ Cn be open. For any k ∈ N0 ∪ {∞} let Wk(Ω) (resp. Wk(Ω, loc)) denote the Sobolev space of
all functions u ∈ L2(Ω) (resp. u ∈ L2(Ω, loc)) such that Dα,βu ∈ L2(Ω) (resp. Dα,βu ∈ L2(Ω, loc)) for any
α, β ∈ Nn0 with |α|+ |β| ≤ k.

Let Wk
(p,q)(Ω) (resp. Wk

(p,q)(Ω, loc)) be the space of all forms of type (p, q) with coefficients (in the
canonical form) in Wk(Ω) (resp. Wk(Ω, loc)).

Remark 5.3.1. (a) Obviously, Ck(p,q)(Ω) ⊂ Wk
(p,q)(Ω, loc). It is known that if k > 2n, then Wk

(p,q)(Ω, loc) ⊂
Ck−2n

(p,q) (Ω) (cf. [22]). In particular, W∞(p,q)(Ω, loc) = C∞(p,q)(Ω).
(b) ∂(Wk+1

(p,q)(Ω, loc)) ⊂ Wk
(p,q+1)(Ω, loc), k ≥ 0.

(c) ϑ(Wk+1
(p,q+1)(Ω, loc)) ⊂ Wk

(p,q)(Ω, loc), k ≥ 0.

The aim of the present section is to prove the following theorem.

Theorem 5.3.2 (Solution of the Levi Problem). Assume that Ω is pseudoconvex. Then

∂(Wk+1
(p,q)(Ω, loc)) = {v ∈ Wk

(p,q+1)(Ω, loc) : ∂v = 0}, p, q ≥ 0, k ∈ N0 ∪ {∞}.

Hence
∂(Ck+1−2n

(p,q) (Ω)) ⊃ {v ∈ Ck(p,q+1)(Ω) : ∂v = 0}, p, q ≥ 0, k ∈ N0 ∪ {∞}, k > 2n.

In particular, Ω ∈ Sp,q for any p, q.
Consequently, by Theorem 4.2.9, any pseudoconvex open set is holomorphically convex.

The proof requires some preparations.
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Lemma 5.3.3. (a)

Wk+1
(p,0)(Ω, loc) = {u ∈ L2

(p,0)(Ω, loc) : ∂u ∈ Wk
(p,1)(Ω, loc)}, p ≥ 0, k ∈ N0.

(b)

Wk+1
(p,q+1)(Ω, loc) = {u ∈ L2

(p,q+1)(Ω, loc) : ∂u ∈ Wk
(p,q+2)(Ω, loc), ϑu ∈ Wk

(p,q)(Ω, loc)},
p, q ≥ 0, k ∈ N0.

Proof. (a) Take a u =
∑′
|I|=p uIdzI ∈ L2

(p,0)(Ω, loc) such that ∂u ∈ Wk
(p,1)(Ω, loc). Observe that

∂u =
∑′
|I|=p

∂uI ∧ dzI .

In particular, ∂uI ∈ Wk
(0,1)(Ω, loc) for any I ∈ Ξnp (cf. Remark 4.2.1(b)). It suffices to prove that for each I

the function uI belongs to Wk+1(Ω, loc). Thus we may assume that p = 0.
Now we proceed by induction on k.
k = 0.
It suffices to prove that u|U ∈ W1(U) for any domain U ⊂⊂ Ω.
Fix such a domain U and let χ ∈ D(Ω) be such that χ = 1 in a neighborhood of U . Put w := χu. It is

enough to show that w ∈ W1(Ω). Since ∂w = (∂χ)u+ χ∂u, we conclude that ∂w ∈ L2
(0,1)(Ω).

Thus, without loss of generality, we may assume that K := suppu ⊂⊂ Ω.
We have to show that ∂u ∈ L2

(1,0)(Ω).
Let uε denote the ε-regularization of u (cf. § 5.1). Recall that ∂(uε) = (∂u)ε (cf. (5.2.1)). Hence, since

∂u ∈ L2
(0,1)(Ω), we get

∂(uε)
L2

(0,1)(Ω)
−→ ∂u when ε −→ 0.

(cf. (5.2.2)). Recall that suppuε ⊂ K(ε). Fix an ε0 > 0 such that K(ε0) ⊂ Ω.
Observe that for f ∈ D(Ω) we have

‖∂f‖L2
(0,1)

(Ω) = ‖∂f‖L2
(1,0)

(Ω). (5.3.1)

Indeed,

‖∂f‖2L2
(0,1)

(Ω) =

n∑
j=1

∫
Ω

∂f

∂zj

∂f

∂zj
dL2n = −

∫
Ω

∂2f

∂zj∂zj
f dL2n

= −
n∑
j=1

∫
Ω

∂2f

∂zj∂zj
f dL2n =

n∑
j=1

∫
Ω

∂f

∂zj

∂f

∂zj
dL2n = ‖∂f‖L2

(1,0)
(Ω).

Equality (5.3.1) with f = uεν − uεµ , where ε0 > εν ↘ 0, shows that the sequence (∂(uεν ))∞ν=1 is
convergent in L2

(1,0)(Ω) to a form g. Clearly g = ∂u in the sense of distribution.
k − 1 k.
We already know that Dα,βu ∈ L2

(p,0)(Ω, loc) for any |α|+ |β| ≤ k. Since

∂(Dα,βu) = Dα,β(∂u) ∈ L2
(p,1)(Ω, loc),

we get (applying the step k = 0 to the form Dα,βu) that Dα,βu ∈ W1
(p,0)(Ω, loc) for any |α|+ |β| ≤ k. Hence

u ∈ Wk+1
(p,0)(Ω, loc).

(b) Suppose that u ∈ L2
(p,q+1)(Ω, loc) is such that ∂u ∈ Wk

(p,q+2)(Ω, loc) and ϑu ∈ Wk
(p,q)(Ω, loc).

First consider the case k = 0.
Observe that for any χ ∈ D(Ω), if w := χu, then ∂w = (∂χ)u + χ∂u ∈ W(p,q+2)(Ω) and ϑw =

Aχ(u) + χϑu ∈ Wk
(p,q)(Ω) (cf. (5.2.3)). Hence, similarly as in (a), we may assume that suppu ⊂⊂ Ω.
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5. Hörmander’s solution of the ∂-problem
By Hörmander’s inequality with ψ = ϕ = 0 we get∑′

|I|=p,|J|=q+1

‖∂fI,J‖L2
(0,1)

(Ω) ≤ 2‖ϑf‖2L2
(p,q)

(Ω) + ‖∂f‖2L2
(p,q+2)

(Ω), f ∈ D(p,q+1)(Ω). (5.3.2)

Let uε denote the ε-regularization of u. We have ∂uε = (∂u)ε and ϑ(uε) = (ϑu)ε (cf. (5.2.1)). Hence

∂(uε)
L2

(p,q+2)(Ω)
−→ ∂u, ϑ(uε)

L2
(p,q)(Ω)
−→ ϑu.

By (5.3.2) with f = uε (0 < ε� 1) we get∑′
|I|=p,|J|=q+1

‖∂uI,J‖L2
(0,1)

(Ω) ≤ 2‖ϑu‖2L2
(p,q)

(Ω) + ‖∂u‖2L2
(p,q+2)

(Ω).

Hence, by (a) (with k = 0), we conclude that uI,J ∈ W1(Ω) for any I, J . Finally, u ∈ W1
(p,q+1)(Ω).

k − 1 k.
We already know that for any |α|+ |β| ≤ k we have Dα,βu ∈ L2

(p,q+1)(Ω, loc). Observe that

∂(Dα,βu) = Dα,β(∂u) ∈ L2
(p,q+2)(Ω, loc), ϑ(Dα,βu) = Dα,β(ϑu) ∈ L2

(p,q)(Ω, loc).

Hence, applying the case k = 0 to Dα,βu, we obtain Dα,βu ∈ W1
(p,q+1)(Ω, loc). Consequently, u ∈

Wk+1
(p,q+1)(Ω, loc). �

Proof of Theorem 5.3.2. Fix a v ∈ Wk
(p,q+1)(Ω, loc) with ∂v = 0 (k ∈ N0 ∪ {∞}).

The case q = 0.
By Theorem 5.2.4 there exists a u ∈ L2

(p,0)(Ω, loc) such that ∂u = v. Hence, by Lemma 5.3.3(a),
u ∈ Wk+1

(p,0)(Ω, loc).
The case q ≥ 1.
By Theorem 5.2.4 there exist functions ϕj ∈ C∞(Ω,R), j = 1, 2, such that if

T : L2
(p,q)(Ω,ϕ1) ⊃ Dom(T )

∂−→ L2
(p,q+1)(Ω,ϕ2),

then there exists a u ∈ Dom(T ) ∩R(T ∗) with T (u) = v. Recall that

T ∗(f) = (−1)p−1eϕ1ϑ(e−ϕ2f), f ∈ Dom(T ∗).

Since u ∈ R(T ∗) and ϑ2 = 0, we get ϑ(exp(−ϕ1)u) = 0. Hence

ϑu = Bu, (5.3.3)

where B is a linear operator with C∞ coefficients.
In particular, ϑu ∈ L2

(p,q)(Ω, loc). Now, by Lemma 5.3.3(b) (with k = 0) we conclude that u ∈
W1

(p,q+1)(Ω, loc). Suppose that u ∈ W`+1
(p,q+1)(Ω, loc) with 0 ≤ ` ≤ k−1. Then, by (5.3.3), ϑu ∈ W`+1

(p,q)(Ω, loc)

and hence, by Lemma 5.3.3(b), u ∈ W`+2
(p,q+1)(Ω, loc). Induction on ` finishes the proof. �



CHAPTER 6

Cousin problems

6.1. Meromorphic functions

Definition 6.1.1. Let Ω ⊂ Cn be open and let S ⊂ Ω be thin (Definition 2.1.4) and relatively closed in Ω.
A function f : Ω \ S −→ C is called meromorphic in Ω (f ∈M(Ω))

(
1
)

if:
f ∈ O(Ω \ S),
for every point a ∈ S there exist a polydisc P = P(a, r) ⊂ Ω and a function ma ∈ O(P ), ma 6≡ 0, such

that the function `a := f ·ma extends to a function ˜̀a ∈ O(P ).
A point a ∈ Ω is called:
— regular (a ∈ R(f)) if there exist P = P(a, r) ⊂ Ω and ma ∈ O(P ) such that ma(z) 6= 0 for any z ∈ P ,

and the function `a := f ·ma extends holomorphically to P
(

2
)
,

— a pole (a ∈ P(f)) if there exist P = P(a, r) ⊂ Ω and ma ∈ O(P ) such that ma 6≡ 0, ma(a) = 0, and
the function `a := f ·ma extends holomorphically to P and ˜̀a(a) 6= 0

(
3
)
,

— a point of indeterminacy (a ∈ I(f)) in the remaining case, i.e. for any P = P(a, r) ⊂ Ω andma ∈ O(P )

such that ma 6≡ 0, and the function `a := f ·ma extends holomorphically to P , we have ma(a) = ˜̀
a(a) = 0(

4
)
.

Remark 6.1.2. (a) The set R(f) is open and f extends holomorphically onto R(f)
(

5
)
.

Indeed, if P,ma, `a are as in the definition of a regular point, then we put f̃(z) := ˜̀
a(z)/ma(z), z ∈ P .

Obviously, f̃ = f in P \ S.
(b) We may put f(z) :=∞, z ∈ P(f). If a ∈ I(f), then by Proposition 1.8.5, one cannot define the value of
f at a.
(c) For f(z1, z2) := z1/z2 ∈M(C2) we have

R(f) = C× C∗, P(f) = C∗ × {0}, I(f) = (0, 0).

(d) O(Ω) ⊂M(Ω).
(e) Meromorphy is a local property. If Φ : Ω −→ Ω′ = Φ(Ω) is biholomorphic, then f ∈M(Ω′)⇐⇒ f ◦Φ ∈
M(Ω).

Proposition 6.1.3. For n = 1 Definition 6.1.1 is equivalent to the standard definition of a meromorphic
function of one complex variable (cf. [4], Definition V.3.3). Moreover, if n = 1, then for every f ∈ M(Ω)
we have I(f) = ∅.

Proof. Let Ω ⊂ C. Suppose that f : Ω −→ Ĉ is meromorphic in the standard sense. Denote by S the set of
all poles of f and let k(a) be the rank of the pole a ∈ S. Since S consists of isolated points, S is thin and
relatively closed in Ω. Moreover, for every a ∈ S, the function f · (z − a)k(a) extends holomorphically to a
neighborhood a. This means that the function f is meromorphic in the sense of Definition 6.1.1.

Now, let f : Ω \ S −→ C be meromorphic in Ω in the sense of Definition 6.1.1. We may assume that
S := Ω \ R(f). Since the set S is thin, it must consist of isolated points. It remains to show S = P(f).(

1
)
Note that a function meromorphic in Ω need not be defined on whole of Ω.(

2
)
Obviously, Ω \ S ⊂R(f).(

3
)
P(f) ⊂ S.(

4
)
I(f) ⊂ S.(

5
)
In particular, we may always assume that Ω \ S = R(f).

121
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Indeed, if ˜̀a = f · ma in P = K(a, r), where ˜̀a,ma ∈ O(P ), ma 6≡ 0, ma(a) = 0, then the function
ga := f · (z − a)k(a), where k(a) := ordama − orda ˜̀a, extends holomorphically to a neighborhood of a and
g̃a(a) 6= 0. �

Proposition 6.1.4 (Identity principle). Let f, g ∈ M(D), where D ⊂ Cn is a domain. Then the following
conditions are equivalent:
(i) R(f) = R(g), P(f) = P(g), I(f) = I(g), and f = g on R(f);
(ii) f = g on R(f) ∩R(g);
(iii) f = g on a non-empty open subset of R(f) ∩R(g).

Proof. Obviously, (i) =⇒ (ii) =⇒ (iii).
(iii) =⇒ (i). Observe that S := D \ (R(f) ∩ R(g)) = (D \ R(f)) ∪ (D \ R(g)) is thin. In particular,

R(f)∩R(g) is a domain and, by the identity principle, f = g on R(f)∩R(g). Let a ∈ S and let P = P(a, r)
and ma ∈ O(P ), ma 6≡ 0, be such that the function `f,a := f · ma extends holomorphically to P . Put
`g,a := g · ma. Then `g,a = `f,a on P \ S. Hence `g,a extends holomorphically to P and l̃g,a = ˜̀

f,a.
Consequently, we get (i). �

Proposition 6.1.5. Let D ⊂ Cn be a domain. ThenM(D) is a field.

Proof. Let f : D \ Sf −→ C, g : D \ Sg −→ C be meromorphic functions and let S := Sf ∪ Sg. The set S is
clearly thin and closed in D, and the functions f + g, f · g : D \ S −→ C are well defined and holomorphic.
For a ∈ S let P = P(a, r) ⊂ D and mf,a,mg,a ∈ O(P ), mf,a 6≡ 0, mg,a 6≡ 0, be such that the functions
f ·mf,a, g ·mg,a extend holomorphically to P . Then the functions (f + g) ·mf,a ·mg,a and (f · g) ·mf,a ·mg,a

also extend holomorphically onto P . ThusM(D) is a ring.
Suppose now that f 6= 0, i.e. f 6≡ 0 in D \ Sf . Let S := Sf ∪ f−1(0). The set S is thin and closed in D,

and the function 1/f : D \ S −→ C is well defined and holomorphic. Let a ∈ S.
For a ∈ Sf , let P = P(a, r) ⊂ D, and mf,a ∈ O(P ), mf,a 6≡ 0, be such that the function `f,a := f ·mf,a

extends holomorphically onto P . Note that by identity principle we have ˜̀f,a 6≡ 0. We can therefore take
m1/f,a := ˜̀

f,a.
For a ∈ D \Sf such that f(a) = 0, we can choose P as an arbitrary polydisc P(a, r) ⊂ D \Sf and define

m1/f,a := f |P (by the identity principle m1/f,a 6≡ 0).
Consequently, 1/f is a meromorphic function, and thereforeM(D) is a field. �

6.2. The Mittag–Leffler and Weierstrass theorems

Let us recall two classical theorems of one complex variable (cf. [4], Theorems VIII.3.2, V.5.15).

Theorem 6.2.1 (Mittag–Leffler). For any open subset Ω ⊂ C, a set B ⊂ Ω without accumulation points in
Ω, and a family of polynomials (Pa)a∈B ⊂ P(C) with Pa(0) = 0, a ∈ B, there exists a function f ∈ M(Ω)
such that f ∈ O(Ω \B) and for every a ∈ B the function

f − Pa(
1

z − a
)

extends holomorphically to a neighborhood of a.

The above theorem may be reformulated as follows:

Theorem 6.2.2. For any open subset Ω ⊂ C, an open covering (Ωα)α∈A of Ω, and a family fα ∈M(Ωα),
α ∈ A, such that

fα − fβ ∈ O(Ωα ∩Ωβ), α, β ∈ A,
(

6
)

there exists a function f ∈M(Ω) such that

f − fα ∈ O(Ωα), α ∈ A.(
6
)
That is, the function fα − fβ extends holomorphically to Ωα ∩Ωβ .
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Proof that Theorem 6.2.2 implies Theorem 6.2.1. Let Ω, B, and (Pa)a∈B be as in the assumptions of The-
orem 6.2.1. Choose ra > 0, a ∈ B, so small that K(a, ra) ∩ K(b, rb) = ∅ for every a 6= b, a, b ∈ B.
Define

A := {∗} ∪B, Ω∗ := Ω \B, Ωa := K(a, ra), a ∈ B, f∗ := 0, fa := Pa(1/(z − a)), a ∈ B.
One can easily check that all the assumptions of Theorem 6.2.2 are satisfied. Let f ∈ M(Ω) be from the
assertion of Theorem 6.2.2. Then f = f − f∗ ∈ O(Ω∗) = O(Ω \ B) and f − Pa(1/(z − a)) = f − fα ∈
O(Ωa) ⊂ O(K(a, ra)) for every a ∈ B. �

Proof that Theorem 6.2.1 implies Theorem 6.2.2. Let Ω, (Ωα)α∈A, and (fα)α∈A be as in the assumptions of
Theorem 6.2.2. Put

Bα := P(fα), B :=
⋃
α∈A

Bα.

Since fα − fβ ∈ O(Ωα ∩Ωβ), Bα ∩Ωβ ⊂ Bβ for any α, β ∈ A. In particular, the set B has no accumulation
points in Ω. For a ∈ Bα, let Pα,a ∈ P(C) be such that Pα,a(0) = 0 and fα − Pα,a(1/(z − a)) extends
holomorphically to a neighborhood of a. Since fα− fβ ∈ O(Ωα ∩Ωβ), we conclude that Pα,a is independent
of α. Put Pa := Pα,a. Let f ∈ M(Ω) be a function from the assertion of Theorem 6.2.1. Then P(f) = B
and for any α ∈ A and a ∈ Bα, the function

f − fα = [f − Pa(
1

z − a
)]− [fα − Pa(

1

z − a
)]

extends holomorphically to a neighborhood of a. �

Let O∗(Ω) := {f ∈ O(Ω) : f(z) 6= 0, z ∈ Ω}.
Theorem 6.2.3 (Weierstrass). For any open subset Ω ⊂ C, a set S ⊂ Ω without accumulation points in Ω,
and a function k : S −→ Z∗, there exists a function f ∈M(Ω) such that f ∈ O∗(Ω \S) and for every a ∈ S
the function `a := f · (z − a)−k(a) extends holomorphically to a neighborhood of a with ˜̀a(a) 6= 0

(
7
)
.

An equivalent formulation is following.

Theorem 6.2.4. For any open subset Ω ⊂ C, an open covering (Ωα)α∈A of Ω, and a family fα ∈M(Ωα),
α ∈ A, such that

fα/fβ ∈ O∗(Ωα ∩Ωβ), α, β ∈ A,
there exists a function f ∈M(Ω) such that

f/fα ∈ O∗(Ωα), α ∈ A.
Proof that Theorem 6.2.4 implies Theorem 6.2.3. Let Ω, S and k : S −→ Z∗ be as in the assumptions of
Theorem 6.2.3. Choose ra > 0, a ∈ S, so small that K(a, ra)∩K(b, rb) = ∅ for every a 6= b, a, b ∈ S. Define

A := {∗} ∪ S, Ω∗ := Ω \ S, Ωa := K(a, ra), a ∈ S, f∗ := 1, fa := (z − a)k(a), a ∈ S.
It is easily seen that all the assumptions of Theorem 6.2.4 are satisfied. Let f ∈ M(Ω) be the function
from the assertion of Theorem 6.2.4. Then f = f/f∗ ∈ O∗(Ω∗) = O∗(Ω \ S) and f · (z − a)−k(a) = f/fα ∈
O∗(Ωa) = O∗(K(a, ra)) for every a ∈ S. �

Proof that Theorem 6.2.3 implies Theorem 6.2.4. Let Ω, (Ωα)α∈A, and (fα)α∈A be as in the assumptions of
Theorem 6.2.4. Put

Sα := P(fα) ∪ f−1
α (0), S :=

⋃
α∈A

Sα.

Since fα/fβ ∈ O∗(Ωα ∩ Ωβ), Sα ∩ Ωβ ⊂ Sβ for any α, β ∈ A. In particular, the set S has no accumulation
points in Ω. For a ∈ Sα let

k(α, a) :=

{
−(order of pole of fα at a) if a ∈ P(fα)

(order of zero of fα at a) if fα(a) = 0
.

(
7
)
That is, the function f has at a a zero of order k(a), if k(a) > 0, and a pole of rank −k(a), if k(a) < 0.
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Since fα/fβ ∈ O∗(Ωα ∩ Ωβ), we conclude that k(α, a) is independent of α. Put k(a) := k(α, a). Let
f ∈ M(Ω) be the function from the assertion of Theorem 6.2.3. Then f has no zeros or poles outside S,
and for every α ∈ A and a ∈ Sα the function

f

fα
=

f · (z − a)−k(a)

fα · (z − a)−k(a)

extends to a non-vanishing holomorphic function in a neighborhood of a. �

6.3. First Cousin Problems

Definition 6.3.1. Let Ω ⊂ Cn be open and let U = (Ωα)α∈A be an open covering of Ω. We say that the
first holomorphic Cousin problem has a solution for U if for any family of functions

ϕα,β ∈ O(Ωα ∩Ωβ), α, β ∈ A,

such that

ϕβ,α = −ϕα,β , α, β ∈ A,
(

8
)

ϕα,β + ϕβ,γ + ϕγ,α = 0 in Ωα ∩Ωβ ∩Ωγ , α, β, γ ∈ A,

there exist functions
ϕα ∈ O(Ωα), α ∈ A,

such that
ϕα,β = ϕβ − ϕα in Ωα ∩Ωβ , α, β ∈ A.

The family (ϕα,β)α,β∈A is called the data for the first holomorphic Cousin problem for U.
We say that the first holomorphic Cousin problem has a solution for Ω if it has a solution for any open

covering. We write Ω ∈ CP1(O).
In the above definitions the class O of holomorphic functions may be substituted by another class F

(i.e. we assume that ϕα,β ∈ F(Ωα ∩Ωβ) and we require that ϕα ∈ F(Ωα)). For example, F = Ck. Then we
can define the first F-Cousin problem for U (resp. the first F-Cousin problem for Ω). We write Ω ∈ CP1(F).

We say that the first meromorphic Cousin problem has a solution for U if for every family

fα ∈M(Ωα), α ∈ A,

such that
fα − fβ ∈ O(Ωα ∩Ωβ), α, β ∈ A,

there exists a function f ∈M(Ω) such that

f − fα ∈ O(Ωα), α ∈ A.

The family (fα)α∈A is called the data for the first meromorphic Cousin problem for U.
If the first meromorphic Cousin problem has a solution for any open covering U, then we say that the

first meromorphic Cousin problem has a solution for Ω. We write Ω ∈ CP1[M].

Remark 6.3.2. (a) The first holomorphic and meromorphic Cousin problems are invariant under biholo-
morphic mappings, i.e. for every biholomorphic mapping Φ : Ω −→ Ω′ = Φ(Ω) we have

Ω ∈ CP1(O)⇐⇒ Ω′ ∈ CP1(O), Ω ∈ CP1[M]⇐⇒ Ω′ ∈ CP1[M].

(b) If n = 1, then by Theorem 6.2.2, Ω ∈ CP1(O) for every Ω ⊂ C.

Proposition 6.3.3. Ω ∈ CP1(O) =⇒ Ω ∈ CP1[M].

(
8
)
In particular, ϕα,α = 0, α ∈ A.
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Proof. Let (fα)α∈A be data for the first meromorphic Cousin problem for an open covering U = (Ωα)α∈A
of Ω. Define

ϕα,β := fα − fβ in Ωα ∩Ωβ , α, β ∈ A.
It is clear that we have defined data for the first holomorphic Cousin problem for U. Let ϕα ∈ O(Ωα),
α ∈ A, be a solution of this problem. Put f := fα + ϕα in Ωα, α ∈ A. We have (fα + ϕα) − (fβ + ϕβ) =
ϕα,β − (ϕβ − ϕα) = 0 in Ωα ∩Ωβ . Thus the function f is well defined. Moreover, f − fα = ϕα ∈ O(Ωα). �

Proposition 6.3.4 (Cartan). For Ω ⊂ C2, if Ω ∈ CP1[M], then Ω is a region of holomorphy.

Figure 6.3.1

Proof. Suppose that for some a = (a1, a2) ∈ Ω we have d(Tag) ≥ r > dΩ(a) for any g ∈ O(Ω). Choose
b ∈ ∂Ω such that |a− b| = dΩ(a). Applying a suitable affine biholomorphism we may assume that b = 0 and
a1 = 0 (cf. Remark 6.3.2(a)). Put U := Ω0,e2 . Note that 0 ∈ ∂U . Let

Ω1 := Ω ∩ (C× U), Ω2 := Ω \ ({0} × U),

f1(z) := (1/z1) exp(1/z2), z = (z1, z2) ∈ Ω1, f2(z) := 0, z ∈ Ω2.

It is easy to see that Ω1 ∪ Ω2 = Ω and f1 − f2 ∈ O(Ω1 ∩ Ω2). Therefore we have got data for the first
meromorphic Cousin problem. Let f ∈M(Ω) be a solution of this problem. In particular, f = f−f2 ∈ O(Ω2)
and hence g := z1f ∈ O(Ω2). On the other hand, g = z1(f − f1) + exp(1/z2) ∈ O(Ω1). Therefore
g ∈ O(Ω) and hence g extends holomorphically onto some neighborhood of 0 ∈ C2. In particular, the
function g(0, z2) = exp(1/z2) extends holomorphically to some neighborhood of 0 ∈ C; contradiction. �

Proposition 6.3.5. Ω ∈ CP1(C∞) for any open set Ω ⊂ Cn.

Proof. Fix an open covering U = (Ωα)α∈A and data ϕα,β ∈ C∞(Ωα ∩ Ωβ), α, β ∈ A. Let (σj)j∈J be a
C∞-partition of unity subordinated to U and let % : J −→ A be such that suppσj ⊂ Ω%(j), j ∈ J . Define

ϕα :=
∑
j∈J

σjϕ%(j),α in Ωα,

where σjϕ%(j),α := 0 in Ωα \ suppσj . Then ϕα ∈ C∞(Ωα) and in Ωα ∩Ωβ we have

ϕβ − ϕα =
∑
j∈J

σj(ϕ%(j),β − ϕ%(j),α) =
∑
j∈J

σjϕα,β = ϕα,β . �

Theorem 6.3.6. If Ω ∈ S0,0 (cf. § 4.4), then Ω ∈ CP1(O).
In particular, if Ω is a region of holomorphy, then Ω ∈ CP1(O) (cf. Theorem 5.3.2).
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Proof. Fix an open covering U = (Ωα)α∈A and data ϕα,β ∈ O(Ωα ∩ Ωβ), α, β ∈ A. By Proposition 6.3.5
there exist ψα ∈ C∞(Ωα), α ∈ A, such that ϕα,β = ψβ−ψα. In particular, v := −∂ψα in Ωα, is a well-defined
differential form of class C∞(0,1)(Ω). Since Ω ∈ S0,0, there exists a function u ∈ C∞(Ω) such that ∂u = v. Put
ϕα := ψα + u in Ωα, α ∈ A. Then ∂ϕα = 0 and so ϕα ∈ O(Ωα). Moreover, ϕβ − ϕα = ψβ − ψα = ϕα,β in
Ωα ∩Ωβ for any α, β ∈ A. �

6.4. Second Cousin Problems

Definition 6.4.1. Let Ω ⊂ Cn be open and let U = (Ωα)α∈A be an open covering of Ω. We say that the
second holomorphic Cousin problem has a solution for U if for any family of functions

ϕα,β ∈ O∗(Ωα ∩Ωβ), α, β ∈ A,

such that

ϕβ,α · ϕα,β = 1, α, β ∈ A, ϕα,β · ϕβ,γ · ϕγ,α = 1 in Ωα ∩Ωβ ∩Ωγ , α, β, γ ∈ A,
(

9
)

there exist functions
ϕα ∈ O∗(Ωα), α ∈ A,

such that
ϕα,β = ϕβ/ϕα in Ωα ∩Ωβ , α, β ∈ A.

The family (ϕα,β)α,β∈A is called the data for the second holomorphic Cousin problem for U.
We say that the second holomorphic Cousin problem has a solution for Ω if it has a solution for any

open covering. We write Ω ∈ CP2(O).
In the above definitions the class O∗ of non-vanishing holomorphic functions may be substituted by

another class F∗ (we assume that ϕα,β ∈ F∗(Ωα ∩ Ωβ) and we require that ϕα ∈ F∗(Ωα)
(

10
)
). Then

we can define the second F-Cousin problem for U (resp. the second F-Cousin problem for Ω). We write
Ω ∈ CP2(F).

We say that the second meromorphic Cousin problem has a solution for U if for every family

fα ∈M(Ωα), α ∈ A,

such that
fα/fβ ∈ O∗(Ωα ∩Ωβ), α, β ∈ A,

there exists a function f ∈M(Ω) such that

f/fα ∈ O∗(Ωα), α ∈ A.

The family (fα)α∈A is called the data for the second meromorphic Cousin problem for U.
If the second meromorphic Cousin problem has a solution for any open covering U, then we say that the

second meromorphic Cousin problem has a solution for Ω. We write Ω ∈ CP2[M].

Remark 6.4.2. (a) The second holomorphic and meromorphic Cousin problems are invariant under biholo-
morphic mappings (cf. Remark 6.3.2(a)).
(b) If n = 1, then by Theorem 6.2.4, Ω ∈ CP2[M] for every Ω ⊂ C.

Proposition 6.4.3. Ω ∈ CP2(O) =⇒ Ω ∈ CP2[M] (cf. Proposition 6.3.3).
(

11
)

(
9
)
In particular, ϕ2

α,α = ϕ3
α,α = 1 in Ωα, and hence ϕα,α ≡ 1.(

10
)
F∗(U) := {ϕ ∈ F(U) : ∀z∈U : f(z) 6= 0}.(

11
)
One can also prove (but it is much more difficult) that if Ω is a region of holomorphy, then the converse implication

is true, namely, Ω ∈ CP2
[M] =⇒ Ω ∈ CP2

(O); we have the following
Theorem ([17]). If Ω is a region of holomorphy, then for any data ϕα,β ∈ O∗(Ωα ∩ Ωβ), α, β ∈ A, for the second

holomorphic Cousin problem, there exist functions fα ∈ O(Ωα), α ∈ A, such that fα = ϕα,β · fβ in Ωα ∩Ωβ for any α, β ∈ A.
Consequently, the functions fα, α ∈ A, form data for the second meromorphic Cousin problem. If f ∈M(Ω) is such that

f/fα ∈ O∗(Ωα), then the functions ϕα := f/fα, α ∈ A, give a solution of the initial problem.
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Proof. Let (fα)α∈A be data for the second meromorphic Cousin problem for U = (Ωα)α∈A. Define

ϕα,β := fα/fβ in Ωα ∩Ωβ , α, β ∈ A.

We have defined data for the second holomorphic Cousin problem for U. Let ϕα ∈ O∗(Ωα), α ∈ A, be a
solution of this problem. Put f := fα · ϕα in Ωα, α ∈ A. Then (fα · ϕα)/(fβ · ϕβ) = ϕα,β · (ϕα/ϕβ) = 1 in
Ωα ∩Ωβ (thus f is well defined) and f/fα = ϕα ∈ O∗(Ωα). �

Remark 6.4.4. Let D ⊂ Cn be a simply connected domain and let f ∈ C∗(D). Then there exists a function
f̃ ∈ C(Ω) such that f = exp(f̃). Moreover, f ∈ O∗(D) iff f̃ ∈ O(D).

Theorem 6.4.5. If Ω ∈ CP1(O) ∩ CP2(C), then Ω ∈ CP2(O).
(

12
)

Proof. Fix a covering U = (Ωα)α∈A and data ϕα,β ∈ O∗(Ωα ∩ Ωβ), α, β ∈ A, for the second holomorphic
Cousin problem. Consider two cases.

1o: Ωα is simply connected for every α ∈ A.
Let ψα ∈ C∗(Ωα), α ∈ A, be such that ϕα,β = ψβ/ψα in Ωα∩Ωβ , α, β ∈ A (recall that Ω ∈ CP2(C)). Let

ψ̃α ∈ C(Ωα) be such that ψα = exp(ψ̃α) (Remark 6.4.4), α ∈ A. Define ψ̃α,β := ψ̃β − ψ̃α in Ωα ∩Ωβ . Since
exp(ψ̃α,β) = exp(ψ̃β)/ exp(ψ̃α) = ψβ/ψα = ϕα,β ∈ O∗(Ωα ∩Ωβ), we get ψ̃α,β ∈ O(Ωα ∩Ωβ). Therefore the
family ψ̃α,β , α, β ∈ A, gives data for the first holomorphic Cousin problem for U. By our assumptions, this
problem has a solution χα ∈ O(Ω), α ∈ A, such that ψ̃α,β = χβ − χα. Now let ϕα := exp(χα) ∈ O∗(Ωα),
α ∈ A. Then ϕβ/ϕα = exp(χβ − χα) = exp(ψ̃α,β) = ϕα,β .

2o: the general case.
Let (Uj)j∈J , be an open covering subordinated to U such that each set Uj is simply connected. Let

% : J −→ A be such that Uj ⊂ Ω%(j), j ∈ J . Define

ϕ̂j,k := ϕ%(j),%(k)|Uj∩Uk , j, k ∈ J.

By 1o there exist functions ϕ̂j ∈ O∗(Uj), j ∈ J , such that ϕ̂j,k = ϕ̂k/ϕ̂j in Uj ∩ Uk, j, k ∈ J . Put
ϕα := ϕ̂j · ϕ%(j),α in Ωα ∩ Uj . Observe that

ϕ̂j · ϕ%(j),α
ϕ̂k · ϕ%(k),α

= ϕ̂k,j · ϕ%(j),%(k) = 1 in Ωα ∩ Uj ∩ Uk.

Consequently, ϕα is well defined in Ωα and ϕα ∈ O∗(Ωα). Moreover, in Ωα ∩Ωβ ∩ Uj we have

ϕβ
ϕα

=
ϕ̂j · ϕ%(j),β
ϕ̂j · ϕ%(j),α

= ϕα,β .

�

Example 6.4.6 (Oka). Let D := A×A ⊂ C2, where

A := {z ∈ C : 3/4 < |z| < 5/4}.

Then D is a domain of holomorphy such that D /∈ CP2[M]
(

13
)
.

Indeed (cf. [19]), suppose that D ∈ CP2(O) and let

M := {(z1, z2) ∈ C2 : z1 − z2 = 1}.

Notice that (z1, z2) ∈M ∩D iff Re z1 − Re z2 = 1, Im z1 = Im z2. Put

M− := M ∩D ∩ {Im z1 = Im z2 < 0}, M+ := M ∩D ∩ {Im z1 = Im z2 > 0}.

(
12
)
This is an example of the so-called Oka principle saying that ‘everything’ which can be done continuously in regions

of holomorphy can be also done holomorphically.(
13
)
By Theorem 6.4.5, D /∈ CP2

(C).
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Observe that M− ∪M+ = M ∩D. In particular, M− and M+ are closed in D. Put

D1 := D ∩ {Im z1 > 0, Im z2 > 0}, D2 := D \M+,

f1(z1, z2) := z1 − z2 − 1, f2(z1, z2) := 1.

Then D1 ∪D2 = D and f1/f2 ∈ O∗(D1 ∩D2).
Suppose that there exists a function f ∈ M(D) such that f/fj ∈ O∗(Dj), j = 1, 2. Consequently,

f(z1, z2) = (z1 − z2 − 1)h(z1, z2) for (z1, z2) ∈ D1, where h ∈ O∗(D1), and f |D2
∈ O∗(D2).

Put
F (α, β) := f(eiα, eiβ), α, β ∈ R.

Observe that
{(α, β) ∈ [0, 2π]× [0, 2π] : F (α, β) = 0} = {(π/3, 2π/3)} =: {c}.

Let γ denote the boundary of the square [0, 2π]× [0, 2π] (considered as a curve with positive orientation
with respect to the square).

Figure 6.4.1

Define

I :=

∫
γ

dF

F
=

∫
γ

1

F

∂F

∂α
dα+

1

F

∂F

∂β
dβ.

Since F is periodic
(

14
)
, we get I = 0. Let γε denote the boundary of the square [−ε, ε]× [−ε, ε] (considered

as a curve). Since the form dF/F is closed in [0, 2π]× [0, 2π] \ {c}, we get

I =

∫
c+γε

dF

F
, 0 < ε� 1.

Recall that F = G ·H in a neighborhood of c, where

G(α, β) := eiα − eiβ − 1, H(α, β) := h(eiα, eiβ).

Since dF/F = dG/G+ dH/H and dH/H is closed in a neighborhood of c, we get

0 = I =

∫
c+γε

dG

G
, 0 < ε� 1.

Observe that

JRG(α, β) = det

[
− sinα, sinβ
cosα, − cosβ

]
= sin(α− β).

(
14
)
F (α, β) = F (α+ 2kπ, β + 2`π), k, ` ∈ Z.



Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
6.4. Second Cousin Problems 129

Hence JRG(c1, c2) = sin(−π/3) 6= 0 and, therefore, G is a diffeomorphism in a neighborhood U of c.
Consequently, for 0 < ε� 1, the curve σε := G ◦ (c+ γε) is a Jordan curve with (0, 0) ∈ intσε and

0 =

∫
c+γε

dG

G
=

∫
σε

dz

z
6= 0;

contradiction.

Example 6.4.7 (Serre). Let

D := {(z1, z2, z3) ∈ C3 : |z2
1 + z2

2 + z2
3 − 1| < 1}.

Then D is a homotopically simply connected domain of holomorphy such that D /∈ CP2[M] (cf. [11]).

Proposition 6.4.8. Assume that Ω ∈ CP2[M]. Then for every (n − 1)-dimensional complex submanifold
M ⊂ Ω, there exists a function f ∈ O(Ω) such that

M = f−1(0),
for any open subset U ⊂ Ω and g ∈ O(U) with M ∩ U ⊂ g−1(0) we have g/f ∈ O(U).

The function f with the above properties is called a defining function for M .

Proof. It is well known that M may be locally described (up to a biholomorphism) as {zn = 0}. More
precisely, for every point a ∈M there exist a neighborhood Ua and a biholomorphic mapping Φa : Ua −→ Dn
such that Φa(M ∩Ua) = Dn−1×{0}. Moreover, if a ∈ U ⊂ Ua and g ∈ O(U) are such that M ∩U ⊂ g−1(0),
then the function (1/zn)(g ◦ Φ−1

a ) extends holomorphically to Φa(U)
(

15
)
.

For a ∈ Ω let
Ωa := P(a, ra) ⊂ Ω \M , fa := 1, if a /∈M ,
Ωa := P(a, ra) ⊂ Ua, fa := ((Φa)n)|Ωa , if a ∈M .
We have obtained data for the second meromorphic Cousin problem. Now, any solution of this problem

is a defining function for M . �

Proposition 6.4.9. Let Ω ∈ CP1(O) and let M be an (n − 1)-dimensional complex submanifold of Ω for
which there exists a function f̃ ∈ C(Ω) such that

M = f̃−1(0),
for every open subset U ⊂ Ω and g ∈ O(U), if g is a defining function for M ∩ U , then g/f̃ ∈ C∗(U).
Then there exists a defining function for M .

(
16
)

Proof. Let Ωa, fa, a ∈ Ω be as in the proof of Proposition 6.4.8. It follows from the assumptions that fa/f̃ ∈
C∗(Ωa) for every a ∈ Ω. Since Ωa is a polydisc (and hence simply connected), Remark 6.4.4 implies that
there exists a function ga ∈ C(Ωa) such that exp(ga) = fa/f̃ . We have exp(ga − gb) = fa/fb ∈ O∗(Ωa ∩Ωb)
in Ωa ∩ Ωb and so (Remark 6.4.4) ϕab := ga − gb ∈ O(Ωa ∩ Ωb). We have obtained data for the first
holomorphic Cousin problem. Let ϕa ∈ O(Ω), a ∈ Ω, be such that ϕa,b = ϕb−ϕa for every a, b ∈ Ω. Define
f := fa exp(ϕa) w Ωa. In Ωa ∩Ωb we have

fa exp(ϕa)

fb exp(ϕb)
= exp(ga − gb) exp(ϕa − ϕb) = exp(ϕa,b) exp(ϕb,a) = 1.

Hence f is a well-defined holomorphic function in Ω. Directly from the definition of f it follows that f is a
defining function for M . �

Remark 6.4.10. Let M be a k-dimensional complex submanifold of an open set Ω ⊂ Cn (1 ≤ k ≤ n − 1)
and let f : M −→ C. Then the following conditions are equivalent:
(i) f ∈ O(M) in the complex manifold sense, i.e. for any point a ∈ M there exists local coordinates
ϕ : Dk −→ U such that f ◦ ϕ ∈ O(Dk), where U is a neighborhood of a;
(ii) for any point a ∈M there exist P = Pn(a, r) ⊂ Ω and f̃a ∈ O(P ) such that f̃a = f on M ∩ P .(

15
)
This means that (Φa)n is a defining function of M ∩ Ua.(

16
)
Recall the Oka principle from Theorem 6.4.5.
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Proposition 6.4.11. Let Ω ∈ CP1(O) and let M ⊂ Ω be an (n − 1)-dimensional complex submanifold of
Ω for which there exists a defining function F0 ∈ O(Ω). Then for any function f ∈ O(M) there exists an
f̃ ∈ O(Ω) with f̃ = f on M .

(
17
)

Proof. For a ∈ Ω let Ωa = P(a, r), where the polydisc P(a, r) is such that
P(a, r) ∩M = ∅ if a /∈M ,
there exists a function fa ∈ O(P(a, r)) such that fa = f on M ∩ P(a, r) if a ∈M (cf. Remark 6.4.10).
Put fa := 0 if a /∈ M . Observe that fa − fb = 0 on M ∩ Ωa ∩ Ωb (if M ∩ Ωa ∩ Ωb 6= ∅). Since F0 is a

defining function, there exists a function ϕa,b ∈ O(Ωa ∩Ωb) such that fa− fb = F0ϕa,b on Ωa ∩Ωb, a, b ∈ Ω.
Observe that ϕa,b, a, b ∈ Ω, are data for the first holomorphic Cousin problem.
Let ϕa ∈ O(Ωa) be such that ϕa,b = ϕb − ϕa, a, b ∈ Ω. Then

(fa + F0ϕa)− (fb + F0ϕb) = fa − fb − F0(ϕb − ϕa) = F0ϕa,b − F0ϕa,b = 0 on Ωa ∩Ωb.

Consequently, the function f̃ := fa + F0ϕa on Ωa, a ∈ Ω, is the required extension.
�

Exercises

6.1. Let
D := {(z1, z2, z3) ∈ C3 : |z2

1 + z2
2 + z2

3 − 1| < 1}.
Prove that D is simply connected — complete the following sketch of the proof.

Let
Q := {(w1, w2, w3) ∈ C3 : w2

1 + w2
2 + w2

3 = 1}.
Then the mapping

D 3 (z1, z2, z3) 7−→ (
z1√

z2
1 + z2

2 + z2
3

,
z2√

z2
1 + z2

2 + z2
3

,
z3√

z2
1 + z2

2 + z2
3

, z2
1 + z2

2 + z2
3 − 1) ∈ Q× D,

is a homeomorphism (√ denotes the principal branch of the square root).
For w = x + iy ∈ C3 with x, y ∈ R3 we have: w ∈ Q iff ‖x‖2 − ‖y‖2 = 1, 〈x, y〉 = 0. Consider the

mapping
[0, 1]×Q 3 (t, x+ iy)

H−→ (
√

1 + t2‖y‖2 x

‖x‖
, ty) ∈ Q

Then H is a homotopy of Q to the 2-dimensional real Euclidean sphere in R3. In particular, Q is simply
connected and, therefore, D is a simply connected domain.

(
17
)
In fact, the following general result is true (cf. [13]).

Let Ω ⊂ Cn be a domain of holomorphy and let M be an analytic subset of Ω; cf. Exercise 2.7. Then O(M) = O(Ω)|M ,
where O(M) denotes the space of all functions f : M −→ C such that for any point a ∈ M there exist P = Pn(a, r) and
f̃a ∈ O(P ) with f̃a = f in P ∩M .
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General symbols

N := the set of natural numbers, 0 /∈ N;
Z := the ring of integers;
Q := the field of rational numbers;
R := the field of real numbers;
C := the field of complex numbers;

Ĉ := C ∪ {∞} = the Riemann sphere;
Re z := the real part of z ∈ C;
Im z := the imaginary part of z ∈ C;
z := Re z − i Im z := the conjugate of z;
w := (w1, . . . , wn);
A∗ := A \ {0}, e.g. C∗;
A+ := {a ∈ A : a ≥ 0}, e.g. Z+,R+;
A− := {a ∈ A : a ≤ 0}, e.g. R−;
A>0 := {a ∈ A : a > 0}, e.g. R>0;
An∗ := (A∗)

n, An+ := (A+)n, An>0 := (A>0)n (to simplify notation);
A+B := {a+ b : a ∈ A, b ∈ B}, A,B ⊂ Cn;
A ·B := {a · b : a ∈ A, b ∈ B}, A ⊂ C, B ⊂ Cn;
(e1, . . . , en) := the canonical basis in Cn, ej := (ej,1, . . . , ej,n), ej,k = 0 for j 6= k and ej,j := 1, j = 1, . . . , n;

〈z, w〉 :=
∑n
j=1 zjwj = the Hermitian scalar product in Cn;

‖z‖ =:
√
〈z, z〉 =

√
|z1|2 + · · ·+ |zn|2 = the Euclidean norm in Cn;

a C-linear operator L : Cn −→ Cm is unitary if 〈L(z′), L(z′′)〉 = 〈z′, z′′〉, z′, z′′ ∈ Cn (or, equivalently,
‖L(z)‖ = ‖z‖, z ∈ Cn);
U(Cn) := the group of all unitary isomorphisms of Cn;

B(a, r) = Bn(a, r) := {z ∈ Cn : ‖z − a‖ < r} = the Euclidean ball with center at a ∈ Cn and radius r > 0
(B(a,+∞) := Cn);
B(r) = Bn(r) := Bn(0, r), r > 0;
Bn := Bn(1) = the unit Euclidean ball in Cn;
K(a, r) := B1(a, r), a ∈ C, r > 0; K(a,+∞) := C;
C(a, r) := ∂K(a, r), a ∈ C, r > 0; sometimes, we identify C(a, r) with the curve [0, 2π] 3 θ 7−→ a+ reiθ;
K(r) := B1(r) = K(0, r), r > 0;

131
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C(r) := ∂K(r), r > 0;
D := B1 = {z ∈ C : |z| < 1} = the unit disc;
T := ∂D;
V j := Cj−1 × {0} × Cn−j ⊂ Cn, j = 1, . . . , n;
|z| := max{|z1|, . . . , |zn|} = the maximum norm in Cn;
P(a, r) = Pn(a, r) := {z ∈ Cn : |z − a| < r} = the polydisc with center at a ∈ Cn and radius r > 0;
P(r) = Pn(r) := Pn(0, r);
P(a, r) = Pn(a, r) := K(a1, r1) × · · · × K(an, rn) = the polydisc with center at a ∈ Cn and multiradius
(polyradius) r = (r1, . . . , rn) ∈ Rn>0;
P(r) = Pn(r) := P(0, r);

conv(A) := the convex hull of A;

A ⊂⊂ X def⇐⇒ A is relatively compact in X;
Ωa,X := {λ ∈ C : a+ λX ∈ Ω}, Ω ⊂ Cn, a ∈ Cn, X ∈ Cn;
fa,X(λ) := f(a+ λX), λ ∈ Ωa,X , f : Ω −→ Cm;
dΩ(a) := sup{r > 0 : P(a, r) ⊂ Ω}, Ω ∈ topCn, a ∈ Ω;
topΩ := the Euclidean topology of Ω, Ω ⊂ Cn;
intX A := the interior of A in the topology of X, A ⊂ X;
clX A := the closure of A in the topology of X, A ⊂ X;
∂0(A1 × · · · ×An) := (∂A1)× · · · × (∂An) := the distinguished boundary of A;

D ⊂ C is regular def⇐⇒ ∂D consists of a finite union of pairwise disjoint Jordan piecewise C1 curves with
positive orientation with respect to D;
R(A) := {(|z1|, . . . , |zn|) : (z1, . . . , zn) ∈ A} := the modular image of A ⊂ Cn;
logA := {(x1, . . . , xn) ∈ Rn : (ex1 , . . . , exn) ∈ A} = the logarithmic image of an n-circled set A ⊂ Cn;

p(ν) holds for ν � 1
def⇐⇒ there exists ν0 such that p(ν) holds for ν ≥ ν0;

p(ε) holds for 0 < ε� 1
def⇐⇒ there exists ε0 > 0 such that p(ε) holds for 0 < ε ≤ ε0;

zα := zα1
1 · · · · · zαnn , z = (z1, . . . , zn) ∈ Cn, α = (α1, . . . , αn) ∈ Zn;

α! := α1! · · · · · αn!, α = (α1, . . . , αn) ∈ Zn+;
|α| := |α1|+ · · ·+ |αn|, α = (α1, . . . , αn) ∈ Zn+;

α ≤ β def⇐⇒ αj ≤ βj , j = 1, . . . , n (α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn);(
α
β

)
:=
(
α1

β1

)
· · · · ·

(
αn
βn

)
, α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn+, β ≤ α;

1 := (1, . . . , 1) ∈ Nn;

‖f‖A := sup{|f(a)| : a ∈ A}, f : A −→ C;
F|A := {f |A : f ∈ F}, F is a family of mappings X −→ Y and A ⊂ X;

supp f := {x : f(x) 6= 0} = the support of f ;
C↑(Ω) := the set of all upper semicontinuous functions u : Ω −→ [−∞,+∞] (Ω ∈ topCn);

LN := Lebesgue measure in RN ;
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Lp(A) := the space of all Lebesgue measurable functions u : A −→ C such that
∫
A
|u|pdLN < +∞, A ⊂ RN ;

Lp(Ω, loc) := the space of all Lebesgue measurable functions u : Ω −→ C such that f |K ∈ Lp(K) for any
compact K ⊂ Ω ∈ topRN ;

Lp(Ω, loc) 3 fν
Lp(Ω,loc)−→ f0 ∈ Lp(Ω, loc)

def⇐⇒ ∀K⊂⊂Ω : fν |K
Lp(K)−→ f0|K .

Chapter 1

f ′R(a) := the real Fréchet differential of f at a;
f ′C(a) = f ′(a) := the complex Fréchet differential of f at a;
Ck(Ω1, Ω2) := the space of all Ck-mappings F : Ω1 −→ Ω2; k ∈ Z+ ∪ {∞};
Ck(Ω) := Ck(Ω,C);
Ck0 (Ω) := {f ∈ Ck(Ω) : supp f ⊂⊂ Ω};
∂f
∂zj

(a) := 1
2

(
∂f
∂xj

(a)− i ∂f∂yj (a)
)
, ∂f

∂zj
(a) := 1

2

(
∂f
∂xj

(a) + i ∂f∂yj (a)
)
;

JRf(a) := det



∂f1
∂z1

(a), . . . , ∂f1∂zn
(a), ∂f1∂z1

(a), . . . , ∂f1∂zn
(a)

. . .
∂fn
∂z1

(a), . . . , ∂fn∂zn
(a), ∂fn∂z1

(a), . . . , ∂fn∂zn
(a)

∂f1

∂z1
(a), . . . , ∂f1

∂zn
(a), ∂f1

∂z1
(a), . . . , ∂f1

∂zn
(a)

. . .
∂fn
∂z1

(a), . . . , ∂fn∂zn
(a), ∂fn∂z1

(a), . . . , ∂fn∂zn
(a)


= the real Jacobian of f at a;

Dα,β := ( ∂
∂z1

)α1 ◦ · · · ◦ ( ∂
∂zn

)αn ◦ ( ∂
∂z1

)β1 ◦ · · · ◦ ( ∂
∂zn

)βn , α, β ∈ Zn+;

Dα := Dα,0 = ( ∂
∂z1

)α1 ◦ · · · ◦ ( ∂
∂zn

)αn , α ∈ Zn+;
∂f
∂zj

(a) := limC3λ→0
1
λ (f(a+ λej)− f(a)) = the j-th complex partial derivative of f at a;

JCf(a) := det

([
∂fj
∂zk

(a)
]
j,k=1,...,n

)
= the complex Jacobian of f at a;

Os(Ω) := the space of all separately holomorphic functions on Ω;
D(Σ) := the domain of convergence of a power series Σ;
Taf(z) :=

∑
α∈Zn+

1
α!D

αf(a)(z − a)α = the Taylor series of f at a;

d(Taf) := sup{r > 0 : P(a, r) ⊂D(Taf)} = the radius of convergence of the series Taf ;
O(Ω1, Ω2) – the set of all holomorphic mappings F : Ω1 −→ Ω2;
O(Ω) := O(Ω,C);

f̂a := the germ of f at a;
P(Cn) := the space of all complex polynomials of n-complex variables;
H∞(Ω) := the space of all bounded holomorphic functions on Ω;
Ak(Ω) := {f ∈ O(Ω) : ∀α∈Zn+, |α|≤k : ∃ϕα∈C(Ω) : ϕα = Dαf in Ω}, k ∈ Z+ ∪ {∞};
Lph(Ω) := O(Ω) ∩ Lp(Ω).

Chapter 2

Aut(Ω) = the group of all automorphisms of Ω ⊂ Cn;
Auta(Ω) := {h ∈ Aut(Ω) : h(a) = a}, a ∈ Ω.



134
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

List of symbols

K̂F := {z ∈ Ω : ∀ f ∈ F : |f(z)| ≤ ‖f‖K}, F ⊂ O(Ω);

K̂ := K̂P(Cn) = K̂O(Cn).
Chapter 3

∆ := ∂2

∂x2 + ∂2

∂y2 = 4 ∂2

∂z∂z = the Laplacian operator in R2;

H(Ω) := the space of all harmonic functions on Ω ⊂ C;

P(u; a, r; z) := 1
2π

∫ 2π

0
r2−|z−a|2
|reiθ−(z−a)|2u(a+ reiθ) dθ;

J(u; a, r) := P(u; a, r; a) = 1
2π

∫ 2π

0
u(a+ reiθ) dθ;

S(u; a, r; z) := 1
2π

∫ 2π

0
reiθ+(z−a)
reiθ−(z−a)

u(a+ reiθ)dθ;

SH(Ω) := the set of all subharmonic functions on Ω ⊂ C;
A(u; a, r) := 1

πr2

∫
K(a,r)

u dL2;

PH(Ω) := the space of all pluriharmonic functions on Ω ⊂ Cn;

P(u; a, r; z) := 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
r21−|z1−a1|

2

|r1eiθ1−(z1−a1)|2 . . .
r2n−|zn−an|

2

|rneiθn−(zn−an)|2×

u(a1 + r1e
iθ1 , . . . , an + rne

iθn) dθ1 . . . dθn;
psh: =plurisubharmonic;
PSH(Ω) := the set of all plurisubharmonic functions on Ω ⊂ Cn;
J(u; a, r) := P(u; a, r; a);
A(u; a, r) := 1

(πr21)...(πr2n)

∫
P(a,r)

u dL2n;

Lu(a;X) :=
∑n
j,k=1

∂2u
∂zj∂zk

(a)XjXk = the Levi form;

Ωε := {z ∈ Ω : dΩ(z) > ε};
uε := the ε-regularization of u ∈ PSH(Ω).

Chapter 4

K̃S := {z ∈ Ω : ∀u∈S : u(z) ≤ maxK u}, S ⊂ PSH(Ω);
Bq(a, r) := {z ∈ Cn : q(z − a) < r}, a ∈ Cn, r > 0, q : Cn −→ R+ is a C-norm;
dΩ,q(a) := sup{r > 0 : Bq(a, r) ⊂ Ω}, a ∈ Ω ⊂ Cn;
δΩ,X(a) := sup{r > 0 : a+K(r) ·X ⊂ Ω}, a ∈ Ω ⊂ Cn 3 X;
Ξnp := {I = (i1, . . . , ip) ∈ Np : 1 ≤ i1 < · · · < ip ≤ n};∑′
|I|=p · · · =

∑
I∈Ξnp

. . . ;

F(p,q)(Ω) := the space of all forms of type (p, q);

Ck(p,q)(Ω) := the space of all (p, q)-forms with coefficients in Ck(Ω);

D(p,q)(Ω) := the space of all (p, q)-forms with coefficients in C∞0 (Ω);

∂u :=
∑′

|I|=p,|J|=q

n∑
j=1

∂uI,J
∂zj

dzj ∧ dzI ∧ dzJ ; ∂u :=
∑′

|I|=p,|J|=q

n∑
j=1

∂uI,J
∂zj

dzj ∧ dzI ∧ dzJ = the ∂-operator;
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Φ∗(u) : =
∑′

|I|=p,|J|=q

(uI,J ◦ Φ) dΦi1 ∧ · · · ∧ dΦip ∧ dΦj1 ∧ · · · ∧ dΦjq

=
∑′

|I|=p,|J|=q

(uI,J ◦ Φ) ∂Φi1 ∧ · · · ∧ ∂Φip ∧ ∂Φj1 ∧ · · · ∧ ∂Φjq .

Sp,q = Sp,q(Cn) := the family of all sets A ⊂ Cn such that for every open neighborhood G of A and for
every ∂-closed form v ∈ C∞(p,q+1)(G) there exist an open neighborhood G̃ of A (with G̃ ⊂ G) and a form
u ∈ C∞(p,q)(G̃) such that ∂u = v in G̃.

Chapter 5

qK,k(f) :=
∑
α∈ZN+ : |α|≤k supK |Dαf |, k ∈ Z+;

D(K) := {f ∈ C∞0 (Ω) : supp f ⊂ K};

D(K) 3 fν
D(K)−→ f0 ∈ D(K)

def⇐⇒ ∀α∈ZN+ : Dαfν −→ Dαf0 uniformly on K;

D(Ω) := C∞0 (Ω);

D(Ω) 3 fν
D(Ω)−→ f0 ∈ D(Ω)

def⇐⇒ ∃K⊂⊂Ω : (fν)∞ν=1 ⊂ D(K), fν
D(K)−→ f0;

E(Ω) := C∞(Ω);

E(Ω) 3 fν
E(Ω)−→ f0 ∈ E(Ω)

def⇐⇒ ∀α∈ZN+ : Dαfν −→ Dαf0 locally uniformly in Ω;

D′(Ω) := the space of all distributions on Ω;

Tν
D′(Ω)−→ T0 ⇐⇒ ∀f∈D(Ω) : Tν(f) −→ T0(f);

[u](f) :=
∫
Ω
uf dLn, f ∈ D(Ω), u ∈ L1(Ω, loc);

T1 ⊗ T2 := the tensor product of distributions;
T1 ∗ T2 := the convolution of distributions;
Tε = T ∗ Φε = the ε-regularization of T;
L2(Ω,ϕ) := {u ∈ L2(Ω, loc) :

∫
Ω
|u|2 exp(−ϕ) dL2n < +∞}, Ω ∈ topCn;

V(p,q)(Ω) – the space of all (p, q)-forms with coefficients in V(Ω), e.g. D′(p,q)(Ω), L2
(p,q)(Ω, loc), L2

(p,q)(Ω,ϕ);

∂T :=
∑′

|I|=p,|J|=q

n∑
j=1

∂TI,J
∂zj

dzj ∧ dzI ∧ dzJ ; ∂T :=
∑′

|I|=p,|J|=q

n∑
j=1

∂TI,J
∂zj

dzj ∧ dzI ∧ dzJ ;

Dα,βT :=
∑′

|I|=p,|J|=q

(Dα,βTI,J)dzI ∧ dzJ , α, β ∈ Zn+;

ϑT :=
∑′

|I|=p,|K|=q−1

( n∑
j=1

∂TI,jK
∂zj

)
dzI ∧ dzK ; Tε :=

∑′
|I|=p,|J|=q

(TI,J)εdzI ∧ dzJ ;

ϕj := ϕ− (3− j)ψ, Hj := L2
(p,q+j−1)(Ω,ϕj), j = 1, 2, 3;

Dom(T ) := {f ∈ L2
(p,q)(Ω,ϕ1) : ∂f ∈ L2

(p,q+1)(Ω,ϕ2)};

T : L2
(p,q)(Ω,ϕ1) ⊃ Dom(T ) 3 f −→ ∂f ∈ L2

(p,q+1)(Ω,ϕ2);

Dom(S) := {f ∈ L2
(p,q+1)(Ω,ϕ2) : ∂f ∈ L2

(p,q+2)(Ω,ϕ3)};

S : L2
(p,q+1)(Ω,ϕ2) ⊃ Dom(S) 3 f −→ ∂f ∈ L2

(p,q+2)(Ω,ϕ3);

R(L) := L(Dom(L)), L : X ⊃ Dom(L) −→ Y is linear;
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Wk(Ω) := {u ∈ L2(Ω) : Dα,βu ∈ L2(Ω), |α|+ |β| ≤ k}, k ∈ Z+ ∪ {∞};
Wk(Ω, loc) := {u ∈ L2(Ω, loc) : Dα,βu ∈ L2(Ω, loc), |α|+ |β| ≤ k}, k ∈ Z+ ∪ {∞}.

Chapter 6

M(Ω) := the set of all meromorphic functions on Ω ⊂ Cn;
R(f) := the set of all regular points of f ∈M(Ω);
P(f) := the set of all poles of f ∈M(Ω);
I(f) := the set of all points of indeterminacy of f ∈M(Ω);
F∗(Ω) := {f ∈ F(Ω) : f(z) 6= 0, z ∈ Ω}, e.g. O∗(Ω);

Ω ∈ CP1(F)
def⇐⇒ the first Cousin problem with data in F has a solution for any open covering of Ω;

Ω ∈ CP1(O)
def⇐⇒ the first holomorphic Cousin problem has a solution for any open covering of Ω;

Ω ∈ CP1[M]
def⇐⇒ the first meromorphic Cousin problem has a solution for any open covering of Ω;

Ω ∈ CP2(F)
def⇐⇒ the second Cousin problem with data in F has a solution for any open covering of Ω;

Ω ∈ CP2(O)
def⇐⇒ the second holomorphic Cousin problem has a solution for any open covering of Ω;

Ω ∈ CP2[M]
def⇐⇒ the second meromorphic Cousin problem has a solution for any open covering of Ω.



Bibliography

1. H. Behnke & K. Stein, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und
die Weilsche Integraldarstellung, Math. Annalen 122 (1950), 276–278.

2. C. A. Berenstein & R. Gay, Complex Variables, Springer Verlag, 1991. iii
3. E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publishers, 1989. 57
4. J. B. Conway, Functions of One Complex Variable, Springer Verlag, 1973. iii, 4, 5, 10, 13, 14, 16, 27, 32, 33, 36, 39, 60,

100, 121, 122
5. R. Courant & D. Hilbert, Methoden der mathematischen Physik I, Springer Verlag, 1931. 64
6. H. Federer, Geometric Measure Theory, Springer Verlag, 1969. 35, 94, 113
7. J. E. Fornæss & R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Annalen. 248 (1980), 47–72.

83
8. J. E. Fornæss & B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton

University Press, 1987. 103
9. C. Goffman & G. Pedrick, First Course in Functional Analysis, Prentice-Hall, Englewood Cliffs, N.J.,1965. 44

10. H. Grauert & K. Fritzsche, Several Complex Variables, Springer Verlag, 1976. iii
11. H. Grauert & R. Remmert, Theorie der Steinschen Räume, Springer Verlag, 1977. 129
12. R. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. I (Function Theory), vol. II (Local Theory),

vol. III (Homological Theory), Wadsworth & Brooks/Cole, 1990. iii
13. R. Gunning & H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J.,1965. iii,

103, 130
14. W. K. Hayman & P. B. Kennedy, Subharmonic Functions, Academic Press, 1970. 59, 63, 69
15. G. M. Henkin & J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag Berlin, 1984. iii
16. M. Hérve, Les Fonctions Analytiques, Presses Universitaires de France, 1982.
17. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North Holland, 1990. iii, 107, 126
18. M. Klimek, Pluripotential Theory, Oxford University Press, 1991. 59
19. S. G. Krantz, Function Theory of Several Complex Variables, Pure & Applied Mathematics, John Wiley & Sons, 1982. iii,

127
20. F. Leja, Theory of Analytic Functions, PWN, Warsaw, 1957 (in Polish). 15
21. S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley & Sons, 1988. 65, 66
22. R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland, 1968. 54, 118
23. R. Narasimhan, Several Complex Variables, The University of Chicago Press, 1971. iii
24. P. Pflug, Holomorphiegebiete, pseudokonvexe Gebiete und das Levi-Problem, Lecture Notes in Math. 432, Springer Verlag,

1975. iii
25. M. M. Range, Holomorphic Functions and Integral Repesentations in Several Complex Variables, Springer Verlag, 1986. iii
26. R. Remmert, Theory of Complex Functions, Springer Verlag, 1991. iii
27. R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Annalen 175 (1968), 251–286. 83
28. J.-P. Rosay, Injective holomorphic mappings, Amer. Math. Monthly, 89(9) (1982), 587–588. 35
29. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, 1974. 36, 66, 70, 72
30. W. Rudin, Function Theory in the Unit Ball of Cn, Grundlehren d. math. Wiss. 241, Springer Verlag, 1980. 38
31. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966. 64, 107
32. L Schwartz, Analyse Mathématique, Hermann, Paris, 1981. 70, 75, 99
33. B. V. Shabat, An Introduction to Complex Analysis, vol. I,II, Nauka, Moscow, 1976 (in Russian). iii, 49
34. J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, Berlin-Heidelberg York, 1980. 113, 114
35. V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, The M.I.T. Press, 1966. iii, 59, 73, 74
36. V. P. Zaharjuta, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions

of several variables, Teor. Funkcii Funkcional. Anal. i Prilozen. 19 (1974), 133–157. 83

137





Index

Abel’s lemma, 6
analytic set, 57
automorphism group

of Bn, 38
of Dn, 37

balanced set, 6
barrier function, 43
Bergman boundary, 28
biholomorphic mapping, 12

canonical representation, 95
Cartan theorem, 36, 37
Cauchy
–Green formula, 97
inequalities, 11
integral formula, 5
–Riemann equations, 2

circular set, 6
complete n-circled set, 6
complex

Hessian, 77
Jacobian, 3
partial derivative, 1

convolution, 110
of distributions, 110

Cousin problems, 124
data for

the first holomorphic Cousin problem, 124
the first meromorphic Cousin problem, 124
the second holomorphic Cousin problem, 126
the second meromorphic Cousin problem, 126

first F–Cousin problem
for Ω, 124
for U, 124

first holomorphic Cousin problem
for Ω, 124
for U, 124

first meromorphic Cousin problem
for Ω, 124
for U, 124

second F–Cousin problem
for Ω, 126
for U, 126

second holomorphic Cousin problem
for Ω, 126
for U, 126

second meromorphic Cousin problem
for Ω, 126
for U, 126

data for
the first Cousin problem

holomorphic, 124
meromorphic, 124

the second Cousin problem
holomorphic, 126
meromorphic, 126

defining function, 129
∂-

operator, 95
stability, 42

∂-
closed form, 96
equation, 96
exact form, 96
operator, 95
problem, 96

derivative of a distribution, 108
determining set, 28
Dirichlet problem, 61

for a disc, 62
for an annulus, 63

distinguished boundary, 5
distribution, 107
domain

of convergence of a power series, 8
of existence, 42
of holomorphy, 42

entire function, 10
envelope of holomorphy, 52
ε-regularization, 110

of a distribution, 111
exhaustion function, 88

F–
convexity, 45
domain of holomorphy, 42
envelope of holomorphy, 52
extension, 51
hull, 45
region of holomorphy, 41, 52

first Cousin problem

139



140
Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV

Index

F-Cousin problem
for Ω, 124
for U, 124

holomorphic Cousin problem
for Ω, 124
U, 124

meromorphic Cousin problem
for Ω, 124
U, 124

formal partial derivative, 1

geometric series, 6
germ, 25
Green function, 63
group of automorphisms, 35

of Bn, 38
of Dn, 37

Hadamard’s three circles theorem for subharmonic
functions, 75

harmonic function, 59
Harnack’s theorem, 63
Hartogs

domain, 21
extension theorem, 32
–Laurent

domain, 22
series, 40

lemma
for psh functions, 81
for subharmonic functions, 69
on separately holomorphic functions, 15, 18

series, 22, 41
theorem on separately holomorphic functions, 15
triangle, 57

Hefer’s theorem, 105
holomorphic

convexity, 45
extension, 51
function, 10
hull, 45
mapping, 10
mappings on Riemann domains, 51

Hörmander’s L2-estimates, 116
hyperconvexity, 83

identity principle, 10, 51
for harmonic functions, 60
for liftings, 51
for meromorphic functions, 122

implicit mapping theorem, 12
inhomogeneous Cauchy–Riemann
equation, 96
irreducibility, 57
isomorphism of Riemann regions, 50

Jacobian, 3

Kontinuitätssatz, 94

Laurent series, 39
Levi

form, 77
Problem, 90

Liouville theorem, 11
for psh functions, 78
for subharmonic functions, 73

local pseudoconvexity, 88
logarithmic

convexity, 7
image, 7
plurisubharmonicity, 78
subharmonicity, 74

maximal
F-extension, 52
holomorphic extension, 52

maximum principle, 13
for harmonic functions, 60
for psh functions, 80
for subharmonic functions, 65

mean value property for subharmonic functions, 65, 67
meromorphic function, 121

identity principle for meromorphic functions, 122
point of indeterminacy of a meromorphic function, 121
pole of a meromorphic function, 121
regular point of a meromorphic function, 121

minimum principle for harmonic
functions, 60
Minkowski functional, 19
Mittag–Leffler theorem, 122
Montel theorem, 14
morphism of Riemann regions, 50

n-circled set, 6
natural Fréchet space, 43

Oka
example, 127
principle, 127, 129
theorem for subharmonic functions, 73

Osgood’s theorem, 4

partial derivative, 1
pluriharmonic function, 76
plurisubharmonic function, 78
Poincaré theorem, 14
point of indeterminacy of a meromorphic function, 121
Poisson integral formula, 62
polar set, 68
pole of a meromorphic function, 121
polynomial

convexity, 45, 100
hull, 45
polyhedron, 101

power series, 5
pseudoconvexity, 87

R-analytic function, 15
radius of convergence of a Taylor
series, 9
rank theorem, 13
real

Hessian, 84



Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
Index 141

Jacobian, 3
region

of existence, 42
of holomorphy, 42

regular
planar domain, 4
point, 57

of a meromorphic function, 121
regularity with respect to the Dirichlet problem, 61
regularization, 71, 81
of a form, 112

removable singularities
of psh functions, 81
of subharmonic functions, 68, 69

Riemann
domain, 50
region, 50
removable singularities theorem, 32

ring of germs, 25
Runge

domain, 100
region, 100

schlicht set, 50
Schwarz lemma for subharmonic
functions, 75
second Cousin problem
F-Cousin problem

for Ω, 126
for U, 126

holomorphic Cousin problem
for Ω, 126
for U, 126

meromorphic Cousin problem
for Ω, 126
for U, 126

separately
harmonic function, 76
holomorphic function, 4

Serre example, 129
sheaf of germs, 52
Shilov boundary, 28
singular point, 57
solution of the Dirichlet problem, 61
strictly plurisubharmonic function, 82
strong pseudoconvexity, 93
subharmonic function, 64
support

of a distribution, 108
of a form, 96

Taylor series, 9
tensor product of distributions, 109
theorem

Cartan theorem, 36, 37
Hartogs’

extension theorem, 32
theorem on separately holomorphic functions, 15

Hefer’s theorem, 105
implicit mapping theorem, 12
Kontinuitätssatz, 94

Liouville theorem, 11
for psh functions, 78

Mittag–Leffler theorem, 122
Montel theorem, 14
Osgood’s theorem, 4
Poincaré theorem, 14
rank theorem, 13
Riemann removable singularities theorem, 32
Thullen theorem, 53
Vitali theorem, 14
Weierstrass

Division Theorem, 23
Preparation Theorem, 23
theorem, 12, 123

thin set, 32
Thullen theorem, 53
transitivity of Aut(D), 35
type of a differential form, 95

univalent set, 50
upper regularization, 66

Vitali theorem, 14

weak hyperconvexity, 83
Weierstrass

Division Theorem, 23
polynomial, 23
Preparation Theorem, 23
theorem, 12, 123

Wermer example, 103
Wirtinger derivative, 1

zn-normalization, 25


	Preface
	Chapter 1. Holomorphic functions
	1.1. Formal derivatives
	1.2. Separately holomorphic functions
	1.3. Domains of convergence of power series
	1.4. Holomorphic functions
	1.5. Hartogs' theorem
	1.6. Special domains
	1.7. Weierstrass Preparation and Division Theorems
	1.8. Elementary properties of the ring of germs of holomorphic functions
	Exercises

	Chapter 2. Extension of holomorphic functions
	2.1. Hartogs and Riemann theorems
	2.2. Biholomorphisms
	2.3. Cartan theorems
	2.4. Automorphism group of Dn
	2.5. Automorphism group of Bn
	2.6. Laurent series
	2.7. Domains of holomorphy
	2.8. Riemann regions over Cn
	Exercises

	Chapter 3. Plurisubharmonic functions
	3.1. Harmonic functions
	3.2. Subharmonic functions
	3.3. Pluriharmonic functions
	3.4. Plurisubharmonic functions
	Exercises

	Chapter 4. Pseudoconvexity and the -problem
	4.1. Pseudoconvexity
	4.2. The -problem
	4.3. Runge domains
	4.4. Hefer's theorem
	Exercises

	Chapter 5. Hörmander's solution of the -problem
	5.1. Distributions
	5.2. Hörmander's inequality
	5.3. Solution of the Levi Problem

	Chapter 6. Cousin problems
	6.1. Meromorphic functions
	6.2. The Mittag–Leffler and Weierstrass theorems
	6.3. First Cousin Problems
	6.4. Second Cousin Problems
	Exercises

	List of symbols
	Bibliography
	Index

