Jagiellonian University
Faculty of Mathematics and Computer Science Institute of Mathematics

LECTURES

ON HOLOMORPHIC FUNCTIONS
 OF SEVERAL COMPLEX VARIABLES

Piotr Jakóbczak, Marek Jarnicki

(c) 1997 - 2021 Piotr Jakóbczak, Marek Jarnicki

Preface

This book is based on lectures on several complex variables given by the authors at the Jagiellonian University in Kraków during the period of 1991-1999. The material contains two-semestral course for graduate students of III and IV year.

The text contains the background theory of several complex variables. Chapter I is of preparatory nature. In Chapters II-VI we discuss the extension of holomorphic functions, automorphisms, domains of holomorphy, subharmonic and plurisubharmonic functions, pseudoconvexity, the solution of the $\bar{\partial}$-problem by means of Hörmander's L^{2}-methods, and Cousin problems. The aim has not been to obtain completeness in any direction; in particular, several classical topics (like sheaf theory, Cartan's A and B theorems, local theory, or theory of analytic subsets) are postponed to the second part of the book, which is planned to be written in the future.

The treatment of the subject is rather classical and mostly oriented on $\bar{\partial}$-problem techniques developed by Hörmander in [17]. The reader is however encouraged to consult also other monographs on the theory of several complex variables, e.g. [15], [25] (where the approach is based on the theory of integral formulas), [13], [12] (where similar results are obtained by means of local theory); cf. also [10], [19], [23], [24], [33], [35]. We would like to stress out that the choice of bibliography reflects only personal preferences of the authors, and should be by no means treated as the try to valuate the textbooks on complex analysis.

Every chapter begins with a short summary which contains a rough outline of the material. The exercises which follow some chapters are based on problems proposed to the students during tutorials.

The reader will note that the contents of Chapter III, devoted to the theory of subharmonic and plurisubharmonic functions, is much larger than the amount of the material on this subject presented in most of textbooks on several complex variables. This is due to the traditionally strong position of the theory of plurisubharmonic functions in the Institute of Mathematics of the Jagiellonian University, and by the increasing importance of this subject to several complex variables, e.g. the recent development of the theory of the complex Monge-Ampère operator.

The reader is required to be familiar with elements of classical real analysis and complex analysis of one variable.

The references concerning one-variable theory are directed onto the textbook 4]. Of course, a similar material on one complex variable can be found in many other classical textbooks, e.g. [2], [26].

It is our great pleasure to record a debt of gratitude to our teacher, Professor Józef Siciak, who introduced us into complex analysis.

We thank Professor Peter Pflug for numerous helpful discussions and suggestions during writing this book. We are greatly indebted to our colleagues Armen Edigarian, Sławomir Kołodziej, and Włodzimierz Zwonek who have been conducting tutorials to our lectures and who helped us in corrections of the text.

Contents

Chapter Preface iii
Chapter 1. Holomorphic functions 1
1.1. Formal derivatives 1
1.2. Separately holomorphic functions 4
1.3. Domains of convergence of power series 5
1.4. Holomorphic functions 10
1.5. Hartogs' theorem 15
1.6. Special domains 19
1.7. Weierstrass Preparation and Division Theorems 23
1.8. Elementary properties of the ring of germs of holomorphic functions 25
Exercises 28
Chapter 2. Extension of holomorphic functions 31
2.1. Hartogs and Riemann theorems 31
2.2. Biholomorphisms 35
2.3. Cartan theorems 35
2.4. Automorphism group of \mathbb{D}^{n} 37
2.5. Automorphism group of \mathbb{B}_{n} 38
2.6. Laurent series 38
2.7. Domains of holomorphy 41
2.8. Riemann regions over $\mathbb{C}^{\boldsymbol{n}}$ 49
Exercises 56
Chapter 3. Plurisubharmonic functions 59
3.1. Harmonic functions 59
3.2. Subharmonic functions 64
3.3. Pluriharmonic functions 76
3.4. Plurisubharmonic functions 78
Exercises 84
Chapter 4. Pseudoconvexity and the $\bar{\partial}$-problem 87
4.1. Pseudoconvexity 87
4.2. The $\bar{\partial}$-problem 95
4.3. Runge domains 100
4.4. Hefer's theorem 104
Exercises 105
Chapter 5. Hörmander's solution of the $\bar{\partial}$-problem 107
5.1. Distributions 107
5.2. Hörmander's inequality 111
5.3. Solution of the Levi Problem 118

6.2. The Mittag-Leffler and Weierstrass theorems . 122
6.3. First Cousin Problems . 124
6.4. Second Cousin Problems . 126

Exercises 130
Chapter List of symbols . 131
Chapter Bibliography . 137
Chapter Index . 139

CHAPTER 1

Holomorphic functions

1.1. Formal derivatives

Let $\Omega \subset \mathbb{C}^{n}$ be open, let $a \in \Omega, j \in\{1, \ldots, n\}$, and let

$$
f=\left(f_{1}, \ldots, f_{m}\right): \Omega \longrightarrow \mathbb{C}^{m}
$$

be a mapping such that

$$
\frac{\partial f}{\partial x_{j}}(a), \quad \frac{\partial f}{\partial y_{j}}(a)
$$

exist $\left(^{1}\right)$. Define

$$
\frac{\partial f}{\partial z_{j}}(a):=\frac{1}{2}\left(\frac{\partial f}{\partial x_{j}}(a)-i \frac{\partial f}{\partial y_{j}}(a)\right), \quad \frac{\partial f}{\partial \bar{z}_{j}}(a):=\frac{1}{2}\left(\frac{\partial f}{\partial x_{j}}(a)+i \frac{\partial f}{\partial y_{j}}(a)\right)
$$

$\frac{\partial f}{\partial z_{j}}(a)$ and $\frac{\partial f}{\partial \bar{z}_{j}}(a)$ are called the j-th formal partial derivatives (or Wirtinger derivatives) of f at a.
Remark 1.1.1. (a)

$$
\overline{\frac{\partial f}{\partial z_{j}}(a)}=\frac{\partial \bar{f}}{\partial \bar{z}_{j}}(a) .
$$

(b) Assume that the j-th complex partial derivative $\frac{\partial f}{\partial z_{j}}(a)$ of f at a exists, i.e. the limit

$$
\frac{\partial f}{\partial z_{j}}(a):=\lim _{\mathbb{C} \ni \lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(a+\lambda e_{j}\right)-f(a)\right)
$$

exists and is finite $\left(^{3}\right)$ (observe the difference between the complex partial derivative $\frac{\partial f}{\partial z_{j}}(a)$ and the formal partial derivative $\left.\frac{\partial f}{\partial z_{j}}(a)\right)$. Then

$$
\frac{\partial f}{\partial x_{j}}(a)=\frac{\partial f}{\partial z_{j}}(a), \quad \frac{\partial f}{\partial y_{j}}(a)=i \frac{\partial f}{\partial z_{j}}(a)
$$

and hence

$$
\frac{\partial f}{\partial z_{j}}(a)=\frac{\partial f}{\partial z_{j}}(a), \quad \frac{\partial f}{\partial \bar{z}_{j}}(a)=0
$$

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Recall that the \mathbb{K}-(Fréchet) differential $f_{\mathbb{K}}^{\prime}(a)$ of f at a is the \mathbb{K}-linear mapping $f_{\mathbb{K}}^{\prime}(a): \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ such that

$$
f(a+h)=f(a)+f_{\mathbb{K}}^{\prime}(a)(h)+o(\|h\|) \text { when } \mathbb{C}^{n} \ni h \longrightarrow 0
$$

Obviously, if $f_{\mathbb{C}}^{\prime}(a)$ exists, then $f_{\mathbb{R}}^{\prime}(a)$ exists and they coincide.
$\left.{ }^{1}\right)$ We always use the following identification of \mathbb{C}^{k} and $\mathbb{R}^{2 k}$

$$
\mathbb{C}^{k} \ni\left(x_{1}+i y_{1}, \ldots, x_{k}+i y_{k}\right) \longmapsto\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right) \in \mathbb{R}^{2 k}
$$

${ }^{2}$ 2) For $w=\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{C}^{m}$ we put $\bar{w}:=\left(\bar{w}_{1}, \ldots, \bar{w}_{m}\right)$.
$\left(^{3}\right) e_{1}, \ldots, e_{n}$ are vectors of the canonical basis in $\mathbb{C}^{n} ; e_{j}:=\left(e_{j, 1}, \ldots, e_{j, n}\right), e_{j, k}=0$ for $j \neq k$ and $e_{j, j}:=1, j=1, \ldots, n$.

If $f_{\mathbb{R}}^{\prime}(a)$ exists, then $\frac{\partial f}{\partial x_{j}}(a), \frac{\partial f}{\partial y_{j}}(a), j=1, \ldots, n$, exist and

$$
\begin{aligned}
f_{\mathbb{R}}^{\prime}(a)(h) & =\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{j}}(a) \operatorname{Re} h_{j}+\frac{\partial f}{\partial y_{j}}(a) \operatorname{Im} h_{j}\right) \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(a) h_{j}+\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}}(a) \bar{h}_{j}, \quad h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{C}^{n} .
\end{aligned}
$$

If $f_{\mathbb{C}}^{\prime}(a)$ exists, then $\frac{\partial f}{\partial z_{j}}(a), j=1, \ldots, n$, exist and

$$
f_{\mathbb{C}}^{\prime}(a)(h)=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(a) h_{j}, \quad h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{C}^{n}
$$

Remark 1.1.2. Assume that $f_{\mathbb{R}}^{\prime}(a)$ exists. Then the following conditions are equivalent:
(i) $f_{\mathbb{R}}^{\prime}(a)$ is \mathbb{C}-linear;
(ii) $f_{\mathbb{C}}^{\prime}(a)$ exists;
(iii) $\frac{\partial f}{\partial \bar{z}_{j}}(a)=0, j=1, \ldots, n$ (i.e. f satisfies the Cauchy-Riemann equations at a).

Assume that $m=n$ and let

$$
u_{j}:=\operatorname{Re} f_{j}, \quad v_{j}:=\operatorname{Im} f_{j}, \quad j=1, \ldots, n
$$

If $\frac{\partial f}{\partial x_{k}}(a)$ and $\frac{\partial f}{\partial y_{k}}(a), k=1, \ldots, n$, exist, then we put

$$
J_{\mathbb{R}} f(a):=\operatorname{det}\left[\begin{array}{c}
\frac{\partial u_{1}}{\partial x_{1}}(a), \frac{\partial u_{1}}{\partial y_{1}}(a), \ldots, \frac{\partial u_{1}}{\partial x_{n}}(a), \frac{\partial u_{1}}{\partial y_{n}}(a) \\
\frac{\partial v_{1}}{\partial x_{1}}(a), \frac{\partial v_{1}}{\partial y_{1}}(a), \ldots, \frac{\partial v_{1}}{\partial x_{n}}(a), \frac{\partial v_{1}}{\partial y_{n}}(a) \\
\ldots \\
\frac{\partial u_{n}}{\partial x_{1}}(a), \frac{\partial u_{n}}{\partial y_{1}}(a), \ldots, \frac{\partial u_{n}}{\partial x_{n}}(a), \frac{\partial u_{n}}{\partial y_{n}}(a) \\
\frac{\partial v_{n}}{\partial x_{1}}(a), \frac{\partial v_{n}}{\partial y_{1}}(a), \ldots, \frac{\partial v_{n}}{\partial x_{n}}(a), \frac{\partial v_{n}}{\partial y_{n}}(a)
\end{array}\right] \operatorname{det}\left[\left[\begin{array}{l}
\frac{\partial u_{j}}{\partial x_{k}}(a), \frac{\partial u_{j}}{\partial y_{k}}(a) \\
\frac{\partial v_{j}}{\partial x_{k}}(a), \frac{\partial v_{j}}{\partial y_{k}}(a)
\end{array}\right]_{j, k=1, \ldots, n}\right] .
$$

Observe that

Define

$$
J_{\mathbb{R}, \mathcal{W}} f(a):=\operatorname{det}\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial z_{n}}(a), \frac{\partial f_{1}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial \bar{z}_{n}}(a) \\
\ldots \\
\frac{\partial f_{n}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{n}}{\partial z_{n}}(a), \frac{\partial f_{n}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial f_{n}}{\partial \bar{z}_{n}}(a) \\
\frac{\partial \bar{f}_{1}}{\partial z_{1}}(a), \ldots, \frac{\partial \bar{f}_{1}}{\partial z_{n}}(a), \frac{\partial f_{1}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial \bar{z}_{n}}(a) \\
\ldots \\
\frac{\partial \bar{f}_{n}}{\partial z_{1}}(a), \ldots, \frac{\partial \bar{f}_{n}}{\partial z_{n}}(a), \frac{\partial \bar{f}_{n}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial \bar{f}_{n}}{\partial \bar{z}_{n}}(a)
\end{array}\right] \operatorname{det}\left[\begin{array}{l}
{\left[\frac{\partial f_{j}}{\partial z_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial f_{j}}{\partial \bar{z}_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{\partial \bar{f}_{j}}{\partial z_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial \bar{f}_{j}}{\partial \bar{z}_{k}}(a)\right]_{j, k=1, \ldots, n}}
\end{array}\right] .
$$

It is clear that if $\frac{\partial f}{\partial \bar{z}_{k}}(a)=0, k=1, \ldots, n$, then

$$
J_{\mathbb{R}, \mathcal{W}} f(a)=\left|\operatorname{det}\left[\frac{\partial f_{j}}{\partial z_{k}}(a)\right]_{j, k=1, \ldots, n}\right|^{2}
$$

Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
1.1. Formal derivatives

If $\frac{\partial f_{j}}{\partial z_{k}}(a), j, k=1, \ldots, n$, exist, then we define

$$
J_{\mathbb{C}} f(a):=\operatorname{det}\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial z_{n}}(a) \\
\ldots \\
\frac{\partial f_{n}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{n}}{\partial z_{n}}(a)
\end{array}\right]=\operatorname{det}\left[\frac{\partial f_{j}}{\partial z_{k}}(a)\right]_{j, k=1, \ldots, n}
$$

Proposition 1.1.3.

$$
J_{\mathbb{R}} f(a)=J_{\mathbb{R}, \mathcal{W}} f(a)
$$

In particular, if $\partial f_{k}(a), k=1, \ldots, n$, exist, then

$$
J_{\mathbb{R}} f(a)=\left|J_{\mathbb{C}} f(a)\right|^{2}
$$

Proof. $J_{\mathbb{R}, \mathcal{W}} f(a)$

$$
\begin{aligned}
& =\operatorname{det}\left[\begin{array}{l}
{\left[\frac{1}{2}\left(\frac{\partial f_{j}}{\partial x_{k}}(a)-i \frac{\partial f_{j}}{\partial y_{k}}(a)\right)\right]_{j, k=1, \ldots, n},\left[\frac{1}{2}\left(\frac{\partial f_{j}}{\partial x_{k}}(a)+i \frac{\partial f_{j}}{\partial y_{k}}(a)\right)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{1}{2}\left(\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)-i \frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right)\right]_{j, k=1, \ldots, n},\left[\frac{1}{2}\left(\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)+i \frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right)\right]_{j, k=1, \ldots, n}}
\end{array}\right] \\
& =\frac{1}{4^{n}} \operatorname{det}\left[\left[\frac{\partial f_{j}}{\partial x_{k}}(a)-i \frac{\partial f_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial f_{j}}{\partial x_{k}}(a)+i \frac{\partial f_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}\left[\left[\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)-i \frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)+i \frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}\right]\right.
\end{aligned}
$$

we add the $(n+k)$-th column to the k-th column

$$
=\frac{1}{2^{n}} \operatorname{det}\left[\begin{array}{l}
{\left[\frac{\partial f_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial f_{j}}{\partial x_{k}}(a)+i \frac{\partial f_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)+i \frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}}
\end{array}\right]
$$

we subtract the k-th column from the $(n+k)$-th column

$$
\begin{aligned}
& =\left(\frac{i}{2}\right)^{n} \operatorname{det}\left[\begin{array}{l}
{\left[\frac{\partial f_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial f_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{\partial \bar{f}_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial \bar{f}_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}}
\end{array}\right] \\
& =\left(\frac{i}{2}\right)^{n} \operatorname{det}\left[\begin{array}{l}
{\left[\frac{\partial u_{j}}{\partial x_{k}}(a)+i \frac{\partial v_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial u_{j}}{\partial y_{k}}(a)+i \frac{\partial v_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
\left.\left[\frac{\partial u_{j}}{\partial x_{k}}(a)-i \frac{\partial v_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial u_{j}}{\partial y_{k}}(a)-i \frac{\partial v_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}\right]
\end{array}\right.
\end{aligned}
$$

we add the $(n+k)$-th row to the k-th row

$$
=i^{n} \operatorname{det}\left[\begin{array}{c}
{\left[\frac{\partial u_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial u_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{\partial u_{j}}{\partial x_{k}}(a)-i \frac{\partial v_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial u_{j}}{\partial y_{k}}(a)-i \frac{\partial v_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}}
\end{array}\right]
$$

we subtract the k-th row from the $(n+k)$-th row

$$
=\operatorname{det}\left[\begin{array}{l}
{\left[\frac{\partial u_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial u_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}} \\
{\left[\frac{\partial v_{j}}{\partial x_{k}}(a)\right]_{j, k=1, \ldots, n},\left[\frac{\partial v_{j}}{\partial y_{k}}(a)\right]_{j, k=1, \ldots, n}}
\end{array}\right]=J_{\mathbb{R}} f(a) .
$$

In the sequel we will use also the following differential operators

$$
D^{\alpha, \beta}: \mathcal{C}^{k}\left(\Omega, \mathbb{C}^{m}\right) \longrightarrow \mathcal{C}^{k-|\alpha|-|\beta|}\left(\Omega, \mathbb{C}^{m}\right), \quad D^{\alpha, \beta}:=\left(\frac{\partial}{\partial z_{1}}\right)^{\alpha_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial z_{n}}\right)^{\alpha_{n}} \circ\left(\frac{\partial}{\partial \bar{z}_{1}}\right)^{\beta_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial \bar{z}_{n}}\right)^{\beta_{n}}
$$

1. Holomorphic functions
where $\alpha, \beta \in \mathbb{N}_{0}^{n}\left({ }^{4}\right),|\alpha|+|\beta| \leq k$. Moreover, we put

$$
D^{\alpha}:=D^{\alpha, 0}=\left(\frac{\partial}{\partial z_{1}}\right)^{\alpha_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial z_{n}}\right)^{\alpha_{n}}, \quad \alpha \in \mathbb{N}_{0}^{n},|\alpha| \leq k
$$

1.2. Separately holomorphic functions

Let $\Omega \subset \mathbb{C}^{n}$ be open and let $f: \Omega \longrightarrow \mathbb{C}^{m}$. Given $a \in \mathbb{C}^{n}$ and $X \in \mathbb{C}^{n}$, define

$$
\Omega_{a, X}:=\{\lambda \in \mathbb{C}: a+\lambda X \in \Omega\}, \quad f_{a, X}(\lambda):=f(a+\lambda X), \quad \lambda \in \Omega_{a, X}
$$

Note that $\Omega_{a, X}$ is an open subset of \mathbb{C}.
Definition 1.2.1. A function $f: \Omega \longrightarrow \mathbb{C}$ is separately holomorphic on $\Omega\left(f \in \mathcal{O}_{s}(\Omega)\right)$ if

$$
f_{a, e_{j}} \in \mathcal{O}\left(\Omega_{a, e_{j}}\right), \quad a \in \Omega, j=1, \ldots, n
$$

Observe that $\mathcal{O}_{s}(\Omega)$ is a ring. Obviously, if $n=1$, then $\mathcal{O}_{s}(\Omega)=\mathcal{O}(\Omega)$.
Remark 1.2.2. (a) $f \in \mathcal{O}_{s}(\Omega)$ iff $\frac{\partial f}{\partial z_{j}}(a)$ exists for any $a \in \Omega$ and $j=1, \ldots, n$.
(b) A function $f: \Omega \longrightarrow \mathbb{C}$ is separately holomorphic in Ω iff every point $a \in \Omega$ admits an open neighborhood $U_{a} \subset \Omega$ such that $\left.\left.f\right|_{U_{a}} \in \mathcal{O}_{s}\left(U_{a}\right){ }^{6}\right)$.

Proposition 1.2.3 (Osgood). For $f \in \mathcal{O}_{s}(\Omega)$ the following conditions are equivalent:
(i) $f \in \mathcal{C}(\Omega)$;
(ii) f is locally bounded.

Proof. The implication (i) \Longrightarrow (ii) is trivial.
To prove the implication (ii) \Longrightarrow (i) fix an $a=\left(a_{1}, \ldots, a_{n}\right) \in \Omega$ and $r>0$ such that $\mathbb{P}(a, r) \subset \Omega\left(^{7}\right)$ Put $C:=\sup _{\mathbb{P}(a, r)}|f|$. Observe that for any $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{P}(a, r)$ the functions

$$
K\left(a_{j}, r\right) \ni \lambda \longmapsto f\left(b_{1}, \ldots, b_{j-1}, \lambda, b_{j+1}, \ldots, b_{n}\right), \quad j=1, \ldots, n
$$

are holomorphic. Hence, by the classical Schwarz lemma (cf. [4, Th. VI.2.1), we get

$$
\begin{array}{r}
|f(z)-f(a)| \leq\left|f\left(z_{1}, a_{2}, \ldots, a_{n}\right)-f\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|+\cdots+\left|f\left(z_{1}, \ldots, z_{n-1}, z_{n}\right)-f\left(z_{1}, \ldots, z_{n-1}, a_{n}\right)\right| \\
\leq \frac{2 C}{r}\left(\left|z_{1}-a_{1}\right|+\cdots+\left|z_{n}-a_{n}\right|\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{P}(a, r),
\end{array}
$$

which implies that f is continuous at a.

Definition 1.2.4. We say that a bounded domain $D \subset \mathbb{C}$ is regular if ∂D is the finite union of images of pairwise disjoint Jordan piecewise \mathcal{C}^{1} curves having positive orientation with respect to D.

[^0]

Figure 1.2.1

Proposition 1.2.5 (Cauchy's integral formula). Let $D_{1}, \ldots, D_{n} \subset \mathbb{C}$ be regular domains. Put $D:=D_{1} \times$ $\cdots \times D_{n}, \partial_{0} D:=\partial D_{1} \times \cdots \times \partial D_{n}$ and let $f \in \mathcal{O}_{s}(D) \cap \mathcal{C}(\bar{D})$. Then

$$
\begin{align*}
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\partial D_{1}} \ldots \int_{\partial D_{n}} \frac{f\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \ldots d \zeta_{n}=: \frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} D} \frac{f(\zeta)}{\zeta-z} d \zeta \\
z=\left(z_{1}, \ldots, z_{n}\right) \in D \tag{1.2.1}
\end{align*}
$$

The set $\partial_{0} D$ is called the distinguished boundary of D. Observe that the integral is well defined and independent of the order of integration.

Proof. We apply induction with respect to n. For $n=1$ the result reduces to the classical Cauchy integral formula (cf. [4], IV.5).
$n-1 \rightsquigarrow n$. Fix an $a=\left(a^{\prime}, a_{n}\right) \in D^{\prime} \times D_{n}:=\left(D_{1} \times \cdots \times D_{n-1}\right) \times D_{n}$. We have

$$
\begin{equation*}
f(a)=f\left(a^{\prime}, a_{n}\right)=\frac{1}{(2 \pi i)^{n-1}} \int_{\partial_{0}\left(D^{\prime}\right)} \frac{f\left(\zeta^{\prime}, a_{n}\right)}{\zeta^{\prime}-a^{\prime}} d \zeta^{\prime} \tag{1.2.2}
\end{equation*}
$$

Observe that $f\left(\zeta^{\prime}, \cdot\right) \in \mathcal{O}\left(D_{n}\right) \cap \mathcal{C}\left(\bar{D}_{n}\right)$ for any $\zeta^{\prime} \in \partial_{0} D^{\prime}$.
Indeed, fix a $\zeta^{\prime} \in \partial_{0} D^{\prime}$ and let $D^{\prime} \ni \zeta_{\nu}^{\prime} \longrightarrow \zeta^{\prime}$. Since f is separately holomorphic, $f\left(\zeta_{\nu}^{\prime}, \cdot\right) \in \mathcal{O}\left(D_{n}\right)$ for any ν. Obviously, $f\left(\zeta_{\nu}^{\prime}, \cdot\right) \longrightarrow f\left(\zeta^{\prime}, \cdot\right)$ uniformly on D_{n}. Hence, by Weierstrass' theorem (cf. [4], Th. VII.2.1), $f\left(\zeta^{\prime}, \cdot\right) \in \mathcal{O}\left(D_{n}\right)$.

Consequently, by the classical Cauchy formula,

$$
f\left(\zeta^{\prime}, a_{n}\right)=\frac{1}{2 \pi i} \int_{\partial D_{n}} \frac{f\left(\zeta^{\prime}, \zeta_{n}\right)}{\zeta_{n}-a_{n}} d \zeta_{n}
$$

which together with 1.2 .2 gives 1.2 .1 .

1.3. Domains of convergence of power series

Definition 1.3.1. Any series

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}\left(z-z_{0}\right)^{\alpha}, \quad z \in \mathbb{C}^{n}
$$

where $\left(a_{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{n}} \subset \mathbb{C}$ and $z_{0} \in \mathbb{C}^{n}\left(^{8}\right)$ is called a power series with center at z_{0}.
In other words, a power series with center at z_{0} is the series generated by a family $\left(\mathbb{C}^{n} \ni z \longmapsto\right.$ $\left.a_{\alpha}\left(z-z_{0}\right)^{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{n}}$.
$\left.{ }^{8}\right) w^{\alpha}:=w_{1}^{\alpha_{1}} \cdots \cdots w_{n}^{\alpha_{n}}, w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n} ; 0^{0}:=1$.

Example 1.3.2. (a) The geometric series

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{z^{\alpha}}{\boldsymbol{r}^{\alpha}}
$$

where $\boldsymbol{r} \in \mathbb{R}_{>0}^{n}\left({ }^{9}\right)$, is locally normally convergent in $\mathbb{P}(\boldsymbol{r})\left(1^{10}\right)$ to the function

$$
\mathbb{P}(\boldsymbol{r}) \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto \prod_{j=1}^{n} \frac{1}{1-z_{j} / r_{j}}
$$

(b) The series

$$
\sum_{\alpha \in \mathbb{Z}^{n}}\left(\frac{z_{1}}{r_{1}}\right)^{\left|\alpha_{1}\right|} \cdots\left(\frac{z_{n}}{r_{n}}\right)^{\left|\alpha_{n}\right|}
$$

where $\boldsymbol{r} \in \mathbb{R}_{>0}^{n}$, is locally normally convergent in $\mathbb{P}(\boldsymbol{r})$ to the function

$$
\mathbb{P}(\boldsymbol{r}) \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto \prod_{j=1}^{n} \frac{r_{j}+z_{j}}{r_{j}-z_{j}}
$$

Proposition 1.3.3 (Abel's lemma). If

$$
\left|a_{\alpha}\right| \boldsymbol{r}^{\alpha} \leq C, \quad \alpha \in \mathbb{N}_{0}^{n}
$$

where $\boldsymbol{r} \in \mathbb{R}_{>0}^{n}$, then the series $\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha} z^{\alpha}$ is locally normally convergent in $\mathbb{P}(\boldsymbol{r})$.
Proof. Since $\left|a_{\alpha} z^{\alpha}\right| \leq C\left|z^{\alpha}\right| / \boldsymbol{r}^{\alpha}$, the result follows immediately from Example 1.3.2(a).
Definition 1.3.4. A set $A \subset \mathbb{C}^{n}$ is called:

- circular if $\lambda a \in A$ for arbitrary $\lambda \in \mathbb{T}, a \in A\left({ }^{11}\right)$
- n-circled if $\left(\lambda_{1} a_{1}, \ldots, \lambda_{n} a_{n}\right) \in A$ for arbitrary $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{T},\left(a_{1}, \ldots, a_{n}\right) \in A$;
- balanced if $\lambda a \in A$ for arbitrary $\lambda \in \overline{\mathbb{D}}, a \in A$;
- complete n-circled if $\left(\lambda_{1} a_{1}, \ldots, \lambda_{n} a_{n}\right) \in A$ for arbitrary $\lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{D}},\left(a_{1}, \ldots, a_{n}\right) \in A\left({ }^{12}\right)$

Observe that
A is complete n-circled $\longrightarrow A$ is n-circled $\longrightarrow A$ is circular

A is balanced
Let

$$
\mathbb{C}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \stackrel{R}{\longmapsto}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) \in \mathbb{R}_{+}^{n}
$$

Observe that a set $A \subset \mathbb{C}^{n}$ is n-circled iff $A=R^{-1}(R(A))$. Consequently, any n-circled set $A \subset \mathbb{C}^{n}$ is completely determined by the set $R(A) \subset \mathbb{R}_{+}^{n}$. Obviously, if $A \subset \mathbb{C}^{n}$ is n-circled, then $R(A)=A \cap \mathbb{R}_{+}^{n}$.

[^1]Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
1.3. Domains of convergence of power series

Figure 1.3.1

The mapping R is open. Consequently, if $A \subset \mathbb{C}^{n}$ is n-circled, then A is open in \mathbb{C}^{n} iff $R(A)$ is open in \mathbb{R}_{+}^{n}.

Moreover, if $B \subset \mathbb{R}_{+}^{n}$ is arcwise connected, then so is $R^{-1}(B)$. In particular, if $A \subset \mathbb{C}^{n}$ is n-circled, then A is a domain in \mathbb{C}^{n} iff $R(A)$ is a domain in \mathbb{R}_{+}^{n} (cf. Exercise 1.3).

For every n-circled set $A \subset \mathbb{C}^{n}$ put

$$
\log A:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left(e^{x_{1}}, \ldots, e^{x_{n}}\right) \in A\right\}
$$

The set $\log A$ is called the logarithmic image of A. Note that $\log A=\log \left(A \cap \mathbb{R}_{>0}^{n}\right)$.
We say that A is logarithmically convex (log-convex) if $\log A$ is convex.
Notice that A is logarithmically convex iff for any $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in A \cap \mathbb{R}_{>0}^{n}$ and for any $t \in[0,1]$ the point $\left(x_{1}^{1-t} y_{1}^{t}, \ldots, x_{n}^{1-t} y_{n}^{t}\right)$ belongs to A.

We will see (cf. the Riemann removable singularities theorem 2.1.6 that if $D \subset \mathbb{C}^{n}$ is a domain, then $D \backslash\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{1} \cdots \cdots z_{n}=0\right\}$ is connected. In particular, if $D \subset \mathbb{C}^{n}$ is an n-circled domain, then $\log D$ is a domain in \mathbb{R}^{n} (cf. Exercise 1.15).

Example 1.3.5. Let

$$
D:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \Omega(\alpha):\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{n}\right|^{\alpha_{n}}<C\right\}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}, C>0$, and $\Omega(\alpha):=U\left(\alpha_{1}\right) \times \cdots \times U\left(\alpha_{n}\right)$ with

$$
U(x):=\left\{\begin{array}{ll}
\mathbb{C} & \text { if } x \geq 0 \\
\mathbb{C}_{*} & \text { if } x<0
\end{array}, \quad x \in \mathbb{R}\right.
$$

Then

$$
\log D=\left\{x \in \mathbb{R}^{n}:\langle x, \alpha\rangle<\log C\right\}
$$

where \langle,$\rangle denotes the standard scalar product in \mathbb{R}^{n}$.

Figure 1.3.2

Fix a power series

$$
\Sigma=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha} z^{\alpha}
$$

and let

$$
\begin{aligned}
\mathcal{B}=\mathcal{B}(\Sigma) & :=\left\{z \in \mathbb{C}^{n}: \exists_{C>0}: \forall_{\alpha \in \mathbb{N}_{o}^{n}}:\left|a_{\alpha} z^{\alpha}\right| \leq C\right\} \\
\mathcal{C}=\mathcal{C}(\Sigma) & :=\left\{z \in \mathbb{C}^{n}: \Sigma \text { is summable at } z\right\} \\
\mathcal{D}=\mathcal{D}(\Sigma) & :=\operatorname{int} \mathcal{C} .
\end{aligned}
$$

Clearly $\mathcal{D} \subset \mathcal{C} \subset \mathcal{B}$. The set \mathcal{D} is called the domain of convergence of Σ. We will see (Proposition 1.3.6) that \mathcal{D} is connected and, therefore, is indeed a domain in \mathbb{C}^{n}.

Recall that for $n=1$, if $\varnothing \neq \mathcal{D} \neq \mathbb{C}$, then $\overline{\mathcal{B}}=\overline{\mathbf{C}}=\overline{\mathcal{D}}=\bar{K}(R)\left[{ }^{13}\right)$, where R is the radius of convergence of Σ. For $n>1$ the situation is more complicated, for instance if $\Sigma:=\sum_{\nu=0}^{\infty} z_{1}^{\nu} z_{2}$, then $\mathbb{C} \times\{0\} \subset \mathcal{C}$, but $\mathcal{D}=\mathbb{D} \times \mathbb{C}$.

Proposition 1.3.6. (a) The set \mathcal{B} is complete n-circled and log-convex.
(b) $\mathcal{D}=\operatorname{int} \mathcal{B}$. In particular, \mathcal{D} is a complete n-circled and log-convex domain $\left({ }^{14}\right)$.
(c) The series Σ is locally normally convergent in \mathcal{D}.

All the above properties (after formal changes) remain true for power series with an arbitrary center.
Proof. (a) is obvious. Notice that

$$
\log \mathcal{B}=\left\{x \in \mathbb{R}^{n}: \exists_{C>0}: \forall_{\alpha \in \mathbb{N}_{0}^{n}}:\langle x, \alpha\rangle \leq \log C-\log \left|a_{\alpha}\right|\right\}
$$

(b) Since $\mathcal{D}=\operatorname{int} \mathcal{C} \subset \operatorname{int} \mathcal{B}$, it remains to prove that $\operatorname{int} \mathcal{B} \subset \mathcal{D}$. Let $a \in \operatorname{int} \mathcal{B}$. Since \mathcal{B} is complete n-circled, there exists an $\boldsymbol{r} \in \mathbb{R}_{>0}^{n} \cap \mathcal{B}$ such that $a \in \mathbb{P}(\boldsymbol{r})$. Now, by Abel's lemma, we have $\mathbb{P}(\boldsymbol{r}) \subset \mathcal{C}$. Hence $a \in \mathcal{D}$.
(c) Take a point $a \in \mathcal{D}$ and let $\boldsymbol{r} \in \mathbb{R}_{>0}^{n} \cap \mathcal{B}$ and $0<\theta<1$ be such that $a \in \mathbb{P}(\theta \boldsymbol{r})$. By Abel's lemma, the series is convergent normally in $\mathbb{P}(\theta \boldsymbol{r})$ and, therefore, it is convergent normally in a neighborhood of a.

[^2]Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
1.3. Domains of convergence of power series

Let $f: \Omega \longrightarrow \mathbb{C}$ be a function having all complex derivatives at any point of Ω. Put

$$
T_{a} f(z):=\sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{D^{\alpha} f(a)}{\alpha!}(z-a)^{\alpha}, \quad a \in \Omega . \quad\left({ }^{15}\right)
$$

The series $T_{a} f$ is called the Taylor series of f at a. The number

$$
d\left(T_{a} f\right):=\sup \left\{r>0: \mathbb{P}(a, r) \subset \mathcal{D}\left(T_{a} f\right)\right\}
$$

is called the radius of convergence of $T_{a} f$.
Proposition 1.3.7. Assume that $D=\mathcal{D}(\Sigma) \neq \varnothing$ and let

$$
f(z):=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha} z^{\alpha}, \quad z \in D
$$

For $\beta \in \mathbb{N}_{0}^{n}$ let $D^{\beta} \Sigma$ denote the series

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq \beta}\binom{\alpha}{\beta} \beta!a_{\alpha} z^{\alpha-\beta} \cdot\left({ }^{16}\right)
$$

Then f has all complex derivatives in $D, D \subset \mathcal{D}\left(D^{\beta} \Sigma\right)$, and

$$
D^{\beta} f(z)=\sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq \beta}\binom{\alpha}{\beta} \beta!a_{\alpha} z^{\alpha-\beta}, \quad z \in D, \beta \in \mathbb{N}_{0}^{n} .
$$

In particular, $\Sigma=T_{0} f$ and $f(z)=T_{0} f(z)$ for $z \in D$.
All the aforementioned properties of the series Σ remain valid (with obvious changes) for power series with arbitrary center.

Notice the following difference between one and several variables. For $n=1$ the radius of convergence of Σ is equal to the radius of convergence of the series of derivatives. This is no longer true for $n>1$, for instance if

$$
\Sigma:=\sum_{\nu=0}^{\infty} z_{1}^{\nu}+\sum_{\nu=0}^{\infty} z_{2}^{\nu},
$$

then $\mathcal{D}(\Sigma)=\mathbb{D} \times \mathbb{D}$, but $\mathcal{D}\left(\frac{\partial \Sigma}{\partial z_{1}}\right)=\mathbb{D} \times \mathbb{C}\left({ }^{17}\right)$
Proof. It is sufficient to consider the case $\beta=e_{j}$ for some $j \in\{1, \ldots, n\}$. We show first that the series

$$
\frac{\partial \Sigma}{\partial z_{j}}=\sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq e_{j}} \alpha_{j} a_{\alpha} z^{\alpha-e_{j}}
$$

is locally normally convergent in D. It is sufficient to prove that if $r \in \mathbb{R}_{>0}^{n} \cap \mathcal{B}(\Sigma)$, then the series $\partial_{j} \Sigma$ is locally normally convergent in $\mathbb{P}(\boldsymbol{r})$. Let $C>0$ be such that $\left|a_{\alpha}\right| \boldsymbol{r}^{\alpha} \leq C, \alpha \in \mathbb{N}_{0}^{n}$. Then for any $0<\theta<1$ we have

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq e_{j}} \sup _{\mathbb{P}(\theta \boldsymbol{r})}\left\{\left|\alpha_{j} a_{\alpha} z^{\alpha-e_{j}}\right|\right\} \leq \frac{C}{\theta r_{j}} \sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq e_{j}} \alpha_{j} \theta^{|\alpha|},
$$

which gives the normal convergence in $\mathbb{P}(\theta \boldsymbol{r})$.
Now fix a $z_{0} \in D$. The series

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}}\left(a_{\alpha} z^{\alpha}\right)_{z_{0}, e_{j}}(\lambda)=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}\left(z_{0}+\lambda e_{j}\right)^{\alpha}
$$

$\left.{ }^{15}\right) \alpha!:=\alpha_{1}!\cdots \cdots \alpha_{n}!, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$.
(16) $\binom{\alpha}{\beta}:=\binom{\alpha_{1}}{\beta_{1}} \cdots \cdots\binom{\alpha_{n}}{\beta_{n}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}_{0}^{n}, \alpha \leq \beta$.
(${ }^{17)} \partial_{1} \Sigma=\sum_{\nu=1}^{\infty} \nu z_{1}^{\nu-1}$.
converges locally normally in $D_{z_{0}, e_{j}}$ to the function $f_{z_{0}, e_{j}}$. Hence, by the classical one-dimensional Weierstrass theorem (cf. [4], Th. VII.2.1), the function $f_{z_{0}, e_{j}}$ is holomorphic (in particular the derivative $\frac{\partial f}{\partial z_{j}}\left(z_{0}\right)=$ $\left(f_{z_{0}, e_{j}}\right)^{\prime}(0)$ exists) and

$$
\frac{\partial f}{\partial z_{j}}\left(z_{0}\right)=\left(f_{z_{0}, e_{j}}\right)^{\prime}(0)=\sum_{\alpha \in \mathbb{N}_{0}^{n}}\left(\left(a_{\alpha} z^{\alpha}\right)_{z_{0}, e_{j}}\right)^{\prime}(0)=\sum_{\alpha \in \mathbb{N}_{0}^{n}: \alpha \geq e_{j}} \alpha_{j} a_{\alpha} z_{0}^{\alpha-e_{j}}
$$

1.4. Holomorphic functions

Definition 1.4.1. Let $\Omega \subset \mathbb{C}^{n}$ be open. Put

$$
d_{\Omega}(a):=\sup \{r>0: \mathbb{P}(a, r) \subset \Omega\}, \quad a \in \Omega
$$

We say that a function $f: \Omega \longrightarrow \mathbb{C}$ is holomorphic in $\Omega(f \in \mathcal{O}(\Omega))$ if for any $a \in \Omega$ there exists a power series

$$
\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}(z-a)^{\alpha}
$$

and $0<r \leq d_{\Omega}(a)$ such that

$$
f(z)=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}(z-a)^{\alpha}, \quad z \in \mathbb{P}(a, r)
$$

A mapping $f=\left(f_{1}, \ldots, f_{m}\right): \Omega \longrightarrow \mathbb{C}^{m}$ is called holomorphic $\left(f \in \mathcal{O}\left(\Omega, \mathbb{C}^{m}\right)\right)$ if $f_{1}, \ldots, f_{m} \in \mathcal{O}(\Omega)$. The functions from $\mathcal{O}\left(\mathbb{C}^{n}\right)$ are called entire functions.

Remark 1.4.2. (a) $\mathcal{O}(\Omega)$ is a ring.
(b) A function $f: \Omega \longrightarrow \mathbb{C}$ is holomorphic on Ω iff for any point $a \in \Omega$ there exists a neighborhood U_{a} such that $\left.f\right|_{U_{a}} \in \mathcal{O}\left(U_{a}\right)$.
(c) Every polynomial of n complex variables is an entire function, i.e. $\mathcal{P}\left(\mathbb{C}^{n}\right) \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$.
(d) Holomorphic functions are infinitely differentiable in the complex sense (by Proposition 1.3.7).
(e) If $f \in \mathcal{O}(\Omega)$, then $D^{\alpha} f \in \mathcal{O}(\Omega)$ for arbitrary $\alpha \in \mathbb{N}_{0}^{n}$.

Proposition 1.4.3 (Identity principle). Let $f, g \in \mathcal{O}(D)$, where $D \subset \mathbb{C}^{n}$ is a domain. Then the following conditions are equivalent:
(i) $f \equiv g$;
(ii) there exists an $a \in D$ such that $T_{a} f=T_{a} g$;
(iii) $\operatorname{int}(\{z \in D: f(z)=g(z)\}) \neq \varnothing$.

Proof. Clearly (i) \Longrightarrow (ii) \Longleftrightarrow (iii). To prove the implication (ii) \Longrightarrow (i) it is sufficient to note that the set $D_{0}:=\left\{z \in D: T_{z} f=T_{z} g\right\}$ is non-empty open and closed in D.

Lemma 1.4.4. Let $\gamma_{j}:[0,1] \longrightarrow \mathbb{C}$ be a piecewise \mathcal{C}^{1} curve. Put $\gamma_{j}^{*}:=\gamma_{j}([0,1]), j=1, \ldots, n$, and let $\varphi: \gamma_{1}^{*} \times \cdots \times \gamma_{n}^{*} \longrightarrow \mathbb{C}$ be a continuous function. Define

$$
\Phi(z):=\frac{1}{(2 \pi i)^{n}} \int_{\gamma_{1}} \ldots \int_{\gamma_{n}} \frac{\varphi\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \ldots d \zeta_{n}=: \frac{1}{(2 \pi i)^{n}} \int_{\gamma_{1} \times \cdots \times \gamma_{n}} \frac{\varphi(\zeta)}{\zeta-z} d \zeta, ~ z \in \mathbb{C}^{n} \backslash\left(\gamma_{1}^{*} \times \cdots \times \gamma_{n}^{*}\right)=: \Omega .
$$

Then
(a) $\Phi \in \mathcal{O}(\Omega)$;

[^3](b)
\[

$$
\begin{aligned}
D^{\alpha} \Phi(z)=\frac{\alpha!}{(2 \pi i)^{n}} \int_{\gamma_{1}} \ldots \int_{\gamma_{n}} \frac{\varphi\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right)^{\alpha_{1}+1 \cdots \cdots\left(\zeta_{n}-z_{n}\right)^{\alpha_{n}+1}} d \zeta_{1} \ldots d \zeta_{n}} \\
\quad=\frac{\alpha!}{(2 \pi i)^{n}} \int_{\gamma_{1} \times \cdots \times \gamma_{n}} \frac{\varphi(\zeta)}{(\zeta-z)^{\alpha+1}} d \zeta, \quad z \in \Omega, \alpha \in \mathbb{N}_{0}^{n},
\end{aligned}
$$
\]

where $\mathbf{1}:=(1, \ldots, 1) \in \mathbb{N}^{n}$;
(c) for any polydisc $\mathbb{P}(a, \boldsymbol{r}) \subset \Omega$ we have

$$
\Phi(z)=T_{a} \Phi(z), \quad z \in \mathbb{P}(a, \boldsymbol{r})
$$

Proof. Fix a $\mathbb{P}(a, \boldsymbol{r}) \subset \Omega$ and observe that for $(\zeta, z) \in\left(\gamma_{1}^{*} \times \cdots \times \gamma_{n}^{*}\right) \times \mathbb{P}(a, \boldsymbol{r})$

$$
\frac{1}{\zeta-z}=\sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{(z-a)^{\alpha}}{(\zeta-a)^{\alpha+1}}
$$

and the series is locally normally convergent. Hence

$$
\Phi(z)=\sum_{\alpha \in \mathbb{N}_{0}^{n}}\left[\frac{1}{(2 \pi i)^{n}} \int_{\gamma_{1} \times \cdots \times \gamma_{n}} \frac{\varphi(\zeta)}{(\zeta-a)^{\alpha+\mathbf{1}}} d \zeta\right](z-a)^{\alpha}, \quad z \in \mathbb{P}(a, \boldsymbol{r})
$$

It remains to apply Proposition 1.3.7
The above lemma and the Cauchy integral formula (Proposition 1.2.5) imply the following important corollaries.

Corollary 1.4.5. Let $f: \Omega \longrightarrow \mathbb{C}$. The following conditions are equivalent:
(i) $f \in \mathcal{O}(\Omega)$;
(ii) $f \in \mathcal{O}_{s}(\Omega) \cap \mathcal{C}(\Omega)$;
(iii) f is differentiable in the complex sense at an arbitrary point of Ω.

Corollary 1.4.6. If $f \in \mathcal{O}(\Omega)$, then for every polydisc $\mathbb{P}(a, \boldsymbol{r}) \subset \Omega$ we have

$$
f(z)=T_{a} f(z), \quad z \in \mathbb{P}(a, \boldsymbol{r}) .
$$

In particular,

$$
f(z)=T_{a} f(z), \quad z \in \mathbb{P}\left(a, d_{\Omega}(a)\right), a \in \Omega
$$

Corollary 1.4.7. Let $D \subset \mathbb{C}^{n}$ be a complete n-circled domain. Then

$$
f(z)=T_{0} f(z), \quad z \in D
$$

Corollary 1.4.8 (Cauchy's inequalities). If $f \in \mathcal{O}(\mathbb{P}(a, \boldsymbol{r})) \cap \mathcal{C}(\overline{\mathbb{P}}(a, \boldsymbol{r}))$, then

$$
\left|D^{\alpha} f(a)\right| \leq \frac{\alpha!}{\boldsymbol{r}^{\alpha}}\|f\|_{\partial_{0} \mathbb{P}(a, \boldsymbol{r})}, \quad \alpha \in \mathbb{N}_{0}^{n}, \quad\left(1^{19}\right)
$$

Similarly as in the case of one complex variable, the following corollary is an easy consequence of the Cauchy inequalities.

Corollary 1.4.9 (Liouville theorem). Let $f \in \mathcal{O}\left(\mathbb{C}^{n}\right), k \in \mathbb{N}_{0}$. Then the following conditions are equivalent:
(i) f is a polynomial of degree $\leq k$;
(ii) $\exists_{C, R_{0}}>0:|f(z)| \leq C\|z\|^{k}$ for $\|z\| \geq R_{0}$.

For $A \subset \mathbb{C}^{n}, \boldsymbol{r} \in \mathbb{R}_{>0}^{n}$, and $r>0$ let

$$
A^{(\boldsymbol{r})}:=\bigcup_{a \in A} \overline{\mathbb{P}}(a, \boldsymbol{r}), \quad A^{(r)}:=A^{(r, \ldots, r)}
$$

Note that if A is compact, then $A^{(\boldsymbol{r})}$ is also compact.

$$
\left({ }^{19}\right)\|f\|_{A}:=\sup _{A}|f| .
$$

Corollary 1.4.10. For arbitrary compact $K \subset \Omega$ and polyradius \boldsymbol{r} such that $K^{(\boldsymbol{r})} \subset \Omega$ we have

$$
\left\|D^{\alpha} f\right\|_{K} \leq \frac{\alpha!}{\boldsymbol{r}^{\alpha}}\|f\|_{\left.K^{(} \boldsymbol{r}\right)}, \quad f \in \mathcal{O}(\Omega), \alpha \in \mathbb{N}_{0}^{n}
$$

Hence, using Corollary 1.4.5, we get
Corollary 1.4.11 (Weierstrass theorem). If $\mathcal{O}(\Omega) \ni f_{\nu} \longrightarrow f$ locally uniformly on Ω, then $f \in \mathcal{O}(\Omega)$ and $D^{\alpha} f_{\nu} \longrightarrow D^{\alpha} f$ locally uniformly on Ω for any $\alpha \in \mathbb{N}_{0}^{n}$.

In other words, we have
Corollary 1.4.12. The space $\mathcal{O}(\Omega)$ endowed with the topology defined by seminorms

$$
\mathcal{O}(\Omega) \ni f \longmapsto\|f\|_{K}, \quad K \subset \subset \Omega
$$

is a Fréchet space such that for arbitrary $\alpha \in \mathbb{N}_{0}^{n}$ the mapping

$$
\mathcal{O}(\Omega) \ni f \longmapsto D^{\alpha} f \in \mathcal{O}(\Omega)
$$

is continuous.
Corollary 1.4.13. (a) Let

$$
\mathcal{H}^{\infty}(\Omega):=\left\{f \in \mathcal{O}(\Omega):\|f\|_{\Omega}<+\infty\right\}
$$

Then $\left(\mathcal{H}^{\infty}(\Omega),\| \|_{\Omega}\right)$ is a Banach algebra.
(b) Assume that Ω is bounded, and let

$$
\mathcal{A}^{k}(\Omega):=\left\{f \in \mathcal{O}(\Omega): \forall_{\alpha \in \mathbb{N}_{0}^{n},|\alpha| \leq k}: \exists_{\varphi_{\alpha} \in \mathcal{C}(\bar{\Omega})}: \varphi_{\alpha}=D^{\alpha} f \text { in } \Omega\right\}, \quad k \in \mathbb{N}_{0} \cup\{\infty\}
$$

Then $\mathcal{A}^{k}(\Omega)$ endowed with the topology defined by seminorms

$$
\mathcal{A}^{k}(\Omega) \ni f \longmapsto\left\|D^{\alpha} f\right\|_{\Omega}, \quad|\alpha| \leq k
$$

is a Fréchet space. If $k<\infty$, then the space $\mathcal{A}^{k}(\Omega)$ endowed with the norm

$$
f \longmapsto \sum_{\alpha \in \mathbb{N}_{0}^{n}:|\alpha| \leq k}\left\|D^{\alpha} f\right\|_{\Omega}
$$

is a Banach space.
Corollary 1.4.5(iii) implies also
Corollary 1.4.14. The composition of holomorphic mappings is holomorphic.
A bijective holomorphic mapping $f: \Omega \longrightarrow \Omega^{\prime}$ (where Ω and Ω^{\prime} are open in \mathbb{C}^{n}) is called biholomorphic if f^{-1} is also holomorphic (cf. Chapter VII).

Corollary 1.4.15 (Inverse mapping theorem). Let $f: \Omega \longrightarrow \mathbb{C}^{n}$ be a holomorphic mapping with $J_{\mathbb{C}} f(a) \neq 0$ for some $a \in \Omega$. Then there exists an open neighborhood U of $a(U \subset \Omega)$ such that $f(U)$ is an open set and $\left.f\right|_{U}: U \longrightarrow f(U)$ is biholomorphic.
Corollary 1.4.16 (Implicit mapping theorem). Let Ω be an open subset of $\mathbb{C}^{n} \times \mathbb{C}^{m}$ and let $f: \Omega \longrightarrow \mathbb{C}^{m}$ be a holomorphic mapping. Assume that

$$
\operatorname{det}\left(\left[\frac{\partial f_{j}}{\partial w_{k}}(a, b)\right]_{j, k=1, \ldots, m}\right) \neq 0
$$

for some $(a, b) \in \Omega$, where $(z, w)=\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{m}\right) \in \mathbb{C}^{n} \times \mathbb{C}^{m}$. Then there exist
an open neighborhood U of a,
an open neighborhood V of $b, U \times V \subset \Omega$,
a holomorphic mapping $\varphi: U \longrightarrow V$,
such that

$$
\{(z, w) \in U \times V: f(z, w)=f(a, b)\}=\{(z, \varphi(z)): z \in U\}
$$

Corollary 1.4.17 (Rank theorem). Let $f: \Omega \longrightarrow \mathbb{C}^{m}$ be holomorphic and such that rank $f^{\prime}(z)=r$ for any $z \in \Omega$. Then for arbitrary $a \in \Omega$ there exist
an open neighborhood U of $a, U \subset \Omega$, an open neighborhood V of $f(a), V \subset \mathbb{C}^{m}$,
biholomorphic mappings $\Phi: \mathbb{D}^{n} \longrightarrow U, \Psi: V \longrightarrow E^{m}$,
such that $\Phi(0)=a, \Psi(f(a))=0, f(U) \subset V$, and

$$
\Psi \circ f \circ \Phi\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{r}, 0, \ldots, 0\right), \quad\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}
$$

Proposition 1.4.18. Let $D \subset \mathbb{C}^{n}$ be a domain and let $f \in \mathcal{O}(D), f \not \equiv$ const. Then f is an open mapping.
Proof. Fix an $a \in D$. By the identity principle, there exists an $X \in \mathbb{C}^{n}$ such that $f_{a, X} \not \equiv$ const in the connected component $S_{a, X}$ of $D_{a, X}$ with $0 \in S_{a, X}$. Consequently, the function $f_{a, X}: S_{a, X} \longrightarrow \mathbb{C}$ is open. Hence $f(a) \in \operatorname{int} f(U)$ for any neighborhood U of a.

Corollary 1.4.19 (Maximum principle). Let $D \subset \mathbb{C}^{n}$ be a domain and let $f \in \mathcal{O}(D), f \not \equiv$ const. Then
(a) $|f|$ does not attain local maxima in D;
(b) if, moreover, D is bounded, then

$$
|f(z)|<\sup _{\zeta \in \partial D}\left\{\limsup _{D \ni z \rightarrow \zeta}|f(z)|\right\}, \quad z \in D
$$

Lemma 1.4.20. For any compact $K \subset \Omega$ and $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ such that $K^{(\boldsymbol{r})} \subset \Omega$ we have

$$
\|f\|_{K} \leq \frac{1}{\left(\pi r_{1}^{2}\right) \ldots\left(\pi r_{n}^{2}\right)} \int_{\left.K^{(} \boldsymbol{r}\right)}|f| d \mathcal{L}^{2 n}, \quad f \in \mathcal{O}(\Omega)
$$

where $\mathcal{L}^{2 n}$ denotes Lebesgue measure in \mathbb{C}^{n}. In particular, for arbitrary $1 \leq p<\infty$ and for arbitrary compact $K \subset \Omega$ there exists a constant $C>0$ such that

$$
\|f\|_{K} \leq C\|f\|_{L^{p}}, \quad f \in L_{h}^{p}(\Omega):=\mathcal{O}(\Omega) \cap L^{p}\left(\Omega, \mathcal{L}^{2 n}\right)
$$

where

$$
\|f\|_{L^{p}}:=\left(\int_{\Omega}|f|^{p} d \mathcal{L}^{2 n}\right)^{1 / p}
$$

Proof. By Cauchy's integral formula, for every $a=\left(a_{1}, \ldots, a_{n}\right) \in K$ we have

$$
\begin{array}{r}
\left(\frac{1}{2} r_{1}^{2}\right) \ldots\left(\frac{1}{2} r_{n}^{2}\right)|f(a)| \leq \int_{0}^{r_{1}} \tau_{1} d \tau_{1} \ldots \int_{0}^{r_{n}} \tau_{n} d \tau_{n} \frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}\left|f\left(a_{1}+\tau_{1} e^{i \theta_{1}}, \ldots, a_{n}+\tau_{n} e^{i \theta_{n}}\right)\right| d \theta_{1} \ldots d \theta_{n} \\
\\
=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{P}(a, \boldsymbol{r})}|f| d \mathcal{L}^{2 n} \leq \frac{1}{(2 \pi)^{n}} \int_{\left.K^{(}\right)}|f| d \mathcal{L}^{2 n}
\end{array}
$$

Corollary 1.4.21. For arbitrary $1 \leq p<\infty\left(L_{h}^{p}(\Omega),\| \|_{L^{p}}\right)$ is a Banach space. The space $L_{h}^{2}(\Omega)$ (with the scalar product induced from $L^{2}\left(\Omega, \mathcal{L}^{2 n}\right)\left(\left(^{20}\right)\right.$ is a Hilbert space.
Lemma 1.4.22. Assume that a family $\mathcal{F} \subset \mathcal{O}(\Omega)$ is locally uniformly bounded in Ω. Then \mathcal{F} is equicontinuous.

Proof. Fix a $\mathbb{P}(a, r) \subset \subset \Omega$. Set $C:=\sup _{f \in \mathcal{F}}\left\{\|f\|_{\mathbb{P}(a, r)}\right\}$. Now, using the Schwarz lemma, similarly as in the proof of Proposition 1.2.3, we obtain

$$
|f(z)-f(a)| \leq \frac{2 C}{r}\left(\left|z_{1}-a_{1}\right|+\cdots+\left|z_{n}-a_{n}\right|\right), \quad f \in \mathcal{F}, z \in \mathbb{P}(a, r)
$$

Having Lemma 1.4.22, we can repeat the proof of the classical (one-dimensional) Montel theorem (cf. 4], Th. VII.2.9) and we obtain

$$
\left({ }^{20}\right)\langle f, g\rangle_{L^{2}}:=\int_{\Omega} f \bar{g} d \mathcal{L}^{2 n}, f, g \in L^{2}\left(\Omega, \mathcal{L}^{2 n}\right)
$$

Corollary 1.4.23 (Montel theorem). Let $\mathcal{F} \subset \mathcal{O}(\Omega)$ be a family locally uniformly bounded in Ω. Then for arbitrary sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{F}$ there exists a subsequence which converges locally uniformly to a holomorphic function on Ω.

Proposition 1.4.24 (Vitali theorem). Let $D \subset \mathbb{C}^{n}$ be a domain and let a sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{O}(D)$ be locally uniformly bounded and pointwise convergent on a non-empty open subset $U \subset D$. Then the sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty}$ is convergent locally uniformly in D.
Proof. Similarly as in the case of one complex variable, the main difficulty is to show that the sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty}$ is pointwise convergent in all of D. Let

$$
D_{0}:=\left\{a \in D: \text { the sequence }\left(f_{\nu}\right)_{\nu=1}^{\infty} \text { is pointwise convergent a neighborhood of } a\right\}
$$

The set D_{0} is non-empty and open. It is sufficient to show that it is closed in D. Fix an accumulation point $b \in D$ of D_{0}. Let $\mathbb{P}(b, r) \subset D$ and $a \in D_{0} \cap \mathbb{P}(b, r)$. For every $X \in \mathbb{C}^{n}, X \neq 0$, the sequence $\left(\left(f_{\nu}\right)_{a, X}\right)_{\nu=1}^{\infty}$, considered on the connected component $S_{a, X}$ of $D_{a, X}$ with $0 \in S_{a, X}$, is locally uniformly bounded and pointwise convergent in $\left(D_{0}\right)_{a, X} \cap S_{a, X}$. It is easy to see that this last set is non-empty (because $a \in D_{0}$) and open. Hence, by the classical one-dimensional Vitali theorem, the sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty}$ is pointwise convergent in $\widetilde{S}_{a, X}:=\left\{a+\lambda X: \lambda \in S_{a, X}\right\}$. Therefore the sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty}$ is pointwise convergent in the set $\bigcup_{X \in \mathbb{C}^{n}} \widetilde{S}_{a, X}$ which is a neighborhood of b.

Recall that, by the Riemann Mapping Theorem (cf. [4, Th. VII.4.2), any simply connected domain $D \nsubseteq \mathbb{C}$ is biholomorphic to the unit disc \mathbb{D}. In other words, if $D \nsubseteq \mathbb{C}$ is a domain, then D and \mathbb{D} are biholomorphically equivalent iff they are topologically equivalent.

It is surprising, but for $n \geq 2$ the above theorem is not true even in the category of bounded convex domains.

Theorem 1.4.25 (Poincaré theorem). For $n \geq 2$ the unit Euclidean ball \mathbb{B}_{n} is not biholomorphic to the unit polydisc \mathbb{D}^{n}.

The proof will be based on the following version of the Schwarz lemma (cf. Exercise 4.1).
Lemma 1.4.26. Let $\left\|\left\|_{1},\right\|\right\|_{2}: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$be arbitrary \mathbb{C}-norms. Put

$$
B_{j}:=\left\{z \in \mathbb{C}^{n}:\|z\|_{j}<1\right\}, \quad j=1,2
$$

and let $F: B_{1} \longrightarrow B_{2}$ be a holomorphic mapping with $F(0)=0$. Then

$$
\|F(z)\|_{2} \leq\|z\|_{1}, \quad z \in B_{1}
$$

Proof. Fix a $z_{0} \in B_{1} \backslash\{0\}$. Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ be a \mathbb{C}-linear functional with $|L| \leq\| \|_{2}$ and $\left|L\left(F\left(z_{0}\right)\right)\right|=$ $\left\|F\left(z_{0}\right)\right\|_{2}$ (use the Hahn-Banach theorem). Consider the holomorphic mapping

$$
\varphi(\lambda):=L\left(F\left(\lambda z_{0}\right)\right), \quad|\lambda|<1 /\left\|z_{0}\right\|_{1}
$$

Then by the classical Schwarz lemma, we obtain

$$
|\varphi(\lambda)| \leq|\lambda|\left\|z_{0}\right\|_{1}, \quad|\lambda|<1 /\left\|z_{0}\right\|_{1}
$$

In particular, if $\lambda=1$, then we get $\left\|F\left(z_{0}\right)\right\|_{2} \leq\left\|z_{0}\right\|_{1}$.
Proof of the Poincaré theorem. Suppose that $f: \mathbb{B}_{n} \longrightarrow \mathbb{D}^{n}$ is biholomorphic. Let $a=\left(a_{1}, \ldots, a_{n}\right):=f(0)$. Define

$$
\mathbb{D}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \stackrel{\Phi}{\longmapsto}\left(\frac{z_{1}-a_{1}}{1-\bar{a}_{1} z_{1}}, \ldots, \frac{z_{n}-a_{n}}{1-\bar{a}_{n} z_{n}}\right) \in \mathbb{D}^{n}
$$

It is easy to see that Φ maps biholomorphically \mathbb{D}^{n} onto \mathbb{D}^{n}. Replacing f by $\Phi \circ f$ we may assume that $f(0)=0$. Put $g=\left(g_{1}, \ldots, g_{n}\right):=f^{-1}: \mathbb{D}^{n} \longrightarrow \mathbb{B}_{n}$. By Lemma 1.4.26, we conclude that $\|g(w)\|=|w|$ for any $w \in \mathbb{D}^{n}$. Thus

$$
\left|g_{1}(w)\right|^{2}+\cdots+\left|g_{n}(w)\right|^{2}=\max \left\{\left|w_{1}\right|^{2}, \ldots,\left|w_{n}\right|^{2}\right\}, \quad w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{D}^{n}
$$

Observe that the left-hand side defines a function of class \mathcal{C}^{∞}, but the right-hand side is even not differentiable (for $n \geq 2$); contradiction.

1.5. Hartogs' theorem

Theorem 1.5.1 (Hartogs' theorem). $\mathcal{O}(\Omega)=\mathcal{O}_{s}(\Omega)$ for an arbitrary open subset $\Omega \subset \mathbb{C}^{n}$.
Remark 1.5.2. Observe that there is no analogous theorem for separately \mathbb{R}-analytic functions $\left({ }^{21}\right)$. For example, let

$$
f\left(x_{1}, x_{2}\right):= \begin{cases}\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

Then f is separately \mathbb{R}-analytic, but is not continuous at $(0,0)$.
The proof of Hartogs' theorem will be based on the following
Lemma 1.5.3 (Hartogs' lemma). Let $f: \mathbb{P}_{n}(r) \longrightarrow \mathbb{C}$ be such that
$f(z, \cdot) \in \mathcal{O}\left(\mathbb{P}_{n-1}(r)\right)$ for arbitrary $z \in K(r)$,
$f \in \mathcal{O}\left(K(r) \times \mathbb{P}_{n-1}(\delta)\right)$ for some $0<\delta<r$.
Then $f \in \mathcal{O}\left(\mathbb{P}_{n}(r)\right)$.
Remark 1.5.4. The lemma is not true without the assumption that $f \in \mathcal{O}\left(K(r) \times \mathbb{P}_{n-1}(\delta)\right)$ for some $0<\delta<r$ (even if f satisfies some additional regularity conditions).

For, let us consider the following counterexample due to Leja (cf. [20]; we are going to construct a function $f \in \mathcal{O}\left(\left(\mathbb{C} \backslash \mathbb{R}_{-}\right) \times \mathbb{C}\right)$ such that $f(z, \cdot) \in \mathcal{O}(\mathbb{C})$ for any $z \in \mathbb{C}$, but f is not holomorphic in any neighborhood of $(0,0))$.

Let

$$
\begin{gathered}
L_{k}:=\bigcup_{x \in \mathbb{R}: x \leq 0} K(x, 1 / k) \subset \mathbb{C}, \\
A_{k}:=\bar{K}(k) \backslash L_{k}, \quad B_{k}:=\bar{K}(k) \cap\left(\bar{L}_{k+1} \backslash L_{k+2}\right), \quad C_{k}:=\bar{K}(k) \cap \bar{L}_{k+3}, \quad k \in \mathbb{N} .
\end{gathered}
$$

Figure 1.5.1

[^4]By the Runge theorem (cf. [4, Th. VIII.1.7) for each $k \in \mathbb{N}$ there exists a polynomial $P_{k} \in \mathcal{P}(\mathbb{C})$ such that

$$
\left|P_{k}(z)\right| \leq 1 / k^{k}, \quad z \in A_{k} \cup C_{k}, \quad\left|P_{k}(z)\right| \geq k^{k}, \quad z \in B_{k}
$$

Let

$$
f(z, w):=\sum_{k=1}^{\infty} P_{k}(z) w^{k}, \quad(z, w) \in \mathbb{C}^{2}
$$

Observe that f is well defined because for any $z \in \mathbb{C}$ there exists a $k_{0}(z) \in \mathbb{N}$ such that $z \in A_{k} \cup C_{k}$ for any $k \geq k_{0}(z)$ and therefore

$$
\left|P_{k}(z) w^{k}\right| \leq(|w| / k)^{k}, \quad k \geq k_{0}(z)
$$

In particular, $f(z, \cdot) \in \mathcal{O}(\mathbb{C})$ for any $z \in \mathbb{C}$.
Moreover, for any $z_{0} \in \mathbb{C} \backslash \mathbb{R}_{-}$there exist $r_{0}>0$ and $k_{0} \in \mathbb{N}$ such that $K\left(z_{0}, r_{0}\right) \subset A_{k}$ for $k \geq k_{0}$. Hence

$$
\left|P_{k}(z) w^{k}\right| \leq(|w| / k)^{k}, \quad(z, w) \in K\left(z_{0}, r_{0}\right) \times \mathbb{C}, k \geq k_{0}
$$

and consequently, by the Weierstrass theorem, $f \in \mathcal{O}\left(\left(\mathbb{C} \backslash \mathbb{R}_{-}\right) \times \mathbb{C}\right)$.
Suppose that f is bounded in a neighborhood of $(0,0)$. Let $|f(z, w)| \leq C$ for $(z, w) \in P_{2}(r)$. Then, by the Cauchy inequalities, we get

$$
\left|P_{k}(z)\right| \leq C / r^{k}, \quad k \in \mathbb{N}, z \in K(r)
$$

Consequently, taking $z \in B_{k} \cap K(r)$ with $k \gg 1$, we get

$$
k^{k} \leq\left|P_{k}(z)\right| \leq C / r^{k}, \quad k \gg 1
$$

contradiction.
Proof that Lemma 1.5.3 implies Theorem 1.5.1. We use induction with respect to n. For $n=1$ the theorem is trivial.
$n-1 \rightsquigarrow n$. Fix an $\Omega \subset \mathbb{C}^{n}=\mathbb{C} \times \mathbb{C}^{n-1}$ and $f \in \mathcal{O}_{s}(\Omega)$.

Figure 1.5.2

It is sufficient to show that f is holomorphic in a neighborhood of an arbitrary point $\left(z_{0}, w_{0}\right) \in \Omega$. Let $\mathbb{P}_{n}\left(\left(z_{0}, w_{0}\right), 2 r\right) \subset \Omega$, and let

$$
A_{k}:=\left\{w \in \overline{\mathbb{P}}_{n-1}\left(w_{0}, r\right): \forall_{z \in K\left(z_{0}, r\right)}:|f(z, w)| \leq k\right\}
$$

Clearly $A_{k} \subset A_{k+1}$. Since $f(z, \cdot) \in \mathcal{C}\left(\mathbb{P}_{n-1}\left(w_{0}, 2 r\right)\right)$ for arbitrary $z \in K\left(z_{0}, 2 r\right)$ (the inductive assumption), the sets A_{k} are closed. Since $f(\cdot, w) \in \mathcal{C}\left(K\left(z_{0}, 2 r\right)\right)$ for any $w \in \overline{\mathbb{P}}_{n-1}\left(w_{0}, r\right)$, we get $\bigcup_{k \in \mathbb{N}} A_{k}=\overline{\mathbb{P}}_{n-1}\left(w_{0}, r\right)$. Using Baire's property we conclude that int $A_{k_{0}} \neq \varnothing$ for some k_{0}. Let $\mathbb{P}_{n-1}\left(\xi_{0}, \delta\right) \subset A_{k_{0}}$. In particular, by

Osgood's theorem (Proposition 1.2.3), $f \in \mathcal{O}\left(K\left(z_{0}, r\right) \times \mathbb{P}_{n-1}\left(\xi_{0}, \delta\right)\right)$. Now we apply Lemma 1.5 .3 to the function

$$
\mathbb{P}_{n}(r) \ni(z, w) \longmapsto f\left(z_{0}+z, \xi_{0}+w\right)
$$

and we conclude that $f \in \mathcal{O}\left(\mathbb{P}_{n}\left(\left(z_{0}, \xi_{0}\right), r\right)\right)$. It remains to observe that $\left(z_{0}, w_{0}\right) \in \mathbb{P}_{n}\left(\left(z_{0}, \xi_{0}\right), r\right)$.
Proof of Lemma 1.5.3. Observe that it is sufficient to show that $f \in \mathcal{O}\left(\mathbb{P}_{n}\left(r^{\prime}\right)\right)$ for arbitrary $0<r^{\prime}<r$. Thus we may assume that $|f| \leq c<+\infty$ in $K(r) \times \mathbb{P}_{n-1}(\delta)$ and that $f(z, \cdot)$ is bounded for any $z \in \mathbb{P}_{n-1}(r)$. We have

$$
f(z, w)=\sum_{\beta \in \mathbb{N}_{0}^{n-1}} f_{\beta}(z) w^{\beta}, \quad z \in K(r), w \in \mathbb{P}_{n-1}(r)
$$

where

$$
f_{\beta}(z)=\frac{1}{\beta!}\left(D^{\beta} f(z, \cdot)\right)(0)=\frac{1}{\beta!}\left(D^{(0, \beta)} f\right)(z, 0), \quad \beta \in \mathbb{N}_{0}^{n-1}, z \in K(r)
$$

The last equality follows from the fact that $f \in \mathcal{O}\left(K(r) \times \mathbb{P}_{n-1}(\delta)\right)$. In particular, $f_{\beta} \in \mathcal{O}(K(r))$ for arbitrary β. Moreover, by Cauchy's inequalities, we obtain

$$
\left|f_{\beta}\right| \leq \frac{1}{\delta^{|\beta|}} c, \quad \beta \in \mathbb{N}_{0}^{n-1}
$$

Applying once more Cauchy's inequalities (for the function $f(z, \cdot)$), we have

$$
\left|f_{\beta}(z)\right| \leq \frac{1}{r^{|\beta|}}\|f(z, \cdot)\|_{\mathbb{P}_{n-1}(r)}, \quad \beta \in \mathbb{N}_{0}^{n-1}, z \in K(r)
$$

and so

$$
\limsup _{|\beta| \rightarrow+\infty}\left|f_{\beta}(z)\right|^{1 /|\beta|} \leq \frac{1}{r}, \quad z \in K(r)
$$

We need now the following auxiliary
Lemma 1.5.5. Let $\Omega \subset \mathbb{C}$ be open, $\varphi_{\nu} \in \mathcal{O}(\Omega)$, $p_{\nu}>0$, $\nu \geq 1$. Assume that the sequence $\left(\left|\varphi_{\nu}\right|^{p_{\nu}}\right)_{\nu=1}^{\infty}$ is locally uniformly bounded in Ω and

$$
\limsup _{\nu \rightarrow+\infty}\left|\varphi_{\nu}(z)\right|^{p_{\nu}} \leq m, \quad z \in \Omega
$$

Then for any $K \subset \subset \Omega$ and $\varepsilon>0$ there exists a ν_{0} such that

$$
\left|\varphi_{\nu}\right|^{p_{\nu}} \leq m+\varepsilon \text { on } K \text { for } \nu \geq \nu_{0} .\left({ }^{22}\right)
$$

Assume for the moment that the lemma is true, and let us finish the main proof.
Write $\mathbb{N}_{0}^{n-1}=\left\{\beta_{1}, \beta_{2}, \ldots\right\}$ so that $\left|\beta_{\nu}\right| \leq\left|\beta_{\nu+1}\right|, \nu=1,2, \ldots$ Let $\Omega:=K(r), \varphi_{\nu}:=f_{\beta_{\nu}}, p_{\nu}:=1 /\left|\beta_{\nu}\right|$, $m:=1 / r$. It is easy to see that all the assumptions of Lemma 1.5.5 are satisfied. Fix a $\theta \in(0,1)$ and let $\varepsilon>0$ be such that $(1+r \varepsilon) \theta<1$. Applying Lemma 1.5 .5 to the compact $K:=\bar{K}(\theta r)$ we obtain $\left|\varphi_{\nu}(z)\right|^{p_{\nu}} \leq 1 / r+\varepsilon$ for $z \in \bar{K}(\theta r)$ and $\nu \geq \nu_{0}$. This means that

$$
\left|f_{\beta}(z)\right| \leq\left(\frac{1}{r}+\varepsilon\right)^{|\beta|}, \quad z \in K(\theta r),|\beta| \gg 1
$$

Hence

$$
\left|f_{\beta}(z) w^{\beta}\right| \leq[(1+r \varepsilon) \theta]^{|\beta|}, \quad z \in K(\theta r), w \in \mathbb{P}_{n-1}(\theta r),|\beta| \gg 1
$$

Consequently, the series

$$
\sum_{\beta \in \mathbb{N}_{0}^{n-1}} f_{\beta}(z) w^{\beta}
$$

is convergent normally in $\mathbb{P}_{n}(\theta r)$, which by the Weierstrass theorem (Corollary 1.4.11) implies that $f \in$ $\mathcal{O}\left(\mathbb{P}_{n}(\theta r)\right)$. Since θ was arbitrary, we get $f \in \mathcal{O}\left(\mathbb{P}_{n}(r)\right)$.
$\left({ }^{22}\right)$ Lemma 1.5 .5 will be generalized in Proposition 3.2 .20

Proof of Lemma 1.5.5. The result is local - it is sufficient to show that for any $\varepsilon>0$ and $a \in \Omega$ there exist a disc $K(a, \delta) \subset \Omega$ and ν_{0} such that

$$
\sup _{K(a, \delta)}\left\{\left|\varphi_{\nu}\right|^{p_{\nu}}\right\} \leq m+\varepsilon, \quad \nu \geq \nu_{0}
$$

We may assume that $\Omega=K(2), a=0$. Let $c>0$ be such that $\left|\varphi_{\nu}\right|^{p_{\nu}} \leq c$ in \mathbb{D} for arbitrary ν. We may also assume that $\varphi_{\nu} \not \equiv 0, \nu \geq 1$. Denote by $a_{\nu, 1}, \ldots, a_{\nu, \mu(\nu)}$ the zeros of φ_{ν} in the disc \mathbb{D} counted with multiplicities (if φ_{ν} has zeros in \mathbb{D}). Define

$$
B_{\nu}(z):= \begin{cases}\prod_{j=1}^{\mu(\nu)} \frac{z-a_{\nu, j}}{1-\bar{a}_{\nu, j} z}, & \text { if } \varphi_{\nu} \text { has zeros in } \mathbb{D} \\ 1, & \text { otherwise }\end{cases}
$$

and let $\psi_{\nu}:=\varphi_{\nu} / B_{\nu}$. Observe that $\left|B_{\nu}\right| \leq 1$ in \mathbb{D}, and that $\left|B_{\nu}\right|=1$ in \mathbb{T}. The function ψ_{ν} has no zeros in \mathbb{D}. In particular, it admits a branch χ_{ν} of the p_{ν}-th power in \mathbb{D}. Given arbitrary $\zeta \in \mathbb{T}$, we have

$$
\limsup _{\mathbb{D} \ni z \rightarrow \zeta}\left|\chi_{\nu}(z)\right|=\limsup _{\mathbb{D} \ni z \rightarrow \zeta}\left|\psi_{\nu}(z)\right|^{p_{\nu}}=\limsup _{\mathbb{D} \ni z \rightarrow \zeta}\left|\varphi_{\nu}(z)\right|^{p_{\nu}} \leq c
$$

and so $\left|\chi_{\nu}\right| \leq c$ in \mathbb{D} for arbitrary ν. This means in particular that the family $\left(\chi_{\nu}\right)_{\nu=1}^{\infty}$ is equicontinuous in \mathbb{D}. Fix an $\varepsilon>0$ and let $0<\delta<1$ be such that $\left|\chi_{\nu}(z)-\chi_{\nu}(0)\right| \leq \varepsilon / 2$ for $z \in \bar{K}(\delta)$ and $\nu \geq 1$. Then

$$
\left|\varphi_{\nu}(z)\right|^{p_{\nu}}=\left|B_{\nu}(z) \psi_{\nu}(z)\right|^{p_{\nu}} \leq\left|\psi_{\nu}(z)\right|^{p_{\nu}}=\left|\chi_{\nu}(z)\right| \leq \varepsilon / 2+\left|\chi_{\nu}(0)\right|, \quad z \in \bar{K}(\delta), \nu \geq 1
$$

It remains to estimate $\chi_{\nu}(0)$. Since

$$
\left|\chi_{\nu}(0)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\chi_{\nu}\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|\varphi_{\nu}\left(r e^{i \theta}\right)\right|^{p_{\nu}}}{\left|B_{\nu}\left(r e^{i \theta}\right)\right|^{p_{\nu}}} d \theta, \quad 0<r<1
$$

the Lebesgue dominated convergence theorem (recall that $\left|\chi_{\nu}\left(r e^{i \theta}\right)\right| \leq c$ and $\left|\chi_{\nu}\left(r e^{i \theta}\right)\right| \longrightarrow\left|\varphi_{\nu}\left(e^{i \theta}\right)\right|^{p_{\nu}}$ as $r \longrightarrow 1)$ gives

$$
\left|\chi_{\nu}(0)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi_{\nu}\left(e^{i \theta}\right)\right|^{p_{\nu}} d \theta, \quad \nu \geq 1
$$

Let

$$
A_{k}:=\left\{\theta \in[0,2 \pi]:\left|\varphi_{\nu}\left(e^{i \theta}\right)\right|^{p_{\nu}} \leq m+\varepsilon / 4, \nu \geq k\right\}
$$

The sets A_{k} are closed, $A_{k} \subset A_{k+1}$, and $\bigcup_{k \in \mathbb{N}} A_{k}=[0,2 \pi]\left({ }^{23}\right)$. In particular, $\mathcal{L}^{1}\left(A_{k}\right) \longrightarrow 2 \pi$. For $\nu \geq k$ we have

$$
\left|\chi_{\nu}(0)\right| \leq \frac{1}{2 \pi}\left(\int_{A_{k}}+\int_{[0,2 \pi] \backslash A_{k}}\right)\left|\varphi_{\nu}\left(e^{i \theta}\right)\right|^{p_{\nu}} d \theta \leq \frac{1}{2 \pi}\left[(m+\varepsilon / 4) \mathcal{L}^{1}\left(A_{k}\right)+c\left(2 \pi-\mathcal{L}^{1}\left(A_{k}\right)\right)\right]
$$

Hence $\left|\chi_{\nu}(0)\right| \leq m+\varepsilon / 2$ for ν large enough.
Proposition 1.5.6 (Hartogs' lemma). Let G be a domain in \mathbb{C}^{n-k} and let D be a domain in $G \times \mathbb{C}^{k}$ such that for each $z \in G$ the fiber

$$
D_{z}:=\left\{w \in \mathbb{C}^{k}:(z, w) \in D\right\}
$$

is connected. Assume that $f: D \longrightarrow \mathbb{C}$ is such that:
$f(z, \cdot) \in \mathcal{O}\left(D_{z}\right), z \in G$,
$f \in \mathcal{O}(U)$, where $U \subset D$ is an open set such that $U_{z} \neq \varnothing$ for any $z \in G$.
Then $f \in \mathcal{O}(D)$.
Proof. First, we consider the case where $G:=\mathbb{D}^{n-k}, D:=\mathbb{D}^{n}, U:=\mathbb{D}^{n-k} \times(\delta \mathbb{D})^{k}(0<\delta<1)$.
The case $n-k=1$ reduces to Lemma 1.5.3.
Assume that $n-k \geq 2$. By virtue of Hartogs' theorem, it suffices to prove that $f \in \mathcal{O}_{s}\left(\mathbb{D}^{n}\right)$. In view of $(*)$ we only need to check that $f(\cdot, w) \in \mathcal{O}_{s}\left(\mathbb{D}^{n-k}\right)$. Fix a $z_{0} \in \mathbb{D}^{n-k}$ and $j \in\{1, \ldots, n-k\}$. Define

$$
g(\zeta, w):=f\left(z_{0,1}, \ldots, z_{0, j-1}, \zeta, z_{0, j+1}, \ldots, z_{0, n-k}, w\right), \quad(\zeta, w) \in \mathbb{D} \times \mathbb{D}^{k}
$$

$\left({ }^{23}\right)$ Because $\lim \sup _{\nu \rightarrow+\infty}\left|\varphi_{\nu}\right|^{p_{\nu}} \leq m$.

Then g satisfies all the assumptions of the lemma with $n=k+1$. Consequently, $g \in \mathcal{O}\left(\mathbb{D} \times \mathbb{D}^{k}\right)$, which shows that f is holomorphic as a function of z_{j}.

In the general case let \widetilde{D} denote the maximal open subset of D such that $f \in \mathcal{O}(\widetilde{D})$. Obviously $U \subset \widetilde{D}$. Suppose that $\widetilde{D}_{z_{0}} \nsubseteq D_{z_{0}}$ for some $z_{0} \in G$. Since $\varnothing \neq U_{z_{0}} \subset \widetilde{D}_{z_{0}}$ and $D_{z_{0}}$ is connected, there exists a $w_{0} \in \widetilde{D}_{z_{0}}$ such that $d_{\widetilde{D}_{z_{0}}}\left(w_{0}\right)<d_{D_{z_{0}}}\left(w_{0}\right)$. Take an $r>0$ such that $d_{\widetilde{D}_{z_{0}}}\left(w_{0}\right)<r<d_{D_{z_{0}}}\left(w_{0}\right)$ and let $0<\varepsilon<r$ be such that

$$
\mathbb{P}_{n-k}\left(z_{0}, \varepsilon\right) \times \mathbb{P}_{k}\left(w_{0}, r\right) \subset D, \quad \mathbb{P}_{n-k}\left(z_{0}, \varepsilon\right) \times \mathbb{P}_{k}\left(w_{0}, \varepsilon\right) \subset \widetilde{D}
$$

Define

$$
g(z, w):=f\left(z_{0}+\varepsilon z, w_{0}+r w\right), \quad(z, w) \in \mathbb{D}^{n-k} \times \mathbb{D}^{k}
$$

Then, by the first part of the proof (with $\delta:=\varepsilon / r), g \in \mathcal{O}\left(\mathbb{D}^{n}\right)$. Consequently, $f \in \mathcal{O}\left(P_{n-k}\left(z_{0}, \varepsilon\right) \times P_{k}\left(w_{0}, r\right)\right)$; contradiction.

Corollary 1.5.7. Let $G_{j} \subset \widetilde{G}_{j} \subset \mathbb{C}^{n_{j}}$ be domains such that $\mathcal{O}\left(G_{j}\right)=\left.\mathcal{O}\left(\widetilde{G}_{j}\right)\right|_{G_{j}}, j=1,2$. Then $\mathcal{O}\left(\widetilde{G}_{1} \times\right.$ $\left.\widetilde{G}_{2}\right)\left.\right|_{G_{1} \times G_{2}}=\mathcal{O}\left(G_{1} \times G_{2}\right)$.
Proof. Let $f \in \mathcal{O}\left(G_{1} \times G_{2}\right)$. For any $w \in G_{2}$ the function $f(\cdot, w)$ extends to a function $\widetilde{f(\cdot, w)} \in \mathcal{O}\left(\widetilde{G}_{1}\right)$. Define $g(z, w):=\widetilde{f(\cdot, w)}(z),(z, w) \in \widetilde{G}_{1} \times G_{2}$. Then, by Proposition 1.5.6 g is holomorphic.

Now, for any $z \in \widetilde{G}_{1}$ the function $g(z, \cdot)$ extends holomorphically to $g(z, \cdot) \in \mathcal{O}\left(\widetilde{G}_{2}\right)$. The same argument as above shows that the function $\widetilde{f}(z, w):=\widetilde{g(z, \cdot)}(w),(z, w) \in \widetilde{G}_{1} \times \widetilde{G}_{2}$, is holomorphic on $\widetilde{G}_{1} \times \widetilde{G}_{2}$.

1.6. Special domains

Recall (Corollary 1.4.7) that if $D \subset \mathbb{C}^{n}$ is a complete n-circled domain, then any function $f \in \mathcal{O}(D)$ can be represented by the power series

$$
f(z)=\sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{1}{\alpha!} D^{\alpha} f(0) z^{\alpha}, \quad z \in D
$$

Moreover, the series is locally normally convergent in D.
Consider a more general case where D is balanced (i.e. $\overline{\mathbb{D}} \cdot D=D$). Let h_{D} denote the Minkowski functional of D, i.e.

$$
h_{D}(z):=\inf \left\{t>0: \frac{z}{t} \in D\right\}, \quad z \in \mathbb{C}^{n}
$$

Lemma 1.6.1. (a) If $D \subset \mathbb{C}^{n}$ is a balanced domain and $h:=h_{D}$, then

$$
\begin{gather*}
h(\lambda z)=|\lambda| h(z), \quad \lambda \in \mathbb{C}, z \in \mathbb{C}^{n}, \tag{1.6.1}\\
D=\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}, \tag{1.6.2}
\end{gather*}
$$

h is upper semicontinuous on \mathbb{C}^{n}.
Conversely, if $h: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$satisfies (1.6.1) and (1.6.3), then the set D given by (1.6.2 is a balanced domain.
(b) If D is a complete n-circled domain and $h:=h_{D}$, then

$$
\begin{gather*}
h\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right) \leq h(z), \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{D}}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, \tag{1.6.4}\\
h\left(e^{i \theta_{1}} z_{1}, \ldots, e^{i \theta_{n}} z_{n}\right)=h(z), \theta_{1}, \ldots, \theta_{n} \in \mathbb{R}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, \tag{1.6.5}\\
h \text { is continuous. }
\end{gather*}
$$

Conversely, if h satisfies (1.6.1), 1.6.3, and 1.6.4, then the set D given by 1.6.2 is a complete n-circled domain.

In particular, if h satisfies (1.6.1), (1.6.3), and (1.6.4), then h is continuous.

Proof. (a) Property (1.6.1) is a direct consequence of the definition of the Minkowski functional.
It is clear that $\{h<1\} \subset D$. Take an $a \in D \backslash\{0\}$ and let $0<\theta<1$ be such that $a / \theta \in D$ (D is open). Then $h(a / \theta) \leq 1$, which gives $h(a)=\theta h(a / \theta) \leq \theta<1$. Thus 1.6.2 is proved.

Take an $a \in \mathbb{C}^{n}$. To prove that h is upper semicontinuous at a we have to prove that for any $C>h(a)$ there exists a neighborhood U of a such that $h<C$ in U. Observe that $b:=a / C \in D$. Let V be a neighborhood of b with $V \subset D$. Put $U:=C V$. Then, for $z \in U$ we have $h(z)=C h(z / C)<C$.
(b) The proof of 1.6 .4 is elementary. Property 1.6 .5 follows directly from 1.6.4.

To prove that h is continuous it suffices to show that h is lower semicontinuous at any point $a \in \mathbb{C}^{n}$ such that $h(a)>0$. Fix such an $a=\left(a_{1}, \ldots, a_{n}\right)$. We may assume that $a_{1} \cdots a_{s} \neq 0, a_{s+1}=\cdots=a_{n}=0$ for some $1 \leq s \leq n$. Fix a $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, put

$$
m:=\min \left\{\left|\frac{z_{\nu}}{a_{\nu}}\right|: j=1, \ldots, s\right\}
$$

and let $\lambda_{j} \in \overline{\mathbb{D}}$ be such that

$$
\lambda_{j} \frac{z_{j}}{a_{j}}=m, \quad j=1, \ldots, s
$$

Then conditions 1.6.1 and 1.6.4 give

$$
m h(a)=h\left(m a_{1}, \ldots, m a_{s}, 0, \ldots, 0\right)=h\left(\lambda_{1} z_{1}, \ldots, \lambda_{s} z_{s}, 0 z_{s+1}, \ldots, 0 z_{n}\right) \leq h(z)
$$

Consequently,

$$
\min \left\{\left|\frac{z_{\nu}}{a_{\nu}}\right|: j=1, \ldots, s\right\} h(a) \leq h(z), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

which implies the lower semicontinuity of h at a.
Proposition 1.6.2. Let $D \subset \mathbb{C}^{n}$ be a balanced domain and let $f \in \mathcal{O}(D)$. Then

$$
\begin{equation*}
f(z)=\sum_{\nu=0}^{\infty} Q_{\nu}(z), \quad z \in D \tag{1.6.6}
\end{equation*}
$$

where

$$
\left.Q_{\nu}(z):=\sum_{\alpha \in \mathbb{N}_{0}^{n}:|\alpha|=\nu} \frac{1}{\alpha!} D^{\alpha} f(0) z^{\alpha} . \quad{ }^{24}\right)
$$

Moreover, for any compact $K \subset D$ there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\left|Q_{\nu}(z)\right| \leq C \theta^{\nu}, \quad z \in K, \nu \in \mathbb{N}_{0}
$$

In particular, the series converges locally normally in D.
Proof. Let $h:=h_{D}$. Take an $a \in D \backslash\{0\}$. The function

$$
\left.K(1 / h(a)) \ni \lambda \stackrel{\varphi_{a}}{\longmapsto} f(\lambda a) \quad{ }^{25}\right)
$$

is holomorphic. Hence

$$
f(a)=\varphi_{a}(1)=\sum_{\nu=0}^{\infty} \frac{1}{\nu!} \varphi_{a}^{(\nu)}(0)=\sum_{\nu=0}^{\infty} Q_{\nu}(a)
$$

Thus the formula 1.6 .6 is true (and the series is pointwise convergent in D). It remains to prove the estimate.

Take a compact $K \subset D$. Let $\theta \in(0,1)$ be such that

$$
L:=\{\lambda z:|\lambda| \leq 1 / \theta, z \in K\} \subset D
$$

Then, for any $a \in K$, by Cauchy's inequalities, we get

$$
\left|Q_{\nu}(a)\right|=\frac{1}{\nu!}\left|\varphi_{a}^{(\nu)}(0)\right| \leq\left\|\varphi_{a}\right\|_{K(1 / \theta)} \theta^{\nu} \leq\|f\|_{L} \theta^{\nu}, \quad \nu \in \mathbb{N}_{0}
$$

${ }^{(24)}$) Observe that $Q_{\nu}: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ is a homogeneous polynomial of degree ν.
$\left({ }^{25}\right) K(1 / 0):=\mathbb{C}$.

Definition 1.6.3. Let D be a domain in \mathbb{C}^{n}, let $1 \leq k \leq n-1$, and let G denote the projection of D onto $\mathbb{C}^{n-k}, G:=\pi(D)$, where

$$
\mathbb{C}^{n-k} \times \mathbb{C}^{k} \ni(z, w) \stackrel{\pi}{\longmapsto} z \in \mathbb{C}^{n-k}
$$

We say that D is a Hartogs domain over G with k-dimensional balanced fibers if for any $z \in G$ the fiber

$$
D_{z}:=\left\{w \in \mathbb{C}^{k}:(z, w) \in D\right\}
$$

is balanced.
If D_{z} is complete k-circled for any $z \in G$, then we say that D is a Hartogs domain over G with complete k-circled fibers. Of course, if $k=1$, then there is no difference between Hartogs domains with 1-dimensional balanced fibers and Hartogs domains with complete 1 -circled fibers $\left[{ }^{26}\right)$ in this case we simply say that D is a complete Hartogs domain over G.

If D_{z} is only k-circled for any $z \in G$, then D is called a Hartogs domain over G with k-circled fibers (we point out that we do not assume that D_{z} is connected). If $k=1$, then we shortly say D is a Hartogs domain over G.

Figure 1.6.1

Remark 1.6.4. (a) Let D be a Hartogs domain over G with k-dimensional balanced fibers. Define

$$
H(z, w)=H_{D}(z, w):=h_{D_{z}}(w), \quad(z, w) \in G \times \mathbb{C}^{k},
$$

where $h_{D_{z}}$ is the Minkowski functional of $D_{z}, z \in G$. Observe that

$$
\begin{gather*}
D=\left\{(z, w) \in G \times \mathbb{C}^{k}: H(z, w)<1\right\}, \tag{1.6.7}\\
H(z, \lambda w)=|\lambda| H(z, w), \quad(z, w) \in G \times \mathbb{C}^{k}, \tag{1.6.8}
\end{gather*}
$$

H is upper semicontinuous on $G \times \mathbb{C}^{k}$.
To prove that H is upper semicontinuous we can argue as in the proof of Lemma 1.6.1 (a): if $H\left(z_{0}, w_{0}\right)<C$, then $\left(z_{0}, w_{0} / C\right) \in D$. Hence there exists a neighborhood V of $\left(z_{0}, w_{0} / C\right)$ such that $V \subset D$. Put $U:=$ $\{(z, C w):(z, w) \in V\}$. Then U is a neighborhood of $\left(z_{0}, w_{0}\right)$ and $H<C$ in U.

Conversely, if a function $H: G \times \mathbb{C}^{k} \longrightarrow \mathbb{R}_{+}$satisfies (1.6.8) and (1.6.9), then the set D given by (1.6.7) is a Hartogs domain over G with k-dimensional balanced fibers.
$\left({ }^{26}\right)$ If $k=1$, then $D_{z}=\mathbb{C}$ or $D_{z}=K(R(z))$ for some $R(z)>0$.

1. Holomorphic functions

(b) D is a Hartogs domain over G with complete k-circled fibers iff the function $H=H_{D}$ from (a) satisfies additionally the following condition

$$
H\left(z, \lambda_{1} w_{1}, \ldots, \lambda_{k} w_{k}\right) \leq H(z, w), \quad \lambda_{1}, \ldots, \lambda_{k} \in \overline{\mathbb{D}}, z \in G, w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{C}^{k}
$$

(c) In particular, if $k=1$, then D is a complete Hartogs domain over G iff

$$
D=\left\{(z, w) \in G \times \mathbb{C}:|w|<e^{-u(z)}\right\}
$$

where $u: G \longrightarrow[-\infty,+\infty)$ is upper semicontinuous $\left({ }^{27}\right)$
(d) If $k=1$, then D is a Hartogs domain over G such that D_{z} is an annulus $\left({ }^{28}\right)$ for any $z \in G$ iff

$$
D=\left\{(z, w) \in G \times \mathbb{C}: e^{v(z)}<|w|<e^{-u(z)}\right\}
$$

where $v, u: G \longrightarrow[-\infty,+\infty)$ are upper semicontinuous and such that $v(z)+u(z)<0$ for any $z \in G$. Hartogs domains of the above type are sometimes called Hartogs-Laurent domains over G.

Proposition 1.6.5. (a) Let D be a Hartogs domain over G with complete k-circled fibers. Then any $f \in$ $\mathcal{O}(D)$ can be represented by the Hartogs series

$$
f(z, w)=\sum_{\beta \in \mathbb{N}_{0}^{k}} f_{\beta}(z) w^{\beta}, \quad(z, w) \in D
$$

where

$$
f_{\beta}(z):=\frac{1}{\beta!} D^{(0, \beta)} f(z, 0), \quad z \in G, \beta \in \mathbb{N}_{0}^{k}
$$

Moreover, for any compact $K \subset D$ there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\left|f_{\beta}(z) w^{\beta}\right| \leq C \theta^{|\beta|}, \quad(z, w) \in K, \beta \in \mathbb{N}_{0}^{k}
$$

In particular, the series converges locally normally in D.
(b) If D is a Hartogs domain over G with k-dimensional balanced fibers, then any $f \in \mathcal{O}(D)$ can be represented by the Hartogs series

$$
f(z, w)=\sum_{\nu=0}^{\infty} Q_{\nu}(z, w), \quad(z, w) \in D
$$

where

$$
\begin{equation*}
Q_{\nu}(z, w):=\sum_{|\beta|=\nu} \frac{1}{\beta!} D^{(0, \beta)} f(z, 0) w^{\beta}, \quad(z, w) \in G \times \mathbb{C}^{k}, \nu \in \mathbb{N}_{0} \tag{}
\end{equation*}
$$

Moreover, for any compact $K \subset D$ there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\left|Q_{\nu}(z, w)\right| \leq C \theta^{\nu}, \quad(z, w) \in K, \nu \in \mathbb{N}_{0} .
$$

In particular, the series converges locally normally in D.
The case of Hartogs domains with k-circled fibers will be considered in Proposition 2.6.3.
Proof. In virtue of Corollary 1.4 .7 and Proposition 1.6.2 we only need to check the estimates. Take a compact $K \subset D$.
(a) Let $\theta \in(0,1)$ be such that

$$
L:=\left\{\left(z, \lambda_{1} w_{1}, \ldots, \lambda_{k} w_{k}\right):\left(z, w_{1}, \ldots, w_{k}\right) \in K,\left|\lambda_{j}\right| \leq 1 / \theta, j=1, \ldots, k\right\} \subset D
$$

Now, if $(z, w) \in K$, then by Cauchy's inequalities we get

$$
\left|f_{\beta}(z) w^{\beta}\right| \leq\|f\|_{L} \theta^{|\beta|}, \quad \beta \in \mathbb{N}_{0}^{k}
$$

(b) We argue as in the proof of Proposition 1.6.2. Let $\theta \in(0,1)$ be such that

$$
L:=\{(z, \lambda w):(z, w) \in K,|\lambda| \leq 1 / \theta\} \subset D .
$$

$\left.{ }^{27}\right) u=\log H(\cdot, 1)$.
(28) That is, $D_{z}=\{w \in \mathbb{C}: r(z)<|w|<R(z)\}$ for some $0 \leq r(z)<R(z) \leq+\infty$.
$\left({ }^{29}\right)$ Notice that $Q_{\nu} \in \mathcal{O}\left(G \times \mathbb{C}^{k}\right)$ and $Q_{\nu}(z, \cdot)$ is a homogeneous polynomial of degree ν.

Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
1.7. Weierstrass Preparation and Division Theorems

Then, by Cauchy's inequalities, we get

$$
\left|Q_{\nu}(z, w)\right| \leq\|f\|_{L} \theta^{\nu}, \quad(z, w) \in K, \nu \in \mathbb{N}_{0}
$$

1.7. Weierstrass Preparation and Division Theorems

If f is a function holomorphic in a connected neighborhood of $0 \in \mathbb{C}$ with $f(0)=0, f \not \equiv 0$, then f has a unique decomposition $f=z^{p} g$, where g is holomorphic and $g(0) \neq 0$. The aim of this section is to generalize the above result to the case of several variables.

Definition 1.7.1. Any function W of the form

$$
W\left(z^{\prime}, z_{n}\right)=z_{n}^{p}+\sum_{j=1}^{p} W_{j}\left(z^{\prime}\right) z_{n}^{p-j}
$$

where W_{j} is holomorphic in a neighborhood of $0^{\prime} \in \mathbb{C}^{n-1}$ and $W_{j}\left(0^{\prime}\right)=0, j=1, \ldots, p$, is called a Weierstrass polynomial of degree p with center at $0 \in \mathbb{C}^{n} \cdot\left({ }^{30}\right)$

Note that if W is a Weierstrass polynomial of degree p, then $W\left(0^{\prime}, z_{n}\right)=z_{n}^{p}$, and so $W\left(0^{\prime}, \cdot\right)$ has a zero of order p at $z_{n}=0$.

Theorem 1.7.2 (Weierstrass Preparation Theorem). Let U_{0} be a neighborhood of $0 \in \mathbb{C}^{n}$ and let $f \in \mathcal{O}\left(U_{0}\right)$ be such that the function $f\left(0^{\prime}, \cdot\right)$ has a zero of order p at $z_{n}=0$. Then there exists a polydisc $P, 0 \in P \subset U_{0}$, such that the function f has in P a unique decomposition $f=h \cdot W$, where $h, W \in \mathcal{O}(P), h(z) \neq 0, z \in P$, and W is a Weierstrass polynomial of degree p.

The Weierstrass Preparation Theorem will be a consequence of the following theorem.
Theorem 1.7.3 (Weierstrass Division Theorem). Let U_{0} be a neighborhood of $0 \in \mathbb{C}^{n}$ and let $f \in \mathcal{O}\left(U_{0}\right)$ be such that the function $f\left(0^{\prime}, \cdot\right)$ has a zero of order p at $z_{n}=0$. Then there exist a polydisc $P=\mathbb{P}(\varrho) \subset U_{0}$ and a constant $c>0$ such that any function $g \in \mathcal{H}^{\infty}(P)$ has in P a unique decomposition $g=q \cdot f+r$, where $q \in \mathcal{O}(P), r \in \mathcal{O}\left(\mathbb{P}_{n-1}\left(\varrho^{\prime}\right)\right)\left[Z_{n}\right]{\left({ }^{31}\right)}, \operatorname{deg}_{Z_{n}} r<p$, and $\|q\|_{P} \leq c\|g\|_{P}$.
Proof that the Weierstrass Division Theorem implies the Weierstrass Preparation Theorem. Let $P=\mathbb{P}(\varrho) \subset$ U_{0} be as in the Weierstrass Division Theorem. Then, taking $g:=z_{n}^{p}$, we obtain the decomposition

$$
z_{n}^{p}=q \cdot f+r \text { in } P
$$

with

$$
q \in \mathcal{O}(P), \quad r=\sum_{j=0}^{p-1} r_{j} Z_{n}^{j} \in \mathcal{O}\left(\mathbb{P}_{n-1}\left(\varrho^{\prime}\right)\right)\left[Z_{n}\right], \quad \operatorname{deg}_{Z_{n}} r<p
$$

In particular,

$$
z_{n}^{p}=q\left(0^{\prime}, z_{n}\right) f\left(0^{\prime}, z_{n}\right)+\sum_{j=0}^{p-1} r_{j}\left(0^{\prime}\right) z_{n}^{j}, \quad z_{n} \in K\left(\varrho_{n}\right)
$$

Hence $q(0) \neq 0$ and $r_{j}\left(0^{\prime}\right)=0, j=0, \ldots, p-1$. Shrinking ϱ, we may assume that $q(z) \neq 0, z \in P$. Setting $h(z):=1 / q(z)$ and $W\left(z^{\prime}, z_{n}\right):=z_{n}^{p}-r\left(z^{\prime}, z_{n}\right), z=\left(z^{\prime}, z_{n}\right) \in P$, we obtain the required decomposition. The uniqueness follows from the uniqueness of the decomposition in the Weierstrass Division Theorem.

In fact, if $f=\widetilde{h} \cdot \widetilde{W}$ in P, then setting $\widetilde{q}:=1 / \widetilde{h}$ and $\widetilde{r}:=z_{n}^{p}-\widetilde{W}$, we obtain the decomposition $z_{n}^{p}=\widetilde{q} \cdot f+\widetilde{r}$ in P. Hence $\widetilde{h}=h$ and $\widetilde{r}=r$ in a neighborhood of 0 and so, by the identity principle, $\widetilde{h}=h$ and $\widetilde{r}=r$ on P.

[^5]$\left({ }^{31}\right) A[Z]$ denotes the ring of polynomials with coefficients in A.

Lemma 1.7.4. For arbitrary $P=\mathbb{P}(\varrho) \subset \mathbb{C}^{n}$ and $p \in \mathbb{N}$, every function $\varphi \in \mathcal{O}(P)$ admits a unique decomposition

$$
\varphi\left(z^{\prime}, z_{n}\right)=z_{n}^{p} \varphi_{1}\left(z^{\prime}, z_{n}\right)+\varphi_{2}\left(z^{\prime}, z_{n}\right), \quad\left(z^{\prime}, z_{n}\right) \in P
$$

with $\varphi_{1} \in \mathcal{O}(P), \varphi_{2} \in \mathcal{O}\left(\mathbb{P}_{n-1}\left(\varrho^{\prime}\right)\right)\left[Z_{n}\right], \operatorname{deg}_{Z_{n}} \varphi_{2}<p$. Moreover

$$
\left\|\varphi_{1}\right\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\|\varphi\|_{P}
$$

Proof. The existence and uniqueness of the decomposition are obvious. Since

$$
\varphi_{2}\left(z^{\prime}, z_{n}\right)=\sum_{j=0}^{p-1} \frac{1}{j!} \frac{\partial^{j} \varphi}{\partial z_{n}^{j}}\left(z^{\prime}, 0\right) z_{n}^{j}
$$

Cauchy's inequalities imply that $\left\|\varphi_{2}\right\|_{P} \leq p\|\varphi\|_{P}$, and hence

$$
\sup _{P}\left|z_{n}^{p} \varphi_{1}\right| \leq(p+1)\|\varphi\|_{P}
$$

Consequently,

$$
\left\|\varphi_{1}\right\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\|\varphi\|_{P}
$$

Proof of the Weierstrass Division Theorem. Let $P=\mathbb{P}(\boldsymbol{\varrho}) \subset \subset U_{0}$ be an arbitrary polydisc. The polyradius ϱ will be modified in the sequel. By Lemma 1.7.4, we may assume that $f=z_{n}^{p} f_{1}+f_{2}$, where f_{1}, f_{2} are holomorphic in a neighborhood of \bar{P}, f_{2} is a polynomial of degree $<p$ with respect to z_{n}. In particular,

$$
f\left(0^{\prime}, z_{n}\right)=z_{n}^{p} f_{1}\left(0^{\prime}, z_{n}\right)+f_{2}\left(0^{\prime}, z_{n}\right), \quad z_{n} \in K\left(\varrho_{n}\right)
$$

Since $\lim _{z_{n} \rightarrow 0} f\left(0^{\prime}, z_{n}\right) / z_{n}^{p} \in \mathbb{C}_{*}$, we get $f_{1}(0) \neq 0$ and $f_{2}\left(0^{\prime}, \cdot\right) \equiv 0$. Shrinking ϱ, we may assume that $f_{1}(z) \neq 0$ in a neighborhood of \bar{P}. Let $h:=f_{2} / f_{1}$. Since $h\left(0^{\prime}, \cdot\right) \equiv 0$, we may shrink ϱ^{\prime} (with fixed $\left.\varrho_{n}\right)$ so that

$$
\begin{equation*}
\|h\|_{P} \leq \frac{\varrho_{n}^{p}}{2(p+1)} \tag{1.7.1}
\end{equation*}
$$

From now on ϱ is assumed to be fixed.
Take a $g \in \mathcal{H}^{\infty}(P)$. Setting $f=z_{n}^{p} f_{1}+f_{2}$, we see that the required decomposition $g=q f+r$ is equivalent to the decomposition $g=s\left(z_{n}^{p}+h\right)+r$, where

$$
s \in \mathcal{O}(P), \quad r \in \mathcal{O}\left(\mathbb{P}_{n-1}\left(\varrho^{\prime}\right)\right)\left[Z_{n}\right], \quad \operatorname{deg}_{Z_{n}} r<p, \quad\|s\|_{P} \leq \widetilde{c}\|g\|_{P}
$$

with a constant \widetilde{c} independent of g. Moreover, the decomposition $g=q f+r$ is unique iff the decomposition $g=s\left(z_{n}^{p}+h\right)+r$ is unique.

We proceed by recurrence. Let $s_{0}:=0$ and let

$$
\begin{equation*}
g-h \cdot s_{k-1}=z_{n}^{p} s_{k}+r_{k} \tag{1.7.2}
\end{equation*}
$$

be the decomposition obtained from Lemma 1.7.4 $k \geq 1$. Since

$$
h\left(s_{k-1}-s_{k}\right)=z_{n}^{p}\left(s_{k+1}-s_{k}\right)+r_{k+1}-r_{k}
$$

the second part of Lemma 1.7.4 (applied to $\left.\varphi:=h\left(s_{k-1}-s_{k}\right)\right)$ and 1.7.1) imply that

$$
\left\|s_{k+1}-s_{k}\right\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\left\|h\left(s_{k}-s_{k-1}\right)\right\|_{P} \leq \frac{1}{2}\left\|s_{k}-s_{k-1}\right\|_{P}
$$

This means that the sequence $\left(s_{k}\right)_{k=0}^{\infty}$ is convergent uniformly in P to a holomorphic function s. Applying 1.7.2 we conclude that $r_{k} \longrightarrow r$ uniformly in P (r must be a polynomial of degree $<p$ with respect to z_{n}) and $g=s\left(z_{n}^{p}+h\right)+r$. Applying once more Lemma 1.7.4 (with $\varphi:=g-s h$) and 1.7.1, we obtain

$$
\|s\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\|g-s h\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\|g\|_{P}+\frac{1}{2}\|s\|_{P}
$$

and hence

$$
\|s\|_{P} \leq \frac{2(p+1)}{\varrho_{n}^{p}}\|g\|_{P}=\widetilde{c}\|g\|_{P}
$$

Suppose that there exists another decomposition $g=\widetilde{s}\left(z_{n}^{p}+h\right)+\widetilde{r}$. Then $(s-\widetilde{s})\left(z_{n}^{p}+h\right)+r-\widetilde{r} \equiv 0$, and therefore, by Lemma $\sqrt{1.7 .4}$ (with $\varphi:=h(\widetilde{s}-s)$) and $\sqrt{1.7 .1}$, we would have

$$
\|s-\widetilde{s}\|_{P} \leq \frac{p+1}{\varrho_{n}^{p}}\|h(s-\widetilde{s})\|_{P} \leq \frac{1}{2}\|s-\widetilde{s}\|_{P} .
$$

Hence $\widetilde{s} \equiv s$, and consequently $\widetilde{r} \equiv r$.

1.8. Elementary properties of the ring of germs of holomorphic functions

Let $a \in \mathbb{C}^{n}$. Define

$$
\widetilde{\mathcal{O}}_{a}:=\{(U, f): U \in \mathbb{B}(a), f \in \mathcal{O}(U)\}
$$

where $\mathbb{B}(a)$ denotes the family of all open neighborhoods of a. For $(U, f),(V, g) \in \widetilde{\mathcal{O}}_{a}$ we put

$$
(U, f) \stackrel{a}{\sim}(V, g) \stackrel{\mathrm{df}}{\Longleftrightarrow} \exists_{W \in \mathbb{B}(a)}: W \subset U \cap V,\left.f\right|_{W}=\left.g\right|_{W} .
$$

It is clear that $\stackrel{a}{\sim}$ is an equivalence relation. Put

$$
\mathcal{O}_{a}=\mathcal{O}_{a}^{(n)}:=\widetilde{\mathcal{O}}_{a} / \stackrel{a}{\sim}
$$

The class $[(U, f)]_{\sim}^{a}$ is called the germ of f at a. We write $\widehat{f}_{a}:=[(U, f)]_{\sim}^{a}$. Define

$$
[(U, f)]_{\sim}^{a}+[(V, g)]_{\sim}^{a}:=[(U \cap V, f+g)]_{\sim}^{a}, \quad[(U, f)]_{\sim}^{a} \cdot[(V, g)]_{\sim}^{a}:=[(U \cap V, f \cdot g)]_{\sim}^{a} .
$$

One can easily check that the operations $+, \cdot: \mathcal{O}_{a} \times \mathcal{O}_{a} \longrightarrow \mathcal{O}_{a}$ are well defined and that $\left(\mathcal{O}_{a},+, \cdot\right)$ is a commutative ring with the unit element (the ring of germs of holomorphic functions at a).

Let $\mathfrak{f}=\widehat{f}_{a} \in \mathcal{O}_{a}$. Observe that the series $T \mathfrak{f}_{a}:=T_{a} f$ is well defined (it is independent of the representant $f)$. The mapping
$\mathcal{O}_{a} \ni \mathfrak{f} \longmapsto T_{a} \mathfrak{f} \in$ the ring of all power series with center at a
which are convergent in a neighborhood of a
is an isomorphism.
Let $\mathcal{O}^{(n)}:=\mathcal{O}_{0}^{(n)}$.
Let $a=\left(a^{\prime}, a_{n}\right) \in \mathbb{C}^{n}$. We say that a germ $F \in \mathcal{O}_{a}^{(n)}$ is z_{n}-normalized if there exist $r>0$ and a representation $\left(\mathbb{P}_{n}(a, r), f\right)$ of F such that $f\left(a^{\prime}, \cdot\right) \not \equiv 0$ in $K\left(a_{n}, r\right)$. Then we will denote by $\operatorname{ord}_{a, Z_{n}} F$ the order of zero of $f\left(a^{\prime}, \cdot\right)$ at a_{n}.

Note that the germ $F \in \mathcal{O}_{a}^{(n)}$ is an invertible element of the ring $\mathcal{O}_{a}^{(n)}$ (i.e. it is a unit in the ring $\mathcal{O}_{a}^{(n)}$) iff $F(a) \neq 0 \quad\left({ }^{32}\right)$

Let $\mathcal{W}_{a}^{(n)} \subset \mathcal{O}_{a}^{(n)}$ denote the set of all germs of Weierstrass polynomials with center at a. Note that $\mathcal{W}_{a}^{(n)}$ can be considered as a subset of $\mathcal{O}_{a^{\prime}}^{(n-1)}\left[Z_{n}\right]$. According to the general rule, let $\mathcal{W}^{(n)}:=\mathcal{W}_{0}^{(n)}$.

We have ord $\operatorname{org}_{a n} W=\operatorname{deg}_{Z_{n}} W$ for any $W \in \mathcal{W}_{a}^{(n)}$.
Lemma 1.8.1. (a) Let $F, G, W \in \mathcal{O}^{(n)}$ be such that $F=G \cdot W$. Assume that $F \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$, $W \in \mathcal{W}^{(n)}$. Then $G \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$. $\left(^{33}\right)$
(b) Assume that a germ $F \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$ is z_{n}-normalized and irreducible in $\mathcal{O}^{(n-1)}\left[Z_{n}\right]$. Then F is also irreducible in $\mathcal{O}^{(n)}$.

[^6]Proof. (a) By the division algorithm, we obtain $F=G_{1} \cdot W+R$, where $G_{1}, R \in \mathcal{O}^{(n-1)}\left[Z_{n}\right], \operatorname{deg}_{Z_{n}} R<$ $\operatorname{deg}_{Z_{n}} W$. Therefore we have two factorizations: $F=G \cdot W$ and $F=G_{1} \cdot W+R$. The uniqueness of the factorization in the Weierstrass Division Theorem implies that $G=G_{1} \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$ (and $R=0$).
(b) Suppose that $F=G \cdot H$, where $G, H \in \mathcal{O}^{(n)}$, and H is not a unit in $\mathcal{O}^{(n)}$, i.e. $H(0)=0$. Clearly H is z_{n}-normalized and $\operatorname{ord}_{0, Z_{n}} H>0$. By the Weierstrass Preparation Theorem we have $H=K \cdot W$, where $W \in \mathcal{W}^{(n)}, \operatorname{deg}_{Z_{n}} W>0$. Therefore $F=(G \cdot K) \cdot W$, and so, by (a), $G \cdot K \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$. We have obtained a factorization in $\mathcal{O}^{(n-1)}\left[Z_{n}\right]$. Since W is not a unit in $\mathcal{O}^{(n-1)}\left[Z_{n}\right], G \cdot K$ must be a unit. In particular, G is a unit in $\mathcal{O}^{(n)}$.

Lemma 1.8.2. Let $F, G, W \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$ be such that $W=F \cdot G$. Assume that $W \in \mathcal{W}^{(n)}$. Then there exists a unit $H \in \mathcal{O}^{(n-1)}$ such that $H \cdot F,(1 / H) \cdot G \in \mathcal{W}^{(n)}$.
Proof. Let $r:=\operatorname{deg}_{Z_{n}} F, s:=\operatorname{deg}_{Z_{n}} G$,

$$
F=\sum_{j=0}^{r} F_{j} Z_{n}^{r-j}, \quad G=\sum_{j=0}^{s} G_{j} Z_{n}^{s-j}, \quad W=\sum_{j=0}^{p} W_{j} Z_{n}^{p-j},
$$

where $W_{0}=1, W_{j}\left(0^{\prime}\right)=0, j=1, \ldots, p$. In particular,

$$
z_{n}^{p}=W\left(0^{\prime}, z_{n}\right)=F\left(0^{\prime}, z_{n}\right) \cdot G\left(0^{\prime}, z_{n}\right)=\sum_{j=0}^{r} F_{j}\left(0^{\prime}\right) z_{n}^{r-j} \times \sum_{j=0}^{s} G_{j}\left(0^{\prime}\right) z_{n}^{s-j}
$$

and hence $1=F_{0}\left(0^{\prime}\right) \cdot G_{0}\left(0^{\prime}\right), F_{j}\left(0^{\prime}\right)=0, j=1, \ldots, r, G_{j}\left(0^{\prime}\right)=0, j=1, \ldots, s$.
Lemma 1.8.3. Let $f_{j} \in \mathcal{O}\left(\mathbb{P}_{n}(r)\right), f_{j}(0)=0, f_{j} \not \equiv 0, j \in \mathbb{N}$. Then there exists a unitary transformation $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ such that $f_{j} \circ L$ is z_{n}-normalized, $j \in \mathbb{N}$.
Proof. Let

$$
f_{j}(z)=\sum_{k=k(j)}^{\infty} Q_{j, k}, \quad z \in \mathbb{P}_{n}(r)
$$

where
$Q_{j, k}$ is a homogeneous polynomial of degree k,
$Q_{j, k} \equiv 0, k=0, \ldots, k(j)-1$,
$Q_{j, k(j)} \not \equiv 0, k(j) \geq 1$.
Let $V_{j}:=Q_{j, k(j)}^{-1}(0) ; V_{j}$ is a closed cone with $\operatorname{int} V_{j}=\varnothing$. Hence, by the Baire property, there exists an $X \in \mathbb{C}^{n},\|X\|=1$, such that $X \notin V_{j}$ for any $j \in \mathbb{N}$. Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a unitary mapping with $L\left(e_{n}\right)=X$. Then

$$
\left(f_{j} \circ L\right)\left(0^{\prime}, z_{n}\right)=f_{j}\left(L\left(z_{n} e_{n}\right)\right)=f_{j}\left(z_{n} X\right)=\sum_{k=k(j)}^{\infty} Q_{j, k}(X) z_{n}^{k}
$$

and so $\left(f_{j} \circ L\right)\left(0^{\prime}, \cdot\right) \not \equiv 0, j \in \mathbb{N}$.
Proposition 1.8.4. $\mathcal{O}_{a}^{(n)}$ is a unique factorization domain.
Proof. It is sufficient to consider the case $a=0$. We apply induction with respect to n. The case $n=1$ is clear: every germ $F \in \mathcal{O}^{(1)}, F \neq 0$, has a unique factorization $F=z^{p} G$, where G is a unit in $\mathcal{O}^{(1)}$.

Suppose that the theorem is true for $\mathcal{O}^{(n-1)}$. Consequently, $\mathcal{O}^{(n-1)}\left[Z_{n}\right]$ is also a unique factorization domain.

Fix a germ $F \in \mathcal{O}^{(n)}$ which is not a unit. We may assume that it is z_{n}-normalized. By the Weierstrass Preparation Theorem we have $F=G \cdot W$, where G is a unit, and $W \in \mathcal{W}^{(n)}$. By the inductive hypothesis W admits a factorization $W=W_{1} \cdots W_{k}$, where $W_{1}, \ldots, W_{k} \in \mathcal{O}^{(n-1)}\left[Z_{n}\right]$ are irreducible. By Lemma 1.8.2 we may assume that $W_{1}, \ldots, W_{k} \in \mathcal{W}^{(n)}$. By Lemma 1.8.1(b) the elements W_{1}, \ldots, W_{k} are also irreducible in $\mathcal{O}^{(n)}$. Therefore we have obtained a factorization $F=H \cdot W_{1} \cdots \cdots W_{k}$, where H is a unit and $W_{1}, \ldots, W_{k} \in$ $\mathcal{W}^{(n)}$ are irreducible Weierstrass polynomials.

Suppose that there exists another factorization

$$
F=V_{1} \cdots \cdot V_{\ell}
$$

where $V_{1}, \ldots, V_{\ell} \in \mathcal{O}^{(n)}$ are irreducible. Then, by the Weierstrass Preparation Theorem, we get $F=$ $\widehat{H} \cdot \widehat{W}_{1} \ldots \cdots \widehat{W}_{\ell}$, where \widehat{H} is a unit in $\mathcal{O}^{(n)}$ and $\widehat{W}_{1}, \ldots, \widehat{W}_{\ell}$ are irreducible Weierstrass polynomials. Recall that the decomposition in the Weierstrass Preparation Theorem is unique. Hence $W_{1} \cdots \cdots W_{k}=\widehat{W}_{1} \ldots \cdots \widehat{W}_{\ell}$. Now, since $\mathcal{O}^{(n-1)}\left[Z_{n}\right]$ is a unique factorization domain, we get $k=\ell$ and $W_{j}=\widehat{W}_{j}, j=1, \ldots, k$ (up to a permutation).

Proposition 1.8.5. Let U be a neighborhood of $0 \in \mathbb{C}^{n}$ and let $f, g \in \mathcal{O}(U)$ be such that $f(0)=g(0)=0$. Assume that the germs $F:=\widehat{f}_{0}$ and $G:=\widehat{g}_{0}$ are relatively prime (in $\mathcal{O}^{(n)}$). Then:
(a) There exists a number $r>0$ such that the germs $\widehat{f}_{z}, \widehat{g}_{z}$ are relatively prime in $\mathcal{O}_{z}^{(n)}$ for any $z \in \mathbb{P}_{n}(r) \subset U$.
(b) If $n \geq 2$, then for any neighborhood of zero $V \subset U$ and for any $w \in \mathbb{C}$ there exists a $z \in V$ such that $g(z) \neq 0$ and $f(z) / g(z)=w$.

Proof. (a) We may assume that F and G are z_{n}-normalized. By Lemma 1.8 .3 and the Weierstrass Preparation Theorem we may assume that $F, G \in \mathcal{W}^{(n)}$. The germs F and G are relatively prime in the ring $\mathcal{O}^{(n-1)}\left[Z_{n}\right]$. Hence, by the Gauss lemma, they are relatively prime in $\mathbb{k}\left[Z_{n}\right]$, where \mathbb{k} denotes the quotient field of $\mathcal{O}^{(n-1)}$. Consequently, there exists an $r>0$ and $f_{1}, g_{1} \in \mathcal{O}\left(\mathbb{P}_{n-1}(r)\right)\left[Z_{n}\right], h \in \mathcal{O}\left(\mathbb{P}_{n-1}(r)\right), h \not \equiv 0$, such that

$$
\begin{equation*}
h\left(z^{\prime}\right)=f_{1}(z) f(z)+g_{1}(z) g(z), \quad z=\left(z^{\prime}, z_{n}\right) \in \mathbb{P}_{n}(r) \tag{1.8.1}
\end{equation*}
$$

Suppose that for some $\zeta=\left(\zeta^{\prime}, \zeta_{n}\right) \in \mathbb{P}_{n}(r)$ the germs $\widehat{f}_{\zeta}, \widehat{g}_{\zeta}$ are not relatively prime, and let $C \in \mathcal{O}_{\zeta}^{(n)}$ be their nontrivial divisor. Then clearly C is z_{n}-normalized (in $\mathcal{O}_{\zeta}^{(n)}$). Consequently, by the Weierstrass Preparation Theorem, we may assume that $C \in \mathcal{W}_{\zeta}^{(n)}$. On the other hand, equality 1.8.1 shows that C must divide \widehat{h}_{ζ}. Recall that h depends only on z^{\prime}. Hence, using Lemma 1.8.1 (a), we conclude that $\operatorname{deg}_{Z_{n}} C=0$; contradiction.
(b) Fix a w. Replacing f by $f-w g$ we may assume that $w=0$. We may also assume that f and g are z_{n}-normalized. By the proof of (a) there exist $r>0, f_{1}, g_{1} \in \mathcal{O}\left(\mathbb{P}_{n}(r)\right), h \in \mathcal{O}\left(\mathbb{P}_{n-1}(r)\right), h \not \equiv 0$, such that equality 1.8.1 is true.

Suppose that (b) does not hold, i.e. there exists a neighborhood of zero $V \subset \mathbb{P}_{n}(r)$ such that $\{z \in V$: $f(z)=0\} \subset\{z \in V: g(z)=0\}$. Let $\mathbb{P}(\boldsymbol{\tau}) \subset \subset V$ be such that $f\left(0^{\prime}, z_{n}\right) \neq 0$ for $0<\left|z_{n}\right| \leq \tau_{n}$. Let $\varepsilon:=\min \left\{\left|f\left(0^{\prime}, z_{n}\right)\right|:\left|z_{n}\right|=\tau_{n}\right\}$. Shrinking $\boldsymbol{\tau}^{\prime}\left(\right.$ with fixed $\left.\tau_{n}\right)$ we may assume that $\left|f\left(z^{\prime}, z_{n}\right)-f\left(0^{\prime}, z_{n}\right)\right|<\varepsilon$ for $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{\tau}^{\prime}\right),\left|z_{n}\right|=\tau_{n}$. Now, by Rouché's theorem (cf. [4], Th. V.3.8), for every $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{\tau}^{\prime}\right)$ the function $f\left(z^{\prime}, \cdot\right)$ has a zero in the disc $K\left(\tau_{n}\right)$. In particular, for any $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{\tau}^{\prime}\right)$ there exists a $z_{n} \in K\left(\tau_{n}\right)$ such that $f\left(z^{\prime}, z_{n}\right)=g\left(z^{\prime}, z_{n}\right)=0$. Hence, by 1.8.1, $h=0$ on $\mathbb{P}_{n}(\boldsymbol{\tau})$; contradiction.

Proposition 1.8.6. $\mathcal{O}_{a}^{(n)}$ is Noetherian.
Proof. We may assume that $a=0$. We apply induction on n. In the case $n=1$ every ideal is principal. Assume that $\mathcal{O}^{(n-1)}$ is Noetherian.

Let $\mathcal{I} \subset \mathcal{O}^{(n)}$ be a nontrivial ideal. We may assume that there exists an $F_{0} \in \mathcal{I}$ such that F_{0} is z_{n} normalized. Let $p:=\operatorname{ord}_{0, Z_{n}} F_{0}$. Using the Weierstrass Division Theorem, we see that \mathcal{I} is generated over $\mathcal{O}^{(n)}$ by $\left\{F_{0}\right\} \cup \mathcal{M}$, where

$$
\mathcal{M}:=\left\{F \in \mathcal{I} \cap \mathcal{O}^{(n-1)}\left[Z_{n}\right]: \operatorname{deg}_{Z_{n}} F<p\right\}
$$

Observe that \mathcal{M} is an $\mathcal{O}^{(n-1)}$-module. Hence, by the Hilbert theorem, \mathcal{M} is finitely generated over $\mathcal{O}^{(n-1)}$. Let F_{1}, \ldots, F_{N} be generators of \mathcal{M}. Then $F_{0}, F_{1}, \ldots, F_{N}$ generate \mathcal{I} over $\mathcal{O}^{(n)}$.

Exercises

1.1. Prove the following slight generalization of the Cauchy integral formula. Let $P:=\mathbb{P}(a, \boldsymbol{r})$ and let $f \in \mathcal{O}(P) \cap \mathcal{C}\left(P \cup \partial_{0} P\right)$. Then

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} P} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in P
$$

Verify whether, in general, the Cauchy integral formula from Proposition 1.2 .5 remains true for $f \in$ $\mathcal{O}(D) \cap \mathcal{C}\left(D \cup \partial_{0} D\right)$.
1.2. Let $g_{k}:[0,1] \longrightarrow \mathbb{R}$,

$$
g_{k}(x):= \begin{cases}1-\frac{1}{k} & \text { if } 0 \leq x \leq \frac{1}{k+1} \\ \frac{1}{2}-\frac{1}{k}+\frac{k+1}{2} x & \text { if } \frac{1}{k+1} \leq x \leq \frac{1}{k} \\ 1-\frac{1}{2 k} & \text { if } \frac{1}{k} \leq x \leq 1\end{cases}
$$

Put $f_{k}:=g_{k}-g_{k-1}, k \in \mathbb{N}\left(g_{0}:=0\right)$. Prove that the series $\sum_{k \in \mathbb{N}} f_{k}$ is uniformly summable on [0, 1], but is not normally summable on $[0,1]$.
1.3. Let $A \subset \mathbb{C}^{n}$ be n-circled. Prove that A is connected iff $R(A)$ is connected.
1.4. Find the domains of convergence of the following series:

$$
\sum_{n, m=0}^{\infty} z^{n} w^{m}, \quad \sum_{n, m=0}^{\infty} n!z^{n} w^{m}, \quad \sum_{n=0}^{\infty}(z w)^{n}, \quad \sum_{n, m=1}^{\infty}(n / m!) z^{n} w^{m}
$$

1.5. Check whether the set $(\mathbb{D} \times(2 \mathbb{D})) \cup((2 \mathbb{D}) \times \mathbb{D})$ can be the domain of convergence of a power series.
1.6. Find a power series whose domain of convergence is the ball $\mathbb{B}_{2} \subset \mathbb{C}^{2}$.
1.7. Prove the following version of the Cauchy inequalities. If $f \in \mathcal{O}(\mathbb{B}(a, r)) \cap \mathcal{C}(\overline{\mathbb{B}}(a, r))$, then

$$
\left\|f^{(k)}(a)\right\| \leq \frac{k!}{r^{k}}\|f\|_{\mathbb{B}(a, r)}, \quad k \in \mathbb{N}_{0}
$$

(recall that for $L:=f^{(k)}(a)$ we have $\|L\|:=\max \{|L(X)|:\|X\|=1\}$).
1.8. Let $D \subset \mathbb{C}^{n}$ be a domain such that $D \cap \mathbb{R}^{n} \neq \varnothing$. Show that if $f \in \mathcal{O}(D)$ is such that $f=0$ in $D \cap \mathbb{R}^{n}$, then $f \equiv 0$.
1.9. Let $D \subset \mathbb{C}^{n}$ be a domain and let $D^{*}:=\{\bar{z}: z \in D\}$. Assume that $f \in \mathcal{O}\left(D \times D^{*}\right)$ is such that $f(z, \bar{z})=0$ for z in a neighborhood of a point $p_{0} \in D$. Prove that $f \equiv 0$.
1.10. A set $A \subset \Omega$ is called a determining set for $\mathcal{O}(\Omega)$ if for any function $f \in \mathcal{O}(\Omega)$ the following implication is true $\left.f\right|_{A}=0 \Longrightarrow f \equiv 0$.

Construct a countable set $A \subset \mathbb{C}^{n}$ such that $A \cap \mathbb{B}(r)$ is determining for $\mathcal{O}(\mathbb{B}(r))$ for any $r>0$.
1.11. Suppose that $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$ is a complex polynomial with respect to each variable separately. Prove that f is a polynomial.
1.12. Let $D \subset \mathbb{C}^{n}$ be a bounded domain. The smallest closed subset $A \subset \bar{D}$ such that

$$
\forall_{f \in \mathcal{O}(D) \cap \mathcal{C}(\bar{D})} \exists_{a \in A}:|f(a)|=\max \{|f(z)|: z \in \bar{D}\}
$$ is called the Shilov boundary of D and is denoted by $\partial_{S} D$. Notice that $\partial_{S} D \subset \partial D$.

Prove that:
(a) $\partial_{S} \mathbb{B}_{n}=\partial \mathbb{B}_{n}$.
(b) If D_{1}, \ldots, D_{n} are fat $\left({ }^{34}\right)$ bounded planar domains, then $\partial_{S}\left(D_{1} \times \cdots \times D_{n}\right)=\partial_{0}\left(D_{1} \times \cdots \times D_{n}\right)=$ $\left(\partial D_{1}\right) \times \cdots \times\left(\partial D_{n}\right)$. In particular, $\partial_{S}\left(\mathbb{D}^{n}\right)=\partial_{0}\left(\mathbb{D}^{n}\right)=\mathbb{T}^{n}$.
1.13. Let $D \subset \mathbb{C}^{n}$ be a bounded domain. The smallest closed subset $A \subset \bar{D}$ such that

$$
\forall_{f \in \mathcal{O}(\Omega): \bar{D} \subset \Omega} \exists_{a \in A}:|f(a)|=\max \{|f(z)|: z \in \bar{D}\}
$$

is called the Bergman boundary of D and is denoted by $\partial_{B} D$. Prove that $\partial_{B} D$ is well defined. Observe that $\partial_{B} D \subset \partial_{S} D$.

Calculate $\partial_{B} \mathbb{B}_{n}$ and $\partial_{B} \mathbb{D}^{n}$.

[^7]Prove that for the domain

$$
D:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: 0<\left|z_{1}\right|<1,\left|z_{2}\right|<\left|z_{1}\right|^{-\log \left|z_{1}\right|}\right\}
$$

we have

$$
\partial_{0} \mathbb{D}^{2}=\partial_{B} D \varsubsetneqq \partial_{S} D=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right| \leq 1,\left|z_{2}\right|=\left|z_{1}\right|^{-\log \left|z_{1}\right|}\right\} .
$$

1.14. Show that a complete Hartogs domain $D \subset \mathbb{C}^{n}$ is convex iff the set $\left\{\left(z^{\prime},\left|z_{n}\right|\right) \in \mathbb{C}^{n-1} \times \mathbb{R}\right.$: $\left.\left(z^{\prime}, z_{n}\right) \in D\right\}$ is convex in $\mathbb{R}^{2 n-1}$.
1.15. Let $D \subset \mathbb{C}^{n}$ be an n-circled domain. Prove that $D \backslash\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{1} \cdots \cdots z_{n}=0\right\}$ is connected (without using the Riemann removable singularities theorem).

CHAPTER 2

Extension of holomorphic functions

2.1. Hartogs and Riemann theorems

Theorem 2.1.1. Let D be a domain in $\mathbb{C}^{n}=\mathbb{C}^{n-1} \times \mathbb{C}, n \geq 2$, and let M be a relatively closed subset of D such that $D \backslash M$ is connected. Put

$$
\mathbb{C}^{n-1} \times \mathbb{C} \ni(z, w) \stackrel{p}{\longmapsto} z \in \mathbb{C}^{n-1}
$$

Assume that:
1^{o} for every point $a \in p(D)$ there exist an open neighborhood $U_{a} \subset p(D)$ of a and a compact set $K_{a} \subset \mathbb{C}$ such that

$$
p^{-1}\left(U_{a}\right) \cap M \subset U_{a} \times K_{a} \subset D
$$

2° there exists a point $a_{0} \in p(D)$ such that

$$
p^{-1}\left(a_{0}\right) \cap M=\varnothing
$$

Then $\mathcal{O}(D \backslash M)=\left.\mathcal{O}(D)\right|_{D \backslash M}$, i.e. any function $f \in \mathcal{O}(D \backslash M)$ extends holomorphically to D.

Figure 2.1.1

Proof. Fix a function $f \in \mathcal{O}(D \backslash M)$. Consider the family \mathfrak{F} of all pairs (P, Ω), where
P is an open convex subset of $p(D)$,
Ω is an open subset of \mathbb{C} being a finite union of regular domains (cf. Definition 1.2.4) $\Omega=G_{1} \cup \cdots \cup G_{N}$ with $\bar{G}_{j} \cap \bar{G}_{k}=\varnothing$ for $j \neq k$, such that

$$
p^{-1}(\bar{P}) \cap M \subset \subset \bar{P} \times \Omega \subset \subset D
$$

Define

$$
\widetilde{f}_{P, \Omega}(z, w):=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(z, \zeta)}{\zeta-w} d \zeta, \quad(z, w) \in P \times \Omega
$$

Then $\widetilde{f}_{P, \Omega}(z, \cdot) \in \mathcal{O}(\Omega)$ for every $z \in P$, and $\tilde{f}_{P, \Omega}(\cdot, w) \in \mathcal{O}_{s}(P)$ for every $w \in \Omega$. Moreover, $\widetilde{f}_{P, \Omega}$ is continuous. Hence, by Osgood's theorem 1.2.3, $\widetilde{f}_{P, \Omega} \in \mathcal{O}(P \times \Omega)$. Using the Cauchy theorem (cf. [4], IV.5) we easily conclude that $\widetilde{f}_{P^{\prime}, \Omega^{\prime}}=\widetilde{f}_{P^{\prime \prime}, \Omega^{\prime \prime}}$ in $\left(P^{\prime} \times \Omega^{\prime}\right) \cap\left(P^{\prime \prime} \times \Omega^{\prime \prime}\right)$ for arbitrary two $\left(P^{\prime}, \Omega^{\prime}\right),\left(P^{\prime \prime}, \Omega^{\prime \prime}\right) \in \mathfrak{F}$ $\left.{ }^{1}\right)$

Observe that, by 1^{o}, for each $\left(a, w_{0}\right) \in D$ there exists a pair $(P, \Omega) \in \mathfrak{F}$ such that $\left(a, w_{0}\right) \in P \times \Omega\left(^{2}\right)$ Thus the formula

$$
\widetilde{f}(z, w):=\widetilde{f}_{P, \Omega}(z, w), \quad(z, w) \in P \times \Omega
$$

defines a function holomorphic on D.
By 2° and the Cauchy integral formula we see that there exists an open neighborhood $U_{a_{0}}$ such that $\tilde{f}=f$ in $D \cap p^{-1}\left(U_{a_{0}}\right) \subset D \backslash M$. Since $D \backslash M$ is connected, the identity principle implies that $\widetilde{f}=f$ in $D \backslash M$.

It is clear that if $M \subset D$ is compact then conditions 1° and 2° from Theorem 2.1.1 are always satisfied. Consequently, we get the following
Corollary 2.1.2 (Hartogs' extension theorem). Let D be a domain in $\mathbb{C}^{n}, n \geq 2$, and let K be a compact subset of D such that $D \backslash K$ is connected. Then $\mathcal{O}(D \backslash K)=\left.\mathcal{O}(D)\right|_{D \backslash K}\left({ }^{3}\right)$.

Notice that the above result does not hold for $n=1\left({ }^{4}\right)$.
Corollary 2.1.3. For $n \geq 2$ the zeros of holomorphic functions are not isolated.
Proof. Suppose that $f \in \mathcal{O}\left(\mathbb{P}_{n}(a, r)\right), n \geq 2, f(a)=0$, and $f(z) \neq 0$ for $z \neq a$. Then, by Hartogs' extension theorem, the function $1 / f$ would extend holomorphically onto $\mathbb{P}_{n}(a, r)$; contradiction.
Definition 2.1.4. A subset M of an open set $\Omega \subset \mathbb{C}^{n}$ is called thin in Ω if for every point $a \in \Omega$ there exist a polydisc $P=\mathbb{P}(a, r) \subset \Omega$ and a function $\varphi \in \mathcal{O}(P), \varphi \not \equiv 0$, such that $M \cap P \subset \varphi^{-1}(0)\left(^{5}\right)$.

Remark 2.1.5. (a) If M is thin, then $\operatorname{int} M=\varnothing$.
(b) If M is thin in Ω and $N \subset M$, then N is thin in Ω.
(c) If M_{1}, M_{2} are thin in Ω, then $M_{1} \cup M_{2}$ is thin in Ω.

Assume that $\varphi \in \mathcal{O}(D), \varphi \not \equiv 0$, where $D \subset \mathbb{C}^{n}$ is a domain. Then $\varphi^{-1}(0)$ is thin in D.
Theorem 2.1.6 (Riemann removable singularities theorem). Let D be a domain in \mathbb{C}^{n} and let $M \subset D$ be thin and relatively closed in D. Then every function $f \in \mathcal{O}(D \backslash M)$ which is locally bounded in $D\left(^{6}\right)$ extends holomorphically to D.

Moreover, the set $D \backslash M$ is connected.
Proof. Fix a function $f \in \mathcal{O}(D \backslash M)$ such that f is locally bounded on D. Observe that the problem of continuation across M is local. In fact, if every point $a \in D$ admits a polydisc P_{a} and a function $\widetilde{f}_{a} \in \mathcal{O}\left(P_{a}\right)$ such that $\widetilde{f}_{a}=f$ in $P_{a} \backslash M$, then by identity principle and Remark 2.1.5(a), the function \widetilde{f} defined as $\widetilde{f}:=\widetilde{f}_{a}$ in P_{a} gives the required extension.

Fix an $a \in D$. We may assume that $a=0 \in M$. Let $\varphi \in \mathcal{O}(\mathbb{P}(\boldsymbol{r})), \varphi \not \equiv 0$, be such that $M \cap \mathbb{P}(\boldsymbol{r}) \subset \varphi^{-1}(0)$. Let $\boldsymbol{r}=\left(\boldsymbol{r}^{\prime}, r_{n}\right)=\left(r_{1}, \ldots, r_{n}\right)$. Changing the coordinate system if necessary (cf. Lemma 1.8.3) we may assume that:

[^8]φ is z_{n}-normalized, $\varphi\left(0^{\prime}, \cdot\right)$ has zero of order p at $z_{n}=0(p \in \mathbb{N})$, φ is holomorphic in a neighborhood of $\overline{\mathbb{P}}(\boldsymbol{r})$, $\varphi\left(0^{\prime}, z_{n}\right) \neq 0$ for $z \in \bar{K}\left(r_{n}\right) \backslash\{0\}$.

Figure 2.1.2
Let $\varepsilon:=\min \left\{\left|\varphi\left(0^{\prime}, z_{n}\right)\right|:\left|z_{n}\right|=r_{n}\right\}$. Shrinking $\boldsymbol{r}^{\prime}\left(\right.$ with fixed $\left.r_{n}\right)$ we may assume that $\mid \varphi\left(z^{\prime}, z_{n}\right)-$ $\varphi\left(0^{\prime}, z_{n}\right) \mid<\varepsilon$ for $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{r}^{\prime}\right),\left|z_{n}\right|=r_{n}$. Now, by Rouché's theorem (cf. [4, Th. V.3.8), for every $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{r}^{\prime}\right)$ the function $\varphi\left(z^{\prime}, \cdot\right)$ has exactly p zeros (counted with multiplicities) in the disc $K\left(r_{n}\right)$, say $\xi_{1}\left(z^{\prime}\right), \ldots, \xi_{p}\left(z^{\prime}\right)$, and $\varphi\left(z^{\prime}, \cdot\right)$ does not vanish on the circle $C\left(r_{n}\right)$. In particular, for every $z^{\prime} \in \mathbb{P}_{n-1}\left(\boldsymbol{r}^{\prime}\right)$ the function $f\left(z^{\prime}, \cdot\right)$ is holomorphic in $\bar{K}\left(r_{n}\right) \backslash\left\{\xi_{1}\left(z^{\prime}\right), \ldots, \xi_{p}\left(z^{\prime}\right)\right\}$ and locally bounded in $K\left(r_{n}\right)$. Hence, by the classical (one-dimensional) Riemann theorem on removable singularities (cf. [4, V.1), $f\left(z^{\prime}, \cdot\right)$ extends holomorphically to a function $\widetilde{f\left(z^{\prime}, \cdot\right)} \in \mathcal{O}\left(K\left(r_{n}\right)\right)$. Let $\widetilde{f}\left(z^{\prime}, z_{n}\right):=\widetilde{f\left(z^{\prime}, \cdot\right)}\left(z_{n}\right),\left(z^{\prime}, z_{n}\right) \in \mathbb{P}(\boldsymbol{r})$. By the Hartogs Lemma 1.5.6 $\tilde{f} \in \mathcal{O}(\mathbb{P}(\boldsymbol{r}))$. It is clear that $\tilde{f}=f$ in $\mathbb{P}(\boldsymbol{r}) \backslash M$.

It remains to prove that $D \backslash M$ is connected. Suppose that $D \backslash M=\Omega_{0} \cup \Omega_{1}$, where Ω_{0} and Ω_{1} are non-empty, disjoint, and open. Then the function $f:=j$ in $\Omega_{j}, j=0,1$, would extend holomorphically onto D; contradiction.

Proposition 2.1.7. Let $D \subset \mathbb{C}$ be a regular domain (cf. Definition 1.2.4), let $G \subset \mathbb{C}^{n-1}$ be an arbitrary bounded domain, and let $w_{0} \in G$ be fixed. Put

$$
H:=\left(\bar{D} \times\left\{w_{0}\right\}\right) \cup(\partial D \times \bar{G}) \subset \mathbb{C}^{n} .
$$

2. Extension of holomorphic functions

Figure 2.1.3

Proof. Note that H is connected. Let $f \in \mathcal{O}(U)$, where U is a neighborhood of H. Then there exist domains $D_{0} \subset \mathbb{C}, G_{0} \subset \mathbb{C}^{n-1}$, and a neighborhood V of w_{0} such that:

- D_{0} is regular, G_{0} is bounded,
- $D \subset \subset D_{0}, G \subset \subset G_{0}$,
- $\left(\bar{D}_{0} \times V\right) \cup\left(\partial D_{0} \times G_{0}\right) \subset U$.

Define

$$
\widetilde{f}(z, w):=\frac{1}{2 \pi i} \int_{\partial D_{0}} \frac{f(\zeta, w)}{\zeta-z} d \zeta, \quad(z, w) \in D_{0} \times G_{0}
$$

One can easily check that $\tilde{f} \in \mathcal{O}\left(D_{0} \times G_{0}\right)$ and $\tilde{f}=f$ in $D_{0} \times V$ (by the Cauchy integral formula). Finally, by the identity principle, $\widetilde{f}=f$ in a neighborhood of H.

Corollary 2.1.8. Every function holomorphic in a neighborhood of the set

$$
H:=(\overline{\mathbb{D}} \times\{0\}) \cup(\mathbb{T} \times \overline{\mathbb{D}}) \subset \mathbb{C}^{2}
$$

extends holomorphically to a neighborhood of $\overline{\mathbb{D}} \times \overline{\mathbb{D}}$.

2.2. Biholomorphisms

Theorem 2.2.1. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $F=\left(F_{1}, \ldots, F_{n}\right): \Omega \longrightarrow \mathbb{C}^{n}$ be holomorphic. Then the following conditions are equivalent:
(i) $F(\Omega)$ is open and $F: \Omega \longrightarrow F(\Omega)$ is biholomorphic;
(ii) F is injective and $J_{\mathbb{C}} F(z) \neq 0, z \in \Omega$;
(iii) F is injective.

Proof. The implications (i) \Longrightarrow (ii) \Longrightarrow (iii) are obvious.
The implication (ii) \Longrightarrow (i) follows from the inverse mapping theorem (cf. Corollary 1.4.15).
(iii) \Longrightarrow (ii) (Cf. [28]). We apply induction on n. The case $n=1$ is well known. Assume that the result is true for $n-1$ and let

$$
A:=\left\{a \in \Omega: F^{\prime}(a)=0\right\} .
$$

Take an $a \in \Omega \backslash A$. We may assume that $a=F(a)=0$ and $\frac{\partial F_{n}}{\partial z_{n}}(0)=c \neq 0$. Let

$$
G(z)=G\left(z^{\prime}, z_{n}\right):=\left(z^{\prime}, F_{n}(z)\right), \quad z=\left(z^{\prime}, z_{n}\right) \in \Omega \subset \mathbb{C}^{n-1} \times \mathbb{C} .
$$

Observe that $G(0)=0$ and $J_{\mathbb{C}} G(0)=c \neq 0$. Hence, by the inverse mapping theorem (Corollary 1.4.15), there exists an open neighborhood U of $0, U \subset \Omega$, such that $G(U)$ is open and $\left.G\right|_{U}: U \longrightarrow \overline{G(U)}$ is biholomorphic. Let

$$
H=\left(H_{1}, \ldots, H_{n}\right):=F \circ\left(\left.G\right|_{U}\right)^{-1}: G(U) \longrightarrow \mathbb{C}^{n}
$$

Then H is an injective holomorphic mapping with $H_{n}(w)=w_{n}$. Take a $\mathbb{P}(r) \subset G(U)$ and define

$$
\widetilde{H}\left(w^{\prime}\right):=\left(H_{1}\left(w^{\prime}, 0\right), \ldots, H_{n-1}\left(w^{\prime}, 0\right)\right), \quad w^{\prime} \in \mathbb{P}_{n-1}(r) .
$$

Observe that $\widetilde{H}: \mathbb{P}_{n-1}(r) \longrightarrow \mathbb{C}^{n-1}$ is injective. Moreover, $J_{\mathbb{C}} H\left(0^{\prime}, 0\right)=J_{\mathbb{C}} \widetilde{H}\left(0^{\prime}\right)$. By the inductive assumption we get $J_{\mathbb{C}} \widetilde{H}\left(0^{\prime}\right) \neq 0$. Hence $J_{\mathbb{C}} H(0) \neq 0$ and, consequently, $J_{\mathbb{C}} F(0) \neq 0$.

It remains to show that $A=\varnothing$. Suppose that $A \neq \varnothing$ and let $a \in A$. We may assume that $a=F(a)=0$. Put

$$
u(z):=\|F(z)\|^{2}=\left|F_{1}(z)\right|^{2}+\cdots+\left|F_{n}(z)\right|^{2}, \quad z \in \Omega
$$

Notice that $u^{-1}(0)=\{0\}$. Fix a ball $\mathbb{B}(r) \subset \subset \Omega$ and let

$$
t_{0}:=\min \{u(z): z \in \partial \mathbb{B}(r)\}
$$

Put $U_{t}:=\{z \in \mathbb{B}(r): u(z)<t\}$. Observe that $U_{t} \subset \subset \mathbb{B}(r)$ for $0<t<t_{0}$. By the Sard theorem (cf. [6], Th. 3.4.3) there exists a $t \in\left(0, t_{0}\right)$ such that $\operatorname{grad} u(z) \neq 0$ for all $z \in \Omega$ with $u(z)=t$. In particular, $A \cap \partial U_{t}=\varnothing$. Let D denote the connected component of U_{t} that contains 0 . Then $K:=A \cap D$ is a compact thin set with $0 \in K$. In particular, the set $D \backslash K$ is connected (Theorem 2.1.6). Observe that, by the first part of the proof, we have $A=\left\{z \in \Omega: J_{\mathbb{C}} F(z)=0\right\}$. Consequently, by the Hartogs theorem (Corollary 2.1.2), the function $1 / J_{\mathbb{C}} F$ extends holomorphically to D; contradiction (cf. Corollary 2.1.3).

2.3. Cartan theorems

Given an arbitrary domain $D \subset \mathbb{C}^{n}$ set
$\operatorname{Aut}(D):=\{F: D \longrightarrow D: F$ is biholomorphic $\}, \quad \operatorname{Aut}_{a}(D):=\{F \in \operatorname{Aut}(D): F(a)=a\}, \quad a \in D$.
Obviously, $\operatorname{Aut}(D)$ is a group and $\operatorname{Aut}_{a}(D)$ is a subgroup of $\operatorname{Aut}(D)$. The group $\operatorname{Aut}(D)$ is called the group of automorphisms of D. We say that $\operatorname{Aut}(D)$ acts transitively on D if for arbitrary $z^{\prime}, z^{\prime \prime} \in D$ there exists an $F \in \operatorname{Aut}(D)$ such that $F\left(z^{\prime}\right)=z^{\prime \prime}$.

Notice that if $\Phi: D \longrightarrow G$ is biholomorphic, then

$$
\operatorname{Aut}(D) \ni F \longmapsto \Phi \circ F \circ \Phi^{-1} \in \operatorname{Aut}(G)
$$

is a group isomorphism.

Remark 2.3.1. (a) (cf. [4])

$$
\begin{aligned}
& \operatorname{Aut}(\widehat{\mathbb{C}})=\left\{\widehat{\mathbb{C}} \ni z \longrightarrow \frac{a z+b}{c z+d} \in \widehat{\mathbb{C}}: \quad a, b, c, d \in \mathbb{C}, \operatorname{det}\left[\begin{array}{l}
a, b \\
c, d
\end{array}\right] \neq 0\right\}, \\
& \operatorname{Aut}(\mathbb{C})=\{\mathbb{C} \ni z \longmapsto a z+b \in \mathbb{C}: \quad a, b \in \mathbb{C}, a \neq 0\} \\
& \operatorname{Aut}(\mathbb{D})=\left\{\mathbb{D} \ni z \longmapsto e^{i \theta} \frac{z-a}{1-\bar{a} z} \in \mathbb{D}: \quad \theta \in \mathbb{R}, a \in \mathbb{D}\right\}
\end{aligned}
$$

$\operatorname{Aut}(\widehat{\mathbb{C}}), \operatorname{Aut}(\mathbb{C}), \operatorname{Aut}(\mathbb{D})$ act transitively.
(b) Let

$$
A:=\left\{z \in \mathbb{C}: \frac{1}{R}<|z|<R\right\}
$$

Then

$$
\operatorname{Aut}(A)=\left\{A \ni z \longmapsto e^{i \theta} z \in A: \quad \theta \in \mathbb{R}\right\} \cup\left\{A \ni z \longmapsto e^{i \theta} \frac{1}{z} \in A: \quad \theta \in \mathbb{R}\right\} ;
$$

$\operatorname{Aut}(A)$ does not act transitively; cf. 29.
Indeed, fix an $F \in \operatorname{Aut}(A)$. Let $C:=C(1)$ and let $A_{-}:=\{1 / R<|z|<1\}, A_{+}:=\{1<|z|<R\}$. Since $F^{-1}(C)$ is a compact subset of A, there exists an $R^{\prime} \in(1, R)$ such that $F^{-1}(C) \subset\left\{z \in \mathbb{C}: 1 / R^{\prime}<|z|<R^{\prime}\right\}$. Consider the set $B_{+}:=F\left(\left\{z \in \mathbb{C}: R^{\prime}<|z|<R\right\}\right)$. Since $B_{+} \cap C=\varnothing$, the set B_{+}is contained either in A_{+}or in A_{-}. Taking $1 / F$ instead of F (if necessary), we may assume that $B_{+} \subset A_{+}$. Now consider the set $B_{-}:=F\left(\left\{z \in \mathbb{C}: 1 / R<|z|<1 / R^{\prime}\right\}\right)$. It is clear that $B_{-} \subset A_{-}$. Thus

$$
\lim _{|z| \rightarrow 1 / R}|F(z)|=1 / R, \quad \lim _{|z| \rightarrow R}|F(z)|=R
$$

Hence, by the classical Hadamard three circles theorem (cf. 44, Th. 3.13; see also Proposition 3.2.37), we get

$$
|F(z)| \leq(1 / R)^{\frac{\log \frac{R}{|z|}}{\log \frac{R}{1 / R}}} R^{\frac{\log \frac{|z|}{\log \frac{R}{1 / R}}}{1 / R}}=|z|, \quad z \in A
$$

Since F^{-1} has the same properties, we conclude that $\left|F^{-1}(w)\right| \leq|w|$ for any $w \in A$. Thus $|F(z)|=|z|$ for any $z \in A$, and, therefore, there exists a $\theta \in \mathbb{R}$ such that $F(z)=e^{i \theta} z, z \in A$.

Theorem 2.3.2 (Cartan). Let $D \subset \mathbb{C}^{n}$ be a bounded domain, let $a \in D$, and assume that $F: D \longrightarrow D$ is a holomorphic mapping such that $F(a)=a$ and $F^{\prime}(a)=\mathrm{id}$. Then $F \equiv \mathrm{id} .\left(^{7}\right)$

Proof. Without loss of generality we may assume that $a=0$. Suppose that $F \not \equiv \mathrm{id}$. Fix $r, R>0$ such that $P:=\mathbb{P}(r) \subset D \subset \mathbb{B}(R)$. We have

$$
F(z)=\sum_{k=0}^{\infty} Q_{k}(z), \quad z \in P
$$

where $Q_{k}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a homogeneous polynomial of degree k. By our assumptions, $Q_{0}=0$ and $Q_{1}=\mathrm{id}$. Let $k_{0} \geq 2$ be such that $Q_{2}=\cdots=Q_{k_{0}-1}=0, Q_{k_{0}} \not \equiv 0$. Let $F^{\langle\nu\rangle}$ denote the ν-th iterate of the mapping F, i.e. $F^{\langle 0\rangle}:=\mathrm{id}, F^{\langle\nu+1\rangle}:=F^{\langle\nu\rangle} \circ F$. Then

$$
F^{\langle\nu\rangle}(z)=z+\nu Q_{k_{0}}+\sum_{k=k_{0}+1}^{\infty} Q_{\nu, k}(z), \quad z \in P .
$$

Hence, by the Cauchy integral formula, for any $z \in P$ we get

$$
\left\|\nu Q_{k_{0}}(z)\right\|=\left\|\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{F^{\langle\nu\rangle}(\zeta z)}{\zeta^{k_{0}+1}} d \zeta\right\| \leq \max \left\{\left\|F^{\langle\nu\rangle}(\zeta z)\right\|: \zeta \in \mathbb{T}\right\} \leq R, \quad \nu \geq 1
$$

Letting $\nu \longrightarrow+\infty$, we obtain $Q_{k_{0}} \equiv 0$; contradiction.
$\left.{ }^{7}\right)$ Notice that the assumption that D is bounded is essential (take for instance $\left.D=\mathbb{C}, F(z):=z(1-z), a:=0\right)$.

Proposition 2.3.3 (Cartan). Let $D, G \subset \mathbb{C}^{n}$ be circular domains with $0 \in D, 0 \in G$, such that D is bounded, and let $F: D \longrightarrow G$ be a biholomorphic mapping with $F(0)=0$. Then F is a linear isomorphism. $\left({ }^{8}\right)\left({ }^{9}\right)$

Proof. For $\theta \in \mathbb{R}$ put

$$
H_{\theta}(z):=F^{-1}\left(e^{-i \theta} F\left(e^{i \theta} z\right)\right), \quad z \in D
$$

Then H_{θ} is well defined, $H_{\theta} \in \operatorname{Aut}(D), H_{\theta}(0)=0$, and $H_{\theta}^{\prime}(0)=\mathrm{id}$. Therefore, by Theorem 2.3.2, $H_{\theta}=\mathrm{id}$, i.e.

$$
F\left(e^{i \theta} z\right)=e^{i \theta} F(z), \quad z \in D, \theta \in \mathbb{R}
$$

Let

$$
F(z)=\sum_{k=1}^{\infty} Q_{k}(z), \quad z \in \mathbb{P}(r)
$$

be the expansion of F into the series of homogeneous polynomials in a polydisc $\mathbb{P}(r) \subset D$. Then

$$
F(z)=\sum_{k=1}^{\infty} e^{i(k-1) \theta} Q_{k}(z), \quad z \in D, \theta \in \mathbb{R}
$$

This means (Exercise) that $Q_{k}=0$ in $\mathbb{P}(r)$ for $k \geq 2$, and so, by the identity principle, $F \equiv Q_{1}$. Therefore F is a linear mapping. Since F is biholomorphic, it must be a linear isomorphism.

2.4. Automorphism group of \mathbb{D}^{n}

Given $a \in \mathbb{D}$ put

$$
h_{a}(z):=\frac{z-a}{1-\bar{a} z} .
$$

Theorem 2.4.1.

$$
\left.\begin{array}{rl}
\operatorname{Aut}\left(\mathbb{D}^{n}\right)=\left\{\mathbb{D}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(e^{i \theta_{1}} h_{a_{1}}\left(z_{\sigma(1)}\right), \ldots, e^{i \theta_{n}} h_{a_{n}}\left(z_{\sigma(n)}\right)\right)\right. & \in \mathbb{D}^{n}: \\
\theta_{j} & \in \mathbb{R}, a_{j}
\end{array} \in \mathbb{D}, j=1 \ldots, n, \sigma \in \mathfrak{S}_{n}\right\}=: \mathfrak{G} .
$$

$$
\operatorname{Aut}_{0}\left(\mathbb{D}^{n}\right)=\left\{\mathbb{D}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(e^{i \theta_{1}} z_{\sigma(1)}, \ldots, e^{i \theta_{n}} z_{\sigma(n)}\right) \in \mathbb{D}^{n}: \theta_{j} \in \mathbb{R}, j=1 \ldots, n, \sigma \in \mathfrak{S}_{n}\right\}=: \mathfrak{G}_{0}
$$

where \mathfrak{S}_{n} denotes the group of all permutations of n-elements.
The group $\operatorname{Aut}\left(\mathbb{D}^{n}\right)$ acts transitively.
Proof. It is easy to see that \mathfrak{G} is a subgroup of $\operatorname{Aut}\left(\mathbb{D}^{n}\right), \mathfrak{G}_{0}$ is a subgroup of $\operatorname{Aut}_{0}\left(\mathbb{D}^{n}\right)$, and \mathfrak{G} acts transitively on \mathbb{D}^{n}. It remains to show that $\operatorname{Aut}_{0}\left(\mathbb{D}^{n}\right) \subset \mathfrak{G}_{0}$. By Lemma 1.4.26 and Proposition 2.3.3, any automorphism $F \in \operatorname{Aut}_{0}\left(\mathbb{D}^{n}\right)$ is a linear isomorphism such that $|F(z)|=|z|, z \in \mathbb{D}^{n}$. Let $\left[L_{j, k}\right]_{j, k=1, \ldots, n}$ denote the matrix representation of F. We have

$$
\max _{j=1, \ldots, n}\left\{\left|\sum_{k=1}^{n} L_{j, k} z_{k}\right|\right\}=\max \left\{\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right\}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}
$$

In particular,

$$
\max \left\{\left|L_{1, k}\right|, \ldots,\left|L_{n, k}\right|\right\}=1, \quad k=1, \ldots, n, \quad\left|L_{j, 1}\right|+\cdots+\left|L_{j, n}\right| \leq 1, \quad j=1, \ldots, n
$$

Thus the matrix $\left[L_{j, k}\right.$] has in each row, and each column, exactly one nonzero element (which must have absolute value 1). This means that $F \in \mathfrak{G}_{0}$.

[^9]2. Extension of holomorphic functions
2.5. Automorphism group of \mathbb{B}_{n}

For $a \in \mathbb{B}_{n}$ let

$$
\begin{aligned}
& \chi_{a}(z):=\frac{1}{\|a\|^{2}} \frac{\sqrt{1-\|a\|^{2}}\left(\|a\|^{2} z-\langle z, a\rangle a\right)-\|a\|^{2} a+\langle z, a\rangle a}{1-\langle z, a\rangle} \quad \text { if } a \neq 0 \\
& \chi_{0}(z):=\mathrm{id}
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard complex scalar product in \mathbb{C}^{n}. Let $\mathfrak{U}\left(\mathbb{C}^{n}\right)$ denote the group of unitary automorphisms of \mathbb{C}^{n}.

Recall that a linear mapping $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is unitary if $\left\langle L\left(z^{\prime}\right), L\left(z^{\prime \prime}\right)\right\rangle=\left\langle z^{\prime}, z^{\prime \prime}\right\rangle, z^{\prime}, z^{\prime \prime} \in \mathbb{C}^{n}$ (or, equivalently, $\left.\|L(z)\|=\|z\|, z \in \mathbb{C}^{n}\right)$.

Notice that the mapping χ_{a} is defined in the domain

$$
D_{a}:=\left\{z \in \mathbb{C}^{n}:\langle z, a\rangle \neq 1\right\} \supset \overline{\mathbb{B}}_{n}
$$

and $\chi_{a}(a)=0$.
Theorem 2.5.1.

$$
\operatorname{Aut}\left(\mathbb{B}_{n}\right)=\left\{U \circ \chi_{a}: U \in \mathfrak{U}\left(\mathbb{C}^{n}\right), a \in \mathbb{B}_{n}\right\}, \quad \operatorname{Aut}_{0}\left(\mathbb{B}_{n}\right)=\mathfrak{U}\left(\mathbb{C}^{n}\right)
$$

The group $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ acts transitively.
Proof. The fact that $\operatorname{Aut}_{0}\left(\mathbb{B}_{n}\right)=\mathfrak{U}\left(\mathbb{C}_{n}\right)$ follows immediately from Lemma 1.4.26 and Proposition 2.3.3.
We move to the characterization of the full group $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$. Since $\chi_{a}(a)=0$, we only need to prove that $\chi_{a} \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.

Fix an $a \in \mathbb{B}_{n}$. The case $a=0$ is trivial, so assume that $a \neq 0$.
Direct calculations show (Exercise) that

$$
1-\left\langle\chi_{a}(z), \chi_{a}(w)\right\rangle=\frac{(1-\langle a, a\rangle)(1-\langle z, w\rangle)}{(1-\langle z, a\rangle)(1-\langle a, w\rangle)}, \quad z, w \in \overline{\mathbb{B}}_{n}
$$

(cf. [30, Th. 2.2.2). Taking $w=z$, we conclude that $\chi_{a}\left(\mathbb{B}_{n}\right) \subset \mathbb{B}_{n}$ and $\chi_{a}\left(\partial \mathbb{B}_{n}\right) \subset \partial \mathbb{B}_{n}$.
In particular, $\chi_{a} \circ \chi_{-a}$ is well defined in a neighborhood of $\overline{\mathbb{B}}_{n}$. Using once again direct calculations, we prove (Exercise) that $\chi_{a} \circ \chi_{-a}=\mathrm{id}$. Hence $\chi_{a} \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\left(\chi_{a}\right)^{-1}=\chi_{-a}$.

2.6. Laurent series

Given $\boldsymbol{r}^{-}=\left(r_{1}^{-}, \ldots, r_{n}^{-}\right), \boldsymbol{r}^{+}=\left(r_{1}^{+}, \ldots, r_{n}^{+}\right) \in \mathbb{R}_{+}^{n}$ with $r_{j}^{-}<r_{j}^{+}, j=1, \ldots, n$, let

$$
A=A\left(\boldsymbol{r}^{-}, \boldsymbol{r}^{+}\right):=A_{1} \times \cdots \times A_{n} \subset \mathbb{C}^{n}
$$

where

$$
A_{j}:=\left\{z \in \mathbb{C}: r_{j}^{-} \leq|z| \leq r_{j}^{+}\right\}
$$

Let f be holomorphic in a neighborhood of A. Given $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{>0}^{n} \cap A$, define

$$
a_{\alpha}(\boldsymbol{r})=a_{\alpha}^{f}(\boldsymbol{r}):=\frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} \mathbb{P}(\boldsymbol{r})} \frac{f(\zeta)}{\zeta^{\alpha+1}} d \zeta, \quad \alpha \in \mathbb{Z}^{n} .
$$

Proposition 2.6.1. (a) The number $a_{\alpha}=a_{\alpha}^{f}:=a_{\alpha}^{f}(\boldsymbol{r})$ is independent of \boldsymbol{r} and

$$
\begin{equation*}
\left|a_{\alpha}\right| \leq \frac{\|f\|_{A}}{\boldsymbol{r}^{\alpha}}, \quad \alpha \in \mathbb{Z}^{n}, \quad \boldsymbol{r} \in \mathbb{R}_{>0}^{n} \cap A \tag{2.6.1}
\end{equation*}
$$

(b) If $r_{j}^{-}=0$ for some $j \in\{1, \ldots, n\}$, then $a_{\alpha}=0$ for every $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ with $\alpha_{j}<0$.
(c) For every $0<\theta<1$ with $\theta>\theta_{0}:=\max \left\{\sqrt{r_{j}^{-} / r_{j}^{+}}: j=1, \ldots, n\right\}$ we have

$$
\begin{equation*}
\left\|a_{\alpha} z^{\alpha}\right\|_{A_{\theta}} \leq\|f\|_{A} \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n} \tag{2.6.2}
\end{equation*}
$$

with

$$
A_{\theta}:=A\left(\frac{1}{\theta} \boldsymbol{r}^{-}, \theta \boldsymbol{r}^{+}\right)
$$

(d) The Laurent series $\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha}$ converges locally normally in int A.
(e) $f(z)=\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha}, \quad z \in \operatorname{int} A$.

Proof. (a) We apply induction on n. For $n=1$ the result is well known (cf. [4], V.1.11). Assume that it is true for $n-1$. Let $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right), r^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right) \in \mathbb{R}_{>0}^{n} \cap A$. Then

$$
\begin{array}{r}
a_{\alpha}^{f}\left(\boldsymbol{r}^{\prime}\right)=\frac{1}{2 \pi i} \int_{C\left(r_{n}^{\prime}\right)} a_{\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)}^{f\left(\cdot, \zeta_{n}\right)}\left(\left(r_{1}^{\prime}, \ldots, r_{n-1}^{\prime}\right)\right) \frac{d \zeta_{n}}{\zeta_{n}^{\alpha_{n}+1}}=\frac{1}{2 \pi i} \int_{C\left(r_{n}^{\prime}\right)} a_{\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)}^{f\left(\cdot, \zeta_{n}\right)}\left(\left(r_{1}, \ldots, r_{n-1}\right)\right) \frac{d \zeta_{n}}{\zeta_{n}^{\alpha_{n}+1}} \\
\\
=a_{\alpha}^{f}\left(\left(r_{1}, \ldots, r_{n-1}, r_{n}^{\prime}\right)\right) .
\end{array}
$$

Similar argument with respect to the first variable shows that

$$
a_{\alpha}^{f}\left(\left(r_{1}, \ldots, r_{n-1}, r_{n}^{\prime}\right)\right)=a_{\alpha}^{f}(\boldsymbol{r})
$$

Directly from the definition of $a_{\alpha}(r)$ we get 2.6.1).
(b) Use 2.6 .1 with $r_{j} \longrightarrow 0$.
(c) Fix $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ and $\theta_{0}<\theta<1$. We may assume that $\alpha_{1}, \ldots, \alpha_{s} \geq 0, \alpha_{s+1}, \ldots, \alpha_{n}<0$ with $0 \leq s \leq n$. Take a $z=\left(z_{1}, \ldots, z_{n}\right) \in A_{\theta}$ with $z_{1} \cdots \cdots z_{n} \neq 0$. Let $\boldsymbol{r}:=\left(\left|z_{1}\right| / \theta, \ldots,\left|z_{s}\right| / \theta, \theta\left|z_{s+1}\right|, \ldots, \theta\left|z_{n}\right|\right)$. Observe that $\boldsymbol{r} \in \mathbb{R}_{>0}^{n} \cap A$. Using (a), we get:

$$
\left|a_{\alpha} z^{\alpha}\right| \leq \frac{\|f\|_{A}}{\boldsymbol{r}^{\alpha}}\left|z_{1}\right|^{\alpha_{1}} \cdots \cdots\left|z_{n}\right|^{\alpha_{n}}=\|f\|_{A} \theta^{\alpha_{1}+\cdots+\alpha_{s}-\alpha_{s+1}-\cdots-\alpha_{n}}=\|f\|_{A} \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}
$$

(d) For every compact subset $K \subset \operatorname{int} A$ there exists $0<\theta<1$ such that $K \subset A_{\theta}$. Now we can apply 2.6.2 $\left({ }^{10}\right)$
(e) We apply induction on n. For $n=1$ the result is well known. Assume that it is true for $n-1$. Fix a $z=\left(z_{1}, z^{\prime}\right) \in \operatorname{int} A$ and observe that

$$
\begin{aligned}
f(z) & =\sum_{\alpha_{1} \in \mathbb{Z}} a_{\alpha_{1}}^{f\left(\cdot, z^{\prime}\right)} z_{1}^{\alpha_{1}}=\sum_{\alpha_{1} \in \mathbb{Z}}\left(\frac{1}{2 \pi i} \int_{C\left(r_{1}\right)} \frac{f\left(\zeta_{1}, z^{\prime}\right)}{\zeta_{1}^{\alpha_{1}+1}} d \zeta_{1}\right) z_{1}^{\alpha_{1}} \\
& =\sum_{\alpha_{1} \in \mathbb{Z}}\left(\frac{1}{2 \pi i} \int_{C\left(r_{1}\right)} \frac{1}{\zeta_{1}^{\alpha_{1}+1}}\left(\sum_{\alpha^{\prime} \in \mathbb{Z}^{n-1}} a_{\alpha^{\prime}}^{f\left(\zeta_{1}, \cdot\right)}\left(z^{\prime}\right)^{\alpha^{\prime}}\right) d \zeta_{1}\right) z_{1}^{\alpha_{1}}=\sum_{\alpha \in \mathbb{Z}^{n}}\left(\frac{1}{2 \pi i} \int_{C\left(r_{1}\right)} \frac{\left.a_{\frac{\alpha^{\prime}}{f\left(\zeta_{1}, \cdot\right)}}^{\zeta_{1}^{\alpha_{1}+1}} d \zeta_{1}\right) z^{\alpha}}{}\right. \\
& =\sum_{\alpha \in \mathbb{Z}^{n}}\left(\frac{1}{2 \pi i} \int_{C\left(r_{1}\right)} \frac{1}{\zeta_{1}^{\alpha_{1}+1}}\left(\frac{1}{(2 \pi i)^{n-1}} \int_{C\left(r_{2}\right) \times \cdots \times C\left(r_{n}\right)} \frac{f\left(\zeta_{1}, \zeta^{\prime}\right)}{\left(\zeta^{\prime}\right)^{\alpha^{\prime}+1}} d \zeta^{\prime}\right) d \zeta_{1}\right) z^{\alpha}=\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha} .
\end{aligned}
$$

Put

$$
\boldsymbol{V}_{j}:=\mathbb{C}^{j-1} \times\{0\} \times \mathbb{C}^{n-j} \subset \mathbb{C}^{n}, \quad j=1, \ldots, n
$$

Proposition 2.6.2. Let $D \subset \mathbb{C}^{n}$ be an n-circled domain and let $f \in \mathcal{O}(D)$. For $\boldsymbol{r} \in D \cap \mathbb{R}_{>0}^{n}$ put

$$
a_{\alpha}(\boldsymbol{r}):=\frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} \mathbb{P}(\boldsymbol{r})} \frac{f(\zeta)}{\zeta^{\alpha+1}} d \zeta, \quad \alpha \in \mathbb{Z}^{n}
$$

Then:
(a) The number $a_{\alpha}=a_{\alpha}(\boldsymbol{r})$ is independent of $\boldsymbol{r}\left(\alpha \in \mathbb{Z}^{n}\right)$.
(b) For any compact $K \subset D$ there exist $C>0$ and $0<\theta<1$ such that

$$
\left\|a_{\alpha} z^{\alpha}\right\|_{K} \leq C \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}, \quad \alpha \in \mathbb{Z}^{n} .
$$

In particular, the series $\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha}$ converges locally normally in D.
$\left({ }^{10}\right)$ Cf. Example 1.3.2 b).
2. Extension of holomorphic functions
(c) $f(z)=\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha}, \quad z \in D$.(d) Assume that $D \cap \boldsymbol{V}_{j} \neq \varnothing$ for some $j \in\{1, \ldots, n\}$. Then $a_{\alpha}=0$ for every $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ with $\alpha_{j}<0$ and, consequently, f extends holomorphically to the domain

$$
\widetilde{D}^{(j)}:=\left\{\left(z^{\prime}, \lambda z_{j}, z^{\prime \prime}\right):\left(z^{\prime}, z_{j}, z^{\prime \prime}\right) \in D \subset \mathbb{C}^{j-1} \times \mathbb{C} \times \mathbb{C}^{n-j}, \lambda \in \overline{\mathbb{D}}\right\}
$$

(e) If $0 \in D$, then $f=T_{0} f$ in $D(11)$ and the function f extends holomorphically to the domain

$$
\widetilde{D}:=\left\{\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right): \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{D}},\left(z_{1}, \ldots, z_{n}\right) \in D\right\}
$$

Figure 2.2.1

Proof. (a) Fix $\boldsymbol{r}^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right), \boldsymbol{r}^{\prime \prime}=\left(r_{1}^{\prime \prime}, \ldots, r_{n}^{\prime \prime}\right) \in D \cap \mathbb{R}_{>0}^{n}$. Since $D \cap \mathbb{R}_{>0}^{n}$ is connected, there exists a curve $\gamma:[0,1] \longrightarrow D \cap \mathbb{R}_{>0}^{n}$ such that $\gamma(0)=\boldsymbol{r}^{\prime}$ and $\gamma(1)=\boldsymbol{r}^{\prime \prime}$. Since the set $\gamma([0,1])$ is compact, there exist $N \in \mathbb{N}$ and annuli $A^{(j)}=A\left(\boldsymbol{r}^{-}(j), \boldsymbol{r}^{+}(j)\right), j=1, \ldots, N$, such that
$\gamma([0,1]) \subset \operatorname{int} A^{(1)} \cup \cdots \cup \operatorname{int} A^{(N)} \subset \subset D$,
$\boldsymbol{r}^{\prime} \in \operatorname{int} A^{(1)}, \boldsymbol{r}^{\prime \prime} \in \operatorname{int} A^{(N)}$,
$\operatorname{int} A^{(j)} \cap \operatorname{int} A^{(j+1)} \neq \varnothing, j=1, \ldots, N-1$.
By Proposition 2.6.1(a) we know that for fixed j the coefficient $a_{\alpha}(\boldsymbol{r})$ is independent of $\boldsymbol{r} \in A^{(j)} \cap \mathbb{R}_{>0}^{n}$. Put $a_{\alpha}^{(j)}:=a_{\alpha}(\boldsymbol{r})$ for $\boldsymbol{r} \in A^{(j)} \cap \mathbb{R}_{>0}^{n}$. Consequently, since int $A^{(j)} \cap \operatorname{int} A^{(j+1)} \neq \varnothing$, we get $a_{\alpha}\left(\boldsymbol{r}^{\prime}\right)=a_{\alpha}^{(1)}=$ $\cdots=a_{\alpha}^{(N)}=a_{\alpha}\left(\boldsymbol{r}^{\prime \prime}\right)$.
(b) Observe that for every compact subset $K \subset D$ there exist $N \in \mathbb{N}$, annuli $A^{(j)}=A\left(\boldsymbol{r}^{-}(j), \boldsymbol{r}^{+}(j)\right)$, $j=1, \ldots, N$, and $0<\theta<1$ such that $K \subset A_{\theta}^{(1)} \cup \cdots \cup A_{\theta}^{(N)} \subset \subset D$. Now we apply Proposition 2.6.1(c).
(c) follows immediately from Proposition 2.6.1(e).
(d) First observe that there exist \boldsymbol{r}^{-}and \boldsymbol{r}^{+}such that $r_{j}^{-}=0$ and $A\left(\boldsymbol{r}^{-}, \boldsymbol{r}^{+}\right) \subset D$. Hence, by Proposition 2.6.1(b), $a_{\alpha}=0$ whenever $\alpha_{j}<0$. By (b), the series converges locally normally in $\widetilde{D}^{(j)}\left(1^{13}\right)$ and, therefore, its sum defines there a holomorphic extension of f.
(e) follows from (d).

Proposition 2.6.3. Let $D \subset \mathbb{C}^{n}$ be a Hartogs domain over G with k-circled fibers. Then any function $f \in \mathcal{O}(D)$ can be represented by a Hartogs-Laurent series

$$
\begin{equation*}
f(z, w)=\sum_{\beta \in \mathbb{Z}^{k}} f_{\beta}(z, w) w^{\beta}, \quad(z, w) \in D \tag{2.6.3}
\end{equation*}
$$

[^10]where $f_{\beta} \in \mathcal{O}(D)$ and for any $z \in G$ the function $f_{\beta}(z, \cdot)$ is constant on any connected component of the fiber $D_{z}, \beta \in \mathbb{Z}^{k}$.

For any compact $K \subset D$ there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\left|f_{\beta}(z, w) w^{\beta}\right| \leq C \theta^{\left|\beta_{1}\right|+\cdots+\left|\beta_{k}\right|}, \quad(z, w) \in K, \beta=\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathbb{Z}^{k}
$$

In particular, the series converges locally normally in D.
Moreover, if $D \cap\left(G \times\{0\}^{k}\right) \neq \varnothing$, then $f_{\beta} \equiv 0$ for all $\beta \notin \mathbb{N}_{0}^{k}$ and 2.6.3 reduces to a Hartogs series (cf. Proposition 1.6.5 (a)).

Proof. For $(z, w) \in D$ let $D_{z, w}$ denote the connected component of D_{z} such that $w \in D_{z, w}$. By Proposition 2.6.2 the function f can be represented in the form 2.6.3 with

$$
\begin{equation*}
f_{\beta}(z, w):=\frac{1}{(2 \pi i)^{k}} \int_{\partial_{0} \mathbb{P}(\boldsymbol{r})} \frac{f(z, \zeta)}{\zeta^{\beta+\boldsymbol{1}}} d \zeta, \quad \beta \in \mathbb{Z}^{k} \tag{2.6.4}
\end{equation*}
$$

where \boldsymbol{r} is an arbitrary vector from $D_{z, w} \cap \mathbb{R}_{>0}^{k}$ (we know that the formula is independent of $\boldsymbol{r} \in D_{z, w} \cap \mathbb{R}_{>0}^{k}$). In particular, $f_{\beta}(z, \cdot)$ is constant on any connected component of D_{z}. Moreover, if $0 \in D_{z, w}$, then $f_{\beta}(z, w)=0$ for all $\beta \notin \mathbb{N}_{0}^{k}$.

Observe that \boldsymbol{r} in 2.6.4 can be chosen to be locally independent of (z, w). Hence $f_{\beta} \in \mathcal{O}(D), \beta \in \mathbb{Z}^{k}$. If $D \cap\left(G \times\{0\}^{k}\right) \neq \varnothing$, then by the identity principle, $f_{\beta} \equiv 0$ for all $\beta \notin \mathbb{N}_{0}^{k}$.
We pass to the proof of the estimate. It suffices to consider only the case where $K=K_{0} \times A, K_{0} \subset \subset G$,

$$
A:=\left\{\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{C}^{k}: r_{j}^{-} \leq\left|w_{j}\right| \leq r_{j}^{+}, j=1, \ldots, k\right\}
$$

for some $0 \leq r_{j}^{-}<r_{j}^{+}<+\infty, j=1, \ldots, k\left({ }^{14}\right)$ Let $\theta \in(0,1)$ be such that

$$
L:=K_{0} \times\left\{\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{C}^{k}: \theta r_{j}^{-} \leq\left|w_{j}\right| \leq r_{j}^{+} / \theta, j=1, \ldots, k\right\} \subset D
$$

Then, by Proposition 2.6.1, we get

$$
\left|f_{\beta}(z, w) w^{\beta}\right| \leq\|f\|_{L} \theta^{\left|\beta_{1}\right|+\cdots+\left|\beta_{k}\right|}, \quad(z, w) \in K, \beta \in \mathbb{Z}^{k}
$$

2.7. Domains of holomorphy

Recall that if $\Omega \nsubseteq \mathbb{C}$, then each boundary point of Ω is a singular point for a function holomorphic in Ω. By virtue of the Hartogs theorem 2.1.2 a similar result is not true for $\Omega \varsubsetneqq \mathbb{C}^{n}$ with $n \geq 2$. Thus, it is natural to look for characterizations of those open sets in $\mathbb{C}^{n}, n \geq 2$, which are regions of holomorphy.

On the other hand, even for $n=1$, if we restrict the class of all holomorphic functions in Ω to, for instance, the class of all bounded holomorphic functions in Ω, then not all open sets $\Omega \subset \mathbb{C}$ are regions of existence of such functions; e.g. each function from $\mathcal{H}^{\infty}\left(\mathbb{D}_{*}\right)$ extends holomorphically to \mathbb{D}. The same situation appears for $n \geq 2$ if, for instance, $\Omega=D \backslash M$, where M is a relatively closed thin subset of D (cf. the Riemann theorem 2.1.6). Thus, it seems to be interesting to consider also the case where an open set $\Omega \subset \mathbb{C}^{n}$ is the region of holomorphy with respect to a family $\mathcal{F} \subset \mathcal{O}(\Omega)$.

Observe the following additional problem. Let $\Omega:=\mathbb{C} \backslash \mathbb{R}_{+}$and let $f:=\log$ be the principal branch of the logarithm. Then f cannot be holomorphically continued to a larger plane domain, but it is well known that f can be holomorphically continued to a Riemann surface which is no longer a plane domain.

One could expect that the above multivaluedness of holomorphic continuation disappears if we simultaneously extend all holomorphic functions. Unfortunately, this is not true - cf. Example 2.8.1. Consequently, to study maximal holomorphic extensions of open sets in \mathbb{C}^{n} we have to consider 'multivalued' regions over \mathbb{C}^{n} (called Riemann regions).
Definition 2.7.1. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $\varnothing \neq \mathcal{F} \subset \mathcal{O}(\Omega)$. We say that Ω is an \mathcal{F}-region of holomorphy if there are no domains $\widetilde{\Omega}, \Omega_{0} \subset \mathbb{C}^{n}$ such that

$$
\begin{aligned}
& \widetilde{\Omega} \not \subset \Omega \\
& \varnothing \neq \Omega_{0} \subset \Omega \cap \widetilde{\Omega}
\end{aligned}
$$

[^11]2. Extension of holomorphic functions
for every $f \in \mathcal{F}$ there exists an $\widetilde{f} \in \mathcal{O}(\widetilde{\Omega})$ such that $\widetilde{f}=f$ in Ω_{0}.

Figure 2.3.1
Observe that by the identity principle \tilde{f} is uniquely determined by f. Moreover, if $\underset{\sim}{\Omega}$ is not an \mathcal{F}-region of holomorphy, then we may always assume that Ω_{0} is a connected component of $\Omega \cap \widetilde{\Omega}$.

If Ω is an $\{f\}$-region of holomorphy, then we say that Ω is the region of existence of f (or that the function f does not extend beyond Ω).

If Ω is an $\mathcal{O}(\Omega)$-region of holomorphy, then we shortly say that Ω is a region of holomorphy.
If Ω is connected, then we will say that Ω is an \mathcal{F}-domain of holomorphy (resp. the domain of existence of f, resp. a domain of holomorphy).

Remark 2.7.2. (a) If Ω is an \mathcal{F}-region of holomorphy, then Ω is a \mathcal{G}-region of holomorphy for any $\mathcal{G} \supset \mathcal{F}$. In particular, any \mathcal{F}-region of holomorphy is a region of holomorphy.
(b) Ω is an \mathcal{F}-region of holomorphy iff Ω is an $[\mathcal{F}]$-region of holomorphy, where $[\mathcal{F}]$ is the minimal subalgebra \mathcal{A} of $\mathcal{O}(\Omega)$ such that
$\mathcal{F} \subset \mathcal{A}$,
$z_{1}, \ldots, z_{n} \in \mathcal{A}$,
\mathcal{A} is ∂-stable, i.e. $\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}} \in \mathcal{A}$ for any $f \in \mathcal{A}$.
(c) Ω is an \mathcal{F}-region of holomorphy iff any connected component D of Ω is an $\left.\mathcal{F}\right|_{D}$-domain of holomorphy.
(d) \mathbb{C}^{n} is an \mathcal{F}-domain of holomorphy for every $\varnothing \neq \mathcal{F} \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$.
(e) Every open subset $\Omega \nsubseteq \mathbb{C}$ is an \mathcal{F}-domain of holomorphy with respect to the family

$$
\mathcal{F}:=\left\{\Omega \ni z \longmapsto \frac{1}{z-a}, a \notin \Omega\right\}
$$

In particular, every open subset of \mathbb{C} is a domain of holomorphy.
(f) Every open and fat subset $\Omega \nsubseteq \mathbb{C}\left({ }^{15}\right)$ is an \mathcal{F}-domain of holomorphy with respect to the family

$$
\mathcal{F}:=\left\{\Omega \ni z \longmapsto \frac{1}{z-a}, a \notin \bar{\Omega}\right\}
$$

In particular, every open and fat subset of \mathbb{C} is an $\mathcal{H}^{\infty}(\Omega)$-domain of holomorphy.
(g) Let K be a non-empty compact subset of a domain $D \subset \mathbb{C}^{n}, n \geq 2$, such that $D \backslash K$ is connected. Then, by Theorem 2.1.2, $D \backslash K$ is not a domain of holomorphy.
(h) Let M be a non-empty closed thin subset of a domain $D \subset \mathbb{C}^{n}$. Then, by Theorem 2.1.6, $D \backslash M$ is not an $\mathcal{H}^{\infty}(D \backslash M)$-domain of holomorphy.
(i) Let D be an n-circled domain with $0 \in D$ such that D is not complete. Then, by Proposition 2.6.2, D is not a domain of holomorphy.

[^12]Proposition 2.7.3. (a) Assume that Ω is not a region of holomorphy and let $\widetilde{\Omega}, \Omega_{0}$ be as in Definition 2.7.1 with $\mathcal{F}:=\mathcal{O}(\Omega)$. Then

$$
\widetilde{f}(\widetilde{\Omega}) \subset f(\Omega), \quad f \in \mathcal{O}(\Omega)
$$

(b) Assume that Ω is not an $\mathcal{H}^{\infty}(\Omega)$-region of holomorphy and let $\widetilde{\Omega}, \Omega_{0}$ be as in Definition 2.7.1 with $\mathcal{F}:=\mathcal{H}^{\infty}(\Omega)$. Then

$$
\|\tilde{f}\|_{\widetilde{\Omega}} \leq\|f\|_{\Omega}, \quad f \in \mathcal{H}^{\infty}(\Omega)
$$

Proof. (a) Suppose that for $f \in \mathcal{O}(\Omega)$ and $a \in \widetilde{\Omega}$ we have $\widetilde{f}(a) \notin f(\Omega)$. Let $g:=1 /(f-\widetilde{f}(a))$. Obviously $g \in \mathcal{O}(\Omega)$. Since $g \cdot(f-\widetilde{f}(a)) \equiv 1$ in Ω, we get $\widetilde{g} \cdot(\widetilde{f}-\widetilde{f}(a)) \equiv 1$ in $\widetilde{\Omega}$; contradiction.
(b) Suppose that for some $f \in \mathcal{H}^{\infty}(\Omega)$ and $a \in \widetilde{\Omega}$ we have $|\widetilde{f}(a)|>\|f\|_{\Omega}$. Put $g:=1 /(f-\widetilde{f}(a))$. Then $g \in \mathcal{H}^{\infty}(\Omega)$ and we can argue as in (a).

Proposition 2.7.4. (a) Assume that for every $a \in \partial \Omega$ there exists an $f_{a} \in \mathcal{O}(\Omega, \mathbb{D})$ such that $\lim _{z \rightarrow a}\left|f_{a}(z)\right|=$ 1 (each such a function f_{a} is called a barrier function). Then Ω is an $\mathcal{H}^{\infty}(\Omega)$-region of holomorphy.
(b) Every convex domain $D \subset \mathbb{C}^{n}$ is an $\mathcal{H}^{\infty}(D)$-domain of holomorphy.

Proof. (a) Let $\widetilde{\Omega}$ and Ω_{0} be as in Definition 2.7.1 with $\mathcal{F}=\mathcal{H}^{\infty}(\Omega)$. We may assume that Ω_{0} is a connected component of $\Omega \cap \widetilde{\Omega}$. Let $a \in \partial \Omega \cap \widetilde{\Omega} \cap \partial \Omega_{0}$. Then, by Proposition 2.7 .3 (b), $\left|\widetilde{f}_{a}\right| \leq 1$ in $\widetilde{\Omega}$. Moreover, $\left|\widetilde{f}_{a}(a)\right|=\lim _{\Omega_{0} \ni z \rightarrow a}\left|f_{a}(z)\right|=1$. Hence, by the maximum principle, $\left|f_{a}\right|=1$ in Ω_{0}; contradiction.
(b) We may assume that $D \varsubsetneqq \mathbb{C}^{n}$. We apply (a). Fix an $a \in \partial D$. Since D is convex, there exists a real affine function $\ell: \mathbb{C}^{n} \longrightarrow \mathbb{R}$ such that $\ell<0$ in D and $\ell(a)=0$. Let

$$
\ell(z)=b_{0}+\sum_{j=1}^{n}\left(b_{j} x_{j}+c_{j} y_{j}\right), \quad z=\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)
$$

with $b_{0}, \ldots, b_{n}, c_{1}, \ldots, c_{n} \in \mathbb{R}$. Put

$$
L(z):=b_{0}+\sum_{j=1}^{n}\left(b_{j}-i c_{j}\right) z_{j} .
$$

Then $\ell=\operatorname{Re} L$. Let $f_{a}:=e^{L}$. We have $\left|f_{a}\right|=e^{\operatorname{Re} L}=e^{\ell}<1$ in D and $f_{a}(a)=1$.

Proposition 2.7.5. Let $A \subset \Omega$ be an arbitrary dense subset and let $\mathcal{F} \subset \mathcal{O}(\Omega)$. Then the following conditions are equivalent:
(i) Ω is an \mathcal{F}-region of holomorphy;
(ii) for any $a \in A$ and $r>d_{\Omega}(a)$ there exists an $f \in \mathcal{F}$ such that $d\left(T_{a} f\right)<r$, i.e.

$$
d_{\Omega}(a)=\inf \left\{d\left(T_{a} f\right): f \in \mathcal{F}\right\}, \quad a \in A
$$

Proof. (i) \Longrightarrow (ii). Suppose that for some $a \in A$ and $r>d_{\Omega}(a)$ condition (ii) does not hold. Then the polydiscs $\widetilde{\Omega}:=\mathbb{P}(a, r), \Omega_{0}:=\mathbb{P}\left(a, d_{\Omega}(a)\right)$ satisfy the conditions of Definition 2.7.1 contradiction.
(ii) \Longrightarrow (i). Suppose that Ω is not an \mathcal{F}-region of holomorphy and let Ω, Ω_{0} be as in Definition 2.7.1. Take a point $a \in A \cap \Omega_{0}$ such that $d_{\Omega}(a)<d_{\widetilde{\Omega}}(a)$. Then $d\left(T_{a} f\right)=d\left(T_{a} \widetilde{f}\right) \geq d_{\widetilde{\Omega}}(a)>d_{\Omega}(a)$ for any $f \in \mathcal{F}$; contradiction.

Definition 2.7.6. Let $\mathcal{F} \subset \mathcal{O}(\Omega)$ be a vector subspace. Assume that \mathcal{F} is endowed with a Fréchet space topology. We say that \mathcal{F} is a natural Fréchet space in $\mathcal{O}(\Omega)$ if the identity id : $\mathcal{F} \longrightarrow \mathcal{O}(\Omega)$ is continuous, i.e. if a sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{F}$ is convergent to $f_{0} \in \mathcal{F}$ in the sense of the topology of \mathcal{F}, then $f_{\nu} \longrightarrow f_{0}$ locally uniformly in Ω.

Remark 2.7.7. $\mathcal{O}(\Omega), \mathcal{H}^{\infty}(\Omega), \mathcal{A}^{k}(\Omega), L^{p} H(\Omega)$ are natural Fréchet spaces.
Let

$$
\mathfrak{N}(\mathcal{F}):=\{f \in \mathcal{F}: f \text { does not extend beyond } \Omega\}
$$

Proposition 2.7.8. Let \mathcal{F} be a natural Fréchet space in $\mathcal{O}(\Omega)$. Then the following conditions are equivalent:
(i) Ω is an \mathcal{F}-region of holomorphy;
(ii) $\mathfrak{N}(\mathcal{F}) \neq \varnothing$;
(iii) $\mathfrak{N}(\mathcal{F})$ is of second Baire category in $\mathcal{F}\left(^{16}\right)$.

Proof. The implications (iii) \Longrightarrow (ii) \Longrightarrow (i) are obvious.
(i) \Longrightarrow (iii). Let $A \subset \Omega$ be an arbitrary countable dense subset of $\Omega, A=\left\{a_{1}, a_{2}, \ldots\right\}$, and let

$$
\mathcal{F}_{j, k}:=\left\{f \in \mathcal{F}: d\left(T_{a_{j}} f\right) \geq d_{\Omega}\left(a_{j}\right)+\frac{1}{k}\right\}, \quad j, k \in \mathbb{N} .
$$

By Proposition 2.7.5 we have

$$
\mathcal{F} \backslash \mathfrak{N}(\mathcal{F})=\bigcup_{j, k \in \mathbb{N}} \mathcal{F}_{j, k}
$$

$\mathcal{F}_{j, k}$ is a vector subspace of \mathcal{F} and $\mathcal{F}_{j, k} \nsubseteq \mathcal{F}$ for every $j, k \in \mathbb{N}$ (in virtue of (i)).
We define a topology on $\mathcal{F}_{j, k}$: a sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{F}_{j, k}$ is convergent to $f_{0} \in \mathcal{F}_{j, k}$ if $f_{\nu} \longrightarrow f_{0}$ in \mathcal{F} and $T_{a_{j}} f_{\nu} \longrightarrow T_{a_{j}} f_{0}$ locally uniformly in the polydisc $\mathbb{P}\left(a_{j}, d_{\Omega}\left(a_{j}\right)+1 / k\right)$. The above topology is a Fréchet topology and the mapping id : $\mathcal{F}_{j, k} \longrightarrow \mathcal{F}$ is clearly continuous. In particular, by the Banach theorem (${ }^{17}$) $\mathcal{F}_{j, k}$ is of the first category in \mathcal{F}. Consequently, $\mathfrak{N}(\mathcal{F})$ is of the second category.

Immediately from Definition 2.7.1 we obtain:
Remark 2.7.9. (a) If Ω_{ι} is an \mathcal{F}_{ι}-region of holomorphy, then $\Omega:=\operatorname{int} \bigcap_{\iota \in I} \Omega_{\iota}$ is an \mathcal{F}-region of holomorphy, where $\mathcal{F}:=\left.\bigcup_{\iota \in I} \mathcal{F}\right|_{\Omega}$.

Indeed,

$$
\inf \left\{d\left(T_{a} f\right): f \in \mathcal{F}\right\}=\inf _{\iota \in I} \inf \left\{d\left(T_{a} f\right): f \in \mathcal{F}_{i}\right\}=\inf _{\iota \in I} d_{\Omega_{\iota}}(a)=d_{\Omega}(a), \quad a \in \Omega
$$

In particular, if $\Omega_{\iota}, \iota \in I$, are regions of holomorphy, then Ω is a region of holomorphy.
(b) If $\Omega_{j} \subset \mathbb{C}^{n_{j}}$ is an \mathcal{F}_{j}-region of holomorphy, $j=1, \ldots, N$, then $\Omega:=\Omega_{1} \times \cdots \times \Omega_{N}$ is an \mathcal{F}-region of holomorphy, where

$$
\mathcal{F}:=\left\{f \circ \pi_{j}: f \in \mathcal{F}_{j}, j=1, \ldots, N\right\}
$$

and $\pi_{j}: \mathbb{C}^{n_{1}+\cdots+n_{N}} \longrightarrow \mathbb{C}^{n_{j}}$ is the natural projection.
In particular, if $\Omega_{1}, \ldots, \Omega_{N}$ are regions of holomorphy, then Ω is a region of holomorphy.
For example, if $\Omega_{1}, \ldots, \Omega_{n} \subset \mathbb{C}$ are arbitrary open subsets, then $\Omega_{1} \times \cdots \times \Omega_{n}$ is a region of holomorphy in \mathbb{C}^{n}.

Indeed,

$$
\begin{aligned}
& \inf \left\{d\left(T_{a} f\right): f \in \mathcal{F}\right\}= \min _{j=1, \ldots, N} \inf \left\{d\left(T_{a}\left(f \circ \pi_{j}\right)\right): f \in \mathcal{F}_{j}\right\} \\
&=\min _{j=1, \ldots, N} \inf \left\{d\left(T_{a_{j}} f\right): f \in \mathcal{F}_{j}\right\}=\min _{j=1, \ldots, N} d_{\Omega_{j}}\left(a_{j}\right)=d_{\Omega}(a) \\
& \quad a=\left(a_{1}, \ldots, a_{N}\right) \in \Omega .
\end{aligned}
$$

(c) If Ω is a region of holomorphy, then for arbitrary functions $f_{1}, \ldots, f_{N} \in \mathcal{O}(\Omega)$, the set $G:=\{z \in$ $\left.\Omega:\left|f_{j}(z)\right|<1, j=1, \ldots, N\right\}$ is a region of holomorphy.

Indeed, if $a \in G$ is such that $d_{G}(a)=d_{\Omega}(a)$, then

$$
d_{G}(a)=d_{\Omega}(a)=\inf \left\{d\left(T_{a} f\right): f \in \mathcal{O}(\Omega)\right\} \geq \inf \left\{d\left(T_{a} f\right): f \in \mathcal{O}(G)\right\} \geq d_{G}(a)
$$

If $d_{G}(a)<d_{\Omega}(a)$, then there exist $j \in\{1, \ldots, N\}$ and $\zeta \in \mathbb{T}$ such that

$$
\partial \mathbb{P}\left(a, d_{G}(a)\right) \cap\left\{z \in \Omega: f_{j}(z)=\zeta\right\} \neq \varnothing
$$

$\left({ }^{16}\right)$ Recall that a set $A \subset X$ is of the first Baire category in a topological space X if $A=\bigcup_{j=1}^{\infty} A_{j}$ with int $\bar{A}_{j}=\varnothing$ for any j. We say that $A \subset X$ is of the second Baire category if $X \backslash A$ is of the first category.
$\left({ }^{17}\right)$ If X, Y are Fréchet spaces, $L: X \longrightarrow Y$ is linear and continuous, then either $L(X)=Y$ or $L(X)$ is of the first Baire category in Y; cf. [9, § 5.8.

Consequently, $g:=1 /\left(f_{j}-\zeta\right) \in \mathcal{O}(G)$ and $d\left(T_{a} g\right)=d_{G}(a)$.
(d) If G is a domain of holomorphy, then for every function $f \in \mathcal{O}(G)$, the set $\Omega:=G \backslash f^{-1}(0)$ is a domain of holomorphy.

Indeed, if $a \in \Omega$ is such that $d_{\Omega}(a)=d_{G}(a)$, then

$$
d_{\Omega}(a)=\inf \left\{d\left(T_{a} f\right): f \in \mathcal{O}(\Omega)\right\}
$$

(exactly as above). If $d_{\Omega}(a)<d_{G}(a)$, then $\partial \mathbb{P}\left(a, d_{\Omega}(a)\right) \cap f^{-1}(0) \neq \varnothing$. Consequently, $d\left(T_{a}(1 / f)\right)=d_{\Omega}(a)$.
Definition 2.7.10. Let $\mathcal{F} \subset \mathcal{O}(\Omega)$. For every compact $K \subset \Omega$ put

$$
\widehat{K}_{\mathcal{F}}:=\left\{z \in \Omega: \forall f \in \mathcal{F}:|f(z)| \leq\|f\|_{K}\right\}
$$

The set $\widehat{K}_{\mathcal{F}}$ is the \mathcal{F}-hull of K. If $\mathcal{F}=\mathcal{O}(\Omega)$, then $\widehat{K}_{\mathcal{O}(\Omega)}$ is the holomorphic hull of K. If $\Omega=\mathbb{C}^{n}$ and $\mathcal{F}=\mathcal{P}\left(\mathbb{C}^{n}\right)$, then $\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}$ is the polynomial hull of K. If $K=\widehat{K}_{\mathcal{F}}$, then K is \mathcal{F}-convex. If K is $\mathcal{O}(\Omega)$-convex, then K is holomorphically convex. If $K=\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}$, then K is polynomially convex; put $\widehat{K}:=\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}$.

We say that Ω is \mathcal{F}-convex if $\widehat{K}_{\mathcal{F}}$ is compact for every compact set $K \subset \Omega$. If Ω is $\mathcal{O}(\Omega)$-convex, then Ω is holomorphically convex.

Remark 2.7.11. (a) If $K_{1} \subset K_{2}$ and $\mathcal{F}_{1} \subset \mathcal{F}_{2}$, then $\left(\widehat{K_{1}}\right)_{\mathcal{F}_{2}} \subset\left(\widehat{K_{2}}\right)_{\mathcal{F}_{1}}$.
(b) The set $\widehat{K}_{\mathcal{F}}$ is closed in Ω.
(c) If $z_{1}, \ldots, z_{n} \in \mathcal{F}$, then $\widehat{K}_{\mathcal{F}}$ is bounded.
(d) If $\widehat{K}_{\mathcal{F}}$ is compact, then $\left(\widehat{\widehat{K}}_{\mathcal{F}}\right)_{\mathcal{F}}=\widehat{K}_{\mathcal{F}}$.
(e) $\widehat{K}_{\mathcal{F}}=\widehat{K}_{\mathcal{G}}$, where \mathcal{G} denotes the closure in $\mathcal{O}(\Omega)$ of the family

$$
\left\{a f^{\nu}: a \in \mathbb{C}, f \in \mathcal{F}, \nu \in \mathbb{N}\right\}
$$

In particular, if $\Omega=\mathbb{C}^{n}$, then $\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}=\widehat{K}_{\mathcal{O}\left(\mathbb{C}^{n}\right)}$.
(f) Ω is \mathcal{F}-convex iff there exists a sequence $\left(K_{\nu}\right)_{\nu=1}^{\infty}$ of \mathcal{F}-convex compact sets such that $K_{\nu} \subset$ int $K_{\nu+1}$ for any ν and $\Omega=\bigcup_{\nu=1}^{\infty} K_{\nu}$.

Indeed, the implication \Longleftarrow is obvious. To prove \Longrightarrow let $\left(L_{j}\right)_{j=1}^{\infty}$ be an arbitrary sequence of compact sets such that $L_{j} \subset \operatorname{int} L_{j+1}$ and $\Omega=\bigcup_{j=1}^{\infty} L_{j}$. Put $K_{1}:=\widehat{\left(L_{1}\right)_{\mathcal{F}}}$. Since $\Omega=\bigcup_{j=1}^{\infty}$ int L_{j}, there exists a $j_{2}>1$ such that $K_{1} \subset \operatorname{int} L_{j_{2}}$. Put $K_{2}:=\widehat{\left(L_{j_{2}}\right)_{\mathcal{F}}}$. Now we take a $j_{3}>j_{2}$ such that $K_{2} \subset \operatorname{int} L_{j_{3}}$ etc.
(g) Let $\Omega_{j} \subset \mathbb{C}^{n_{j}}$ be open and let $K_{j} \subset \Omega_{j}$ be compact, $j=1,2$. Then

$$
\left({\left.\widehat{\left(K_{1} \times K_{2}\right.}\right)_{\mathcal{O}\left(\Omega_{1} \times \Omega_{2}\right)}={\widehat{\left(K_{1}\right)}}_{\mathcal{O}\left(\Omega_{1}\right)} \times{\widehat{\left(K_{2}\right)}}_{\mathcal{O}\left(\Omega_{2}\right)}}\right.
$$

In particular,

$$
\widehat{K}_{1 \times K}=\widehat{K}_{1} \times \widehat{K}_{2} .
$$

Indeed, let $\left(z_{1}^{0}, z_{2}^{0}\right) \in\left(\widehat{K_{1} \times K_{2}}\right)_{\mathcal{O}\left(\Omega_{1} \times \Omega_{2}\right)}$ and let $f \in \mathcal{O}\left(\Omega_{j}\right)$. The function f can be regarded as a holomorphic function on $\Omega_{1} \times \Omega_{2}$. Thus

$$
\left|f\left(z_{j}^{0}\right)\right| \leq \max _{K_{j}}|f|
$$

Conversely, let $\left(z_{1}^{0}, z_{2}^{0}\right) \in{\widehat{\left(K_{1}\right)}}_{\mathcal{O}\left(\Omega_{1}\right)} \times{\widehat{\left(K_{2}\right)}}_{\mathcal{O}\left(\Omega_{2}\right)}$ and let $f \in \mathcal{O}\left(\Omega_{1} \times \Omega_{2}\right)$. Then

$$
\left|f\left(z_{1}^{0}, z_{2}^{0}\right)\right| \leq \max \left\{\left|f\left(z_{1}, z_{2}^{0}\right)\right|: z_{1} \in K_{1}\right\}
$$

$$
\leq \max \left\{\max \left\{\left|f\left(z_{1}, z_{2}\right)\right|: z_{2} \in K_{2}\right\}: z_{1} \in K_{1}\right\}=\max _{K_{1} \times K_{2}}|f|
$$

(h) Let $F: \Omega \longrightarrow \Omega^{\prime}$ be biholomorphic. Then $\widehat{F(K)}_{\mathcal{O}\left(\Omega^{\prime}\right)}=F\left(\widehat{K}_{\mathcal{O}(\Omega)}\right)$ for any compact $K \subset \Omega$. In particular, Ω is holomorphically convex iff Ω^{\prime} is holomorphically convex.

Consider the following conditions:
(HC1) Ω is an \mathcal{F}-region of holomorphy.
(HC2) Ω is \mathcal{F}-convex.
(HC3) For every compact set $K \subset \Omega: d_{\Omega}\left(\widehat{K}_{\mathcal{F}}\right)=d_{\Omega}(K)$.
(HC4) For every compact set $K \subset \Omega: d_{\Omega}\left(\widehat{K}_{\mathcal{F}}\right)>0$.
(HC5) For every infinite subset $A \subset \Omega$ without accumulation points in Ω, there exists a function $f \in \mathcal{F}$ such that $\sup _{A}|f|=+\infty$.
Theorem 2.7.12. (a) $(\mathrm{HC} 2) \Longrightarrow(\mathrm{HC} 4),(\mathrm{HC} 3) \Longrightarrow(\mathrm{HC} 4),(\mathrm{HC} 5) \Longrightarrow(\mathrm{HC} 1)$.
(b) If $z_{1}, \ldots, z_{n} \in \mathcal{F}$, then $(\mathrm{HC} 4) \Longrightarrow(\mathrm{HC} 2)$.
(c) If \mathcal{F} is a closed subalgebra of $\mathcal{O}(\Omega)$, then $(\mathrm{HC} 2) \Longrightarrow(\mathrm{HC} 5)$.
(d) If \mathcal{F} is ∂-stable $\left({ }^{18}\right)$, then $(\mathrm{HC} 1) \Longrightarrow(\mathrm{HC} 3)$.
(e) For $\mathcal{F}=\mathcal{O}(\Omega)$ all the conditions $(\mathrm{HC} 1),(\mathrm{HC} 2),(\mathrm{HC} 3),(\mathrm{HC} 4),(\mathrm{HC} 5)$ are equivalent.

$$
(1) \xrightarrow{\partial \text {-stability }}(3) \longrightarrow(4) \xrightarrow{z_{1}, \ldots, z_{n} \in \mathcal{F}}(2) \xrightarrow{\text { closed algebra }}(5) \longrightarrow(1)
$$

Proof. (a) is obvious.
(b) follows from Remark 2.7.11 (c).
(c) By Remark 2.7.11(f) there exists a sequence of \mathcal{F}-convex compact sets such that $K_{\nu} \subset$ int $K_{\nu+1}$ and $\bigcup_{\nu=1}^{\infty} K_{\nu}=\Omega$. We may assume that for a sequence $\left(a_{\nu}\right)_{\nu=1}^{\infty} \subset A$ we have $a_{\nu} \in K_{\nu+1} \backslash K_{\nu}, \nu \geq 1$. Since $a_{1} \notin K_{1}$ and K_{1} is \mathcal{F}-convex, there exists a function $f_{1} \in \mathcal{F}$ such that $\left|f\left(a_{1}\right)\right|>\|f\|_{K_{1}}$. Replacing f_{1} by $\left(a f_{1}\right)^{N}$ with suitable $a>0$ and $N \in \mathbb{N}$, we may assume that $\left|f_{1}\left(a_{1}\right)\right| \geq 1$, and $\left\|f_{1}\right\|_{K_{1}} \leq 1 / 2$ (here we use the fact that \mathcal{F} is an algebra). Repeating the above argument for other points, we easily find a sequence $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{F}$ such that $\left|f_{\nu}\left(a_{\nu}\right)\right| \geq \nu+\sum_{\mu=1}^{\nu-1}\left|f_{\mu}\left(a_{\nu}\right)\right|$ and $\left\|f_{\nu}\right\|_{K_{\nu}} \leq 1 / 2^{\nu}$. Now put $f:=\sum_{\nu=1}^{\infty} f_{\nu}$ (the series is locally normally convergent in Ω). Since \mathcal{F} is a closed subalgebra we conclude that $f \in \mathcal{F}$. Moreover, $\left|f\left(a_{\nu}\right)\right| \geq \nu-1$ for every ν.
(d) Suppose that for some $a \in \widehat{K}_{\mathcal{F}}$ we have $d_{\Omega}(a)<d_{\Omega}(K)=$: r. Let $0<\sigma<r$. By the Cauchy inequalities we obtain

$$
\left\|D^{\alpha} f\right\|_{K} \leq \frac{\alpha!}{\sigma^{|\alpha|}}\|f\|_{K^{(\sigma)}}, \quad f \in \mathcal{F}
$$

Hence (using the ∂-stability of \mathcal{F}) we get

$$
\left|D^{\alpha} f(a)\right| \leq \frac{\alpha!}{\sigma^{|\alpha|}}\|f\|_{K^{(\sigma)}}, \quad f \in \mathcal{F}
$$

In particular, $d\left(T_{a} f\right) \geq \sigma$ and hence $d\left(T_{a} f\right) \geq r, f \in \mathcal{F}$. Finally, since Ω is an \mathcal{F}-region of holomorphy, we conclude that $\mathbb{P}(a, r) \subset \Omega$; contradiction.
(e) is an immediate consequence of (a) - (d).

Proposition 2.7.13. If $\Omega_{1} \subset \mathbb{C}^{n}, \Omega_{2} \subset \mathbb{C}^{m}$ are holomorphically convex and $f \in \mathcal{O}\left(\Omega_{1}, \mathbb{C}^{m}\right)$, then $\Omega:=$ $f^{-1}\left(\Omega_{2}\right)$ is holomorphically convex. $\left({ }^{19}\right)$
Proof. Let $K \subset \Omega$ be compact. Then

$$
\widehat{K}_{\mathcal{O}(\Omega)} \subset \Omega \cap \widehat{K}_{\mathcal{O}\left(\Omega_{1}\right)} \subset \subset \Omega_{1}
$$

Suppose that there exists a sequence $\left(z_{\nu}\right)_{\nu=1}^{\infty} \subset \widehat{K}_{\mathcal{O}(\Omega)}$ such that $z_{\nu} \longrightarrow z_{0} \in \Omega_{1} \cap \partial \Omega$. Observe that for any $z \in \widehat{K}_{\mathcal{O}(\Omega)}$ and $g \in \mathcal{O}\left(\Omega_{2}\right)$ we get

$$
|g(f(z))| \leq \sup _{K}|g \circ f|=\sup _{f(K)}|g| .
$$

Hence

$$
f\left(\widehat{K}_{\mathcal{O}(\Omega)}\right) \subset \widehat{f(K)}_{\mathcal{O}\left(\Omega_{2}\right)} \subset \subset \Omega_{2}
$$

(${ }^{18}$) Cf. Remark 2.7.2(b).
(${ }^{19}$) Recall Remark 2.7.9 c), where $\Omega_{2}=\mathbb{D}^{m}$.

In particular,

$$
f\left(z_{\nu}\right) \in \widehat{f(K)}_{\mathcal{O}\left(\Omega_{2}\right)} \subset \subset \Omega_{2}, \quad \nu \geq 1
$$

and therefore $f\left(z_{0}\right) \in \Omega_{2}$; contradiction.
Proposition 2.7.14. Let $\Omega \subset \mathbb{C}^{n}$ be a region of holomorphy and let V be an affine subspace of \mathbb{C}^{n}. Then $\Omega \cap V$ is a region of holomorphy.

Proof. Let $V=a+\mathbb{C} v_{1}+\cdots+\mathbb{C} v_{k}(k:=\operatorname{dim} V)$,

$$
\mathbb{C}^{k} \ni\left(z_{1}, \ldots, z_{k}\right) \stackrel{f}{\longmapsto} a+z_{1} v_{1}+\cdots+z_{k} v_{k} \in \mathbb{C}^{n}
$$

Then $\Omega \cap V \simeq f^{-1}(\Omega)$ and we can apply Proposition 2.7.13.
Proposition 2.7.15. Let $D \subset \mathbb{C}^{n}$ be an n-circled domain. Then the following conditions are equivalent:
(i) D is a domain of holomorphy;
(ii) $\log D$ is a convex domain and
(*) for every $j \in\{1, \ldots, n\}$, if $D \cap \boldsymbol{V}_{j} \neq \varnothing$, then $\widetilde{D}^{(j)} \subset D\left({ }^{20}\right)$.
Note that the condition $(*)$ is always satisfied if D is complete.
Proof. (i) \Longrightarrow (ii). Take an $f \in \mathcal{O}(D)$. Then f can be represented by a Laurent series

$$
\begin{equation*}
f(z)=\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} z^{\alpha}, \quad z \in D \tag{2.7.1}
\end{equation*}
$$

(Proposition 2.6.2(c)).
Fix $x_{0}^{\prime}, x_{0}^{\prime \prime} \in \log D$ and let $U \subset \subset \log D$ be a domain with $x_{0}^{\prime}, x_{0}^{\prime \prime} \in U$. We will prove that $\widetilde{U}:=\operatorname{conv} U \subset$ $\log D$.

Let $G, \widetilde{G} \subset\left(\mathbb{C}_{*}\right)^{n}$ be such that $\log G=U$ and $\log \widetilde{G}=\widetilde{U}$, respectively. Observe that $G \subset \subset D$. By Proposition 2.6.2 (c) there exist $C>0$ and $0<\theta<1$ such that

$$
\left\|a_{\alpha} z^{\alpha}\right\| \leq C \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}, \quad z \in G, \alpha \in \mathbb{Z}^{n}
$$

For any $x^{\prime}, x^{\prime \prime} \in U$ we get $\left({ }^{21}\right)$

$$
\left|a_{\alpha}\right| e^{\left\langle\alpha, t x^{\prime}+(1-t) x^{\prime \prime}\right\rangle}=\left(\left|a_{\alpha}\right| e^{\left\langle\alpha, x^{\prime}\right\rangle}\right)^{t}\left(\left|a_{\alpha}\right| e^{\left\langle\alpha, x^{\prime \prime}\right\rangle}\right)^{1-t} \leq C \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}, \quad 0 \leq t \leq 1, \alpha \in \mathbb{Z}^{n}
$$

Hence the series (2.7.1) is normally convergent in \widetilde{G} and, therefore, its sum gives there a holomorphic extension of f. Since D is a domain of holomorphy, we conclude that $\widetilde{G} \subset D$ and, consequently, $\widetilde{U} \subset \log D$.

Now, suppose that $D \cap \boldsymbol{V}_{j} \neq \varnothing$. Then, by Proposition 2.6 .2 (d), the function f has a holomorphic extension to $\widetilde{D}^{(j)}$. Since D is a domain of holomorphy, we get $\widetilde{D}^{(j)} \subset D$, which gives (*).
(ii) \Longrightarrow (i). Assume additionally that D is bounded.

Suppose that D is not a domain of holomorphy and let D_{0}, \widetilde{D} be domains such that $\widetilde{D} \not \subset D, \varnothing \neq D_{0} \subset$ $D \cap \widetilde{D}$, and for every function $f \in \mathcal{O}(D)$ there exists a function $\widetilde{f} \in \mathcal{O}(\widetilde{D})$ such that $\widetilde{f}=f$ in D_{0}.

Put

$$
\boldsymbol{V}_{0}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{1} \ldots z_{n}=0\right\}
$$

First, consider the case where $\widetilde{D} \backslash \boldsymbol{V}_{0} \not \subset D$. Take an $a \in\left(\widetilde{D} \backslash \boldsymbol{V}_{0}\right) \backslash D$. Let $U \subset \widetilde{D} \backslash \boldsymbol{V}_{0}$ be a neighborhood of a. Then $\log U$ is a neighborhood of the point $\left(\log \left|a_{1}\right|, \ldots, \log \left|a_{n}\right|\right) \notin \log D$. In particular, there exists a $b=\left(b_{1}, \ldots, b_{n}\right) \in U$ such that $x_{0}:=\left(\log \left|b_{1}\right|, \ldots, \log \left|b_{n}\right|\right) \notin \overline{\log D}$. Recall that $\log D$ is convex and $\log D \subset(-\infty, M)^{n}$ for some $M \in \mathbb{R}$ (because D is bounded). Hence there exists an $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{*}$ such that

$$
\begin{equation*}
\log D \subset\left\{x \in \mathbb{R}^{n}:\left\langle x-x_{0}, \alpha\right\rangle<0\right\} \tag{2.7.2}
\end{equation*}
$$

[^13]Consequently,
2. Extension of holomorphic functions

$$
\left|z^{\alpha}\right| \leq\left|b^{\alpha}\right|, \quad z \in D \backslash \boldsymbol{V}_{0} .
$$

Hence, by $(*), D \cap \boldsymbol{V}_{j}=\varnothing$ for all j such that $\alpha_{j}<0\left({ }^{22}\right)$. Thus $D \subset \Omega(\alpha)$ (where $\Omega(\alpha)$ is as in Example 1.3.5) and

$$
\left|z^{\alpha}\right| \leq\left|b^{\alpha}\right|, \quad z \in D .
$$

Let $\tilde{f} \in \mathcal{O}(\widetilde{D})$ denote the extension of the function $D \ni z \longmapsto z^{\alpha}$. Then, by the identity principle, $\widetilde{f}(z)=z^{\alpha}$ for $z \in \widetilde{D} \backslash \boldsymbol{V}_{0}$. Now, by Proposition 2.7.3(b),

$$
\left|z^{\alpha}\right| \leq\left|b^{\alpha}\right|, \quad z \in \widetilde{D} \backslash \boldsymbol{V}_{0} .
$$

Since $b \in \widetilde{D} \backslash \boldsymbol{V}_{0}$, we get a contradiction.
Now consider the case where $\widetilde{D} \backslash \boldsymbol{V}_{0} \subset D$. Fix an $a=\left(a_{1}, \ldots, a_{n}\right) \in \widetilde{D} \backslash D \subset \boldsymbol{V}_{0}$. Suppose that there exists a $j \in\{1, \ldots, n\}$ such that $a_{j}=0$ and $D \cap \boldsymbol{V}_{j}=\varnothing$. Then obviously the function $f(z):=1 / z_{j}, z \in D$, is holomorphic in D and cannot be extended to \widetilde{D}; contradiction.

Thus we may assume that $D \cap \boldsymbol{V}_{j} \neq \varnothing$ for all j such that $a_{j}=0$. We may assume that $a_{1}, \ldots, a_{s} \neq 0$ and $a_{s+1}, \ldots, a_{n}=0$ for some $0 \leq s \leq n-1$. Using (*) we easily conclude that ($\left.a_{1}, \ldots, a_{s}, z_{s+1}, \ldots, z_{n}\right) \notin D$ for any $z_{s+1}, \ldots, z_{n} \in \mathbb{C}\left({ }^{23}\right)$ In particular, $s \geq 1$.

Let $\pi: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{s}$ denote the natural projection $\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(z_{1}, \ldots, z_{s}\right)$. Observe that $\left(\log \left|a_{1}\right|\right.$, $\left.\ldots, \log \left|a_{s}\right|\right) \notin \pi(\log D)$. Hence there exists a point $b=\left(b_{1}, \ldots, b_{n}\right) \in \widetilde{D}$ (in a neighborhood of a) such that $x_{0}^{\prime}:=\left(\log \left|b_{1}\right|, \ldots, \log \left|b_{s}\right|\right) \notin \overline{\pi(\log D)}$. The set $\bar{\pi}(\log D)$ is closed and contained in $(-\infty, M)^{s}$ for some $M \in \mathbb{R}$. Consequently, there exists an $\alpha \in\left(\mathbb{Z}^{s}\right)_{*} \times\{0\}^{n-s}$ such that (2.7.2) holds. Now we can argue as above.

We pass to the case where D is unbounded. Let $D_{N}:=D \cap \mathbb{P}(N), N \in \mathbb{N}$. Then each D_{N} is n-circled, bounded, satisfies $(*)$, and $\log D_{N}=(\log D) \cap(-\infty, \log N)^{n}$ is convex. In particular, $D_{N} \backslash \boldsymbol{V}_{0}$ is a domain. Since $D_{N} \subset \overline{D_{N} \backslash \boldsymbol{V}_{0}}$, we conclude that D_{N} is a domain.

Thus, by the first part of the proof, D_{N} is a domain of holomorphy. Obviously, $D_{N} \subset D_{N+1}$.
Now, it would be sufficient to know that the union of an increasing sequence of regions of holomorphy is a region of holomorphy. This will be done in the sequel (cf. Proposition 4.1.2 (c) and Theorem 5.3.2).
Corollary 2.7.16. If D is an n-circled domain of holomorphy with $0 \in D$, then D is complete n-circled.
Remark 2.7.17. In the case where D is complete the implication (ii) \Longrightarrow (i) in Proposition 2.7.15 may be proved in a simpler way. Namely, we prove that D is holomorphically convex.

Fix a compact $K \subset D$ and an arbitrary point $a=\left(a_{1}, \ldots, a_{n}\right)$ in the closure (in \mathbb{C}^{n}) of $\widehat{K}_{\mathcal{O}(D)}$. We want to show that $a \in D$. Without loss of generality we may assume that $a_{1}, \ldots, a_{s} \neq 0, a_{s+1}=\cdots=a_{n}=0$, where $1 \leq s \leq n$. It is easily seen that there exists a finite number of points $\xi^{(1)}, \ldots, \xi^{(N)} \in D \cap \mathbb{R}_{>0}^{n}$ such that

$$
K \subset \bigcup_{j=1}^{N} \mathbb{P}\left(\xi^{(j)}\right) .
$$

By the definition of $\widehat{K}_{\mathcal{O}(D)}$ we have

$$
\left|a_{1}^{\alpha_{1}} \cdots \cdots a_{s}^{\alpha_{s}}\right| \leq \max \left\{\left(\xi_{1}^{(j)}\right)^{\alpha_{1}} \cdots \cdots\left(\xi_{s}^{(j)}\right)^{\alpha_{s}}: j=1, \ldots, N\right\}, \quad \alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}_{0}
$$

Hence (we take the log and divide by $\left|\alpha_{1}\right|+\cdots+\left|\alpha_{s}\right|$) we get

$$
\sum_{\nu=1}^{s} t_{\nu} \log \left|a_{\nu}\right| \leq \max \left\{\sum_{\nu=1}^{s} t_{\nu} \log \xi_{\nu}^{(j)}: j=1, \ldots, N\right\}, \quad t_{1}, \ldots, t_{s} \in \mathbb{Q}_{+}, t_{1}+\cdots+t_{s}=1
$$

[^14]and, consequently, by continuity, for all $t_{1}, \ldots, t_{s} \in \mathbb{R}_{+}$with $t_{1}+\cdots+t_{s}=1$. Thus the point $\left(\log \left|a_{1}\right|, \ldots, \log \left|a_{s}\right|\right)$ is in the convex hull C_{s} of the set
$$
\left\{\left(\eta_{1}, \ldots, \eta_{s}\right) \in \mathbb{R}^{s}: \exists j \in\{1, \ldots, N\}: \eta_{\nu} \leq \log \xi_{\nu}^{(j)}, \nu=1, \ldots, s\right\}
$$

Clearly the set C_{s} is contained in the projection onto \mathbb{R}^{s} of the convex hull C_{n} of the set

$$
\left\{\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{R}^{n}: \exists j \in\{1, \ldots, N\}: \eta_{\nu} \leq \log \xi_{\nu}^{(j)}, \nu=1, \ldots, n\right\}
$$

Since $C_{n} \subset \log D$, there exists a point $x \in \log D$, for which $\left|a_{\nu}\right| \leq e^{x_{\nu}}, \nu=1, \ldots, n$. Hence $a \in D$.
Example 2.7.18. For $0<a, b<1$ let

$$
D:=\left\{(z, w) \in \mathbb{D}^{2}:|z|<a \text { or }|w|<b\right\} .
$$

Then the smallest 2-circled domain of holomorphy containing D is of the form

$$
\widetilde{D}:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}:\left|z_{1}\right|^{-\log b}\left|z_{2}\right|^{-\log a}<e^{-\log a \log b}\right\} .
$$

2.8. Riemann regions over $\mathbb{C}^{\text {n }}$

Example 2.8.1. (Cf. 33) Let

$$
D:=(\mathbb{D} \times(2 \mathbb{D})) \backslash\left(Q_{1} \cup Q_{2} \cup S\right)
$$

where

$$
\begin{gathered}
Q_{1}:=\{(x+i 0, w) \in \mathbb{D} \times(2 \mathbb{D}): x \geq 0,|w| \leq 1\}, \quad Q_{2}:=\{(0+i y, w) \in \mathbb{D} \times(2 \mathbb{D}): y \geq 0,|w| \geq 1\} \\
S:=\{(x+i y, w) \in \mathbb{D} \times(2 \mathbb{D}): x \geq 0, y \geq 0,|w|=1\}
\end{gathered}
$$

Notice that D is a Hartogs domain over \mathbb{D}_{*} and

$$
D_{x+i y}=\left\{\begin{array}{ll}
\{1<|w|<2\} & \text { if } x>0 \text { and } y=0 \\
\mathbb{D} \cup\{1<|w|<2\} & \text { if } x>0 \text { and } y>0 \\
\mathbb{D} & \text { if } x=0 \text { and } y>0 \\
2 \mathbb{D} & \text { if } x<0 \text { or } y<0
\end{array} \quad x+i y \in \mathbb{D}_{*}\right.
$$

Figure 2.4.1

Put

$$
\widetilde{D}:=\{(x+i y, w) \in \mathbb{D} \times(2 \mathbb{D}): x \neq 0 \text { or } y \notin[0,1)\}
$$

For $f \in \mathcal{O}(D)$ let

$$
\widetilde{f}(z, w):=\frac{1}{2 \pi i} \int_{C(r)} \frac{f(z, \zeta)}{\zeta-w} d \zeta, \quad(z, w) \in \widetilde{D}, 1<r<2,|w|<r
$$

notice that $\widetilde{f}(z, w)$ is independent of r with $1<r<2,|w|<r$. Then $\widetilde{f} \in \mathcal{O}(\widetilde{D})$ and $\widetilde{f}=f$ in the domain

$$
\{(x+i y, w) \in \mathbb{D} \times(2 \mathbb{D}): x<0 \text { or } y<0\} \cup\{(x+i y, w) \in \mathbb{D} \times(2 \mathbb{D}):(x \neq 0 \text { or } y \notin[0,1)), 1<|w|<2\}
$$

Consequently, every function holomorphic in D extends (in the sense of Definition 2.7.1 to \widetilde{D}.
Let Log : $\mathbb{C} \backslash \mathbb{R}_{-} \longrightarrow \mathbb{C}$ denote the principal branch of the logarithm. Define

$$
\ell_{-}: \mathbb{C} \backslash \mathbb{R}_{+} \longrightarrow \mathbb{C}, \quad \ell_{-}(z):=\log (-z), \quad \ell_{+}: \mathbb{C} \backslash i \mathbb{R}_{+} \longrightarrow \mathbb{C}, \quad \ell_{+}(z):=\log (i z)+i \pi / 2
$$

Observe that $\ell_{+}=\ell_{-}$in the domain $\{x+i y: x<0$ or $y<0\}$ and $\ell_{+}=\ell_{-}+2 \pi i$ in the domain $\Delta:=\{x+i y: x>0$ and $y>0\}$.

Define $f_{0}: D \longrightarrow \mathbb{C}$,

$$
f_{0}(z, w):= \begin{cases}\exp \left((1 / 2) \ell_{-}(z)\right) & \text { if }|w| \leq 1 \\ \exp \left((1 / 2) \ell_{+}(z)\right) & \text { if }|w| \geq 1\end{cases}
$$

One can easily prove that f_{0} is well defined and holomorphic in D. It is also clear that $\widetilde{f}_{0}(z, w)=$ $\exp \left((1 / 2) \ell_{+}(z)\right),(z, w) \in \widetilde{D}$. On the other hand, for $(z, w) \in \Delta \times \mathbb{D}$ we have $\widetilde{f}_{0}(z, w)=\exp \left((1 / 2) \ell_{+}(z)\right)=$ $-\exp \left((1 / 2) \ell_{-}(z)\right)=-f_{0}(z, w)$.

Consequently, the extension of the function f_{0} cannot be univalent on \widetilde{D}.
A pair (X, p) is called a Riemann region over \mathbb{C}^{n} if:
X is a topological Hausdorff space,
$p: X \longrightarrow \mathbb{C}^{n}$ is a local homeomorphism, i.e. an arbitrary point $a \in X$ has an open neighborhood U such that the set $p(U)$ is open in \mathbb{C}^{n} and the mapping $\left.p\right|_{U}: U \longrightarrow p(U)$ is a homeomorphism.

Any open set U with the above property will be called univalent or schlicht.
If X is connected, then we say that (X, p) is a Riemann domain over \mathbb{C}^{n}.
Remark 2.8.2. (a) If Ω is an open subset of \mathbb{C}^{n}, then (Ω, id) is a Riemann region.
(b) If (X, p) is a Riemann region and $Y \subset X$ is open, then $\left(Y,\left.p\right|_{Y}\right)$ is a Riemann region.
(c) If $\left(X_{j}, p_{j}\right)$ is a Riemann region over $\mathbb{C}^{n_{j}}, j=1 \ldots, N$, then $\left(X_{1} \times \cdots \times X_{N}, p_{1} \times \cdots \times p_{N}\right)$ is a Riemann region over $\mathbb{C}^{n_{1}+\cdots+n_{N}}$.

Definition 2.8.3. Let $(X, p),(Y, q)$ be Riemann regions over \mathbb{C}^{n}. A mapping $\varphi: X \longrightarrow Y$ is called a morphism if φ is continuous and $q \circ \varphi=p$.

If, moreover, φ is bijective and φ^{-1} is also a morphism, then we say that φ is an isomorphism.
Remark 2.8.4. (a) The composition of morphisms is a morphism.

(b) If (X, p) is a Riemann region over \mathbb{C}^{n}, then p is a morphism of (X, p) into $\left(\mathbb{C}^{n}\right.$, id).
(c) Every morphism is a local homeomorphism and, therefore, an open mapping. In particular, $\varphi(X)$ is an open subset of Y. Moreover, if $U \subset X$ is univalent, then $\varphi(U)$ is univalent in Y.
(d) If (X, p) is a Riemann region, then p is an open mapping.
(e) If a morphism φ is bijective, then it is an isomorphism.

Definition 2.8.5. Let $(X, p),(Y, q)$ be Riemann regions over \mathbb{C}^{n} and \mathbb{C}^{m}, respectively. A mapping f : $X \longrightarrow Y$ is called holomorphic $(f \in \mathcal{O}(X, Y))$ if f is continuous and for any univalent open set $U \subset X$ the mapping

$$
q \circ f \circ\left(\left.p\right|_{U}\right)^{-1}: p(U) \longrightarrow \mathbb{C}^{m}
$$

is holomorphic in the standard sense.

If $(Y, q)=(\mathbb{C}, \mathrm{id})$, then we write $f \in \mathcal{O}(X)$.
Remark 2.8.6. (a) In the case where $(X, p)=\left(\Omega\right.$, id) (with $\left.\Omega \in \operatorname{top} \mathbb{C}^{n}\right)$ and $(Y, q)=(G$, id) (with $G \in \operatorname{top} \mathbb{C}^{m}$) the above definition of a holomorphic mapping is equivalent to the standard one.
(b) The composition of holomorphic mappings is holomorphic.
(c) Every morphism is a holomorphic mapping. In particular, if (X, p) is a Riemann region, then p is holomorphic.

Lemma 2.8.7 (Identity principle for liftings). Let (X, p) be a Riemann region, let T be a connected topological space, and let $\gamma_{j}: T \longrightarrow X, j=1,2$, be continuous mappings such that $p \circ \gamma_{1} \equiv p \circ \gamma_{2}$ and $\gamma_{1}\left(t_{0}\right)=\gamma_{2}\left(t_{0}\right)$ for some $t_{0} \in T$. Then $\gamma_{1} \equiv \gamma_{2}$.

Proof. Let $T_{0}:=\left\{t \in T: \gamma_{1}(t)=\gamma_{2}(t)\right\}$. The set T_{0} is closed and non-empty. It is sufficient to show that it is open. Fix a $t \in T_{0}$ and put $a:=\gamma_{1}(t)=\gamma_{2}(t)$. Let U be a univalent neighborhood of a and let V be a neighborhood of t such that $\gamma_{j}(V) \subset U, j=1,2$. Then $\left(\left.p\right|_{U}\right) \circ \gamma_{1}=\left(\left.p\right|_{U}\right) \circ \gamma_{2}$ in V, and hence $V \subset T_{0}$.

Proposition 2.8.8 (Identity principle). Let $(X, p),(Y, q)$ be Riemann regions over \mathbb{C}^{n} and \mathbb{C}^{m}, respectively, $f, g \in \mathcal{O}(X, Y)$. Assume that X is connected and $f=g$ on some non-empty open subset. Then $f \equiv g$.

Proof. Because of Lemma 2.8.7 it is sufficient to show that $\tilde{f} \equiv \widetilde{g}$, where $\tilde{f}:=q \circ f, \widetilde{g}:=q \circ g$. Put

$$
X_{0}:=\{x \in X: \widetilde{f}=\widetilde{g} \text { in some neighborhood of } x\}
$$

The set X_{0} is open and non-empty. It is sufficient to show that it is closed. Let a be an accumulation point of X_{0} and let U be a univalent connected neighborhood of a. Note that $\widetilde{f} \circ\left(\left.p\right|_{U}\right)^{-1}=\widetilde{g} \circ\left(\left.p\right|_{U}\right)^{-1}$ on a non-empty and open set $p\left(X_{0} \cap U\right)$. Hence, by the standard identity principle, $\widetilde{f} \circ\left(\left.p\right|_{U}\right)^{-1} \equiv \widetilde{g} \circ\left(\left.p\right|_{U}\right)^{-1}$, which shows that $U \subset X_{0}$.

For Riemann regions $(X, p),(Y, q)$ and a morphism $\varphi: X \longrightarrow Y$ let

$$
\varphi^{*}: \mathcal{O}(Y) \longrightarrow \mathcal{O}(X), \quad \varphi^{*}(f):=f \circ \varphi
$$

Remark 2.8.9. The mapping φ^{*} is injective iff every connected component of Y intersects $\varphi(X)$.
Definition 2.8.10. Let $(X, p),(Y, q)$ be Riemann regions over $\mathbb{C}^{n}, \varnothing \neq \mathcal{F} \subset \mathcal{O}(X)$. We say that a morphism $\varphi: X \longrightarrow Y$ gives an \mathcal{F}-extension if φ^{*} is injective and $\mathcal{F} \subset \varphi^{*}(\mathcal{O}(Y))$.

We shortly write: $\varphi: X \longrightarrow Y$ is an \mathcal{F}-extension.
$\mathcal{O}(X)$-extensions are called holomorphic extensions.

An \mathcal{F}-extension $\varphi: X \longrightarrow Y$ is called a maximal \mathcal{F}-extension if for any \mathcal{F}-extension $\psi: X \longrightarrow Z$ there exists a morphism $\sigma: Z \longrightarrow Y$ such that $\sigma \circ \psi=\varphi$.

If $\varphi: X \longrightarrow Y$ is a maximal \mathcal{F}-extension, then (Y, q) is called an \mathcal{F}-envelope of holomorphy of (X, p).
If $\mathcal{F}=\mathcal{O}(X)$, then we say that $\varphi: X \longrightarrow Y$ is a maximal holomorphic extension and that (Y, q) is an envelope of holomorphy of (X, p).

We say that (X, p) is an \mathcal{F}-region of holomorphy if for any \mathcal{F}-extension $\varphi: X \longrightarrow Y$ the morphism φ is bijective.

Remark 2.8.11. (a) If $\varphi: X \longrightarrow Y$ is an \mathcal{F}-extension, then it is a \mathcal{G}-extension for any $\varnothing \neq \mathcal{G} \subset \mathcal{F}$.
(b) If $\varphi: X \longrightarrow Y$ is an \mathcal{F}-extension and $\psi: Y \longrightarrow Z$ is a $\left(\varphi^{*}\right)^{-1}(\mathcal{F})$-extension, then $\psi \circ \varphi: X \longrightarrow Z$ is an \mathcal{F}-extension.

Proposition 2.8.12. (a) The maximal \mathcal{F}-extension is determined uniquely up to an isomorphism.
(b) If $\varphi: X \longrightarrow Y$ is the maximal \mathcal{F}-extension, then Y is a \mathcal{G}-region of holomorphy with $\mathcal{G}:=\left(\varphi^{*}\right)^{-1}(\mathcal{F})$.
(c) If $\varphi: X \longrightarrow Y$ is the maximal \mathcal{F}-extension, then X is an \mathcal{F}-region of holomorphy iff φ is an isomorphism.

Proof. (a) Suppose that $\varphi: X \longrightarrow Y$ and $\psi: X \longrightarrow Z$ are two maximal \mathcal{F}-extensions. Then there exist morphisms $\sigma: Z \longrightarrow Y$ and $\tau: Y \longrightarrow Z$ such that $\sigma \circ \psi=\varphi, \tau \circ \varphi=\psi$.

Consequently, $\sigma \circ \tau \circ \varphi=\varphi$, i.e. $\sigma \circ \tau=\operatorname{id}_{Y}$ on $\varphi(X)$. Since every connected component of Y intersects $\varphi(X)$, the identity principle implies that $\sigma \circ \tau=\operatorname{id}_{Y}$. Similarly, $\tau \circ \sigma=\operatorname{id}_{Z}$.
(b) Suppose that $\psi: Y \longrightarrow Z$ is a \mathcal{G}-extension. Then $\psi \circ \varphi: X \longrightarrow Z$ is an \mathcal{F}-extension. Consequently, since $\varphi: X \longrightarrow Y$ is maximal, there exists a morphism $\sigma: Z \longrightarrow Y$ such that $\sigma \circ(\psi \circ \varphi)=\varphi$. Hence, similarly as in (a), $\sigma \circ \psi=\operatorname{id}_{Y}, \psi \circ \sigma=\mathrm{id}_{Z}$. In particular, ψ is an isomorphism.
(c) The implication \Longrightarrow is trivial. To prove \Longleftarrow suppose that $\psi: X \longrightarrow Z$ is an arbitrary \mathcal{F}-extension. Since $\varphi: X \longrightarrow Y$ is maximal, there exists a morphism $\sigma: Z \longrightarrow Y$ such that $\sigma \circ \psi=\varphi$. We know that φ is an isomorphism. Consequently, ψ is an isomorphism with $\psi^{-1}=\varphi^{-1} \circ \sigma$.
Example 2.8.13 (Sheaf of germs). (Cf. § 1.8.) Let $I \neq \varnothing$ be arbitrary. For $a \in \mathbb{C}^{n}$ let ${ }^{(I)} \widetilde{\mathcal{O}}_{a}$ denote the set of all pairs (U, \mathbf{F}) such that U is a neighborhood of a and $\mathbf{F}: I \longrightarrow \mathcal{O}(U)$. We define an equivalence relation in ${ }^{(I)} \widetilde{\mathcal{O}}_{a}$:

$$
(U, \mathbf{F}) \stackrel{a}{\sim}(V, \mathbf{G}) \stackrel{\mathrm{df}}{\Longleftrightarrow} \text { there exists a neighborhood } W \text { of } a(W \subset U \cap V)
$$

such that $\mathbf{F}(\iota)=\mathbf{G}(\iota)$ in W for any $\iota \in I$.
Put

$$
{ }^{(I)} \mathcal{O}_{a}:={ }^{(I)} \widetilde{\mathcal{O}}_{a} / \stackrel{a}{\sim}, \quad{ }^{(I)} \mathcal{O}:=\bigcup_{a \in \mathbb{C}^{n}}\{a\} \times{ }^{(I)} \mathcal{O}_{a}, \quad \pi_{I}:{ }^{(I)} \mathcal{O} \longrightarrow \mathbb{C}^{n}, \quad \pi_{I}(a, \mathfrak{f}):=a
$$

We endow ${ }^{(I)} \mathcal{O}$ with the topology in which the basis of neighborhoods of a point $(a, \mathfrak{f}) \in{ }^{(I)} \mathcal{O}$ consists of all sets of the form

$$
\mathfrak{U}(a, \mathfrak{f}, U):=\left\{\left(z,[(U, \mathbf{F})]_{\sim}\right): z \in U\right\}
$$

where (U, \mathbf{F}) is a representant of \mathfrak{f}. One can easily check that the topology is well defined and Hausdorff.
Indeed, if $(a, \mathfrak{f}) \neq(b, \mathfrak{g}), \mathfrak{f}=[(U, \mathbf{F})]_{\sim}^{a}, \mathfrak{g}=[(V, \mathbf{G})]_{\sim}^{b}$ then:
if $a \neq b$, then $\mathfrak{U}\left(a, \mathfrak{f}, U^{\prime}\right) \cap \mathfrak{U}\left(b, \mathfrak{g}, V^{\prime}\right)=\varnothing$ provided that $U^{\prime} \subset U, V^{\prime} \subset V$, and $U^{\prime} \cap V^{\prime}=\varnothing$,
if $a=b$, then, by the identity principle for holomorphic functions, $\mathfrak{U}(a, \mathfrak{f}, W) \cap \mathfrak{U}(a, \mathfrak{g}, W)=\varnothing$ for any connected neighborhood W of a such that $W \subset U \cap V$.

Moreover, the projection π_{I} maps homeomorphically $\mathfrak{U}(a, \mathfrak{f}, U)$ onto U and

$$
\left(\left.\pi_{I}\right|_{\mathfrak{U}(a, \mathfrak{f}, U)}\right)^{-1}(z)=\left(z,[(U, \mathbf{F})]_{\sim}^{z}\right), \quad z \in U .
$$

Consequently, π_{I} is a local homeomorphism and $\left.{ }^{(I)} \mathcal{O}, \pi_{I}\right)$ is a Riemann region over \mathbb{C}^{n}.
Fix a $\iota \in I$ and let $\mathfrak{F}_{\iota}:{ }^{(I)} \mathcal{O} \longrightarrow \mathbb{C}$ be given by the formula

$$
\mathfrak{F}_{\iota}(a, \mathfrak{f}):=\mathbf{F}(\iota)(a),
$$

where (U, \mathbf{F}) is a representant of \mathfrak{f}. Note that \mathfrak{F}_{ι} is well defined and

$$
\mathfrak{F}_{\iota} \circ\left(\left.\pi_{I}\right|_{\mathfrak{U}(a, \mathfrak{f}, U)}\right)^{-1}=\mathbf{F}(\iota)
$$

Thus \mathfrak{F}_{ι} is holomorphic on ${ }^{(I)} \mathcal{O}$.
Theorem 2.8.14 (Thullen theorem). For any Riemann region (X, p) and a family $\varnothing \neq \mathcal{F} \subset \mathcal{O}(X)$ there exists the maximal \mathcal{F}-extension.
Proof. Fix (X, p) and \mathcal{F}. First we define a morphism $\varphi: X \longrightarrow{ }^{(\mathcal{F})} \mathcal{O}$ (where $\left(^{(\mathcal{F})} \mathcal{O}, \pi_{\mathcal{F}}\right)$ is the Riemann region constructed in Example 2.8.13 with $I:=\mathcal{F})$. For $x \in X$ we put

$$
\varphi(x):=\left(p(x),\left[\left(p\left(U_{x}\right), \mathbf{F}\right)\right]_{p(x)}\right),
$$

where
U_{x} is a univalent neighborhood of x,
$\mathbf{F}(f):=f \circ\left(\left.p\right|_{U_{x}}\right)^{-1}, f \in \mathcal{F}$.
Observe that φ is well defined, $\pi_{\mathcal{F}} \circ \varphi=p$, and φ is continuous. Thus φ is a morphism.
Moreover, for an arbitrary $f \in \mathcal{F}$ the mapping \mathfrak{F}_{f} (constructed in Example 2.8.13) is holomorphic on ${ }^{(\mathcal{F})} \mathcal{O}$ and $\mathfrak{F}_{f} \circ \varphi=f$.

Let Y denote the union of those connected components of ${ }^{(\mathcal{F})} \mathcal{O}$ that intersect $\varphi(X)$ and put $q:=\left.\pi_{\mathcal{F}}\right|_{Y}$. We have proved that $\varphi: X \longrightarrow Y$ is an \mathcal{F}-extension.

Now we show that the above extension is maximal. Let $\psi: X \longrightarrow Z$ be another \mathcal{F}-extension. Put $\mathcal{G}:=\left(\psi^{*}\right)^{-1}(\mathcal{F})$ and let $\sigma: Z \longrightarrow{ }^{(\mathcal{G})} \mathcal{O}$ be constructed in the same way as φ. Observe ${ }^{\left({ }^{(\mathcal{G})} \mathcal{O}, \pi_{\mathcal{G}}\right)=\left({ }^{(\mathcal{F})} \mathcal{O}, \pi_{\mathcal{F}}\right) ~}$ (because the mapping $\mathcal{G} \ni g \longmapsto g \circ \psi \in \mathcal{F}$ is bijective). For $x \in X$ we have

$$
\sigma(\psi(x))=\left(r(\psi(x)),\left[\left(r\left(\psi\left(U_{x}\right)\right), \mathbf{G}\right)\right]_{r(\psi(x))}\right)=\left(p(x),\left[\left(p\left(U_{x}\right), \mathbf{F}\right)\right]_{p(x)}\right)=\varphi(x)
$$

where
U_{x} is a univalent neighborhood of x,
$\mathbf{G}(g):=g \circ\left(\left.r\right|_{\psi\left(U_{x}\right)}\right)^{-1}=g \circ \psi \circ\left(\left.p\right|_{U_{x}}\right)^{-1}, g \in \mathcal{G}$,
$\mathbf{F}(f):=f \circ\left(\left.p\right|_{U_{x}}\right)^{-1}, f \in \mathcal{F}$.
Moreover, since any connected component of Z intersects $\psi(X)$, we conclude that $\sigma(Z) \subset Y$.
Proposition 2.8.15. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $\varnothing \neq \mathcal{F} \subset \mathcal{O}(\Omega)$. Then Ω is an \mathcal{F}-region of holomorphy in the sense of Definition 2.7.1 iff (Ω, id) is an \mathcal{F}-region of holomorphy in the sense of Definition 2.8.10.
Proof. \Longrightarrow. Let $\psi: \Omega \longrightarrow Z$ be an \mathcal{F}-extension. We have to show that ψ is bijective. Since $r \circ \psi=$ id, the mapping ψ must be injective. Suppose that ψ is not surjective and let $b \in Z$ be an arbitrary boundary point of $\psi(\Omega)$. Let $V \subset Z$ be a univalent and connected neighborhood of b. Put $\widetilde{\Omega}:=r(V), \Omega_{0}:=r\left(\boldsymbol{V}_{0}\right)$, where \boldsymbol{V}_{0} is a connected component of $V \cap \psi(\Omega)$. Take an $f \in \mathcal{F}$. Let $g \in \mathcal{O}(Z)$ be such that $g \circ \psi=f$. Put $\widetilde{f}:=g \circ\left(\left.r\right|_{V}\right)^{-1}$. Then $\widetilde{f} \in \mathcal{O}(\widetilde{\Omega})$ and $\widetilde{f}=f$ on Ω_{0}. Consequently, $\widetilde{\Omega} \subset \Omega$; contradiction.
\Longleftarrow. Suppose that Ω is not an \mathcal{F}-region of holomorphy and let $\widetilde{\Omega}, \Omega_{0}$ be as in Definition 2.7.1 (for any $f \in \mathcal{F}$ there exists an $\widetilde{f} \in \mathcal{O}(\widetilde{\Omega})$ such that $\widetilde{f}=f$ on $\left.\Omega_{0}\right)$. Let $\varphi: \Omega \longrightarrow Y$ be the \mathcal{F}-maximal extension constructed in the proof of the Thullen theorem. For $a \in \Omega_{0}$ we have

$$
\varphi(a)=\left(a,\left[\left(\Omega_{0}, \mathbf{F}\right)\right]_{\sim}^{a}\right),
$$

where $\mathbf{F}(f):=f, f \in \mathcal{F}$. Hence

$$
\left\{\left(a,[(\widetilde{\Omega}, \mathbf{G})]_{\sim}^{a}\right): a \in \widetilde{\Omega}\right\} \subset Y
$$

where $\mathbf{G}(f):=\widetilde{f}, f \in \mathcal{F}$. In particular, $\widetilde{\Omega} \subset q(Y)$. Consequently, φ cannot be an isomorphism; contradiction.

Directly from the proof of the Thullen theorem we get the following corollaries.
Corollary 2.8.16. Let $(X, p),(Y, q)$ be Riemann domains over \mathbb{C}^{n}, let $\tau: X \longrightarrow Y$ be a morphism, and let $\mathcal{G} \subset \mathcal{O}(Y), \tau^{*}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{O}(X)$. Assume that $\varphi: X \longrightarrow \widehat{X}$ and $\psi: Y \longrightarrow \widehat{Y}$ are the maximal $\mathcal{F}-$ and \mathcal{G}-extension, respectively, where $(\widehat{X}, \widehat{p})$ and $(\widehat{Y}, \widehat{q})$ are Riemann domains over \mathbb{C}^{n}. Then there exists a morphism $\widehat{\tau}: \widehat{X} \longrightarrow \widehat{Y}$ such that $\widehat{\tau} \circ \varphi=\psi \circ \tau$. In particular, $\widehat{p}(\widehat{X}) \subset \widehat{q}(\widehat{Y})$.

Definition 2.8.17. If (X, p) is a Riemann region over \mathbb{C}^{n} and $f \in \mathcal{O}(X)$, then for any $\alpha \in \mathbb{N}_{0}^{n}$ define

$$
D^{\alpha} f(x):=D^{\alpha}\left(f \circ\left(\left.p\right|_{U_{x}}\right)^{-1}\right)(p(x)), \quad x \in X
$$

where U_{x} is an arbitrary univalent neighborhood of x.
Observe that $D^{\alpha} f$ is well defined and holomorphic on X.
Corollary 2.8.18. Let (X, p) be a Riemann region over \mathbb{C}^{n}, let $\mathcal{F} \subset \mathcal{O}(X)$, and let $\varphi: X \longrightarrow Y$ be the maximal \mathcal{F}-extension. Then φ is injective iff for any points $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ and $p\left(x_{1}\right)=p\left(x_{2}\right)$ there exist $f \in \mathcal{F}$ and $\alpha \in \mathbb{N}_{0}^{n}$ such that $D^{\alpha} f\left(x_{1}\right) \neq D^{\alpha} f\left(x_{2}\right)$.

In particular, if $\mathcal{F}=\mathcal{O}(X)$, then φ is injective iff $\mathcal{O}(X)$ separates points in X.
Consequently, if (X, p) is a region of holomorphy, then $\mathcal{O}(X)$ separates points in X.
Proposition 2.8.19. Let $(X, p),(Y, q)$ be Riemann domains over \mathbb{C}^{n}, let $\mathcal{F} \subset \mathcal{O}(X)$, and let $\tau: X \longrightarrow Y$ be an \mathcal{F}-extension. Assume that (Y, q) is a \mathcal{G}-domain of holomorphy, where $\mathcal{G}:=\left(\tau^{*}\right)^{-1}(\mathcal{F})$. Then $\tau: X \longrightarrow Y$ is the maximal \mathcal{F}-extension.
Proof. Let $\varphi: X \longrightarrow \widehat{X}$ be the maximal \mathcal{F}-extension. By definition there exists a morphism $\sigma: Y \longrightarrow \widehat{X}$ such that $\sigma \circ \tau=\varphi$. On the other hand, by Corollary 2.8.16. there exists a morphism $\widehat{\tau}: \widehat{X} \longrightarrow Y$ such that $\widehat{\tau} \circ \varphi=\tau$. Consequently, $(\widehat{\tau} \circ \sigma) \circ \tau=\tau$ and $(\sigma \circ \widehat{\tau}) \circ \varphi=\varphi$. Hence, by the identity principle, σ is an isomorphism and $\sigma^{-1}=\widehat{\tau}$.

It is clear that the notion of the natural Frechet space (Definition 2.7.6) extends to Riemann regions over \mathbb{C}^{n}. Observe that if X is countable at infinity (i.e. $X=\bigcup_{\nu=1}^{\infty} K_{\nu}$, where $K_{\nu} \subset \operatorname{int} K_{\nu+1}$ and K_{ν} is compact, $\nu \in \mathbb{N}$), then $\mathcal{O}(X)$ with the topology of locally uniform convergence is a Fréchet space.

It is well known that any Riemann domain over \mathbb{C}^{n} is countable at infinity (cf. [22]).
Remark 2.8.20. (a) Let $(X, p),(Y, q)$ be countable at infinity Riemann regions over \mathbb{C}^{n}, let $\mathcal{F} \subset \mathcal{O}(X)$ and let $\varphi: X \longrightarrow Y$ be an \mathcal{F}-extension. Assume that \mathcal{F} is a natural Fréchet space in $\mathcal{O}(X)$ and let $q_{k}: \mathcal{F} \longrightarrow \mathbb{R}_{+}$, $k \in \mathbb{N}$, be a family of seminorms defining the topology of \mathcal{F}. Let $\left(L_{k}\right)_{k=1}^{\infty}$ be a sequence of compact subsets of Y such that $L_{k} \subset \operatorname{int} L_{k+1}$ and $Y=\bigcup_{k=1}^{\infty} L_{k}$. Put $\mathcal{G}:=\left(\varphi^{*}\right)^{-1}(\mathcal{F})$. We endow \mathcal{G} with the topology generated by the following seminorms:

$$
\mathcal{G} \ni g \longmapsto q_{k}(g \circ \varphi), \quad \mathcal{G} \ni g \longmapsto\|g\|_{L_{k}}, \quad k \in \mathbb{N} .
$$

Then \mathcal{G} is a Fréchet space. Moreover, by the Banach theorem, $\left.\varphi^{*}\right|_{\mathcal{G}}: \mathcal{G} \longrightarrow \mathcal{F}$ is a topological isomorphism.
Indeed, let $\left(g_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{G}$ be a Cauchy sequence. Then $\left(g_{\nu} \circ \varphi\right)_{\nu=1}^{\infty}$ is a Cauchy sequence in \mathcal{F}. Consequently, $g_{\nu} \circ \varphi \longrightarrow f_{0}$ in \mathcal{F}. On the other hand, $\left(g_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{O}(Y)$ is a Cauchy sequence in the topology of locally uniform convergence on Y. Thus $g_{\nu} \longrightarrow g_{0}$ locally uniformly in Y. Clearly, $g_{0} \circ \varphi=f_{0}$. Thus $g_{0} \in \mathcal{G}$ and $g_{\nu} \longrightarrow g_{0}$ in \mathcal{G}.
(b) In the case where $\mathcal{F}=\mathcal{O}(X)$ (with the topology of locally uniform convergence on X) the continuity of $\left(\varphi^{*}\right)^{-1}$ means that for any compact $L \subset Y$ there exists a compact $K \subset X$ such that

$$
\|g\|_{L} \leq\|g \circ \varphi\|_{K}, \quad g \in \mathcal{O}(Y)
$$

Indeed, since $\left(\varphi^{*}\right)^{-1}$ is continuous, for any compact $L \subset Y$ there exist $C>0$ and a compact $K \subset X$ such that

$$
\|g\|_{L} \leq C\|g \circ \varphi\|_{K}, \quad g \in \mathcal{O}(Y)
$$

In particular, taking g^{k} instead of g, we get

$$
\|g\|_{L} \leq C^{1 / k}\|g \circ \varphi\|_{K}, \quad g \in \mathcal{O}(Y), k \in \mathbb{N}
$$

Letting $k \longrightarrow+\infty$ we get the required estimate.
For any domain $D \subset \mathbb{C}^{n}$ define

$$
\widehat{D}:=\operatorname{int} \bigcap_{U} U
$$

where the intersection is taken over all domains of holomorphy $U \subset \mathbb{C}^{n}$ with $D \subset U$. Observe that \widehat{D} is the smallest domain of holomorphy containing D (Remark 2.7.9(a)).
Remark 2.8.21. (a) By Corollary 2.8.16 if $\varphi: D \longrightarrow \widehat{X}$ is the maximal holomorphic extension $((\widehat{X}, \widehat{p})$ is a Riemann domain over $\left.\mathbb{C}^{n}\right)$, then $\widehat{p}(\widehat{X}) \subset \widehat{D}$.

Indeed, we take $(X, p):=(D, i d), \tau:=\operatorname{id}, \mathcal{G}:=\mathcal{O}(\widehat{D}), \mathcal{F}:=\mathcal{O}(D),(\widehat{Y}, \widehat{q}):=(\widehat{D}, \mathrm{id}), \psi:=$ id (Proposition 2.8.12. Then, by Corollary 2.8.16. there exists a morphism $\widehat{\tau}: \widehat{X} \longrightarrow \widehat{D}$ such that $\widehat{\tau} \circ \varphi=$ id on D. Obviously, $\widehat{\tau}=\widehat{p}$. Hence $\widehat{p}(\widehat{X})=\widehat{\tau}(\widehat{X}) \subset \widehat{D}$.
(b) If \widehat{X} is univalent, then $\widehat{p}(\widehat{X})=\widehat{D}$. Consequently, if the envelope of holomorphy of D is univalent, then \widehat{D} is the envelope of holomorphy of D.

Indeed, if \widehat{X} is univalent, then by Proposition 2.8 .12 (b) $\widehat{p}(\widehat{X})$ is a domain of holomorphy containing D $\left(^{24}\right)$ Hence $\widehat{D} \subset \widehat{p}(\widehat{X})$.
(c) The envelope of D is univalent iff $\left.\mathcal{O}(\widehat{D})\right|_{D}=\mathcal{O}(D)$.

Indeed, the implication \Longleftarrow follows from Proposition 2.8.19,
Proposition 2.8.22. Let $D \subset U$ be domains such that U has the univalent envelope of holomorphy and $\left.\mathcal{O}(U)\right|_{D}$ is dense in $\mathcal{O}(D)$ in the topology of locally uniform convergence. Then the envelope of holomorphy of D is also univalent.

Proof. Let $\varphi: D \longrightarrow \widehat{X}$ be the maximal holomorphic extension with $(\widehat{X}, \widehat{p})$ being a Riemann domain over \mathbb{C}^{n} (the Thullen theorem). Recall (Corollary 2.8.18) that $\mathcal{O}(\widehat{X})$ separates points in \widehat{X}. Thus, to prove that \widehat{X} univalent it suffices to prove that the space $\widehat{p}^{*}(\mathcal{O}(\widehat{p}(\widehat{X})))$ is dense in $\mathcal{O}(\widehat{X})$ in the topology of locally uniform convergence on \widehat{X}.

Take a $g \in \mathcal{O}(\widehat{X})$, let $f:=g \circ \varphi \in \mathcal{O}(D)$, and let $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{O}(U)$ be such that $f_{\nu} \longrightarrow f$ locally uniformly in D. Let $\widehat{f}_{\nu} \in \mathcal{O}(\widehat{U})$ denote the continuation of f_{ν}. Recall that $\widehat{p}(\widehat{X}) \subset \widehat{D} \subset \widehat{U}$ (Remark 2.8.21. Put $g_{\nu}:=\widehat{f}_{\nu} \circ \widehat{p} \in \widehat{p}^{*}(\mathcal{O}(\widehat{p}(\widehat{X})))$. Then $g_{\nu} \circ \varphi=f_{\nu} \longrightarrow f=g \circ \varphi$. Consequently, by Remark 2.8.20, $g_{\nu} \longrightarrow g$ locally uniformly in \widehat{X}.

Remark 2.8.23. Let $D \subset U \subset \mathbb{C}^{n}$ be domains such that U is a domain of holomorphy, and let $F: U \longrightarrow U$ be biholomorphic such that $F(D)=D$. Then $F(\widehat{D})=\widehat{D}$.

Lemma 2.8.24. (a) Let $D \subset \mathbb{C}^{n}$ be a domain. Then the following implications are true:
D is n-circled $\Longrightarrow \widehat{D}$ is n-circled.
D is complete n-circled $\Longrightarrow \widehat{D}$ is complete n-circled.
D is balanced $\Longrightarrow \widehat{D}$ is balanced.
$\left.{ }^{24}\right)(\widehat{p}(\widehat{X})$, id $)$ is isomorphic with $(\widehat{X}, \widehat{p})$.
(b) Let $D \subset \mathbb{C}^{n}$ be a Hartogs domain over a domain of holomorphy $G \subset \mathbb{C}^{n-k}$. Then the following implications are true:
$\forall_{z \in G} D_{z}$ is k-circled $\Longrightarrow \forall_{z \in G} \widehat{D}_{z}$ is k-circled.
$\forall_{z \in G} D_{z}$ is complete k-circled $\Longrightarrow \forall_{z \in G} \widehat{D}_{z}$ is complete k-circled.
$\forall_{z \in G} D_{z}$ is balanced $\Longrightarrow \forall_{z \in G} \widehat{D}_{z}$ is balanced.
Proof. (a) See the proof of (b).
(b) We apply Proposition 2.8 .22 with $U=G \times \mathbb{C}^{k}$. In the first case we take $F(z, w):=\left(z, e^{i \theta_{1}} w_{1}, \ldots\right.$, $\left.e^{i \theta_{k}} w_{k}\right)$ with $\theta_{1}, \ldots, \theta_{k} \in \mathbb{R}$.

In the third case we put $F(z, w):=(z, \lambda w)$ with $0<|\lambda| \leq 1$.
In the second case we already know that the fibers of \widehat{D} are k-circled and balanced. By Proposition 2.7.14 \widehat{D}_{z} is a domain of holomorphy for any $z \in G$. Now we can use Corollary 2.7.16.

Corollary 2.8.25. (a) Any n-circled or balanced domain $D \subset \mathbb{C}^{n}$ has the univalent envelope of holomorphy. (b) Let $D \subset \mathbb{C}^{n}$ be a Hartogs domain over a domain $G \subset \mathbb{C}^{n-k}$ such that the envelope of holomorphy of G is univalent. Each of the following conditions implies that the envelope of holomorphy of D is univalent:
$\forall_{z \in G} D_{z}$ is connected, k-circled, and $D \cap(G \times\{0\}) \neq \varnothing\left({ }^{25}\right)$
$\forall_{z \in G} D_{z}$ is balanced.
$\forall_{z \in G} D_{z}$ is connected, k-circled, and $D_{z} \subset\left(\mathbb{C}_{*}\right)^{k}\left({ }^{26}\right)$
Proof. In all the cases we will apply Proposition 2.8.22.
(a) In the first case we put $U=U_{1} \times \cdots \times U_{n}$, where

$$
U_{j}:=\left\{\begin{array}{ll}
\mathbb{C}_{*} & \text { if } D \cap \boldsymbol{V}_{j}=\varnothing \\
\mathbb{C} & \text { if } D \cap \boldsymbol{V}_{j} \neq \varnothing
\end{array}, \quad j=1, \ldots, n\right.
$$

where $\boldsymbol{V}_{j}:=\mathbb{C}^{j-1} \times\{0\} \times \mathbb{C}^{n-j}, j=1, \ldots, n$. Note that U is a domain of holomorphy. Now, Proposition 2.6.2 implies that $\left.\mathcal{O}(U)\right|_{D}$ is dense in $\mathcal{O}(D)$.

In the second case we put $U:=\mathbb{C}^{n}$ and we use Proposition 1.6.2 to check that $\left.\mathcal{O}(U)\right|_{D}$ is dense in $\mathcal{O}(D)$.
(b) In the first case we take $U:=G \times \mathbb{C}^{k}$. By Corollary 1.5.7 $\widehat{G} \times \mathbb{C}^{k}$ is the envelope of holomorphy of $G \times \mathbb{C}^{k}$. Now, by Proposition 2.6.3, $\left.\mathcal{O}(U)\right|_{D}$ is dense in $\mathcal{O}(D)$.

In the second case take $U:=G \times \mathbb{C}^{k}$ and use Proposition 1.6.5(b).
In the third case put $U:=G \times\left(\mathbb{C}_{*}\right)^{k}$ and apply once again Proposition 2.6.3.

Exercises

2.1. Let $K \subset \mathbb{C}^{n}, n \geq 2$, be compact and let a function $f \in \mathcal{O}\left(\mathbb{C}^{n} \backslash K\right)$ be such that lim $\sup _{|z| \rightarrow \infty}|f(z)|<$ $+\infty$. Does it follow that $f=$ const?
2.2. Let D be a domain in \mathbb{C}^{n} and let $F: D \longrightarrow \mathbb{C}^{n}$ be a locally biholomorphic mapping (i.e. any point $a \in D$ has a neighborhood U such that $F(U)$ is open and $\left.F\right|_{U}: U \longrightarrow F(U)$ is biholomorphic). Let $K \subset D$ be compact such that $D \backslash K$ is a domain. Assume that $\left.F\right|_{D \backslash K}: D \backslash K \longrightarrow F(D \backslash K)$ is biholomorphic. Prove that $F: D \longrightarrow F(D)$ is biholomorphic.
2.3. Let

$$
\mathcal{E}(1, m):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2 m}<1\right\}, \quad m>0 .
$$

Given $a \in \mathbb{D}$ put

$$
\psi: \mathcal{E}(1, m) \ni\left(z_{1}, z_{2}\right) \longrightarrow\left(\frac{z_{1}-a}{1-\bar{a} z_{1}}, \frac{\left(1-|a|^{2}\right)^{\frac{1}{2 m}}}{\left(1-\bar{a} z_{1}\right)^{\frac{1}{m}}} z_{2}\right) \in \mathbb{C}^{2} .
$$

Prove that $\psi \in \operatorname{Aut}(\mathcal{E}(1, m))$.
$\left({ }^{25}\right)$ Notice that if the fibers $D_{z}, z \in G$, are not connected, then the envelope of holomorphy of D need not be univalent (Example 2.8.1.
$\left({ }^{26}\right)$ For instance, D is a Hartogs-Laurent domain over a domain with univalent envelope of holomorphy; cf. Remark 1.6 .4 d).
2.4. Determine $\operatorname{Aut}(T)$, where T is Hartogs' triangle

$$
T:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|<\left|z_{2}\right|<1\right\} .
$$

2.5. Find $\operatorname{Aut}\left(\mathbb{D}^{2} \backslash((1 / 2) \overline{\mathbb{D}})^{2}\right)$.
2.6. Does there exist a compact set $K \subset \mathbb{D}^{2}$, such that int $K \neq \varnothing, 0 \notin K$, and 0 is not a fixed point of $\operatorname{Aut}\left(\mathbb{D}^{2} \backslash K\right) ?$
2.7. (Analytic sets, cf. [3.) A subset M of an open set $\Omega \subset \mathbb{C}^{n}$ is an analytic subset of Ω if for any point $a \in \Omega$ there exist an open neighborhood $U \subset \Omega$ and $f_{1}, \ldots, f_{N} \in \mathcal{O}(U)(N=N(a))$ such that $M \cap U_{a}=\left\{z \in U: f_{1}(z)=\cdots=f_{N}(z)=0\right\}$.

Let M be an analytic subset of Ω. A point $a \in M$ is regular (we write $a \in \operatorname{Reg}(M)$) if there exists a neighborhood $U_{a} \subset \Omega$ such that $M \cap U_{a}$ is a complex manifold. Points from $\operatorname{Sing}(M):=M \backslash \operatorname{Reg}(M)$ are called singular. Notice that if $n=1$, then $\operatorname{Sing}(M)=\varnothing$.

We say that M is irreducible if there are no analytic subsets M_{1}, M_{2} of Ω such that $M=M_{1} \cup M_{2}$ and $M_{j} \neq M, j=1,2$.

Verify the following statements:
(a) M is an analytic subset of Ω iff $M \cap C$ is an analytic subset of C for any connected component C of Ω.
(b) \varnothing and Ω are analytic subsets of Ω. Any analytic subset of Ω is closed in Ω.
(c) If M is a complex submanifold of Ω, then M is an analytic subset of Ω with $\operatorname{Sing}(M)=\varnothing$.
(d) If M is an analytic subset of a domain $D \subset \mathbb{C}^{n}$, then either $M=D$ or M is thin in D (Definition 2.1.4. Consequently, $D \backslash M$ is a domain.

In particular, if M is an analytic subset of a domain $D \subset \mathbb{C}$, then either $M=D$ or M is a discrete subset of Ω.
(e) If M_{1}, \ldots, M_{N} are analytic subsets of Ω, then $M_{1} \cap \cdots \cap M_{N}$ is an analytic subset of Ω.
(f) If M_{1}, \ldots, M_{N} are analytic subsets of Ω, then $M_{1} \cup \cdots \cup M_{N}$ is an analytic subset of Ω.
(g) If $F: \Omega_{1} \longrightarrow \Omega_{2}$ is holomorphic (Ω_{j} is an open set in $\mathbb{C}^{n_{j}}, j=1,2$) and M is an analytic subset of Ω_{2}, then $F^{-1}(M)$ is an analytic subset of Ω_{1}.

In particular, if $F: \Omega_{1} \longrightarrow \Omega_{2}$ is biholomorphic $\left(n_{1}=n_{2}\right)$, then M is an analytic subset of Ω_{2} iff $F^{-1}(M)$ is an analytic subset of Ω_{1}.
(h) If M_{j} is an analytic subset of $\Omega_{j} \subset \mathbb{C}^{n_{j}}, j=1, \ldots, N$, then $M_{1} \times \cdots \times M_{N}$ is an analytic subset of $\Omega_{1} \times \cdots \times \Omega_{N}$.
(i) Let $M:=f^{-1}(0), f \in \mathcal{O}(\Omega)$. Then the set $\operatorname{Reg}(M)$ is dense in M.
2.8. Verify whether the sets

$$
\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: z_{1}^{2}=z_{2}^{3}\right\}, \quad\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1} z_{2}=z_{3}^{2}\right\}
$$

are reducible. Determine their singular points.
2.9. Let $g: \mathbb{C} \rightarrow \mathbb{C}^{2}, g(z):=\left(z^{2}-z, z^{3}-z\right)$. Is $g(\mathbb{C}) \cap U$ an analytic subset of U for some neighborhood U of $(0,0) \in \mathbb{C}^{2}$?
2.10. Let U be a neighborhood of a point $a \in \partial \mathbb{B}_{n}(n \geq 2)$ and let $D:=U \backslash \overline{\mathbb{B}}_{n}$. Then there exists a neighborhood W of the point a such that every function holomorphic in D extends holomorphically to W.
2.11. Let D and G be convex domains in \mathbb{C} containing 0 and let

$$
K:=[0,1] \cdot(\partial D \times \partial G) .
$$

Prove that any function f holomorphic in a neighborhood of K, extends holomorphically to a neighborhood of $\bar{D} \times \bar{G}$.
2.12. Let M be a \mathcal{C}^{1} submanifold of a domain $D \subset \mathbb{C}^{n}, \operatorname{dim}_{\mathbb{R}} M \leq 2 n-1$. Show that $\mathcal{O}(D \backslash M) \cap \mathcal{C}(D)=$ $\mathcal{O}(D)$, i.e. every function holomorphic in $D \backslash M$ and continuous in D is holomorphic in D.
2.13. Let $f \in \mathcal{O}\left(\mathbb{B}_{n}\right) \cap \mathcal{C}\left(\overline{\mathbb{B}}_{n}\right), n \geq 2$. Suppose that $|f|=1$ in $\partial \mathbb{B}_{n}$. Does it follow that $f=$ const?
2.14. Check whether Proposition 2.7.4(a) remains true if the barrier function f_{a} exists only for all points a from a dense subset of $\partial \Omega$.
2.15. Let a domain D be bounded and convex. Construct a holomorphic function which does not extend beyond D (cf. Proposition 2.7.4(b)).
2.16. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $\varphi: \Omega \longrightarrow \mathbb{R}$ be continuous. Put

$$
L_{h}^{2}(\Omega, \varphi):=\left\{f \in \mathcal{O}(\Omega): \int_{\Omega}|f|^{2} e^{-\varphi} d \mathcal{L}^{2 n}<+\infty\right\}
$$

(a) Prove that $L_{h}^{2}(\Omega, \varphi)$ with the scalar product

$$
L_{h}^{2}(\Omega, \varphi) \times L_{h}^{2}(\Omega, \varphi) \ni(f, g) \longrightarrow\langle f, g\rangle_{\varphi}:=\int_{\Omega} f \bar{g} e^{-\varphi} d \mathcal{L}^{2 n} \in \mathbb{C}
$$

is a complex Hilbert space; let $\left\|\|_{\varphi}\right.$ denote the norm induced by the scalar product.
Moreover, $L_{h}^{2}(\Omega, \varphi)$ is a natural Hilbert space in $\mathcal{O}(\Omega)$.
(b) Let $\mathcal{F} \subset \mathcal{O}(\Omega)$ be locally uniformly bounded. Then there exists a continuous (even \mathcal{C}^{∞}) function $\varphi: \Omega \longrightarrow \mathbb{R}$ such that

$$
\mathcal{F} \subset\left\{f \in L_{h}^{2}(\Omega, \varphi): \int_{\Omega}|f|^{2} e^{-\varphi} d \mathcal{L}^{2 n} \leq 1\right\}
$$

(c) If $\Omega=\Omega_{1} \times \Omega_{2}$, then the function φ in (b) can be found in the form $\varphi\left(z_{1}, z_{2}\right)=\left(\varphi_{1} \oplus \varphi_{2}\right)\left(z_{1}, z_{2}\right):=$ $\varphi_{1}\left(z_{1}\right)+\varphi_{2}\left(z_{2}\right),\left(z_{1}, z_{2}\right) \in \Omega_{1} \times \Omega_{2}$.
2.17. Let $b \in L_{h}^{2}\left(\Omega_{1}, \varphi_{1}\right), f \in L_{h}^{2}\left(\Omega_{1} \times \Omega_{2}, \varphi_{1} \oplus \varphi_{2}\right)$,

$$
g\left(z_{2}\right):=\int_{\Omega_{1}} f\left(\cdot, z_{2}\right) \bar{b} e^{-\varphi_{1}} d \mathcal{L}^{2 n_{1}}, \quad z_{2} \in \Omega_{2}
$$

Prove that $g \in L_{h}^{2}\left(\Omega_{2}, \varphi_{2}\right)$.
2.18. Let $\left(b_{j, k}\right)_{k \in A_{j}} \subset L_{h}^{2}\left(\Omega, \varphi_{j}\right)$ be an othonormal basis $\left(\# A_{j} \leq \aleph_{0}\right), j=1,2$. Prove that $\left(b_{1, k} \otimes\right.$ $\left.b_{2, \ell}\right)_{(k, \ell) \in A_{1} \times A_{2}}\left({ }^{27}\right)$ is an orthonormal basis in $L_{h}^{2}\left(\Omega_{1} \times \Omega_{2}, \varphi_{1} \oplus \varphi_{2}\right)$.
2.19. For $\mathcal{F}_{j} \subset \mathcal{O}\left(\Omega_{j}\right), j=1,2$, let $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ denote the vector subspace of $\mathcal{O}\left(\Omega_{1} \times \Omega_{2}\right)$ spanned by the set

$$
\left\{f_{1} \otimes f_{2}:\left(f_{1}, f_{2}\right) \in \mathcal{F}_{1} \times \mathcal{F}_{2}\right\}
$$

Using Exercise 2.18 prove that the space $L_{h}^{2}\left(\Omega_{1}, \varphi_{1}\right) \otimes L_{h}^{2}\left(\Omega_{2}, \varphi_{2}\right)$ is dense in $L_{h}^{2}\left(\Omega_{1} \times \Omega_{2}, \varphi_{1} \oplus \varphi_{2}\right)$.
2.20. Using Exercises 2.16 and 2.18 prove that the space $\mathcal{O}\left(\Omega_{1}\right) \otimes \mathcal{O}\left(\Omega_{2}\right)$ is dense in $\mathcal{O}\left(\Omega_{1} \times \Omega_{2}\right)$ (in the topology of locally uniform convergence).
2.21. Prove that the set $\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+(\operatorname{Im} w)^{2}>1\right\}$ is not holomorphically convex.
2.22. Prove that every compact set $K \subset \mathbb{R}^{n} \subset \mathbb{C}^{n}$ is polynomially convex.
2.23. Let $G:=\left\{z \in \mathbb{C}^{n}: 1<|z|<3\right\}, K:=\left\{z \in \mathbb{C}^{n}:|z|=2\right\}$. Determine the set $\widehat{K}_{\mathcal{O}(G)}$.
2.24. Let $\Omega=\mathbb{D}^{2} \backslash \overline{\mathbb{P}}(1 / 2)$. Verify that for

$$
K:=\left\{\left(0,3 e^{i t} / 4\right): 0 \leq t<2 \pi\right\}
$$

we have

$$
\widehat{K}_{\mathcal{O}(\Omega)}=\left\{\left(0, r e^{i t}\right): 0 \leq t<2 \pi, 1 / 2<r \leq 3 / 4\right\}
$$

(and, therefore, the set Ω is not holomorphically convex).
2.25. Let $G:=\left\{(z, w) \in \mathbb{C}^{2}: 0<|z|<|w|<1\right\}$. Is the set G holomorphically convex? Is it true that \bar{G} has a neighborhood basis consisting of polynomially convex sets?

[^15]
CHAPTER 3

Plurisubharmonic functions

Summary. In this chapter we consider properties of subharmonic and plurisubharmonic functions (cf. [18], [35]).
In Section 3.1 we collect the basic properties of harmonic functions. The results are standard, perhaps except Proposition 3.1.13 on the Dirichlet problem for the annulus.

Section 3.2 summarizes basic properties of subharmonic functions, e.g. the mean value property and the maximum principle. A more advanced result contained there is the removable singularities theorem for subharmonic functions. Various properties of subharmonic functions are obtained by their regularization. Another advanced result is the Oka theorem (Propositions 3.2.31, 3.2.32). The final part of Section 3.2 is devoted to results concerning logarithmic subharmonicity. The notions of harmonicity and subharmonicity (as well as main parts of Sections 3.1 and 3.2) can be generalized from open sets in $\mathbb{C}=\mathbb{R}^{2}$ to open sets in \mathbb{R}^{N} (cf. [14, [18]).

In a short Section 3.3 we present basic properties of pluriharmonic functions.
In the next Section 3.4 plurisubharmonic functions are presented. Many of the basic properties of those functions, like the mean value property, the removable singularities theorem, the maximum principle, follow from their counterparts for subharmonic functions. § 3.4 ends with the introduction of strictly plurisubharmonic functions; the detailed discussion of this important class will not be pursued in this chapter.

3.1. Harmonic functions

Let $\Omega \subset \mathbb{R}^{2} \simeq \mathbb{C}$ be open and let $h \in \mathcal{C}^{2}(\Omega, \mathbb{R})$. The function h is called harmonic in $\Omega(h \in \mathcal{H}(\Omega))$ if

$$
\Delta h=\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}=0 \text { on } \Omega
$$

Remark 3.1.1. (a) $\mathcal{H}(\Omega)$ is a vector space.
(b) If $h: \Omega \longrightarrow \mathbb{R}$ is such that every point $a \in \Omega$ has a neighborhood $U_{a} \subset \Omega$ such that $\left.h\right|_{U_{a}} \in \mathcal{H}\left(U_{a}\right)$, then $h \in \mathcal{H}(\Omega)$.
(c) $\Delta=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$.
(d) If $f=u+i v \in \mathcal{O}(\Omega)$, then $u, v \in \mathcal{H}(\Omega)$.

Indeed, by (c) we have $\Delta u+i \Delta v=\Delta f=4 \frac{\partial}{\partial z}\left(\frac{\partial f}{\partial \bar{z}}\right) \equiv 0$.
(e) If $f \in \mathcal{O}(\Omega)$ and $0 \notin f(\Omega)$, then $\log |f| \in \mathcal{H}(\Omega)$.

Indeed, $\log |f|=\operatorname{Re} \ell$, where ℓ is a local branch of the logarithm. Now we apply (d).
(f) Let Ω and Ω^{\prime} be open sets in $\mathbb{C}, h \in \mathcal{H}\left(\Omega^{\prime}\right), f \in \mathcal{O}\left(\Omega, \Omega^{\prime}\right)$. Then $h \circ f \in \mathcal{H}(\Omega)$.

Indeed,

$$
\Delta(h \circ f)=((\Delta h) \circ f)\left|f^{\prime}\right|^{2}=0
$$

Proposition 3.1.2. Let $D \subset \mathbb{C}$ be a simply connected domain and let $h: D \longrightarrow \mathbb{R}$. Then $h \in \mathcal{H}(D)$ iff there exists $f \in \mathcal{O}(D)$ such that $h=\operatorname{Re} f$.

In particular, each harmonic function is locally the real part of a holomorphic function.
Proof. The implication \Longleftarrow follows from Remark 3.1.1(d).
To prove \Longrightarrow we assume first that D is star-shaped with respect to a point $a_{0} \in D$, i.e. $\left[a_{0}, a\right] \subset D$ for every $a \in D\left(^{1}\right)$
$\left.{ }^{1}\right)\left[a_{0}, a\right]:=\left\{a_{0}+t\left(a-a_{0}\right): t \in[0,1]\right\}$.

We may assume that $a_{0}=0$. Define

$$
k(z)=\int_{0}^{1}\left(-\frac{\partial h}{\partial y}(t z) x+\frac{\partial h}{\partial x}(t z) y\right) d t, \quad z=x+i y \in D
$$

Then $k \in \mathcal{C}^{1}(D, \mathbb{R})$. Moreover, differentiating under the integral sign, and using the fact that $\Delta u=0$, we obtain

$$
\begin{aligned}
\frac{\partial k}{\partial x}(z) & =\int_{0}^{1}\left(-\frac{\partial^{2} h}{\partial x \partial y}(t z) t x-\frac{\partial h}{\partial y}(t z)+\frac{\partial^{2} h}{\partial x^{2}}(t z) t y\right) d t \\
& =-\int_{0}^{1}\left(\frac{\partial^{2} h}{\partial x \partial y}(t z) x+\frac{\partial^{2} h}{\partial y^{2}}(t z) y\right) t d t-\int_{0}^{1} \frac{\partial h}{\partial y}(t z) d t=-\int_{0}^{1} t \frac{d}{d t}\left(\frac{\partial h}{\partial y}(t z)\right) d t-\int_{0}^{1} \frac{\partial h}{\partial y}(t z) d t \\
& =-\left.t \frac{\partial h}{\partial y}(t z)\right|_{0} ^{1}+\int_{0}^{1} \frac{\partial h}{\partial y}(t z) d t-\int_{0}^{1} \frac{\partial h}{\partial y}(t z) d t=-\frac{\partial h}{\partial y}(z)
\end{aligned}
$$

Similarly we check that $\frac{\partial k}{\partial y}=\frac{\partial h}{\partial x}$. This means that h and k satisfy the Cauchy-Riemann equations in D. Consequently, $f=h+i k \in \mathcal{O}(D)$.

Now let $D \varsubsetneqq \mathbb{C}$ be an arbitrary simply connected domain. By the Riemann mapping theorem (cf. 4], Th. VII.4.2) there exists a biholomorphic mapping $\varphi: \mathbb{D} \longrightarrow D$. By Remark 3.1.1(f), $h \circ \varphi \in \mathcal{H}(\mathbb{D})$. Since \mathbb{D} is star-shaped, there exists $g \in \mathcal{O}(\mathbb{D})$ such that $\operatorname{Re} g=h \circ \varphi$. Finally, $h=\operatorname{Re}\left(g \circ \varphi^{-1}\right)$.

Corollary 3.1.3. $\mathcal{H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega)$.
Proposition 3.1.4 (Identity principle). Let $D \subset \mathbb{C}$ be a domain and let $h \in \mathcal{H}(D)$. If $\operatorname{int}\left(h^{-1}(0)\right) \neq \varnothing$, then $h \equiv 0$ in D. In particular, if $h_{1}, h_{2} \in \mathcal{H}(D)$ are equal on a non-empty open subset, then $h_{1} \equiv h_{2}$ in D. $\left({ }^{2}\right)$

Proof. Let $D_{0}=\{a \in D: h=0$ in a neighborhood of $a\}$. Obviously, D_{0} is open and $D_{0} \neq \varnothing$. To end the proof we need to show that D_{0} is relatively closed in D. Suppose that $z_{0} \in D$ is an accumulation point of D_{0} in D. Take any $r>0$ such that $K\left(z_{0}, r\right) \subset D$. By Proposition 3.1.2 there exists $f \in \mathcal{O}\left(K\left(z_{0}, r\right)\right)$ such that $\operatorname{Re} f=h$. Then we have $\operatorname{Re} f=h=0$ on the non-empty and open set $D_{0} \cap K\left(z_{0}, r\right)$. By the usual identity principle for holomorphic functions ([4], Th. IV.3.7), $f \equiv$ const in $K\left(z_{0}, r\right)$. Since $h=0$ in $D_{0} \cap K\left(z_{0}, r\right)$, we have $h=0$ in $K\left(z_{0}, r\right)$. Hence $z_{0} \in D_{0}$.

Proposition 3.1.5 (Maximum principle). Let $D \subset \mathbb{C}$ be a domain and let $h \in \mathcal{H}(D)$, $h \not \equiv$ const. Then h has no local maxima in D. If, moreover, D is bounded, then

$$
h(z)<\sup _{\zeta \in \partial D}\left\{\limsup _{D \ni w \rightarrow \zeta} h(w)\right\}, \quad z \in D .
$$

If we replace h by $-h$, then we obtain the minimum principle.
Proof. Suppose that there exist $z_{0} \in D$ and $r>0$ such that $h(z) \leq h\left(z_{0}\right)$ for every $z \in K\left(z_{0}, r\right)$. By Proposition 3.1.2, there exists $f \in \mathcal{O}\left(K\left(z_{0}, r\right)\right)$ such that $h=\operatorname{Re} f$. Then, for $z \in K\left(z_{0}\right.$, r), we get

$$
\left|e^{f(z)}\right|=e^{h(z)} \leq e^{h\left(z_{0}\right)}=\left|e^{f\left(z_{0}\right)}\right|
$$

Hence, by the maximum principle for holomorphic functions (cf. 4], Th. IV.3.11), $e^{f}=$ const in $K\left(z_{0}, r\right)$. Consequently, $h=h\left(z_{0}\right)$ in $K\left(z_{0}, r\right)$ and, finally, by the identity principle (Proposition 3.1.4), we get $h \equiv h\left(z_{0}\right)$ in D; contradiction.

[^16]Let $u: C(a, r) \longrightarrow[-\infty,+\infty)$ be measurable $\left(^{3}\right)$ and bounded from above. Define

$$
\begin{gathered}
\mathbf{P}(u ; a, r ; z):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} u\left(a+r e^{i \theta}\right) d \theta, \quad z \in K(a, r), \\
\mathbf{J}(u ; a, r):=\mathbf{P}(u ; a, r ; a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta}\right) d \theta
\end{gathered}
$$

$\mathbf{J}(u ; a, r)$ is the integral mean value of u over the circle $C(a, r)$.
Proposition 3.1.6. Let $u: C(a, r) \longrightarrow \mathbb{R}$ be continuous. Then the function $K(a, r) \ni z \longmapsto \mathbf{P}(u ; a, r ; z)$ is harmonic.

Proof. Consider the function

$$
\mathbf{S}(u ; a, r ; z):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r e^{i \theta}+(z-a)}{r e^{i \theta}-(z-a)} u\left(a+r e^{i \theta}\right) d \theta, \quad z \in K(a, r)
$$

Since u is real-valued, we have

$$
\begin{aligned}
\operatorname{Re} \mathbf{S}(u ; a, r ; z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left(\frac{r e^{i \theta}+(z-a)}{r e^{i \theta}-(z-a)}\right) & u\left(a+r e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} u\left(a+r e^{i \theta}\right) d \theta=\mathbf{P}(u ; a, r ; z)
\end{aligned}
$$

Moreover, the function $\mathbf{S}(u ; a, r ; \cdot)$ is holomorphic in $K(a, r)$. Now, the result follows from Remark 3.1.1(d).

Lemma 3.1.7.

$$
\mathbf{P}(1 ; a, r ; z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} d \theta=1, \quad z \in K(a, r)
$$

Proof. Since $\mathbf{P}(1 ; a, r ; z)=\operatorname{Re} \mathbf{S}(1 ; a, r ; z)$, it suffices to show that $\mathbf{S}(1 ; a, r ; z)=1$. We have

$$
\frac{r e^{i \theta}+(z-a)}{r e^{i \theta}-(z-a)}=\left(r e^{i \theta}+(z-a)\right) \sum_{n=0}^{\infty} \frac{(z-a)^{n}}{r^{n+1} e^{i(n+1) \theta}}
$$

and for every $z \in K(a, r)$, the series converges uniformly for $\theta \in[0,2 \pi]$. Then

$$
\begin{aligned}
& \mathbf{S}(1 ; a, r ; z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r e^{i \theta}+(z-a)}{r e^{i \theta}-(z-a)} d \theta \\
& \quad=\frac{1}{2 \pi} \sum_{n=0}^{\infty} \frac{(z-a)^{n}}{r^{n}} \int_{0}^{2 \pi} e^{-i n \theta} d \theta+\frac{1}{2 \pi} \sum_{n=0}^{\infty} \frac{(z-a)^{n+1}}{r^{n+1}} \int_{0}^{2 \pi} e^{-i(n+1) \theta} d \theta
\end{aligned}
$$

The only non-vanishing term is the term for $n=0$ in the first sum, which is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} 1 d \theta=1
$$

Definition 3.1.8. Let D be a bounded domain in \mathbb{C} and let $b \in \mathcal{C}(\partial D, \mathbb{R})$. The Dirichlet problem for D and b is to find a function $h \in \mathcal{C}(\bar{D}) \cap \mathcal{H}(D)$ such that $h=b$ on ∂D.

By the maximum principle h is uniquely determined. It is called the solution of the Dirichlet problem for D with boundary data b. If the Dirichlet problem for D has a solution for any boundary data b, then we say that D is regular with respect to the Dirichlet problem.

In the sequel we need a solution of the Dirichlet problem in the case when D is a disc or an annulus in \mathbb{C}. In the first case the Dirichlet problem can be solved fairly explicitly.
$\left(^{3}\right)$ That is, the function $[0,2 \pi) \ni \theta \longrightarrow u\left(a+r e^{i \theta}\right)$ is Lebesgue measurable; $C(a, r):=\partial K(a, r)$.

Proposition 3.1.9. Let $b: C(a, r) \longrightarrow \mathbb{R}$ be continuous. Put

$$
h(z):= \begin{cases}b(z), & z \in C(a, r) \\ \mathbf{P}(b ; a, r ; z), & z \in K(a, r)\end{cases}
$$

Then h is the solution of the Dirichlet problem for $K(a, r)$ with boundary data b.
Thus all discs are regular with respect to the Dirichlet problem.
Proof. By Proposition $3.1 .6 h$ is harmonic in $K(a, r)$. It remains to show that

$$
\lim _{K(a, r) \ni z \rightarrow z_{0}} \mathbf{P}(b ; a, r ; z)=b\left(z_{0}\right), \quad z_{0} \in C(a, r) .
$$

Fix $z_{0} \in C(a, r)$ and observe that for $z \in K(a, r)$ we have by Lemma 3.1.7

$$
\begin{equation*}
\left|\mathbf{P}(b ; a, r ; z)-b\left(z_{0}\right)\right|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}}\left(b\left(a+r e^{i \theta}\right)-b\left(z_{0}\right)\right) d \theta\right| \tag{3.1.1}
\end{equation*}
$$

We have $z_{0}=a+r e^{i \theta_{0}}$ for some $\theta_{0} \in \mathbb{R}$. Fix $\varepsilon>0$. There exists $\delta>0$ such that for every θ with $\left|\theta-\theta_{0}\right|<\delta$, $\left|b\left(a+r e^{i \theta}\right)-b\left(a+r e^{i \theta_{0}}\right)\right|<\varepsilon / 2$. Let $\Gamma_{1}:=\left\{a+r e^{i \theta}:\left|\theta-\theta_{0}\right|<\delta\right\}, \Gamma_{2}:=C(a, r) \backslash \Gamma_{1}$. Then the right-hand side of (3.1.1) is bounded by

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}}\left|b\left(a+r e^{i \theta}\right)-b\left(a+r e^{i \theta_{0}}\right)\right| d \theta=\frac{1}{2 \pi}\left(\int_{\left|\theta-\theta_{0}\right| \leq \delta} \cdots+\int_{\left|\theta-\theta_{0}\right| \geq \delta} \cdots\right) \tag{3.1.2}
\end{equation*}
$$

Moreover,

$$
\frac{1}{2 \pi} \int_{\left|\theta-\theta_{0}\right| \leq \delta} \cdots \leq \frac{1}{2 \pi} \int_{\left|\theta-\theta_{0}\right| \leq \delta} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} \frac{\varepsilon}{2} d \theta \leq \frac{\varepsilon}{2} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} d \theta=\frac{\varepsilon}{2}
$$

by Lemma 3.1.7 (note that the estimate is independent of $z \in K(a, r)$).
To estimate the second integral in the right-hand side of 3.1.2 consider only $z=a+\varrho e^{i \tau} \in K(a, r)$ with $\left|\tau-\theta_{0}\right|<\delta / 2$, and $\varrho_{0}<\varrho<r$, where ϱ_{0} is to be chosen. Put

$$
m:=\inf \left\{\left|r e^{i \theta}-(z-a)\right|: z=a+\varrho e^{i \tau},\left|\tau-\theta_{0}\right|<\delta / 2,0<\varrho<r, a+r e^{i \theta} \in \Gamma_{2}\right\}
$$

Then $m>0$ and

$$
\frac{1}{2 \pi} \int_{\left|\theta-\theta_{0}\right| \geq \delta} \cdots \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-\varrho_{0}^{2}}{m^{2}} 2\|b\|_{C(a, r)}=\frac{2\|b\|_{C(a, r)}}{m^{2}}\left(r^{2}-\varrho_{0}^{2}\right)
$$

The last expression is smaller than $\varepsilon / 2$ provided ϱ_{0} is chosen sufficiently close to r. Thus, if $z \in K(a, r)$ is sufficiently close to z_{0}, then

$$
\left|\mathbf{P}(b ; a, r ; z)-b\left(z_{0}\right)\right|<\varepsilon
$$

From the above proposition we obtain the following reproducing integral formula.
Proposition 3.1.10 (Poisson's formula). If $h \in \mathcal{C}(\bar{K}(a, r)) \cap \mathcal{H}(K(a, r))$, then

$$
h(z)=\mathbf{P}(h ; a, r ; z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} h\left(a+r e^{i \theta}\right) d \theta, \quad z \in K(a, r) .
$$

In particular,

$$
h(a)=\mathbf{J}(h ; a, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(a+r e^{i \theta}\right) d \theta
$$

Proof. By Proposition 3.1.9, if

$$
H(z):=\left\{\begin{array}{ll}
h(z), & z \in C(a, r) \\
\mathbf{P}(h ; a, r ; z), & z \in K(a, r)
\end{array},\right.
$$

then $H \in \mathcal{C}(\bar{K}(a, r)) \cap \mathcal{H}(K(a, r))$. Consequently, by the maximum principle for harmonic functions, $h \equiv H$ in $K(a, r)$.

Proposition 3.1.11 (1-st Harnack's theorem). Let $\Omega \subset \mathbb{C}$ be open and let $\left(h_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{H}(\Omega)$. If $h_{\nu} \longrightarrow h$ locally uniformly in Ω, then $h \in \mathcal{H}(\Omega)$.
Proof. Fix $a \in \Omega$ and $r>0$ such that $\bar{K}(a, r) \subset \Omega$. Then, by Proposition 3.1.10, we get

$$
h_{\nu}(z)=\mathbf{P}\left(h_{\nu} ; a, r ; z\right), \quad z \in K(a, r), \nu \in \mathbb{N} .
$$

Since $h_{\nu} \longrightarrow h$ uniformly on $C(a, r)$, we get $\mathbf{P}\left(h_{\nu} ; a, r ; z\right) \longrightarrow \mathbf{P}(h ; a, r ; z)$. On the other hand $h_{\nu}(z) \longrightarrow h(z)$. Thus

$$
h(z)=\mathbf{P}(h ; a, r ; z), \quad z \in K(a, r)
$$

Now, by Proposition 3.1.6, $h \in \mathcal{H}(K(a, r))$.
Proposition 3.1.12 (2-nd Harnack's theorem). Let D be a domain in $\mathbb{C},\left(h_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{H}(D)$, and $h_{\nu} \leq h_{\nu+1}$, $\nu \geq 1$. If there exists $a \in D$ such that $\lim _{\nu \rightarrow+\infty} h_{\nu}(a)$ exists and is finite, then $\left(h_{\nu}\right)_{\nu=1}^{\infty}$ converges locally uniformly in D.

Proof. Let

$$
D_{0}=\left\{z \in D:\left(h_{\nu}\right)_{\nu=1}^{\infty} \text { is convergent uniformly in a neighborhood of } z\right\}
$$

If we show that D_{0} is non-empty open and closed in D, then $D_{0}=D$, which will end the proof.
The set D_{0} is open by definition. To prove that $D_{0} \neq \varnothing$ we show that $a \in D_{0}$. Choose $r>0$ such that $\bar{K}(a, r) \subset D$. Note that

$$
\begin{equation*}
\frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} \leq \frac{r^{2}-|z-a|^{2}}{(r-|z-a|)^{2}}=\frac{r+|z-a|}{r-|z-a|}, \quad z \in K(a, r) \tag{3.1.3}
\end{equation*}
$$

Moreover, for $z \in K(a, r)$ and $\nu, \mu \in \mathbb{N}$, by Proposition 3.1.10 and 3.1.3), we have

$$
\begin{aligned}
0 \leq h_{\nu+\mu}(z)- & h_{\nu}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}}\left(h_{\nu+\mu}\left(a+r e^{i \theta}\right)-h_{\nu}\left(a+r e^{i \theta}\right)\right) d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r+|z-a|}{r-|z-a|}\left(h_{\nu+\mu}\left(a+r e^{i \theta}\right)-h_{\nu}\left(a+r e^{i \theta}\right)\right) d \theta=\frac{r+|z-a|}{r-|z-a|}\left(h_{\nu+\mu}(a)-h_{\nu}(a)\right)
\end{aligned}
$$

For $|z-a|<r / 2$ this last expression is not greater than $3\left(h_{\nu+\mu}(a)-h_{\nu}(a)\right)$. Therefore the sequence $\left(h_{\nu}\right)_{\nu=1}^{\infty}$ satisfies the uniform Cauchy condition in $K(a, r / 2)$, and hence converges uniformly there. Thus $a \in D_{0}$.

Suppose now that $z_{0} \in D$ is an accumulation point of the set D_{0}. Choose $r>0$ such that $\bar{K}\left(z_{0}, r\right) \subset D$. There exists $b \in D_{0} \cap K\left(z_{0}, r / 3\right)$. Hence $\bar{K}(b, 2 r / 3) \subset D$. Since $b \in D_{0}$, the sequence $\left(h_{\nu}(b)\right)_{\nu=1}^{\infty}$ is convergent. Similarly as above we prove that $\left(h_{\nu}\right)_{\nu=1}^{\infty}$ is convergent uniformly in $K(b, r / 3)$. Hence $\left(h_{\nu}\right)_{\nu=1}^{\infty}$ is convergent uniformly in a neighborhood of z_{0}, and so $z_{0} \in D_{0}$, which proves that D_{0} is relatively closed.

Proposition 3.1.13. Any annulus

$$
A:=\left\{z \in \mathbb{C}: r^{-}<|z|<r^{+}\right\}, \quad 0<r^{-}<r^{+}<+\infty
$$

is regular with respect to the Dirichlet problem.

Proof. First observe that the mapping

$$
\mathbb{C} \ni z \longmapsto z / \sqrt{r^{-} r^{+}} \in \mathbb{C}
$$

maps biholomorphically A onto the "symmetric" annulus

$$
\{z \in \mathbb{C}: 1 / R<|z|<R\}
$$

with $R:=\sqrt{r^{+} / r^{-}}$. Consequently, using Remark 3.1.1 (f), we may assume that $r^{-}=1 / R$ and $r^{+}=R$ for some $R>1$.

By virtue of [14], it suffices to find the Green function for A, i.e. a function $g_{A}: A \times A \longrightarrow(0,+\infty]$ such that:

- $g_{A}(\cdot, a) \in \mathcal{H}(A \backslash\{a\})$,
- $\lim _{A \ni z \rightarrow \zeta} g_{A}(z, a)=0, \zeta \in \partial A$,

3. Plurisubharmonic functions

- $\lim _{A \backslash\{a\} \ni z \rightarrow a}\left[g_{A}(z, a)+\log |z-a|\right]$ exists and is finite, $a \in A$.

By Remark 3.1.1(f) it suffices to construct $g_{A}(\cdot, a)$ only for $a \in A \cap \mathbb{R}_{+}$.
Fix $1 / R<a<R$, put $q:=1 / R^{2}$, and define

$$
f(a, z):=\left(1-\frac{z}{a}\right) \Pi(a, z),
$$

where

$$
\Pi(a, z):=\frac{\prod_{\nu=1}^{\infty}\left(1-\frac{z}{a} q^{2 \nu}\right)\left(1-\frac{a}{z} q^{2 \nu}\right)}{\prod_{\nu=1}^{\infty}\left(1-a z q^{2 \nu-1}\right)\left(1-\frac{1}{a z} q^{2 \nu-1}\right)}
$$

One can prove (cf. [5]) that:

- $f(a, \cdot)$ is meromorphic on \mathbb{C}_{*},
- $f(a, \cdot)$ has simple poles at $z=R^{4 k-2} / a, k \in \mathbb{Z}$,
- $f(a, \cdot)$ has simple zeros at $z=a R^{4 k}, k \in \mathbb{Z}$.

In particular, $f(a, \cdot)$ is holomorphic on \bar{A} and the only zero of $f(a, \cdot)$ in \bar{A} is the simple zero at $z=a$. Moreover,

$$
f(a, z) f\left(a, 1 /\left(R^{2} z\right)\right)=1, \quad f(a, z) f\left(a, R^{2} / z\right)=R^{2} / a^{2}, \quad f(a, \bar{z})=\overline{f(a, z)}
$$

and hence

$$
|f(a, z)|= \begin{cases}1 & \text { if }|z|=1 / R \tag{3.1.4}\\ R / a & \text { if }|z|=R\end{cases}
$$

Put

$$
s(a):=\frac{1}{2}\left(1-\frac{\log a}{\log R}\right) .
$$

Then

$$
g_{A}(z, a)=-\log |f(a, z)|+s(a) \log (R|z|), \quad z \in \bar{A}
$$

Indeed,

- $g_{A}(\cdot, a) \in \mathcal{H}(\bar{A} \backslash\{a\})$,
- $g_{A}(z, a)=0$ if $z \in \partial A$ (by 3.1.4),
- $\lim _{A \backslash\{a\} \ni z \rightarrow a}\left[g_{A}(z, a)+\log |z-a|\right]=\log (a / \Pi(a, a))+s(a) \log (R a)$.

Proposition 3.1.14 ([31]). Let $u \in L^{1}(\Omega, \mathrm{loc})\left(^{4}\right)$ be such that $\Delta u=0$ in the sense of distribution, i.e.

$$
\int_{\Omega} u \cdot(\Delta \varphi) d \mathcal{L}^{2}=0, \quad \varphi \in \mathcal{C}_{0}^{\infty}(\Omega)
$$

Then there exists $h \in \mathcal{H}(\Omega)$ such that $u=h \mathcal{L}^{2}$-a.e. on Ω.

3.2. Subharmonic functions

Definition 3.2.1. Let $\Omega \subset \mathbb{C}$ be open. A function $u: \Omega \longrightarrow[-\infty,+\infty$) is called subharmonic in Ω (we write $u \in \mathcal{S H}(\Omega))$ if:

- u is upper semicontinuous in $\Omega\left(u \in \mathcal{C}^{\uparrow}(\Omega)\right)$,
- for every domain $D \subset \subset \Omega$ and for every function $h \in \mathcal{C}(\bar{D}) \cap \mathcal{H}(D)$, if $u \leq h$ on ∂D, then $u \leq h$ in D.

In particular, the function $u \equiv-\infty$ is subharmonic.
The following properties are immediate consequences of the above definition and of the maximum principle for harmonic functions:

$$
\begin{aligned}
& \mathcal{H}(\Omega) \subset \mathcal{S H}(\Omega) \\
& \mathcal{S H}(\Omega)+\mathcal{H}(\Omega)=\mathcal{S H}(\Omega) \\
& \mathbb{R}_{>0} \cdot \mathcal{S H}(\Omega)=\mathcal{S H}(\Omega)
\end{aligned}
$$

$\left({ }^{4}\right) L^{1}(\Omega$, loc $):=\left\{u: \forall_{K \subset \subset \Omega}:\left.u\right|_{K} \in L^{1}\left(K, \mathcal{L}^{2}\right)\right\}$.

Proposition 3.2.2 (Mean value property). If $u \in \mathcal{S} \mathcal{H}(\Omega)$, then

$$
u(a) \leq \mathbf{J}(u ; a, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta}\right) d \theta, \quad a \in \Omega, 0<r<d_{\Omega}(a)
$$

Proof. Fix an $a \in \Omega$ and $0<r<d_{\Omega}(a)$. Let $b_{\nu}: C(a, r) \longrightarrow \mathbb{R}, \nu \in \mathbb{N}$, be a sequence of continuous functions such that $b_{\nu} \searrow u$ pointwise on $C(a, r)$ (cf. [21]). Let h_{ν} be the solution of the Dirichlet problem for $K(a, r)$ with $h_{\nu}=b_{\nu}$ on $C(a, r)$ (cf. Proposition 3.1.9). Then $u \leq h_{\nu}$ on $C(a, r)$ and hence on $K(a, r)$. Consequently, by Proposition 3.1.10, we get

$$
u(a) \leq h_{\nu}(a)=\mathbf{J}\left(h_{\nu} ; a, r\right)=\mathbf{J}\left(b_{\nu} ; a, r\right), \quad \nu \geq 1
$$

Since $b_{\nu} \searrow u$ on $C(a, r)$, the monotone convergence theorem implies that

$$
\mathbf{J}\left(b_{\nu} ; a, r\right) \longrightarrow \mathbf{J}(u ; a, r) .
$$

Lemma 3.2.3. Let $D \subset \mathbb{C}$ be a domain and let $v \in \mathcal{C}^{\uparrow}(D,[-\infty,+\infty))$, $v \not \equiv$ const. Assume that for every $a \in D$ there exists a number $0<R(a) \leq d_{D}(a)$ such that

$$
v(a) \leq \mathbf{J}(v ; a, r), \quad 0<r<R(a)
$$

Then v does not attain its global maximum in D.
Proof. Suppose that $v(z) \leq v\left(z_{0}\right), z \in D$ (for some $z_{0} \in D$). Let $D_{0}:=v^{-1}\left(v\left(z_{0}\right)\right)$. Then $D_{0} \neq \varnothing$. Note that for every accumulation point $a \in D$ of D_{0} we have

$$
v\left(z_{0}\right)=\limsup _{D_{0} \ni z \rightarrow a} v(z) \leq \limsup _{D \ni z \rightarrow a} v(z)=v(a) \leq v\left(z_{0}\right)
$$

Hence $a \in D_{0}$, which means that D_{0} is relatively closed in D. On the other hand, if $a \in D_{0}$, then

$$
v\left(z_{0}\right)=v(a) \leq \mathbf{J}(v ; a, r) \leq v\left(z_{0}\right), \quad 0<r<R(a)
$$

Now, since v is upper semicontinuous, we conclude that $v=v\left(z_{0}\right)$ on $C(a, r)$ with $0<r<R(a)$. This implies that $K(a, R(a)) \subset D_{0}$, and therefore D_{0} is open. Since D is connected, we have $D_{0}=D$, which shows that $v \equiv v\left(z_{0}\right)$; contradiction.

From Proposition 3.2 .2 and Lemma 3.2 .3 we immediately obtain
Corollary 3.2.4 (Maximum principle). Let $D \subset \mathbb{C}$ be a domain and let $u \in \mathcal{S H}(D)$, $u \not \equiv$ const. Then u does not attain its global maximum in D. Moreover, if D is bounded, then

$$
u(z)<\sup _{\zeta \in \partial D}\left\{\limsup _{D \ni w \rightarrow \zeta} u(w)\right\}, \quad z \in D
$$

Notice that a subharmonic function can attain its global minimum.
Proposition 3.2.5. Let $u: \Omega \longrightarrow[-\infty,+\infty)$. Then $u \in \mathcal{S H}(\Omega)$ iff $u \in \mathcal{C}^{\uparrow}(\Omega)$ and for every $a \in \Omega$ there exists an $R(a), 0<R(a) \leq d_{\Omega}(a)$, such that

$$
\begin{equation*}
u(a) \leq \mathbf{J}(u ; a, r), \quad 0<r<R(a) \tag{3.2.1}
\end{equation*}
$$

Proof. The implication \Longrightarrow follows from Proposition 3.2 .2 .
To prove the opposite, fix a domain $D \subset \subset \Omega$ and a function $h \in \mathcal{C}(\bar{D}) \cap \mathcal{H}(D)$ such that $u \leq h$ on ∂D. Put $v(z):=u(z)-h(z), z \in \bar{D}$. By Proposition 3.1.10 and 3.2.1 we have

$$
v(a) \leq \mathbf{J}(v ; a, r), \quad 0<r<\min \left\{R(a), d_{D}(a)\right\}, a \in D
$$

Using Lemma 3.2.3, we conclude that $v \leq 0$ in D, which shows that $u \leq h$ in D.
Corollary 3.2.6. (a) Let $u: \Omega \longrightarrow[-\infty,+\infty)$. Then $u \in \mathcal{S H}(\Omega)$ iff every point $a \in \Omega$ admits an open neighborhood $U_{a} \subset \Omega$ such that $\left.u\right|_{U_{a}} \in \mathcal{S H}\left(U_{a}\right)$. In other words, subharmonicity is a local property. (b) $\mathcal{S H}(\Omega)+\mathcal{S H}(\Omega)=\mathcal{S H}(\Omega)$.

Proposition 3.2.7. Let $u: \Omega \longrightarrow[-\infty,+\infty)$. Then $u \in \mathcal{S H}(\Omega)$ iff $u \in \mathcal{C}^{\uparrow}(\Omega)$ and for any $a \in \Omega$, $0<r<d_{\Omega}(a)$, and $p \in \mathcal{P}(\mathbb{C})$, if $u \leq \operatorname{Re} p$ on $C(a, r)$, then $u \leq \operatorname{Re} p$ in $K(a, r)$.

Proof. Since the function $\operatorname{Re} p$ is harmonic, the implication \Longrightarrow is obvious.
We prove now the opposite. Fix $a \in \Omega$ and $0<r<d_{\Omega}(a)$. In virtue of Proposition 3.2.5 and the proof of Proposition 3.2.2, it is sufficient to prove that for every continuous function $b: C(a, r) \longrightarrow \mathbb{R}$ such that $u \leq b$ we have $u(a) \leq \mathbf{J}(b ; a, r)$. Fix a function b and let $\varphi_{\nu}: \mathbb{R} \longrightarrow \mathbb{R}, \nu \geq 1$, be a sequence of trigonometric polynomials $\left({ }^{5}\right)$ such that

$$
\left|b\left(a+r e^{i \theta}\right)+\frac{1}{\nu}-\varphi_{\nu}(\theta)\right|<\frac{1}{\nu}, \quad \theta \in \mathbb{R}
$$

(cf. [29], the Fejèr theorem). Let $p_{\nu} \in \mathcal{P}(\mathbb{C})$ be such that $\varphi_{\nu}(\theta)=\operatorname{Re} p_{\nu}\left(a+r e^{i \theta}\right), \theta \in \mathbb{R}, \nu \geq 1$. Then $u \leq \operatorname{Re} p_{\nu}$ on $C(a, r)$ and hence

$$
u(a) \leq \operatorname{Re} p_{\nu}(a)=\mathbf{J}\left(\operatorname{Re} p_{\nu} ; a, r\right) \leq \mathbf{J}(b ; a, r)+\frac{2}{\nu}, \quad \nu \geq 1
$$

(the first equality follows from the fact that the function $\operatorname{Re} p_{\nu}$ is harmonic). Letting $\nu \longrightarrow+\infty$, we end the proof.

Proposition 3.2.8. If $f \in \mathcal{O}(\Omega)$, then $\log |f| \in \mathcal{S H}(\Omega)$.
Proof. Let $u:=\log |f|$. Then $u \in \mathcal{C}^{\uparrow}(\Omega)$. By Proposition 3.2.5, it is enough to check that $u(a) \leq \mathbf{J}(u ; a, r)$, $a \in \Omega, 0<r<R(a)$. This is evident if $f(a)=0$. If $f(a) \neq 0$, then $u \in \mathcal{H}(K(a, R(a)))$, where $R(a):=$ $d_{\Omega \backslash f^{-1}(0)}(a)(c f$. Remark 3.1.1(e)).

Proposition 3.2.9. (a) If $\mathcal{S H}(\Omega) \ni u_{\nu} \searrow u$, then $u \in \mathcal{S H}(\Omega)$.
(b) If $\mathcal{S H}(\Omega) \ni u_{\nu} \longrightarrow u$ locally uniformly in Ω, then $u \in \mathcal{S H}(\Omega)$.

Proof. It is clear that in both cases $u \in \mathcal{C}^{\uparrow}(\Omega)$. For each ν we have

$$
u_{\nu}(a) \leq \mathbf{J}\left(u_{\nu} ; a, r\right), \quad a \in \Omega, 0<r<d_{\Omega}(a)
$$

Letting $\nu \longrightarrow+\infty$ proves that u satisfies 3.2.1.
Proposition 3.2.10. If a family $\left(u_{\iota}\right)_{\iota \in I} \subset \mathcal{S H}(\Omega)$ is locally bounded from above $\left(^{6}\right)$, then the function

$$
u:=\left(\sup _{\iota \in I} u_{\iota}\right)^{*}
$$

is subharmonic, where * denotes the upper regularization. $\left(^{7}\right)$
In particular, $\max \left\{u_{1}, \ldots, u_{N}\right\} \in \mathcal{S H}(\Omega)$ for any $u_{1}, \ldots, u_{N} \in \mathcal{S H}(\Omega)$.
Proof. It is clear that u is upper semicontinuous. Let $D \subset \subset \Omega, h \in \mathcal{C}(\bar{D}) \cap \mathcal{H}(D), u \leq h$ on ∂D. Then $u_{\iota} \leq h$ on ∂D for every $\iota \in I$, and hence $\sup _{\iota \in I} u_{\iota} \leq h$ in D. Finally, since h is continuous, we get $u \leq h$ in D.
$\left.{ }^{5}\right)$ Recall that $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ is a trigonometric polynomial if

$$
\varphi(\theta)=\alpha_{0}+\sum_{j=1}^{k}\left(\alpha_{j} \cos j \theta+\beta_{j} \sin j \theta\right), \quad \theta \in \mathbb{R},
$$

for some $\alpha_{0}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{k} \in \mathbb{R}$. Observe that $\varphi(\theta)=\operatorname{Re} p\left(a+r e^{i \theta}\right)$, where

$$
p(z):=q\left(\frac{z-a}{r}\right), \quad q(z):=\alpha_{0}+\sum_{j=1}^{k}\left(\alpha_{j}-i \beta_{j}\right) z^{j} .
$$

$\left.{ }^{6}{ }^{6}\right)$ Note that in general the function $\sup _{\iota \in I} u_{\iota}$ need not be upper semicontinuous.
${ }^{7}$) If $v: \Omega \longrightarrow[-\infty,+\infty)$ is locally bounded from above, then (cf. 21])

$$
v^{*}(z):=\limsup _{z^{\prime} \rightarrow z} v\left(z^{\prime}\right)=\inf \{\varphi(z): \varphi \in \mathcal{C}(\Omega, \mathbb{R}), v \leq \varphi\}, \quad z \in \Omega .
$$

Proposition 3.2.11. Let $G \subset \Omega \subset \mathbb{C}$ be open and let $v \in \mathcal{S H}(G)$, $u \in \mathcal{S H}(\Omega)$. Assume that

$$
\limsup _{G \ni z \rightarrow \zeta} v(z) \leq u(\zeta), \quad \zeta \in(\partial G) \cap \Omega
$$

Let

$$
\widetilde{u}(z):= \begin{cases}\max \{v(z), u(z)\}, & z \in G \\ u(z), & z \in \Omega \backslash G\end{cases}
$$

Then $\widetilde{u} \in \mathcal{S H}(\Omega)$.
Proof. It is evident that $\widetilde{u} \in \mathcal{C}^{\uparrow}(\Omega)$ and $\widetilde{u} \in \mathcal{S H}(\Omega \backslash \partial G)$. For $a \in \Omega \cap \partial G$ we have

$$
\widetilde{u}(a)=u(a) \leq \mathbf{J}(u ; a, r) \leq \mathbf{J}(\widetilde{u} ; a, r), \quad 0<r<d_{\Omega}(a)
$$

Proposition 3.2.12. Let $u: \Omega \longrightarrow[-\infty,+\infty)$. Then $u \in \mathcal{S H}(\Omega)$ iff $u \in \mathcal{C}^{\uparrow}(\Omega)$ and for every $a \in \Omega$ there exists an $R(a), 0<R(a) \leq d_{\Omega}(a)$, such that

$$
\begin{equation*}
u(z) \leq \mathbf{P}(u ; a, r ; z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} u\left(a+r e^{i \theta}\right) d \theta, \quad 0<r<R(a), z \in K(a, r) \tag{3.2.2}
\end{equation*}
$$

Proof. Since $\mathbf{P}(u ; a, r ; a)=\mathbf{J}(u ; a ; r)$, the implication \Longleftarrow follows from Proposition 3.2 .5 .
To prove the opposite, it is sufficient to argue as in the proof of Proposition 3.2 .2 and use the Poisson formula

$$
u(z) \leq h_{\nu}(z)=\mathbf{P}\left(h_{\nu} ; a, r ; z\right)=\mathbf{P}\left(b_{\nu} ; a, r ; z\right) \searrow \mathbf{P}(u ; a, r, z)
$$

By Propositions 3.1.6 and 3.2.12 we get
Corollary 3.2.13. $\mathcal{S H}(\Omega) \cap(-\mathcal{S H}(\Omega))=\mathcal{H}(\Omega)$.
Proposition 3.2.14. If a sequence $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{S} \mathcal{H}(\Omega)$ is locally bounded from above, then the function

$$
u:=\left(\limsup _{\nu \rightarrow+\infty} u_{\nu}\right)^{*} .
$$

is subharmonic. $\left(^{8}\right)$
Proof. Of course, the function u is upper semicontinuous. Fix $a \in \Omega$ and $0<r<d_{\Omega}(a)$. By Proposition 3.2 .12 and Fatou's lemma we get

$$
\limsup _{\nu \rightarrow+\infty} u_{\nu}(z) \leq \limsup _{\nu \rightarrow+\infty} \mathbf{P}\left(u_{\nu} ; a, r ; z\right) \leq \mathbf{P}\left(\limsup _{\nu \rightarrow+\infty} u_{\nu} ; a, r ; z\right) \leq \mathbf{P}(u ; a, r ; z), \quad z \in K(a, r)
$$

Since the right-hand side is a continuous function of z, we get $u(z) \leq \mathbf{P}(u ; a, r ; z), z \in K(a, r)$.
Let $u: K(a, r) \longrightarrow[-\infty,+\infty)$ be bounded from above and measurable. Define

$$
\mathbf{A}(u ; a, r):=\frac{1}{\pi r^{2}} \int_{K(a, r)} u d \mathcal{L}^{2}
$$

$\mathbf{A}(u ; a, r)$ is the mean value of u on the disc $K(a, r)$.
Proposition 3.2.15 (Mean value property). Let $u: \Omega \longrightarrow[-\infty,+\infty)$. Then $u \in \mathcal{S H}(\Omega)$ iff $u \in \mathcal{C}^{\uparrow}(\Omega)$ and for every $a \in D$ there exists an $R(a), 0<R(a) \leq d_{D}(a)$, such that

$$
u(a) \leq \mathbf{A}(u ; a, r), \quad 0<r<R(a)
$$

$\left(^{8}\right)$ Note that in general the function $\lim \sup _{\nu \rightarrow+\infty} u_{\nu}$ need not be upper semicontinuous.

Proof. Let $u \in \mathcal{S H}(\Omega)$. Using polar coordinates, we have by Proposition 3.2.2

$$
\begin{aligned}
\mathbf{A}(u ; a, r)=\frac{1}{\pi r^{2}} \int_{0}^{r} \int_{0}^{2 \pi} u(a & \left.+\tau e^{i \theta}\right) \tau d \theta d \tau \\
& =\frac{2}{r^{2}} \int_{0}^{r} \mathbf{J}(u ; a, \tau) \tau d \tau \geq \frac{2}{r^{2}} \int_{0}^{r} u(a) \tau d \tau=u(a), \quad a \in \Omega, 0<r<d_{\Omega}(a)
\end{aligned}
$$

To prove the opposite we check first that u does not attain its maximum (like in the proof of Lemma 3.2.3), and then we proceed as in the proof of Proposition 3.2.5.

Proposition 3.2.16. Let $D \subset \mathbb{C}$ be a domain and let $u \in \mathcal{S H}(D), u \not \equiv-\infty$. Then $u \in L^{1}(D, \operatorname{loc})$. In particular, $\mathcal{L}^{2}\left(u^{-1}(-\infty)\right)=0$.

Proof. Suppose that for some $z_{0} \in D$ we have $\int_{U} u d \mathcal{L}^{2}=-\infty$ for any neighborhood U of z_{0}. Let $2 r:=$ $d_{D}\left(z_{0}\right)$. By Proposition 3.2 .15

$$
u(z) \leq \mathbf{A}(u ; z, r)=-\infty, \quad z \in K\left(z_{0}, r\right)
$$

Let $D_{0}:=\{z \in D: u=-\infty$ in a neighborhood of $z\}$. The set D_{0} is clearly open. We have already shown that it is non-empty $\left(z_{0} \in D_{0}\right)$. To obtain a contradiction, it is sufficient to note that proceeding exactly as above, we can prove that D_{0} is relatively closed in D.

Proposition 3.2.17 (Removable singularities). Let $D \subset \mathbb{C}$ be a domain and let $M \subset D$ be a relatively closed subset of D such that for every point $a \in M$ there exist a connected open neighborhood $U_{a} \subset D$ of a and a function $v_{a} \in \mathcal{S H}\left(U_{a}\right)$, $v_{a} \not \equiv-\infty$, such that $M \cap U_{a}=v_{a}^{-1}(-\infty)$. Let $u \in \mathcal{S H}(D \backslash M)$ be locally bounded from above in $D\left({ }^{9}\right)$. Define

$$
\widetilde{u}(z):=\limsup _{D \backslash M \ni z^{\prime} \rightarrow z} u\left(z^{\prime}\right), \quad z \in D
$$

Then $\widetilde{u} \in \mathcal{S H}(D)$. In particular, the set $D \backslash M$ is connected.
Proof. By Proposition 3.2 .16 the set M is nowhere dense and hence the function \widetilde{u} is well defined for every $z \in D$. Note that $\widetilde{u}=\left(u_{0}\right)^{*}$, where $u_{0}:=u$ on $D \backslash M$ and $u_{0}:=-\infty$ on M. In particular, $\widetilde{u} \in \mathcal{C}^{\uparrow}(D)$. Moreover, $\widetilde{u}=u$ on $D \backslash M$.

It remains to prove that \widetilde{u} is subharmonic. We may assume that $M=v^{-1}(-\infty)$, where $v \in \mathcal{S H}(D)$, $v \not \equiv-\infty$ and $v \leq 0$ in D. For $\varepsilon>0$ let

$$
u_{\varepsilon}(z):= \begin{cases}u(z)+\varepsilon v(z), & z \in D \backslash M \\ -\infty, & z \in M\end{cases}
$$

It is easy to see that $u_{\varepsilon} \in \mathcal{S} \mathcal{H}(D)$ and that the family $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ is locally bounded from above in D. Observe that $u_{0}=\sup _{\varepsilon>0} u_{\varepsilon}$. Hence, by Proposition 3.2.10, $\widetilde{u}=\left(u_{0}\right)^{*} \in \mathcal{S H}(D)$.

To prove that $D \backslash M$ is connected, suppose that $D \backslash M=U_{1} \cup U_{2}$, where U_{1} and U_{2} are disjoint and non-empty open sets. Then the function $u(z):=j$ for $z \in U_{j}$ would extend to a subharmonic function on D; contradiction.

The above result can be generalized in the following way:
We say that a set $M \subset \mathbb{C}$ is polar if for every point $a \in M$ there exist a connected open neighborhood U_{a} and a function $v_{a} \in \mathcal{S H}\left(U_{a}\right), v_{a} \not \equiv-\infty$, such that $M \cap U_{a} \subset v_{a}^{-1}(-\infty)$.

Note that the set M from Proposition 3.2.17 is polar. Every polar set has measure zero (by Proposition 3.2.16).
Lemma 3.2.18. Let $M \subset \mathbb{C}$ be a polar set. Then for every $a \in \mathbb{C}$ there exists an $R(a)>0$ such that

$$
\mathcal{L}^{1}\left(\left\{\theta \in[0,2 \pi): a+r e^{i \theta} \in M\right\}\right)=0, \quad 0<r<R(a) .
$$

$\left({ }^{9}\right)$ That is, every point $a \in D$ admits an open neighborhood $V_{a} \subset D$ such that u is bounded from above in $V_{a} \backslash M$.

Proof. Suppose that for some $a \in \mathbb{C}$ it is not the case. Fix a disc $K(a, R)$ and a function $v \in \mathcal{S H}(K(a, R)), v \not \equiv-\infty$, such that $M \cap K(a, R) \subset v^{-1}(-\infty)$. Let $0<r<R$ be such that

$$
\mathcal{L}^{1}\left(\left\{\theta \in[0,2 \pi): a+r e^{i \theta} \in M\right\}\right)>0 .
$$

This means that $v\left(a+r e^{i \theta}\right)=-\infty$ for θ in a set of positive measure. In particular, $v(z) \leq \mathbf{P}(v ; a, r ; z)=-\infty$ for $z \in K(a, r)$, and so $v \equiv-\infty$ in $K(a, r)$; contradiction.

Proposition 3.2.19 (Removable singularities). Let $D \subset \mathbb{C}$ be a domain and let $M \subset D$ be a polar set. Assume that $u \in \mathcal{C}^{\uparrow}(D \backslash M)$ is locally bounded from above in D and for arbitrary $a \in D \backslash M$ there exists an $R(a), 0<R(a) \leq d_{D}(a)$, such that

$$
u(a) \leq \mathbf{J}(u ; a, r), \quad 0<r<R(a) . \quad\left(^{10}\right)
$$

Put

$$
\widetilde{u}(z):=\limsup _{D \backslash M \ni z^{\prime} \rightarrow z} u\left(z^{\prime}\right), \quad z \in D .
$$

Then $\widetilde{u} \in \mathcal{S H}(D)$. In particular, if M is closed in D, then $D \backslash M$ is a domain.
Proof. The function \widetilde{u} is upper semicontinuous and $\widetilde{u}=u$ in $D \backslash M$. Let $G \subset \subset D$ be an arbitrary domain and let $h \in \mathcal{H}(G) \cap \mathcal{C}(\bar{G})$ be such that $\widetilde{u} \leq h$ on ∂G. It is sufficient to check that $\widetilde{u} \leq h$ in $G \backslash M$. Fix an $a \in G \backslash M$. One can prove (see for instance [14], Th. 5.11), that there exists a function v subharmonic in the neighborhood of \bar{G} and such that $M \cap G \subset v^{-1}(-\infty), v \leq 0$, and $v(a)>-\infty$. Define $h_{\varepsilon}:=\widetilde{u}+\varepsilon v-h, \varepsilon>0$. Then $h_{\varepsilon} \in \mathcal{C}^{\uparrow}(\bar{G})$ and $h_{\varepsilon} \leq 0$ on ∂G. One can easily check that $\left.h_{\varepsilon} \in \mathcal{S H}(G){ }^{11}\right)$ By the maximum principle (Corollary 3.2.4) it follows that $\bar{h}_{\varepsilon} \leq 0$ in $G, \varepsilon>0$. In particular, $\widetilde{u}(a)-h(a)=\sup _{\varepsilon>0}\left\{h_{\varepsilon}(a)\right\} \leq 0$.

Proposition 3.2.20 (Hartogs lemma). Let $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{S H}(\Omega)$ be locally bounded from above. Assume that for some $m \in \mathbb{R}$

$$
\limsup _{\nu \rightarrow+\infty} u_{\nu} \leq m
$$

Then for any compact $K \subset \Omega$ and $\varepsilon>0$ there exists a ν_{0} such that

$$
\max _{K} u_{\nu} \leq m+\varepsilon, \quad \nu \geq \nu_{0} ; \quad \text { cf. Lemma 1.5.5. }
$$

Proof. It is sufficient to show that for every $a \in \Omega$ the assertion holds for $K:=\bar{K}(a, \delta(a))$, where $\delta(a)>0$ is sufficiently small. Fix a and $0<R<d_{\Omega}(a) / 2$. We may assume that $u_{\nu} \leq 0$ in $\bar{K}(a, 2 R), \nu \geq 1$, and $m<0$. By Fatou's lemma we have

$$
\limsup _{\nu \rightarrow+\infty} \mathbf{A}\left(u_{\nu} ; a, R\right) \leq \mathbf{A}\left(\limsup _{\nu \rightarrow+\infty} u_{\nu} ; a, R\right) \leq \mathbf{A}(m ; a, R)=m
$$

Let $0<\delta<R / 2$. By the above inequality, since $u_{\nu} \leq 0$ on $\bar{K}(a, 2 R)$, we get

$$
\limsup _{\nu \rightarrow+\infty} \max _{z \in \bar{K}(a, \delta)} u_{\nu}(z) \leq \limsup _{\nu \rightarrow+\infty} \sup _{z \in \bar{K}(a, \delta)} \mathbf{A}\left(u_{\nu} ; z, R+\delta\right) \leq \limsup _{\nu \rightarrow+\infty} \frac{R^{2}}{(R+\delta)^{2}} \mathbf{A}\left(u_{\nu} ; a, R\right) \leq \frac{R^{2}}{(R+\delta)^{2}} m
$$

Now it is sufficient to take a $\delta=\delta(a)$ so small that the last term is smaller than $m+\varepsilon$.
Proposition 3.2.21. Let $I \subset \mathbb{R}$ be an open interval and let $\varphi: I \longrightarrow \mathbb{R}$ be non-decreasing and convex. Then $\varphi \circ u \in \mathcal{S H}(\Omega)$ for any subharmonic function $u: \Omega \longrightarrow I$. In particular,
$e^{u} \in \mathcal{S H}(\Omega)$ for any function $\left.u \in \mathcal{S H}(\Omega){ }^{12}\right)$.
$u^{p} \in \mathcal{S H}(\Omega)$ for any subharmonic function $u: \Omega \longrightarrow \mathbb{R}_{+}$and $p \geq 1\left({ }^{13}\right)$,

[^17]3. Plurisubharmonic functions

Proof. Since φ is convex, it is continuous (cf. [32]), and therefore $\varphi \circ u \in \mathcal{C}^{\uparrow}(\Omega)$. Fix $a \in \Omega$ and $0<r<d_{\Omega}(a)$. By the monotonicity and convexity of φ and by Jensen's inequality (cf. [29]), we obtain

$$
\varphi(u(a)) \leq \varphi(\mathbf{J}(u ; a, r)) \leq \mathbf{J}(\varphi \circ u ; a, r)
$$

Proposition 3.2.22. Let $u \in \mathcal{S H}(\Omega), a \in \Omega$. Then the functions

$$
\left(-\infty, \log d_{\Omega}(a)\right) \ni t \longmapsto \mathbf{J}\left(u ; a, e^{t}\right), \quad\left(-\infty, \log d_{\Omega}(a)\right) \ni t \longmapsto \mathbf{A}\left(u ; a, e^{t}\right)
$$

are non-decreasing and convex. Moreover,

$$
\mathbf{J}(u ; a, r) \searrow u(a) \text { when } r \searrow 0, \quad \mathbf{A}(u ; a, r) \searrow u(a) \text { when } r \searrow 0 .
$$

Proof. We show first that it is sufficient to consider only the function \mathbf{J}. Note that if the function $\mathbf{J}(u ; a, \cdot)$ is convex with respect to $\log r$, then it is continuous, and therefore we have

$$
\mathbf{A}(u ; a, r)=\frac{2}{r^{2}} \int_{0}^{r} \mathbf{J}(u ; a, \tau) \tau d \tau=\lim _{N \rightarrow+\infty} \frac{2}{N^{2}} \sum_{j=1}^{N} j \mathbf{J}\left(u ; a, \frac{j r}{N}\right)=: \lim _{N \rightarrow+\infty} \varphi_{N}(r)
$$

If the function $\mathbf{J}(u ; a, \cdot)$ is non-decreasing and convex with respect to $\log r$, then the same properties has every function φ_{N}, and so also the limit function $\mathbf{A}(u ; a,$.$) . Moreover,$

$$
u(a) \leq \mathbf{A}(u ; a, r)=\frac{2}{r^{2}} \int_{0}^{r} \mathbf{J}(u ; a, \tau) \tau d \tau \leq \sup _{0<\tau<r} \mathbf{J}(u ; a, \tau) \leq \mathbf{J}(u ; a, r)
$$

Therefore, if $\mathbf{J}(u ; a, r) \longrightarrow u(a)$, then the same property has the function \mathbf{A}.
Now consider the function \mathbf{J}. Let $0<r_{1}<r_{2}<d_{\Omega}(a)$, let $b_{\nu} \in \mathcal{C}\left(C\left(a, r_{2}\right), \mathbb{R}\right)$, $b_{\nu} \searrow u$, and denote by h_{ν} the solution of the Dirichlet problem for $K\left(a, r_{2}\right)$ with boundary condition b_{ν} (cf. Proposition 3.1.9). Then

$$
\mathbf{J}\left(u ; a, r_{1}\right) \leq \mathbf{J}\left(h_{\nu} ; a, r_{1}\right)=h_{\nu}(a)=\mathbf{J}\left(h_{\nu} ; a, r_{2}\right)=\mathbf{J}\left(b_{\nu} ; a, r_{2}\right)
$$

The last integral converges to $\mathbf{J}\left(u ; a, r_{2}\right)$ when $\nu \longrightarrow+\infty$. Letting $\nu \longrightarrow+\infty$ we get the monotonicity of the function $\mathbf{J}(u ; a, \cdot)$.

Note that by Fatou's lemma we have

$$
u(a) \leq \lim _{r \rightarrow 0} \mathbf{J}(u ; a, r) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \limsup _{r \rightarrow 0} u\left(a+r e^{i \theta}\right) d \theta \leq u(a)
$$

This proves that $\mathbf{J}(u ; a, r) \searrow u(a)$ when $r \searrow 0$.
It remains to check the convexity with respect to $\log r$, i.e. we want to prove the inequality

$$
\mathbf{J}(u ; a, r) \leq \mathbf{J}\left(u ; a, r_{1}\right)+\frac{\mathbf{J}\left(u ; a, r_{2}\right)-\mathbf{J}\left(u ; a, r_{1}\right)}{\log \frac{r_{2}}{r_{1}}} \log \frac{r}{r_{1}}, \quad 0<r_{1}<r<r_{2}<d_{\Omega}(a)
$$

Fix $0<r_{1}<r_{2}<d_{\Omega}(a)$. Let $A:=\left\{z \in \mathbb{C}: r_{1}<|z|<r_{2}\right\}$, let $b_{\nu} \in \mathcal{C}(\partial A, \mathbb{R}), b_{\nu} \searrow u$, and let h_{ν} be the solution of the Dirichlet problem for the annulus A with boundary condition b_{ν} (cf. Proposition 3.1.13). Differentiating under the integral sign, we obtain

$$
\begin{array}{r}
\frac{d}{d t} \mathbf{J}\left(h_{\nu} ; a, e^{t}\right)=\frac{d}{d t} \frac{1}{2 \pi} \int_{0}^{2 \pi} h_{\nu}\left(a+e^{t} e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\partial h_{\nu}}{\partial x}\left(a+e^{t} e^{i \theta}\right) e^{t} \cos \theta+\frac{\partial h_{\nu}}{\partial y}\left(a+e^{t} e^{i \theta}\right) e^{t} \sin \theta\right) d \theta \\
=\frac{1}{2 \pi} \int_{C\left(a, e^{t}\right)}-\frac{\partial h_{\nu}}{\partial y} d x+\frac{\partial h_{\nu}}{\partial x} d y=\operatorname{const}(\nu)
\end{array}
$$

The last equality follows from the fact that the form

$$
-\frac{\partial h_{\nu}}{\partial y} d x+\frac{\partial h_{\nu}}{\partial x} d y
$$

is closed. Consequently, there exist $\alpha_{\nu}, \beta_{\nu} \in \mathbb{R}$ such that

$$
\mathbf{J}\left(h_{\nu} ; a, r\right)=\alpha_{\nu} \log r+\beta_{\nu}, \quad r_{1}<r<r_{2}
$$

Finally,

$$
\begin{aligned}
& \mathbf{J}(u ; a, r) \leq \mathbf{J}\left(h_{\nu} ; a, r\right)=\mathbf{J}\left(h_{\nu} ; a, r_{1}\right)+\frac{\mathbf{J}\left(h_{\nu} ; a, r_{2}\right)-\mathbf{J}\left(h_{\nu} ; a, r_{1}\right)}{\log \frac{r_{2}}{r_{1}}} \log \frac{r}{r_{1}} \\
&=\mathbf{J}\left(b_{\nu} ; a, r_{1}\right)+\frac{\mathbf{J}\left(b_{\nu} ; a, r_{2}\right)-\mathbf{J}\left(b_{\nu} ; a, r_{1}\right)}{\log \frac{r_{2}}{r_{1}}} \log \frac{r}{r_{1}}, \quad r_{1}<r<r_{2} .
\end{aligned}
$$

Letting $\nu \longrightarrow+\infty$ we end the proof.
Corollary 3.2.23. Let $u_{1}, u_{2} \in \mathcal{S H}(\Omega)$. If $u_{1}=u_{2} \mathcal{L}^{2}$-almost everywhere in Ω, then $u_{1} \equiv u_{2}$ in Ω.
Corollary 3.2.24. Let D and M be as in Proposition 3.2.17 or 3.2.19. Then for every function $u \in \mathcal{S H}(D)$ we have

$$
u(z)=\limsup _{D \backslash M \ni z^{\prime} \rightarrow z} u\left(z^{\prime}\right), \quad z \in D
$$

Fix a function $\Psi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{C}, \mathbb{R}_{+}\right)$such that

- $\operatorname{supp} \Psi=\overline{\mathbb{D}}$,
- $\Psi(z)=\Psi(|z|), z \in \mathbb{C}$,
- $\int \Psi d \mathcal{L}^{2}=1$.

Let

$$
\Psi_{\varepsilon}(z):=\frac{1}{\varepsilon^{2}} \Psi\left(\frac{z}{\varepsilon}\right), \quad z \in \mathbb{C}, \varepsilon>0
$$

For every function $u \in L^{1}(\Omega$, loc $)$, we put

$$
u_{\varepsilon}(z):=\int_{\Omega} u(w) \Psi_{\varepsilon}(z-w) d \mathcal{L}^{2}(w)=\int_{\mathbb{D}} u(z+\varepsilon w) \Psi(w) d \mathcal{L}^{2}(w), \quad z \in \Omega_{\varepsilon}:=\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\}
$$

The function u_{ε} is called the ε-regularization of u.
Proposition 3.2.25. If $u \in \mathcal{S H}(\Omega) \cap L^{1}(\Omega$, loc $)$, then $u_{\varepsilon} \in \mathcal{S H}\left(\Omega_{\varepsilon}\right) \cap \mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$ and $u_{\varepsilon} \searrow u$ when $\varepsilon \searrow 0$.
Proof. Since we can differentiate under the integral sign in the first integral above, it is clear that $u_{\varepsilon} \in$ $\mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$. For $a \in \Omega_{\varepsilon}$ and $0<r<d_{\Omega_{\varepsilon}}(a)$ we have

$$
\begin{aligned}
& \mathbf{J}\left(u_{\varepsilon} ; a, r\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{\mathbb{D}} u\left(a+r e^{i \theta}+\varepsilon w\right) \Psi(w) d \mathcal{L}^{2}(w) d \theta \\
&=\int_{\mathbb{D}} \mathbf{J}(u ; a+\varepsilon w, r) \Psi(w) d \mathcal{L}^{2}(w) \geq \int_{\mathbb{D}} u(a+\varepsilon w) \Psi(w) d \mathcal{L}^{2}(w)=u_{\varepsilon}(a)
\end{aligned}
$$

which shows that $u_{\varepsilon} \in \mathcal{S H}\left(\Omega_{\varepsilon}\right)$. Note that

$$
u_{\varepsilon}(a)=\int_{\mathbb{D}} u(a+\varepsilon w) \Psi(w) d \mathcal{L}^{2}(w)=\int_{0}^{1} \int_{0}^{2 \pi} u\left(a+\varepsilon \tau e^{i \theta}\right) \Psi(\tau) \tau d \theta d \tau=2 \pi \int_{0}^{1} \mathbf{J}(u ; a, \varepsilon \tau) \Psi(\tau) \tau d \tau
$$

Now, by Proposition 3.2 .22 and monotone convergence theorem, we get $u_{\varepsilon}(a) \searrow u(a)$ when $\varepsilon \searrow 0$ for every $a \in \Omega$.

Remark 3.2.26. It follows from the proof of Proposition 3.2 .25 that for an arbitrary function $\Psi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{C}, \mathbb{R}_{+}\right)$ such that $\operatorname{supp} \Psi=\overline{\mathbb{D}}$ and for every function $u \in \mathcal{S H}(\Omega)$, the functions

$$
u_{\varepsilon}(z):=\int_{\mathbb{D}} u(z+\varepsilon w) \Psi(w) d \mathcal{L}^{2}(w), \quad z \in \Omega_{\varepsilon}, \quad \varepsilon>0
$$

are subharmonic.
Proposition 3.2.27. Let $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$. Then $u \in \mathcal{S H}(\Omega)$ iff $\Delta u \geq 0$ in Ω.

Proof. \Longleftarrow. Assume first that $\Delta u>0$ in Ω. Let $D \subset \subset \Omega, h \in \mathcal{C}(\bar{D}) \cap \mathcal{H}(D), u \leq h$ on ∂D. Put $v:=u-h$ and let $z_{0} \in \bar{D}$ be such that $v\left(z_{0}\right)=\max _{\bar{D}} v$. Suppose that $v\left(z_{0}\right)>0$ (in particular, $z_{0} \in D$). Then $(\Delta u)\left(z_{0}\right) \leq 0$; contradiction.

For arbitrary u, take the sequence $v_{\varepsilon}(z):=u(z)+\varepsilon|z|^{2}, z \in \Omega, \varepsilon>0$, and note that $\Delta v_{\varepsilon}=\Delta u+4 \varepsilon>0$ and $v_{\varepsilon} \searrow u$.
\Longrightarrow. Suppose that $\Delta u<0$ on some domain $D \subset \Omega$. Then, by the previous part of the proof, $-u \in$ $\mathcal{S H}(D)$. Hence $u \in \mathcal{H}(D)$; contradiction.

Proposition 3.2.28. If $u \in \mathcal{S H}(D)$ (D is a domain in \mathbb{C}), $u \not \equiv-\infty$, then $\Delta u \geq 0$ in D in the distribution sense, i.e. for every function $\varphi \in \mathcal{C}_{0}^{\infty}\left(D, \mathbb{R}_{+}\right)$we have

$$
\int_{D} u \cdot(\Delta \varphi) d \mathcal{L}^{2} \geq 0
$$

Conversely, if $u \in L^{1}(D, \operatorname{loc})$ is such that $\Delta u \geq 0$ in D in the distribution sense, then there exists a function $v \in \mathcal{S H}(D)$ such that $u=v \mathcal{L}^{2}$-almost everywhere in D; cf. Proposition 3.1.14.
Proof. Note first that if $u \in \mathcal{C}^{2}(D)$, then, by the Stokes theorem, $\Delta u \geq 0$ in D in the distribution sense iff $\Delta u \geq 0$ in D in the usual sense.
\Longrightarrow. Let u_{ε} denote the regularization of the function u (as in Proposition 3.2.25). By Propositions 3.2.25 and 3.2.27, $\Delta u_{\varepsilon} \geq 0$ in D_{ε} in the distribution sense, i.e.

$$
\int_{D_{\varepsilon}} u_{\varepsilon} \cdot(\Delta \varphi) d \mathcal{L}^{2} \geq 0
$$

for every test function $\varphi \in \mathcal{C}_{0}^{\infty}\left(D_{\varepsilon}, \mathbb{R}_{+}\right)$. Since $u_{\varepsilon} \searrow u$ (Proposition 3.2.25), we get

$$
\int_{D} u \cdot(\Delta \varphi) d \mathcal{L}^{2} \geq 0, \quad \varphi \in \mathcal{C}_{0}^{\infty}\left(D, \mathbb{R}_{+}\right)
$$

\Longleftarrow. For every function $\varphi \in \mathcal{C}_{0}^{\infty}\left(D_{\varepsilon}, \mathbb{R}_{+}\right)$we have

$$
\begin{aligned}
\int_{D_{\varepsilon}} u_{\varepsilon} \cdot(\Delta \varphi) d \mathcal{L}^{2}=\int_{D_{\varepsilon}}\left(\Delta u_{\varepsilon}\right) \varphi d \mathcal{L}^{2}=\int_{D_{\varepsilon}} & \left(\int_{D} u(w)\left(\Delta \Psi_{\varepsilon}\right)(z-w) d \mathcal{L}^{2}(w)\right) \varphi(z) d \mathcal{L}^{2}(z) \\
= & \int_{D_{\varepsilon}}\left(\int_{D} u(w)\left(\Delta\left(\Psi_{\varepsilon}(z-\cdot)\right)\right)(w) d \mathcal{L}^{2}(w)\right) \varphi(z) d \mathcal{L}^{2}(z) \geq 0
\end{aligned}
$$

This proves that $u_{\varepsilon} \in \mathcal{S H}\left(D_{\varepsilon}\right)$.
We show now that $u_{\varepsilon} \searrow$ when $\varepsilon \searrow 0$. Let $0<\varepsilon_{1}<\varepsilon_{2}$. By Proposition 3.2.25 applied for $z \in D_{\varepsilon_{2}}$ we have

$$
\left.\left.\begin{array}{rl}
u_{\varepsilon_{2}}(z)=\lim _{\varepsilon \rightarrow 0}\left(u_{\varepsilon_{2}}\right)_{\varepsilon}(z)= & \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{D}} \int_{\mathbb{D}} u\left(z+\varepsilon w+\varepsilon_{2} \xi\right) \Psi(\xi) d \mathcal{L}^{2}(\xi) \Psi(w) d \mathcal{L}^{2}(w) \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{D}} \int_{\mathbb{D}} u(z+\varepsilon w
\end{array}\right)+\varepsilon_{2} \xi\right) \Psi(w) d \mathcal{L}^{2}(w) \Psi(\xi) d \mathcal{L}^{2}(\xi) .
$$

Let $v:=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$. Then $v \in \mathcal{S H}(D)$. On the other hand, it is well known (cf. [29]) that $u_{\varepsilon} \longrightarrow u$ in $L^{1}(D$, loc $)$. In particular, $u_{\varepsilon} \longrightarrow u \mathcal{L}^{2}$-almost everywhere in D. Hence $u=v \mathcal{L}^{2}$-almost everywhere D.

Proposition 3.2.29. For every $f \in \mathcal{O}(\Omega, G)$ (G is an open subset of \mathbb{C}) and $u \in \mathcal{S H}(G)$ we have $u \circ f \in$ $\mathcal{S H}(\Omega)$.
Proof. If $u \in \mathcal{C}^{2}(G)$ it is sufficient to note that

$$
\Delta(u \circ f)=((\Delta u) \circ f) \cdot\left|f^{\prime}\right|^{2}
$$

and use Proposition 3.2.27. For the general case we use the regularizations $\left(u_{\varepsilon}\right)_{\varepsilon>0}$, cf. Proposition 3.2.25. Let $v_{\varepsilon}:=u_{\varepsilon} \circ f$. Then $v_{\varepsilon} \in \mathcal{S H}\left(f^{-1}\left(G_{\varepsilon}\right)\right)$, and $v_{\varepsilon} \searrow u \circ f$ in G, and so, by Proposition 3.2.9(a), $u \circ f \in \mathcal{S H}(\Omega)$.
3.2. Subharmonic functions

Proposition 3.2.30 (Liouville type theorem). If $u \in \mathcal{S H}(\mathbb{C})$ is bounded from above, then $u \equiv$ const.
Proof. Let $v(z):=u(1 / z), z \in \mathbb{C}_{*}$. Then, by Proposition $3.2 .29, v \in \mathcal{S H}\left(\mathbb{C}_{*}\right)$ and v is bounded from above. Hence, by Proposition 3.2.17, v extends to a function $\widetilde{v} \in \mathcal{S H}(\mathbb{C})$. Now, by the maximum principle, for arbitrary $z \in \mathbb{C}$, we have

$$
u(z) \leq \max \left\{\max _{\mathbb{T}} u, \max _{\mathbb{T}} v\right\}=u\left(z_{0}\right)
$$

for some $z_{0} \in \mathbb{T}$. Using once again the maximum principle we conclude that $u \equiv$ const.
Proposition 3.2.31 (Oka theorem). For every function $u \in \mathcal{S H}(\Omega)$, and for every \mathbb{R}-analytic curve γ : $[0,1] \longrightarrow \Omega$ it holds

$$
u(\gamma(0))=\limsup _{t \rightarrow 0+} u(\gamma(t))
$$

Proof. Since the curve γ is \mathbb{R}-analytic, there exists a function $f \in \mathcal{O}(G)$, where $G \subset \mathbb{C}$ is an open neighborhood of the interval $[0,1]$, such that $f=\gamma$ on $[0,1]$ and $f(G) \subset \Omega$. Put $u_{1}:=u \circ f$. To prove the assertion, it is sufficient to show that $\lim \sup _{x \rightarrow 0+} u_{1}(x)=u_{1}(0)$. Moreover, we may assume that $u_{1} \leq 0$.

Suppose that $\lim \sup _{x \rightarrow 0+} u_{1}(x)<C<u_{1}(0)$. Let

$$
u_{2}:=-\frac{1}{C} \max \left\{u_{1}, C\right\}+1
$$

Then $u_{2} \in \mathcal{S H}(G), 0 \leq u_{2} \leq 1, u_{2}(0)>0$, and $u_{2}=0$ on $(0, \delta]$ for some $0<\delta \ll 1$. We may assume that $\delta \bar{D} \subset G$. Define $v(z):=u_{2}(\delta z), z \in \overline{\mathbb{D}}$. Then $v \in \mathcal{S H}, 0 \leq v \leq 1, v(0)>0$, and $v=0$ on $(0,1]$. Let

$$
\begin{aligned}
S_{\nu} & :=\left\{r e^{i \theta}: 0<r<1,0<\theta<\frac{2 \pi}{\nu}\right\}, \\
v_{\nu}(z) & :=\left\{\begin{array}{ll}
v\left(z^{\nu}\right), & \text { for } z \in S_{\nu} \\
0, & \text { for } z \in \mathbb{D}_{*} \backslash S_{\nu}
\end{array}, \quad \nu \in \mathbb{N} .\right.
\end{aligned}
$$

It is not difficult to check that $v_{\nu} \in \mathcal{S H}\left(\mathbb{D}_{*}\right)$ (cf. Proposition 3.2.11. Since $v_{\nu} \leq 1$, the function v_{ν} extends to a subharmonic function on \mathbb{D}; denote the extension also by v_{ν}. Observe that

$$
v_{\nu}(0)=\limsup _{\mathbb{D}_{*} \ni z \rightarrow 0} v_{\nu}(z)=\limsup _{S_{\nu} \ni z \rightarrow 0} v\left(z^{\nu}\right)=\limsup _{\mathbb{D}_{*} \ni z \rightarrow 0} v(z)=v(0)
$$

Finally, for any $0<r<1$, we have

$$
v(0)=v_{\nu}(0) \leq \mathbf{J}\left(v_{\nu} ; 0, r\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi / \nu} v\left(r^{\nu} e^{i \nu \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(r^{\nu} e^{i \theta}\right) \frac{1}{\nu} d \theta \leq \frac{1}{\nu}
$$

Letting $\nu \longrightarrow+\infty$ we obtain $v(0)=0$; contradiction.
The above result can be generalized as follows:
Proposition 3.2.32 (Oka theorem). For any $u \in \mathcal{S H}(\Omega)$ and a curve $\gamma:[0,1] \longrightarrow \Omega$ we have

$$
u(\gamma(0))=\limsup _{t \rightarrow 0+} u(\gamma(t))
$$

Proof. Cf. 35. We may assume that $\gamma(0)=0 \in \Omega$. Suppose that

$$
u(0)>A>\limsup _{t \rightarrow 0+} u(\gamma(t)) .
$$

Take $r>0$ and $0<t_{0} \leq 1$ such that:

- $K(r) \subset \subset \Omega$,
- $|\gamma(t)|<r$ for $0 \leq t<t_{0}$,
- $\left|\gamma\left(t_{0}\right)\right|=r$,
- $u(\gamma(t))<A$ for $0<t \leq t_{0}$.

We may assume that $t_{0}=1$. Let $\Omega_{0}:=\{z \in \Omega: u(z)<A\}$. Observe that Ω_{0} is open and $\gamma((0,1]) \subset \Omega_{0}$. Let G denote the connected component of Ω_{0} that contains $\gamma((0,1])$. For $0<\varrho<r$ let $0<t_{\varrho}<1$ be such that $\left|\gamma\left(t_{\varrho}\right)\right|=\varrho$. Take a Jordan arc $\sigma_{\varrho}:[0,1] \longrightarrow G$ such that $\sigma_{\varrho}(0)=\gamma\left(t_{\varrho}\right), \sigma_{\varrho}(1)=\gamma(1)$. There exist $0 \leq \tau_{0}<\tau_{1} \leq 1$ such that

- $\left|\sigma_{\varrho}\left(\tau_{0}\right)\right|=\varrho$,
- $\varrho<\left|\sigma_{\varrho}(t)\right|<r$ for $\tau_{0}<t<\tau_{1}$,
- $\left|\sigma_{\varrho}\left(\tau_{1}\right)\right|=r$.

We may assume that $\tau_{0}=0, \tau_{1}=1$. Let $L_{\varrho}:=\sigma_{\varrho}([0,1]), D_{\varrho}:=K(r) \backslash L_{\varrho}$. One can prove that D_{ϱ} is simply connected (Exercise). Let $\varphi_{\varrho}: \mathbb{D} \longrightarrow D_{\varrho}$ be a biholomorphic mapping (from the Riemann theorem) with $\varphi_{\varrho}(0)=0$ and $\varphi_{\varrho}^{\prime}(0) \in \mathbb{R}_{>0}$. By the Carathéodory theorem (cf. [35]), the mapping φ_{ϱ} extends continuously to $\overline{\mathbb{D}}$ (we denote this extension also by φ_{ϱ}) and $\varphi_{\varrho}(\mathbb{T}) \subset \partial D_{\varrho}$. Let

$$
T_{\varrho}:=\left\{\theta \in[0,2 \pi): \varphi_{\varrho}\left(e^{i \theta}\right) \in L_{\varrho}\right\}
$$

(observe that T_{ϱ} is relatively closed in $[0,2 \pi)$) and let $m_{\varrho}:=\mathcal{L}^{1}\left(T_{\varrho}\right) /(2 \pi)$. Notice that $\left|\varphi_{\varrho}\left(e^{i \theta}\right)\right|=r$ for $\theta \in T_{\varrho}^{\prime}:=$ $[0,2 \pi) \backslash T_{\varrho}$. The function

$$
\psi_{\varrho}(z):= \begin{cases}\varphi_{\varrho}(z) / z, & z \neq 0 \\ \varphi_{\varrho}^{\prime}(0), & z=0\end{cases}
$$

is holomorphic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Moreover, $\psi_{\varrho}(z) \neq 0, z \in \overline{\mathbb{D}}$. In particular, $\log \left|\psi_{\varrho}\right|$ is harmonic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$ and, therefore,

$$
\begin{aligned}
\log \varphi_{\varrho}^{\prime}(0)=\log \left|\psi_{\varrho}(0)\right|=\mathbf{J}\left(\log \left|\psi_{\varrho}\right| ; 0,1\right) & =\mathbf{J}\left(\log \left|\varphi_{\varrho}\right| ; 0,1\right) \\
& =\frac{1}{2 \pi}\left(\int_{T_{\varrho}} \log \left|\varphi_{\varrho}\left(e^{i \theta}\right)\right| d \theta+\int_{T_{\varrho}^{\prime}} \log \left|\varphi_{\varrho}\left(e^{i \theta}\right)\right| d \theta\right) \geq m_{\varrho} \log \varrho+\left(1-m_{\varrho}\right) \log r .
\end{aligned}
$$

On the other hand, by the Koebe theorem (cf. 35), since $\bar{K}(\varrho) \not \subset \varphi_{\varrho}(\mathbb{D})$, we get $\varphi_{\varrho}^{\prime}(0) \leq 4 \varrho$. Hence

$$
4 \varrho^{1-m_{\varrho}} \geq r^{1-m_{\varrho}}
$$

and, consequently, $\lim _{\varrho \rightarrow 0} m_{\varrho}=1$.
Since $u \circ \varphi_{\varrho}$ is subharmonic in \mathbb{D} and upper semicontinuous in $\overline{\mathbb{D}}$, we get

$$
u(0) \leq \mathbf{J}\left(u \circ \varphi_{\varrho} ; 0,1\right)=\frac{1}{2 \pi}\left(\int_{T_{\varrho}} u\left(\varphi_{\varrho}\left(e^{i \theta}\right)\right) d \theta+\int_{T_{\varrho}^{\prime}} u\left(\varphi_{\varrho}\left(e^{i \theta}\right)\right) d \theta\right) \leq m_{\varrho} A+\left(1-m_{\varrho}\right) c
$$

where $c:=\sup _{\bar{K}(r)} u$. Letting $\varrho \longrightarrow 0$ gives $u(0) \leq A$; contradiction
Proposition 3.2.33. Let $u \in \mathcal{C}^{\uparrow}\left(\Omega, \mathbb{R}_{+}\right)$. Then $\left.\log u \in \mathcal{S H}(\Omega) \sqrt{(14}\right)$ iff for every polynomial $p \in \mathcal{P}(\mathbb{C})$ the function $\left|e^{p}\right| u$ is subharmonic. In particular, if $\log u_{1}, \log u_{2} \in \mathcal{S H}(\Omega)$, then $\log \left(u_{1}+u_{2}\right) \in \mathcal{S H}(\Omega)$.

Proof. \Longrightarrow. Let $v(z):=\left|e^{p(z)}\right| u(z), z \in \Omega$. Then $\log v=\operatorname{Re} p+\log u$ and hence $\log v \in \mathcal{S H}(\Omega)$; therefore also $v \in \mathcal{S H}(\Omega)$.
\Longleftarrow. We use Proposition 3.2.7. Let $a \in \Omega, 0<r<d_{\Omega}(a)$ and let $p \in \mathcal{P}(\mathbb{C})$ be such that $\log u \leq \operatorname{Re} p$ on $C(a, r)$. Then $v:=\left|e^{-p}\right| u \leq 1$ on $C(a, r)$. Since the function v is subharmonic, it follows from the maximum principle that $v \leq 1$ in $K(a, r)$, which means that $\log u \leq \operatorname{Re} p$ in $K(a, r)$.

Proposition 3.2 .33 can be generalized in the following way:
Proposition 3.2.34. Let $u \in \mathcal{C}^{\uparrow}\left(\Omega, \mathbb{R}_{+}\right)$. Then $\log u \in \mathcal{S H}(\Omega)$ iff for every $a \in \mathbb{C}$ the function $\left|e^{a z}\right| u(z)$ is subharmonic.

Proof. It is clear that the problem is to prove \Longleftarrow. Suppose first that $u \in \mathcal{C}^{2}\left(\Omega, \mathbb{R}_{>0}\right)$. It is sufficient to check that $\Delta \log u \geq 0$ in Ω. Note that

$$
\Delta \log u=\frac{1}{u}\left(\Delta u-\frac{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}}{u}\right)
$$

Let $a=\alpha+i \beta$ and put $v_{a}:=\left|e^{a z}\right| u$. Then

$$
0 \leq \Delta v_{a}=\left|e^{a z}\right|\left(\Delta u+|a|^{2} u+2\left(\alpha \frac{\partial u}{\partial x}-\beta \frac{\partial u}{\partial y}\right)\right)
$$

$\left({ }^{14}\right)$ That is u is logarithmically subharmonic.

Fix a $z_{0} \in \Omega$ and put

$$
\alpha:=-\frac{\frac{\partial u}{\partial x}\left(z_{0}\right)}{u\left(z_{0}\right)}, \quad \beta:=\frac{\frac{\partial u}{\partial y}\left(z_{0}\right)}{u\left(z_{0}\right)}
$$

Then

$$
(\Delta \log u)\left(z_{0}\right)=\frac{\left|e^{-a z_{0}}\right|}{u\left(z_{0}\right)} \Delta v_{a}\left(z_{0}\right) \geq 0
$$

Now consider the general case. Note that the function u is subharmonic (because $\left.u=\left|e^{0 z}\right| u\right)$. Let $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ denote the regularizations of the function u. Since $u_{\varepsilon}+\varepsilon \searrow u$, it suffices to show that $\log \left(u_{\varepsilon}+\varepsilon\right) \in \mathcal{S H}\left(\Omega_{\varepsilon}\right)$, $\varepsilon>0$. Fix an $\varepsilon>0$. In virtue of the first part of the proof it remains to show that $\left|e^{a z}\right| u_{\varepsilon} \in \mathcal{S} \mathcal{H}\left(\Omega_{\varepsilon}\right)$ for every $a \in \mathbb{C}$. Fix an $a \in \mathbb{C}$. Then

$$
\left|e^{a z}\right| u_{\varepsilon}(z)=\int_{\mathbb{D}}\left|e^{a(z+\varepsilon w)}\right| u(z+\varepsilon w) \Psi(w)\left|e^{-a \varepsilon w}\right| d \mathcal{L}^{2}(w), \quad z \in \Omega_{\varepsilon}
$$

Now we apply Corollary 3.2.26
Proposition 3.2.35 (Schwarz type lemma). Let $u: \mathbb{D} \longrightarrow[0,1]$ be such that $\log u \in \mathcal{S H}(\mathbb{D})$, $u(0)=0$, and

$$
\limsup _{\mathbb{D}_{*} \ngtr z \rightarrow 0} \frac{u(z)}{|z|}<+\infty
$$

Then

$$
u(z) \leq|z|, z \in \mathbb{D}, \quad \text { and } \quad \limsup _{\mathbb{D}_{*} \ni z \rightarrow 0} \frac{u(z)}{|z|} \leq 1
$$

Moreover, if

$$
\exists_{z_{0} \in \mathbb{D}_{*}}: u\left(z_{0}\right)=\left|z_{0}\right| \quad \text { or } \quad \limsup _{\mathbb{D}_{*} \ni z \rightarrow 0} \frac{u(z)}{|z|}=1
$$

then $u(z)=|z|$ for all $z \in \mathbb{D}$.
Proof. Let $v(z):=u(z) /|z|, z \in \mathbb{D}_{*}$. Since $\log v=\log u-\log |z|$, it follows that $\log v \in \mathcal{S H}\left(\mathbb{D}_{*}\right)$, and hence $v \in \mathcal{S H}\left(\mathbb{D}_{*}\right)$. By the assumption we conclude that the function v is locally bounded in \mathbb{D}. Hence, putting $v(0):=\lim \sup _{\mathbb{D}_{*} \ni z \rightarrow 0} v(z)$, and using Proposition 3.2 .17 , we obtain a function subharmonic in \mathbb{D}. By the maximum principle we get $v \leq 1$, which gives the required inequalities.

Moreover, if $v\left(z_{0}\right)=1$ for some $z_{0} \in \mathbb{D}$, then $v \equiv 1$.
Proposition 3.2.36. Let $D \subset \mathbb{C}$ be a convex domain and let $u: D \longrightarrow \mathbb{R}$ be a convex function $\left({ }^{15}\right)$. Then $u \in \mathcal{S H}(D)$.

Proof. Since u is convex, it is also continuous (cf. [32]). Fix $a \in D$ and $0<r<d_{D}(a)$. Then we have

$$
\mathbf{J}(u ; a, r)=\lim _{N \rightarrow+\infty} \sum_{j=1}^{N} \frac{1}{N} u\left(a+r e^{i \frac{2 \pi j}{N}}\right) \geq \lim _{N \rightarrow+\infty} u\left(\sum_{j=1}^{N} \frac{1}{N}\left(a+r e^{i \frac{2 \pi j}{N}}\right)\right)=u(a)
$$

It remains to apply Proposition 3.2.5.
Proposition 3.2.37 (Hadamard's three circles theorem). Let

$$
A:=\left\{z \in \mathbb{C}: r_{1}<|z|<r_{2}\right\}
$$

($0<r_{1}<r_{2}<+\infty$) and let $\log u \in \mathcal{S H}(A)$. Assume that

$$
\limsup _{|z| \rightarrow r_{j}} u(z) \leq M_{j}, \quad j=1,2
$$

Then

$$
u(z) \leq M_{1}^{\frac{\log \frac{r_{2}}{|z|}}{\log \frac{z_{2}}{r_{1}}}} M_{2}^{\frac{\log \frac{|z|}{r_{1}}}{\log _{\frac{2}{2}}^{r_{1}}}}, \quad z \in A
$$

[^18]Proof. For $\alpha \in \mathbb{R}$ put $u_{\alpha}(z):=|z|^{\alpha} u(z), z \in A$. Observe that u_{α} is logarithmically subharmonic on A. Now, by the maximum principle (Corollary 3.2.4), we get

$$
|z|^{\alpha} u(z)=u_{\alpha}(z) \leq \max \left\{r_{1}^{\alpha} M_{1}, r_{2}^{\alpha} M_{2}\right\}, \quad z \in A
$$

Taking $\alpha \in \mathbb{R}$ so that $r_{1}^{\alpha} M_{1}=r_{2}^{\alpha} M_{2}$, we get the required estimate.

3.3. Pluriharmonic functions

Definition 3.3.1. Let Ω be an open subset of \mathbb{C}^{n}. A function $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$ is pluriharmonic on Ω ($u \in \mathcal{P H}(\Omega))$ if

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}(z)=0, \quad z \in \Omega, j, k=1, \ldots, n . \tag{3.3.1}
\end{equation*}
$$

Remark 3.3.2. (a) If $n=1$, then $\mathcal{P} \mathcal{H}(\Omega)=\mathcal{H}(\Omega)$ (cf. § 3.1).
(b) $\mathcal{P H}(\Omega)$ is a vector space.
(c) Condition 3.3.1 is equivalent to the following system of equations

$$
\frac{\partial^{2} u}{\partial x_{j} \partial y_{k}}(z)=\frac{\partial^{2} u}{\partial x_{k} \partial y_{j}}(z), \quad \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}(z)+\frac{\partial^{2} u}{\partial y_{j} \partial y_{k}}(z)=0, \quad z \in \Omega, j, k=1, \ldots, n
$$

In particular,

$$
\frac{\partial^{2} u}{\partial x_{j}^{2}}(z)+\frac{\partial^{2} u}{\partial y_{j}^{2}}(z)=0, \quad z \in \Omega, j=1, \ldots, n
$$

which shows that any function $u \in \mathcal{P H}(\Omega)$ is separately harmonic on Ω, i.e.

$$
\mathcal{P H}(\Omega) \subset \mathcal{H}_{s}(\Omega):=\left\{u \in \mathcal{C}^{2}(\Omega, \mathbb{R}): \forall_{a \in \Omega} \forall_{j \in\{1, \ldots, n\}}: u_{a, e_{j}} \in \mathcal{H}\left(\Omega_{a, e_{j}}\right)\right\}
$$

Obviously every separately harmonic function is harmonic as a function of $(2 n)$-variables. Thus $\mathcal{P} \mathcal{H}(\Omega) \subset$ $\mathcal{H}_{s}(\Omega) \subset \mathcal{H}(\Omega)$. In particular, $\mathcal{P H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega)$. Notice that for $n=1$ we have $\mathcal{P} \mathcal{H}(\Omega)=\mathcal{H}_{s}(\Omega)=\mathcal{H}(\Omega)$. If $n \geq 2$, then $\mathcal{P H}(\Omega) \nsubseteq \mathcal{H}_{s}(\Omega) \varsubsetneqq \mathcal{H}(\Omega)\left(^{17}\right)$.
(d) If $f=u+i v \in \mathcal{O}(\Omega)$, then $u \in \mathcal{P H}(\Omega)$.

Proposition 3.3.3. If $D \subset \mathbb{C}^{n}$ is a star-shaped domain with respect to a point $a \in D$, then for any $u \in \mathcal{P H}(D)$ there exists an $f \in \mathcal{O}(D)$ such that $u=\operatorname{Re} f$.

In particular, any pluriharmonic function is locally the real part of a holomorphic function $\left({ }^{18}\right)$.
Proof. Observe that the function $z \longrightarrow u(z+a)$ is pluriharmonic on $D-a$ and the domain $D-a$ is star-shaped with respect to 0 . Thus we may assume that $a=0$. Define

$$
v(z):=-i \int_{0}^{1} \sum_{j=1}^{n}\left(z_{j} \frac{\partial u}{\partial z_{j}}(t z)-\bar{z}_{j} \frac{\partial u}{\partial \bar{z}_{j}}(t z)\right) d t, \quad z \in D .
$$

Then $v \in \mathcal{C}^{1}(D)$ and using 3.3.1 we get

$$
\begin{aligned}
& \frac{\partial(u+i v)}{\partial \bar{z}_{k}}(z)=\frac{\partial u}{\partial \bar{z}_{k}}+\int_{0}^{1}\left(\sum_{j=1}^{n}\left(z_{j} \frac{\partial^{2} u}{\partial \bar{z}_{k} \partial z_{j}}(t z) t-\bar{z}_{j} \frac{\partial^{2} u}{\partial \bar{z}_{k} \partial \bar{z}_{j}}(t z) t\right)-\frac{\partial u}{\partial \bar{z}_{k}}(t z)\right) d t \\
& =\frac{\partial u}{\partial \bar{z}_{k}}-\int_{0}^{1}\left(t \sum_{j=1}^{n}\left(z_{j} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}(t z)+\bar{z}_{j} \frac{\partial^{2} u}{\partial \bar{z}_{j} \partial \bar{z}_{k}}(t z)\right)+\frac{\partial u}{\partial \bar{z}_{k}}(t z)\right) d t=\frac{\partial u}{\partial \bar{z}_{k}}(z)-\int_{0}^{1} \frac{d}{d t}\left(t \frac{\partial u}{\partial \bar{z}_{k}}(t z)\right) d t=0 \\
& k=1, \ldots, n
\end{aligned}
$$

[^19]Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
3.3. Pluriharmonic functions

Corollary 3.3.4. Let $\Omega_{j} \subset \mathbb{C}^{n_{j}}$ be open, $j=1,2$, and let $F \in \mathcal{O}\left(\Omega_{1}, \Omega_{2}\right)$. Then $u \circ F \in \mathcal{P} \mathcal{H}\left(\Omega_{1}\right)$ for any $u \in \mathcal{P H}\left(\Omega_{2}\right)$.

For an arbitrary function $u \in \mathcal{C}^{2}(\Omega)$ denote by $\mathcal{L} u: \Omega \times \mathbb{C}^{n} \longrightarrow \mathbb{C}$ the Levi form (called also the complex Hessian) of u, i.e.

$$
(\mathcal{L} u)(a ; X):=\sum_{j, k=1}^{n} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}(a) X_{j} \bar{X}_{k}
$$

Observe that

$$
(\mathcal{L} u)(a ; X)=\frac{\partial^{2} u_{a, X}}{\partial \lambda \partial \bar{\lambda}}(0)
$$

In particular, if $n=1$, then

$$
(\mathcal{L} u)(a ; X)=\frac{1}{4}(\Delta u(a))|X|^{2}
$$

Remark 3.3.5. For a function $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$ the following conditions are equivalent:
(i) $u \in \mathcal{P H}(\Omega)$;
(ii) $u_{a, X} \in \mathcal{H}\left(\Omega_{a, X}\right)$ for any $a \in \Omega$ and $X \in \mathbb{C}^{n}$;
(iii) $\mathcal{L} u(a ; X)=0$ for any $a \in \Omega$ and $X \in \mathbb{C}^{n}$.

Let $u: \partial_{0} \mathbb{P}(a, \boldsymbol{r}) \longrightarrow[-\infty,+\infty)$ be bounded from above and measurable $\left.{ }^{19}\right)$. For $z=\left(z_{1}, \ldots, z_{n}\right) \in$ $\mathbb{P}(a, \boldsymbol{r}), a=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$, define

$$
\begin{aligned}
& \mathbf{P}(u ; a, \boldsymbol{r} ; z)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta_{1}}-\left(z_{1}-a_{1}\right)\right|^{2}} \cdots \frac{r_{n}^{2}-\left|z_{n}-a_{n}\right|^{2}}{\left|r_{n} e^{\theta_{n}}-\left(z_{n}-a_{n}\right)\right|^{2}} \times \\
& \quad u\left(a_{1}+r_{1} e^{i \theta_{1}}, \ldots, a_{n}+r_{n} e^{i \theta_{n}}\right) d \theta_{1} \ldots d \theta_{n} .
\end{aligned}
$$

Remark 3.3.6. $\mathbf{P}(u ; a, \boldsymbol{r} ; \cdot) \in \mathcal{H}_{s}(\mathbb{P}(a, \boldsymbol{r}))$.
For any affine \mathbb{C}-isomorphism $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, put

$$
\Omega_{L}:=L^{-1}(\Omega), \quad u_{L}(z):=u(L(z)), z \in \Omega_{L}
$$

By Corollary 3.3.4 we have $u \in \mathcal{P H}(\Omega)$ iff $u_{L} \in \mathcal{P H}\left(\Omega_{L}\right)$.
Proposition 3.3.7. For $u \in \mathcal{C}(\Omega, \mathbb{R})$ the following conditions are equivalent:
(i) $u \in \mathcal{P} \mathcal{H}(\Omega)$;
(ii) for every affine isomorphism L and for every $a \in \Omega_{L}$ there exists an $R(a), 0<R(a) \leq d_{\Omega_{L}}(a)$, such that for any $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ with $0<r_{j}<R(a), j=1, \ldots, n$, we have

$$
\begin{equation*}
u_{L}(z)=\mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right), \quad z \in \mathbb{P}(a, \boldsymbol{r}) \tag{3.3.2}
\end{equation*}
$$

Moreover, if $u \in \mathcal{P H}(\Omega)$, then 3.3.2 holds for any $\mathbb{P}(a, \boldsymbol{r}) \subset \subset \Omega_{L}$.
Proof. Assume that $u \in \mathcal{P} \mathcal{H}(\Omega)$. Fix an affine isomorphism L. Recall that $u_{L} \in \mathcal{P} \mathcal{H}\left(\Omega_{L}\right) \subset \mathcal{H}_{s}(\Omega)$. Take a $\mathbb{P}(a, \boldsymbol{r}) \subset \subset \Omega_{L}$. Then, by the Poisson formula (Proposition 3.1.10), for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{P}(a, \boldsymbol{r})$ we have

$$
\begin{aligned}
& u_{L}(z)=\mathbf{P}\left(u_{L}\left(\cdot, z_{2}, \ldots, z_{n}\right) ; a_{1}, r_{1} ; z_{1}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta_{1}}-\left(z_{1}-a_{1}\right)\right|^{2}} u_{L}\left(a_{1}+r_{1} e^{i \theta_{1}}, z_{2}, \ldots, z_{n}\right) d \theta_{1} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta_{1}}-\left(z_{1}-a_{1}\right)\right|^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{2}^{2}-\left|z_{2}-a_{2}\right|^{2}}{\left|r_{2} e^{i \theta_{2}}-\left(z_{2}-a_{2}\right)\right|^{2}} u_{L}\left(a_{1}+r_{1} e^{i \theta_{1}}, a_{2}+r_{2} e^{i \theta_{2}}, z_{3}, \ldots, z_{n}\right) d \theta_{2} d \theta_{1} \\
& =\cdots=\mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right)
\end{aligned}
$$

Conversely, assume that (ii) is satisfied. In particular, $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$. By Remark 3.3 .5 it suffices to prove that $u_{a, X} \in \mathcal{H}\left(\Omega_{a, X}\right)$ for any $a \in \Omega$ and $X \in \mathbb{C}^{n}$. Fix a and $X \neq 0$. Let L be an affine isomorphism such that $u_{a, X}=u_{L}\left(0^{\prime}, \cdot\right)$. Now, by virtue of (3.3.2) and Remark 3.3.6, $u_{L}\left(0^{\prime}, \cdot\right)$ is harmonic.
$\left({ }^{19}\right)$ That is, the function $[0,2 \pi)^{n} \ni\left(\theta_{1}, \ldots, \theta_{n}\right) \longrightarrow u\left(a_{1}+r_{1} e^{i \theta_{1}}, \ldots, a_{n}+r_{n} e^{i \theta_{n}}\right)$ is Lebesgue measurable.

3.4. Plurisubharmonic functions

Definition 3.4.1. Let $\Omega \subset \mathbb{C}^{n}$ be open. A function $u: \Omega \longrightarrow[-\infty,+\infty$) is called plurisubharmonic (shortly $p s h)$ in $\Omega(u \in \mathcal{P S H}(\Omega))$ if:

- $u \in \mathcal{C}^{\uparrow}(\Omega)$,
- for every $a \in \Omega$ and $X \in \mathbb{C}^{n}$ the function

$$
\Omega_{a, X} \ni \lambda \xrightarrow{u_{a, X}} u(a+\lambda X)
$$

is subharmonic.
Notice that the function $u \equiv-\infty$ is psh.
The properties of psh functions mentioned just below follow directly from the definition and corresponding properties of subharmonic functions.

Proposition 3.4.2. $\mathcal{P H}(\Omega) \subset \mathcal{P S H}(\Omega), \mathcal{P S H}(\Omega)+\mathcal{P S H}(\Omega)=\mathcal{P S H}(\Omega), \mathbb{R}_{>0} \cdot \mathcal{P S H}(\Omega)=\mathcal{P S H}(\Omega)$.
Proposition 3.4.3. Plurisubharmonicity is a local property, i.e. a function $u: \Omega \longrightarrow[-\infty,+\infty)$ is psh in Ω iff every point $a \in \Omega$ admits an open neighborhood $U_{a} \subset \Omega$ such that $\left.u\right|_{U_{a}} \in \mathcal{P S H}\left(U_{a}\right)$.

Proposition 3.4.4. Let $u: \Omega \longrightarrow[-\infty,+\infty)$ be upper semicontinuous. Then $u \in \mathcal{P S H}(\Omega)$ iff for any $a \in \Omega, X \in \mathbb{C}^{n}$, and $r>0$ such that $a+r \overline{\mathbb{D}} \cdot X \subset \Omega$ we have

$$
u(a) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta} X\right) d \theta
$$

Proposition 3.4.5. Let $f \in \mathcal{O}(\Omega)$. Then $\log |f| \in \mathcal{P S H}(\Omega)$.
Proposition 3.4.6. Let $I \subset \mathbb{R}$ be an open interval and let $\varphi: I \longrightarrow \mathbb{R}$ be convex and non-decreasing. Then for every psh function $u: \Omega \longrightarrow I$, the function $\varphi \circ u$ is psh. In particular,

- if $u \in \mathcal{P S H}(\Omega)$, then $e^{u} \in \mathcal{P S H}(\Omega)$,
- if $u: \Omega \longrightarrow \mathbb{R}_{+}$is psh, then for every $p \geq 1$, the function u^{p} is psh in Ω.

Proposition 3.4.7. If $\log u_{1}, \log u_{2} \in \mathcal{P S H}(\Omega)$, then $\left.\log \left(u_{1}+u_{2}\right) \in \mathcal{P S H}(\Omega) .{ }^{20}\right)$
Proposition 3.4.8. If $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{P S H}(\Omega)$ and $u_{\nu} \searrow u$, then $u \in \mathcal{P S H}(\Omega)$.
Proposition 3.4.9. If $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{P S H}(\Omega)$ and $u_{\nu} \longrightarrow u$ locally uniformly in Ω, then $u \in \mathcal{P S H}(\Omega)$.
Proposition 3.4.10 (Liouville type theorem). If a function $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$ is globally bounded from above, then $u \equiv$ const.

Proposition 3.4.11. Let $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$. Then $u \in \mathcal{P S H}(\Omega)$ iff $(\mathcal{L} u)(a ; X) \geq 0$ for any $a \in \Omega$ and $X \in \mathbb{C}^{n}$; cf. Proposition 3.3.5.

Proposition 3.4.12. Let $G \subset \Omega$ be open subsets of \mathbb{C}^{n} and let $v \in \mathcal{P S H}(G)$, $u \in \mathcal{P S H}(\Omega)$. Assume that

$$
\limsup _{G \ni z \rightarrow \zeta} v(z) \leq u(\zeta), \quad \zeta \in(\partial G) \cap \Omega
$$

Let

$$
\widetilde{u}(z):= \begin{cases}\max \{v(z), u(z)\}, & z \in G \\ u(z), & z \in \Omega \backslash G\end{cases}
$$

Then $\widetilde{u} \in \mathcal{P S H}(\Omega)$.
Proof. Exercise - cf. the proof of Proposition 3.2.11 (use Proposition 3.4.4).
$\left({ }^{20}\right)$ If $\log u \in \mathcal{P S H}(\Omega)$, then u is called logarithmically plurisubharmonic.

We move now to more advanced properties of psh functions. Recall that the most part of the properties of subharmonic functions follows from Propositions 3.2.5, 3.2.12, and 3.2.15, i.e. from characterization of subharmonic functions by different mean value theorems. We try to obtain a similar characterization for psh functions.

Let $u: \partial_{0} \mathbb{P}(a, \boldsymbol{r}) \longrightarrow[-\infty,+\infty)$ be bounded from above and measurable. Define

$$
\mathbf{J}(u ; a, \boldsymbol{r}):=\mathbf{P}(u ; a, \boldsymbol{r} ; a)
$$

If $u: \mathbb{P}(a, \boldsymbol{r}) \longrightarrow[-\infty,+\infty)$ is bounded from above and measurable, $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, and $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right) \in\left(\mathbb{R}_{>0}\right)^{n}$, then we put

$$
\mathbf{A}(u ; a, \boldsymbol{r}):=\frac{1}{\left(\pi r_{1}^{2}\right) \ldots\left(\pi r_{n}^{2}\right)} \int_{\mathbb{P}(a, \boldsymbol{r})} u d \mathcal{L}^{2 n}
$$

Note that $u \in \mathcal{P S H}(\Omega)$ iff $u_{L} \in \mathcal{P S H}\left(\Omega_{L}\right)$ for an arbitrary affine \mathbb{C}-isomorphism $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}\left({ }^{21}\right)$
Proposition 3.4.13. Let $u: \Omega \longrightarrow[-\infty,+\infty)$ be upper semicontinuous. Then the following conditions are equivalent:
(i) $u \in \mathcal{P S H}(\Omega)$;
(ii) for every affine isomorphism L and every $a \in \Omega_{L}$, there exists an $R(a), 0<R(a) \leq d_{\Omega_{L}}(a)$, such that for every $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right), 0<r_{j}<R(a), j=1, \ldots, n$, we have

$$
u_{L}(z) \leq \mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right), \quad z \in \mathbb{P}(a, \boldsymbol{r})
$$

(iii) for every affine isomorphism L and for every $a \in \Omega_{L}$, there exists an $R(a), 0<R(a) \leq d_{\Omega_{L}}(a)$, such that for every $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right), 0<r_{j}<R(a), j=1, \ldots, n$, we have

$$
u_{L}(a) \leq \mathbf{J}\left(u_{L} ; a, \boldsymbol{r}\right)
$$

(iv) for every affine isomorphism L and for every $a \in \Omega_{L}$, there exists an $R(a), 0<R(a) \leq d_{\Omega_{L}}(a)$, such that for every $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right), 0<r_{j}<R(a), j=1, \ldots, n$, we have

$$
u_{L}(a) \leq \mathbf{A}\left(u_{L} ; a, \boldsymbol{r}\right)
$$

Moreover, if $u \in \mathcal{P S H}(\Omega)$, then the inequalities in (ii), (iii), and (iv) hold for every $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ such that $\overline{\mathbb{P}}(a, \boldsymbol{r}) \subset \Omega_{L}$.

Proof. (i) \Longrightarrow (ii). Fix $L, a, \boldsymbol{r}=\left(r_{1}, \ldots r_{n}\right)$ such that $\overline{\mathbb{P}}(a, \boldsymbol{r}) \subset \Omega_{L}$, and $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{P}(a, \boldsymbol{r})$. Since $u_{L} \in \mathcal{P S H}\left(\Omega_{L}\right)$, we obtain (applying n-times Proposition 3.2.12)

$$
\begin{aligned}
& u_{L}(z) \leq \mathbf{P}\left(u_{L}\left(\cdot, z_{2}, \ldots, z_{n}\right) ; a_{1}, r_{1} ; z_{1}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta_{1}}-\left(z_{1}-a_{1}\right)\right|^{2}} u_{L}\left(a_{1}+r_{1} e^{i \theta_{1}}, z_{2}, \ldots, z_{n}\right) d \theta_{1} \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta_{1}}-\left(z_{1}-a_{1}\right)\right|^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{2}^{2}-\left|z_{2}-a_{2}\right|^{2}}{\left|r_{2} e^{i \theta_{2}}-\left(z_{2}-a_{2}\right)\right|^{2}} u_{L}\left(a_{1}+r_{1} e^{i \theta_{1}}, a_{2}+r_{2} e^{i \theta_{2}}, z_{3}, \ldots, z_{n}\right) d \theta_{2} d \theta_{1} \\
& \leq \cdots \leq \mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right)
\end{aligned}
$$

The implication (ii) \Longrightarrow (iii) is evident.
(iii) \Longrightarrow (iv).

$$
\begin{aligned}
u_{L}(a) & =\frac{2}{r_{1}^{2}} \ldots \frac{2}{r_{n}^{2}} \int_{0}^{r_{1}} \cdots \int_{0}^{r_{n}} u_{L}(a) \tau_{1} \ldots \tau_{n} d \tau_{1} \ldots d \tau_{n} \\
& \leq \frac{2}{r_{1}^{2}} \ldots \frac{2}{r_{n}^{2}} \int_{0}^{r_{1}} \cdots \int_{0}^{r_{n}} \mathbf{J}\left(u_{L} ; a,\left(\tau_{1}, \ldots, \tau_{n}\right)\right) \tau_{1} \ldots \tau_{n} d \tau_{1} \ldots d \tau_{n}=\mathbf{A}\left(u_{L} ; a, \boldsymbol{r}\right)
\end{aligned}
$$

$\left({ }^{21}\right)$ Recall that $\Omega_{L}:=L^{-1}(\Omega), u_{L}:=u \circ L$.

3. Plurisubharmonic functions

(iv) \Longrightarrow (i). Fix $a \in \Omega, X \in \mathbb{C}^{n},\|X\|=1$. It is sufficient to show that $u(a) \leq \mathbf{A}\left(u_{a, X} ; 0, r\right)$ for $r>0$ sufficiently small. Let L be an affine isometry such that $L\left(a+\lambda e_{n}\right)=a+\lambda X, \lambda \in \mathbb{C}$. By Fatou's lemma, for $r_{n}>0$ sufficiently small, we have

$$
\begin{aligned}
& u(a)=u_{L}(a) \leq \limsup _{r_{1}, \ldots, r_{n-1} \rightarrow 0} \mathbf{A}\left(u_{L} ; a,\left(r_{1}, \ldots, r_{n-1}, r_{n}\right)\right) \\
& =\limsup _{r_{1}, \ldots, r_{n-1} \rightarrow 0} \frac{1}{\pi^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{0}^{1} \cdots \int_{0}^{1} u_{L}\left(a_{1}+t_{1} r_{1} e^{i \theta_{1}}, \ldots, a_{n}+t_{n} r_{n} e^{i \theta_{n}}\right) t_{1} \ldots t_{n} d t_{1} \ldots d t_{n} d \theta_{1} \ldots d \theta_{n} \\
& \leq \frac{1}{\pi^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{0}^{1} \cdots \int_{0}^{1} \limsup _{r_{1}, \ldots, r_{n-1} \rightarrow 0} u_{L}\left(a_{1}+t_{1} r_{1} e^{i \theta_{1}}, \ldots, a_{n}+t_{n} r_{n} e^{i \theta_{n}}\right) t_{1} \ldots t_{n} d t_{1} \ldots d t_{n} d \theta_{1} \ldots d \theta_{n} \\
& \leq \frac{1}{\pi^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{0}^{1} \cdots \int_{0}^{1} u_{L}\left(a_{1}, \ldots, a_{n-1}, a_{n}+t_{n} r_{n} e^{i \theta_{n}}\right) t_{1} \ldots t_{n} d t_{1} \ldots d t_{n} d \theta_{1} \ldots d \theta_{n} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} u_{L}\left(a_{1}, \ldots, a_{n-1}, a_{n}+t_{n} r_{n} e^{i \theta_{n}}\right) t_{n} d t_{n} d \theta_{n}=\mathbf{A}\left(u_{a, X} ; 0, r_{n}\right)
\end{aligned}
$$

Propositions 3.4.13 and 3.3.7 imply the following corollary (cf. Corollary 3.2.13).
Corollary 3.4.14. $\mathcal{P S H}(\Omega) \cap(-\mathcal{P S H}(\Omega))=\mathcal{P H}(\Omega)$.
Proposition 3.4.15. Let $D \subset \mathbb{C}^{n}$ be a domain and let $u \in \mathcal{P S H}(D), u \not \equiv-\infty$. Then $u \in L^{1}(D$, loc $)$. Consequently, $\mathcal{L}^{2 n}\left(u^{-1}(-\infty)\right)=0$.

In particular, if M is a thin subset of an open set $\Omega \subset \mathbb{C}^{n}$ (cf. Definition 2.1.4), then $\mathcal{L}^{2 n}(M)=0$.
Proof. It is sufficient to apply the method of the proof of Proposition 3.2.16 and use Proposition 3.4.13(iv) (with $L=\mathrm{id}$).

Proposition 3.4.16 (Maximum principle). Let $D \subset \mathbb{C}^{n}$ be a domain and let $u \in \mathcal{P S H}(D)$, $u \not \equiv$ const. Then u does not attain its global maximum in D. If, moreover, D is bounded, then

$$
u(z)<\sup _{\zeta \in \partial D}\left\{\limsup _{D \ni z \rightarrow \zeta} u(z)\right\}, \quad z \in D
$$

Proof. Exercise - cf. the proof of Lemma 3.2.3.
Proposition 3.4.17. If a family $\left(u_{\iota}\right)_{\iota \in I} \subset \mathcal{P S H}(\Omega)$ is locally bounded from above, then the function

$$
u:=\left(\sup _{\iota \in I} u_{\iota}\right)^{*}
$$

is psh in Ω.
In particular, $\max \left\{u_{1}, \ldots, u_{N}\right\} \in \mathcal{P S H}(\Omega)$ for any $u_{1}, \ldots, u_{N} \in \mathcal{P S H}(\Omega)$.
Proof. We use Proposition 3.4.13(ii). Fix $L, a \in \Omega_{L}$, and $r=\left(r_{1}, \ldots, r_{n}\right), 0<r_{j}<d_{\Omega_{L}}(a), j=1, \ldots, n$. Note that $u_{L}=\left(\sup _{\iota \in I}\left(u_{\iota}\right)_{L}\right)^{*}$. For every $\iota \in I$ we have $\left(u_{\iota}\right)_{L}(z) \leq \mathbf{P}\left(\left(u_{\iota}\right)_{L} ; a, \boldsymbol{r}, z\right), z \in \mathbb{P}(a, \boldsymbol{r})$, and consequently, $\sup _{\iota \in I}\left(u_{\iota}\right)_{L}(z) \leq \mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right), z \in \mathbb{P}(a, \boldsymbol{r})$. Now it is sufficient to observe that the right-hand side is a continuous function of the variable z, and hence $u_{L}(z) \leq \mathbf{P}\left(u_{L} ; a, \boldsymbol{r} ; z\right), z \in \mathbb{P}(a, \boldsymbol{r})$.

Proposition 3.4.18. If a sequence $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{P S H}(\Omega)$ is locally bounded from above, then the function

$$
u:=\left(\limsup _{\nu \rightarrow \infty} u_{\nu}\right)^{*}
$$

is psh on Ω.
Proof. Exercise - cf. the proof of Proposition 3.2.14.

Proposition 3.4.19 (Removable singularities). Let $D \subset \mathbb{C}^{n}$ be a domain, and let $M \subset D$ be a closed subset of D such that for every point $a \in M$ there exist a connected open neighborhood $U_{a} \subset D$ and a function $v_{a} \in \mathcal{P S H}\left(U_{a}\right), v_{a} \not \equiv-\infty$, such that $M \cap U_{a}=v_{a}^{-1}(-\infty)$. Assume also that $u \in \mathcal{P S H}(D \backslash M)$ is an arbitrary function locally bounded from above in D. Let

$$
\widetilde{u}(z):=\limsup _{D \backslash M \ni z^{\prime} \rightarrow z} u\left(z^{\prime}\right), \quad z \in D .
$$

Then $\widetilde{u} \in \mathcal{S H}(D)$. In particular, the set $D \backslash M$ is connected.
Proof. Exercise - cf. the proof of Proposition 3.2.17.
Proposition 3.4.20 (Hartogs lemma). Let $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{P S H}(\Omega)$ be a sequence locally bounded from above. Assume that for some $m \in \mathbb{R}$

$$
\limsup _{\nu \rightarrow+\infty} u_{\nu} \leq m
$$

Then for every compact subset $K \subset \Omega$ and for every $\varepsilon>0$, there exists a ν_{0} such that

$$
\max _{K} u_{\nu} \leq m+\varepsilon, \quad \nu \geq \nu_{0}
$$

Proof. Exercise; cf. the proof of Proposition 3.2 .20 (use Proposition 3.4.13(iv)).

Proposition 3.4.21. Let $u \in \mathcal{P S H}(\Omega), a \in \Omega$. Then

$$
\begin{aligned}
\mathbf{J}\left(u ; a, \boldsymbol{r}^{\prime}\right) & \leq \mathbf{J}\left(u ; a, \boldsymbol{r}^{\prime \prime}\right) \text { for } \boldsymbol{r}^{\prime} \leq \boldsymbol{r}^{\prime \prime} \text { and } \mathbf{J}(u ; a, \boldsymbol{r}) \longrightarrow u(a) \text { when } \boldsymbol{r} \longrightarrow 0 \\
\mathbf{A}\left(u ; a, \boldsymbol{r}^{\prime}\right) & \leq \mathbf{A}\left(u ; a, \boldsymbol{r}^{\prime \prime}\right) \text { for } \boldsymbol{r}^{\prime} \leq \boldsymbol{r}^{\prime \prime} \text { and } \mathbf{A}(u ; a, \boldsymbol{r}) \longrightarrow u(a) \text { when } \boldsymbol{r} \longrightarrow 0 .
\end{aligned}
$$

Proof. Exercise - cf. Proposition 3.2.22.
Corollary 3.4.22. Let $u_{1}, u_{2} \in \mathcal{P S H}(\Omega)$. If $u_{1}=u_{2} \mathcal{L}^{2 n}$-almost everywhere in Ω, then $u_{1} \equiv u_{2}$ in Ω.
Corollary 3.4.23. Let D and M be as in Proposition 3.4.19. Then for every function $u \in \mathcal{P S H}(D)$ we have

$$
u(z):=\limsup _{D \backslash M \ni z^{\prime} \rightarrow z} u\left(z^{\prime}\right), \quad z \in D
$$

Let $\Phi\left(z_{1}, \ldots, z_{n}\right):=\Psi\left(z_{1}\right) \cdots \Psi\left(z_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, where Ψ is a regularization function from $\S 3.2$. Put

$$
\Phi_{\varepsilon}(z):=\frac{1}{\varepsilon^{2 n}} \Phi\left(\frac{z}{\varepsilon}\right), \quad z \in \mathbb{C}^{n}, \varepsilon>0
$$

Notice that:

- $\Phi_{\varepsilon} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{C}^{n}, \mathbb{R}_{+}\right)$,
- $\operatorname{supp} \Phi_{\varepsilon}=\overline{\mathbb{P}}(\varepsilon)$,
- $\Phi_{\varepsilon}\left(z_{1}, \ldots, z_{n}\right)=\Phi_{\varepsilon}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$,
- $\int_{\mathbb{C}^{n}} \Phi_{\varepsilon} d \mathcal{L}^{2 n}=1$.

For every function $u \in L^{1}(\Omega$, loc $)$, define

$$
u_{\varepsilon}(z):=\int_{\Omega} u(w) \Phi_{\varepsilon}(z-w) d \mathcal{L}^{2 n}(w)=\int_{\mathbb{D}^{n}} u(z+\varepsilon w) \Phi(w) d \mathcal{L}^{2 n}(w), \quad z \in \Omega_{\varepsilon}:=\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\}
$$

The function u_{ε} is called the ε-regularization of u.
Proposition 3.4.24. If $u \in \mathcal{P S H}(\Omega) \cap L^{1}(\Omega$, loc $)$, then $u_{\varepsilon} \in \mathcal{P S H}\left(\Omega_{\varepsilon}\right) \cap \mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$ and $u_{\varepsilon} \searrow u$ in Ω when $\varepsilon \searrow 0$.
3. Plurisubharmonic functions

Proof. We have $u_{\varepsilon} \in \mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$. The monotonicity and convergence follow from the identity

$$
u_{\varepsilon}(a)=(2 \pi)^{n} \int_{0}^{1} \ldots \int_{0}^{1} \mathbf{J}\left(u ; a, \varepsilon\left(\tau_{1}, \ldots, \tau_{n}\right)\right) \Phi\left(\tau_{1}, \ldots, \tau_{n}\right) \tau_{1} \ldots \tau_{n} d \tau_{1} \ldots d \tau_{n}
$$

and from Proposition 3.4.21. To show that the function u_{ε} is psh, we use Proposition 3.4.4. Fix $a \in \Omega_{\varepsilon}$, $X \in \mathbb{C}^{n}$, and $r>0$ such that $a+r \cdot \overline{\mathbb{D}} \cdot X \subset \Omega_{\varepsilon}$. Then

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} u_{\varepsilon}\left(a+r e^{i \theta} X\right) d \theta=\int_{\mathbb{D}^{n}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta} X+\varepsilon w\right) d \theta\right) \Phi(w) d \mathcal{L}^{2 n}(w) \\
& \geq \int_{\mathbb{D}^{n}} u(a+\varepsilon w) \Phi(w) d \mathcal{L}^{2 n}(w)=u_{\varepsilon}(a)
\end{aligned}
$$

Proposition 3.4.25. Let Ω_{j} be an open subset of $\mathbb{C}^{n_{j}}, j=1,2$, and suppose that $F: \Omega_{1} \longrightarrow \Omega_{2}$ is a holomorphic mapping. Then for any $u \in \mathcal{P S H}\left(\Omega_{2}\right)$, the function $u \circ F$ is in $\mathcal{P S H}\left(\Omega_{1}\right)$.

Proof. Exercise - cf. the proof of Proposition 3.2.29, we consider first the case $u \in \mathcal{C}^{2}(\Omega)$ and use the formula

$$
(\mathcal{L}(u \circ F))(a ; X)=(\mathcal{L} u)\left(F(a) ; F^{\prime}(a)(X)\right)
$$

In the general case we apply the regularization (Proposition 3.4.24).
Proposition 3.4.26. If $q: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$is a \mathbb{C}-seminorm, then $\log q \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$.
Proof. Given arbitrary $a, X \in \mathbb{C}^{n}$, the function $\mathbb{C} \ni \lambda \longrightarrow q(a+\lambda X)$ is convex, and hence subharmonic (Proposition 3.2.36). This means that $q \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$. Moreover, for every polynomial $p \in \mathcal{P}(\mathbb{C})$ we have

$$
v(\lambda):=\left|e^{p(\lambda)}\right| q(a+\lambda X)=q\left(e^{p(\lambda)}(a+\lambda X)\right)
$$

and so, by Proposition 3.4.25 $v \in \mathcal{S H}(\mathbb{C})$. Consequently, by Proposition 3.2.33, $\log q \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$.
Proposition 3.4.27. Let $h: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$be such that $h(\lambda z)=|\lambda| h(z), \lambda \in \mathbb{C}, z \in \mathbb{C}^{n}$. Then h is psh in \mathbb{C}^{n} iff $\log h$ is psh in \mathbb{C}^{n}.

Proof. Exercise - cf. the proof of Proposition 3.4.26.
Proposition 3.4.28. If $u \in \mathcal{P S H}(D)\left(D\right.$ is a domain in $\left.\mathbb{C}^{n}\right)$, $u \not \equiv-\infty$, then $\mathcal{L} u \geq 0$ in D in the distribution sense, i.e. for every $\varphi \in \mathcal{C}_{0}^{\infty}\left(D, \mathbb{R}_{+}\right)$we have

$$
\int_{D} u(z)(\mathcal{L} \varphi)(z ; X) d \mathcal{L}^{2 n}(z) \geq 0, \quad X \in \mathbb{C}^{n}
$$

Conversely, if $u \in L^{1}(D, \operatorname{loc})$ is such that $\mathcal{L} u \geq 0$ in D in the distribution sense, then there exists a function $v \in \mathcal{P S H}(D)$ such that $u=v \mathcal{L}^{2 n}$-almost everywhere in D.
Proof. Exercise - cf. the proof of Proposition 3.2 .28 .
Definition 3.4.29. A function $u \in \mathcal{C}(\Omega, \mathbb{R})$ is called strictly plurisubharmonic if for every domain $D \subset \subset \Omega$ there exists an $\varepsilon>0$ such that the function $D \ni z \longrightarrow u(z)-\varepsilon\|z\|^{2}$ is psh.
Proposition 3.4.30. A function $u \in \mathcal{C}^{2}(\Omega)$ is strictly psh iff

$$
(\mathcal{L} u)(a ; X)>0, \quad a \in \Omega, X \in \mathbb{C}^{n}, X \neq 0
$$

Proof. \Longleftarrow. Fix a domain $D \subset \subset \Omega$ and let

$$
\varepsilon:=\min \{(\mathcal{L} u)(a ; X): a \in D,\|X\|=1\}, \quad v(z):=u(z)-\varepsilon\|z\|^{2}, z \in D
$$

Then

$$
(\mathcal{L} v)(a ; X)=(\mathcal{L} u)(a ; X)-\varepsilon\|X\|^{2} \geq 0, \quad a \in \Omega, X \in \mathbb{C}^{n}
$$

and so $v \in \mathcal{P S H}(D)$ (Proposition 3.4.11).
\Longrightarrow. Fix an $a \in \Omega$ and let $D \subset \subset \Omega, \varepsilon>0$ be such that $a \in D$ and the function $v(z)=u(z)-\varepsilon\|z\|^{2}$, $z \in D$, is psh in D. Then

$$
(\mathcal{L} u)(a ; X)=(\mathcal{L} v)(a ; X)+\varepsilon\|X\|^{2} \geq \varepsilon\|X\|^{2}>0, \quad X \neq 0
$$

Remark 3.4.31. In the case where $u \in \mathcal{P S H}(\Omega)$ is continuous Proposition 3.4 .24 may be generalized in the following way (cf. [27]):

If $u \in \mathcal{P S H}(\Omega)$ is continuous, then for any continuous function $\eta: \Omega \longrightarrow \mathbb{R}_{>0}$ there exists a strictly psh function $v \in \mathcal{C}^{\infty}(\Omega)$ such that $u \leq v \leq u+\eta$ on Ω.

Proposition 3.4 .24 may be also 'globalized' in the case where Ω is a region of holomorphy (cf. [7]):
If Ω is a region of holomorphy, then for any $u \in \mathcal{P S H}(\Omega)$ there exists a sequence $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{P S H}(\Omega) \cap$ $\mathcal{C}^{\infty}(\Omega)$ such that $u_{\nu} \searrow u$ pointwise on Ω.

Definition 3.4.32. We say that a bounded domain $D \subset \mathbb{C}^{n}$ is hyperconvex if there exists a psh continuous function $u: D \longrightarrow(-\infty, 0)$ such that
$\{z \in D: u(z) \leq t\} \subset \subset D$ for any $t<0$.
We say that D is weakly hyperconvex if there exists a $u: D \longrightarrow[-\infty, 0)$ with $\left(^{*}\right)$.
It is clear that any hyperconvex domain is weakly hyperconvex.
Proposition 3.4.33. Let D be a bounded domain in \mathbb{C}^{n}. Then D is hyperconvex iff D is weakly hyperconvex.
Proof. (Cf. [36].) Let $u: D \longrightarrow[-\infty, 0)$ be a psh function with $\left(^{*}\right)$. We will construct a continuous psh function $v_{0}: D \longrightarrow(-\infty, 0)$ with $\left(^{*}\right)$.

Fix a ball $K:=\overline{\mathbb{B}}(a, r) \subset D$ and let

$$
h_{D, K}(z):=\sup \left\{h(z): h \in \mathcal{P S} \mathcal{H}(D), h \leq 1,\left.h\right|_{K} \leq 0\right\}, \quad z \in D
$$

Obviously $0 \leq h_{D, K} \leq 1$ and $h_{D, K}=0$ on K. Put $v:=h_{D, K}^{*}$. It is clear that $v=0$ in $\mathbb{B}(a, r)$. Observe that $v \in \mathcal{P S H}(D)$ (Proposition 3.4.17) and hence, by the maximum principle (Proposition 3.4.16) $v(z)<1$ for any $z \in D$.

Fix a $t_{0}>0$ such that $u \leq-t_{0}$ on K and put $h:=\left(1 / t_{0}\right) u+1$. Then $h \in \mathcal{P S H}(D), h \leq 1$, and $h \leq 0$ on K. Hence $h \leq h_{D, K} \leq v$. Consequently, $v-1$ is a negative psh function with (*). We will show that v is continuous (then $v_{0}:=v-1$ satisfies all the required conditions).

By the Oka theorem (Proposition 3.2.31), for any point $b \in \partial \mathbb{B}(a, r)$ we get

$$
v(b)=\lim _{[0,1) \ni t \rightarrow 1} v(a+t(b-a))=0 .
$$

Thus $v=0$ on K.
For $\alpha \in(0,1)$ let $D_{\alpha}:=\{z \in D: v(z)<\alpha\}$. Notice that $K \subset D_{\alpha} \subset \subset D$ and $D_{\alpha} \nearrow D$ when $\alpha \nearrow 1$. The same proof as above shows that $h_{D_{\alpha}, K}^{*}=0$ on K. Observe that

$$
\alpha h_{D_{\alpha}, K}^{*} \leq v \text { on } D_{\alpha}
$$

Indeed, define

$$
h:=\left\{\begin{array}{ll}
\max \left\{\alpha h_{D_{\alpha}, K}^{*}, v\right\} & \text { on } D_{\alpha} \\
v & \text { on } D \backslash D_{\alpha}
\end{array} .\right.
$$

Then

$$
\limsup _{D_{\alpha} \ni z \rightarrow \zeta} \alpha h_{D, K}^{*}(z) \leq \alpha \leq v(\zeta), \quad \zeta \in \partial D_{\alpha}
$$

Hence, by Proposition 3.2.11, $h \in \mathcal{P S H}(D)$. Obviously $h \leq 1$ on D and $h=0$ on K. Thus $h \leq h_{D, K} \leq v$. In particular, $\alpha h_{D_{\alpha}, K}^{*} \leq h \leq v$ on D_{α}.

Fix a point $z_{0} \in D$. We want to prove that v is continuous at z_{0}. Let $\beta(\alpha):=\max _{\bar{D}_{\alpha}} v$. Observe that $\alpha \leq \beta(\alpha)<1$. In particular, $\beta(\alpha) \longrightarrow 1$ when $\alpha \longrightarrow 1$. Fix $\eta>0$ and $\alpha \in(0,1)$ such that $z_{0} \in D_{\alpha}$ and $\beta / \alpha-1 \leq \eta$, where $\beta:=\beta(\alpha)$.

3. Plurisubharmonic functions

Let $\left(v_{\varepsilon}\right)_{0<\varepsilon \leq \varepsilon_{0}}$ be a family of \mathcal{C}^{∞} psh functions defined in a neighborhood Ω of $\bar{D}_{\alpha}, \Omega \subset D$, such that $v_{\varepsilon} \searrow v$ on Ω when $\varepsilon \searrow 0$ (Proposition 3.4.24). By the Hartogs lemma (Proposition 3.4.20), one can find a function $w \in \mathcal{P S H}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ such that $w \geq v$ on $\Omega, w \leq \eta$ on K, and $w \leq \beta+\eta$ on \bar{D}_{α}. Consequently,

$$
(w-\eta) / \beta \leq h_{D_{\alpha}, K}^{*} \text { on } D_{\alpha}
$$

Hence,

$$
0 \leq w-v \leq \beta h_{D_{\alpha}, K}^{*}+\eta-v \leq(\beta / \alpha-1) v+\eta \leq \beta / \alpha-1+\eta \leq 2 \eta \text { on } D_{\alpha}
$$

Now, by the continuity of w, there exists a neighborhood U od $z_{0}, U \subset D_{\alpha}$, such that $\left|w(z)-w\left(z_{0}\right)\right| \leq \eta$ for $z \in U$. Finally, $\left|v(z)-v\left(z_{0}\right)\right| \leq 5 \eta$ for $z \in U$.

Exercises

3.1. Let $D \subset \mathbb{C}$ be a domain, $h \in \mathcal{H}(D), h \not \equiv$ const. Prove that $h^{2} \notin \mathcal{H}(D)$.
3.2. Let $h \in \mathcal{H}(\mathbb{D}), h \geq 0$. Prove that

$$
\frac{1-|z|}{1+|z|} h(0) \leq h(z) \leq \frac{1+|z|}{1-|z|} h(0), \quad z \in \mathbb{D} .
$$

3.3. Determine the set $\{h(1 / 2): h \in \mathcal{H}(\mathbb{D}), h \geq 0, h(0)=1\}$.
3.4. Let $\Omega \subset \mathbb{C}$ be open and let $\left(h_{\iota}\right)_{\iota \in I} \subset \mathcal{H}(\Omega)$ be locally uniformly bounded. Show that the function $\sup _{\iota \in I} h_{\iota}$ is continuous.
3.5. Let $\Omega \subset \mathbb{C}$ be open. Prove that $-\log d_{\Omega} \in \mathcal{S H}(\Omega)$.
3.6. Given a domain $D \subset \mathbb{C}$, find a continuous subharmonic function $u: D \longrightarrow \mathbb{R}$ such that $\{z \in D$: $u(z) \leq t\} \subset \subset D$ for any $t \in \mathbb{R}$.
3.7. Let $\Omega \subset \mathbb{C}^{n}, u: \Omega \longrightarrow \mathbb{R}_{+}$. Prove that $\log u \in \mathcal{P S H}(\Omega)$ iff for any $a \in \mathbb{C}^{n}$ the function

$$
\Omega \ni z \longmapsto\left|e^{\langle z, a\rangle}\right| u(z)
$$

is psh (cf. Proposition 3.2.34 (${ }^{22}$)
3.8. Construct a function $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right), u \not \equiv 0$, such that $u=0$ on dense subset of \mathbb{C}^{n}.
3.9. Let $D:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1} z_{2}\right|<1\right\}, u \in \mathcal{P S H}(D), u \leq 0$. Prove that there exists a $v \in \mathcal{S H}(\mathbb{D})$ such that $u\left(z_{1}, z_{2}\right)=v\left(z_{1} z_{2}\right),\left(z_{1}, z_{2}\right) \in D$.
3.10. Let $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$. Prove that

$$
\sum_{j, k=1}^{2 n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}(z) Y_{j} Y_{k}=2 \operatorname{Re}\left(\sum_{j, k=1}^{n} \frac{\partial^{2} u}{\partial z_{j} \partial z_{k}}(z) X_{j} X_{k}\right)+2 \mathcal{L} u(z ; X)
$$

where

$$
\begin{gathered}
z=\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}+i x_{2}, \ldots, x_{2 n-1}+i x_{2 n}\right) \in \Omega \\
X=\left(X_{1}, \ldots, X_{n}\right)=\left(Y_{1}+i Y_{2}, \ldots, Y_{2 n-1}+i Y_{2 n}\right) \in \mathbb{C}^{n} .
\end{gathered}
$$

3.11. (Convex functions.) Let $D \subset \mathbb{R}^{N}$ be a convex domain and let $\mathcal{C} \mathcal{V}(D)$ denote the set of all convex functions $u: D \longrightarrow[-\infty, \infty)$.
(a) Let $u \in \mathcal{C} \mathcal{V}(D)$. Prove that either $u \equiv-\infty$ or $u \in \mathcal{C}(D, \mathbb{R})$.
(b) Let $\left(u_{\iota}\right)_{\iota \in I} \subset \mathcal{C} \mathcal{V}(D)$ be locally bounded from above in D. Prove that $u:=\sup _{\iota \in I} u_{\iota} \in \mathcal{C} \mathcal{V}(D)$ (cf. Propositions 3.2.10, 3.4.17).
(c) Let $\left(u_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{C} \mathcal{V}(D)$ be locally bounded from above in D. Prove that $u:=\limsup _{\nu \rightarrow+\infty} u_{\nu} \in \mathcal{C} \mathcal{V}(D)$ (cf. Propositions 3.2.14, 3.4.18).
(d) Let $u \in \mathcal{C}^{2}(D, \mathbb{R})$. Prove that $u \in \mathcal{C} \mathcal{V}(D)$ iff $\mathcal{H} u(x ; X) \geq 0$ for any $x \in D$ and $X \in \mathbb{R}^{N}$, where $\mathcal{H} u$ denotes the real Hessian of u,

$$
\mathcal{H} u(x ; X):=\sum_{j, k=1}^{N} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}(x) X_{j} X_{k}, \quad x \in D, X=\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{R}^{N}
$$

$\left.{ }^{(22}\right)\langle z, a\rangle=\sum_{j=1}^{n} z_{j} \bar{a}_{j}$.
(e) Let ϱ_{D} denote the distance to the boundary of D with respect to the Euclidean norm. Prove that $-\log \varrho_{D} \in \mathcal{C} \mathcal{V}(D)$.
(f) Let $\Phi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}_{+}\right)$be such that
$\operatorname{supp} \Phi=\overline{\mathbb{B}}_{N}=$ the unit Euclidean ball in \mathbb{R}^{N},
$\Phi(x)=\Phi\left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right), x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$,
$\int_{\mathbb{R}^{N}} \Phi d \mathcal{L}^{N}=1$.
Define

$$
D_{\varepsilon}:=\left\{x \in D: \varrho_{D}(x)>\varepsilon\right\}, \quad u_{\varepsilon}(x):=\int_{\mathbb{B}_{N}} u(x+\varepsilon y) \Phi(y) d \mathcal{L}^{N}(y), \quad x \in D_{\varepsilon}, \varepsilon>0 .
$$

Prove that if $u \in \mathcal{C} \mathcal{V}(D), u \not \equiv 0$, then $u_{\varepsilon} \in \mathcal{C} \mathcal{V}\left(D_{\varepsilon}\right) \cap \mathcal{C}^{\infty}\left(D_{\varepsilon}\right), \varepsilon>0$, and $u_{\varepsilon} \searrow u$ when $\varepsilon \searrow 0$ (cf. Propositions 3.2.25 and 3.4.24).
(g) Let $u \in \mathcal{C}(D, \mathbb{R})$. Prove that $u \in \mathcal{C} \mathcal{V}(D)$ iff $\mathcal{H} u \geq 0$ in the sense of distributions, i.e. for any function $\varphi \in \mathcal{C}_{0}^{\infty}\left(D, \mathbb{R}_{+}\right)$we have

$$
\int_{D} u(x) \mathcal{H} \varphi(x ; X) d \mathcal{L}^{N}(x) \geq 0, \quad X \in \mathbb{R}^{N}
$$

(cf. Propositions 3.2.28, 3.4.28).
(h) Let $u: D \longrightarrow[-\infty, \infty)$. Put

$$
\widetilde{D}:=D+i \mathbb{R}^{N} \subset \mathbb{C}^{N}, \quad \widetilde{u}(x+i y):=u(x), x+i y \in \widetilde{D} .
$$

Prove that $u \in \mathcal{C} \mathcal{V}(D)$ iff $\widetilde{u} \in \mathcal{P S} \mathcal{H}(\widetilde{D})$.
(i) Let $u: D \longrightarrow \mathbb{R}_{+}$. Prove that $\log u \in \mathcal{C} \mathcal{V}(D)$ iff for any $a \in \mathbb{R}^{N}$ the function

$$
D \ni x \longmapsto e^{\langle x, a\rangle} u(x)
$$

is convex (cf. Exercise 3.7).

CHAPTER 4

Pseudoconvexity and the $\bar{\partial}$-problem

4.1. Pseudoconvexity

Definition 4.1.1. An open set $\Omega \subset \mathbb{C}^{n}$ is called pseudoconvex if

$$
-\log d_{\Omega} \in \mathcal{P S H}(\Omega)
$$

Notice that \mathbb{C}^{n} is pseudoconvex (because $-\log d_{\mathbb{C}^{n}} \equiv-\infty$). The empty set \varnothing is pseudoconvex by definition.

Observe that Ω is pseudoconvex iff each connected component of Ω is pseudoconvex. We will see (Corollary 4.1.6(a)) that any convex domain is pseudoconvex, which partially justifies the terminology.

Proposition 4.1.2. (a) Every open set $\Omega \subset \mathbb{C}$ is pseudoconvex.
(b) If $\left(\Omega_{\iota}\right)_{\iota \in I}$ is a family of pseudoconvex open subsets of \mathbb{C}^{n}, then

$$
\Omega:=\operatorname{int} \bigcap_{\iota \in I} \Omega_{\iota}
$$

is pseudoconvex.
(c) If $\left(\Omega_{j}\right)_{j=1}^{\infty}$ is a sequence of pseudoconvex subsets of \mathbb{C}^{n} such that $\Omega_{j} \subset \Omega_{j+1}, j \geq 1$, then

$$
\Omega:=\bigcup_{j=1}^{\infty} \Omega_{j}
$$

is pseudoconvex.
(d) If Ω_{j} is a pseudoconvex subset of $\mathbb{C}^{n_{j}}, j=1, \ldots, N$, then

$$
\Omega:=\Omega_{1} \times \cdots \times \Omega_{N}
$$

is pseudoconvex in $\mathbb{C}^{n_{1}+\cdots+n_{N}}$ (cf. Corollary 4.1.10).
In particular, for any open sets $\Omega_{1}, \ldots, \Omega_{n} \subset \mathbb{C}$, the set $\Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$ is pseudoconvex in \mathbb{C}^{n}.
Proof. (a) If $\Omega \nsubseteq \mathbb{C}$, then

$$
d_{\Omega}(z)=\inf \{|z-\zeta|: \zeta \notin \Omega\}, \quad z \in \Omega
$$

Hence, by Propositions 3.2 .8 and 3.2.10, $-\log d_{\Omega} \in \mathcal{S H}(\Omega)$.
(b) One can prove that

$$
d_{\Omega}=\inf \left\{d_{\Omega_{\iota}}: \iota \in I\right\}
$$

Hence, by Proposition 3.4.17, $-\log d_{\Omega} \in \mathcal{P S H}(\Omega)$.
(c) Since $-\log d_{\Omega_{j}} \searrow-\log d_{\Omega}$, we use Proposition 3.4.8.
(d) We have

$$
d_{\Omega}\left(z_{1}, \ldots, z_{n}\right)=\min \left\{d_{\Omega_{j}}\left(z_{j}\right): j=1, \ldots, N\right\}, \quad\left(z_{1}, \ldots, z_{n}\right) \in \Omega
$$

Hence, by Proposition 3.4.17, $-\log d_{\Omega} \in \mathcal{P S H}(\Omega)$.
For an open set $\Omega \subset \mathbb{C}^{n}$, put

$$
\delta_{\Omega, X}(a):=\sup \{r>0: a+K(r) \cdot X \subset \Omega\}, \quad X \in \mathbb{C}^{n}, a \in \Omega
$$

Obviously, if $n=1$, then $\delta_{\Omega, X}=d_{\Omega} /|X|$.

Note that

$$
\delta_{\Omega, X}(a+\lambda X)=d_{\Omega_{a, X}}(\lambda), \quad \lambda \in \Omega_{a, X}
$$

Lemma 4.1.3. The function

$$
\Omega \times \mathbb{C}^{n} \ni(a, X) \longrightarrow \delta_{\Omega, X}(a) \in(0,+\infty]
$$

is lower semicontinuous.
Proof. Fix $\left(a_{0}, X_{0}\right) \in \Omega \times \mathbb{C}^{n}$ and $0<r_{0}<\delta_{\Omega, X_{0}}\left(a_{0}\right)$. Since the set $a_{0}+\bar{K}\left(r_{0}\right) \cdot X_{0}$ is compact, there exists an $\varepsilon>0$ such that $a+\bar{K}\left(r_{0}\right) \cdot X \subset \Omega$ for any $(a, X) \in U:=\mathbb{B}\left(a_{0}, \varepsilon\right) \times \mathbb{B}\left(X_{0}, \varepsilon\right) \subset \Omega \times \mathbb{C}^{n}$. Consequently, $\delta_{\Omega, X}(a)>r_{0}$ for any $(a, X) \in U$.

Given a \mathbb{C}-norm $\mathfrak{q}: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$, define

$$
d_{\Omega, \mathfrak{q}}(a)=\sup \left\{r>0: B_{\mathfrak{q}}(a, r) \subset \Omega\right\}, \quad a \in \Omega
$$

where $B_{\mathfrak{q}}(a, r):=\left\{z \in \mathbb{C}^{n}: \mathfrak{q}(z-a)<r\right\}$. Obviously, $d_{\Omega,| |}=d_{\Omega}$. Notice that the function $d_{\Omega, \mathfrak{q}}$ is continuous.

Remark 4.1.4. $d_{\Omega, \mathfrak{q}}=\inf \left\{\delta_{\Omega, X}: X \in \mathbb{C}^{n}, \mathfrak{q}(X)=1\right\}$.
For a compact $K \subset \Omega$ and a family $\mathcal{S} \subset \mathcal{P S H}(\Omega)$ let

$$
\widetilde{K}_{\mathcal{S}}:=\left\{z \in \Omega: \forall_{u \in \mathcal{S}}: u(z) \leq \max _{K} u\right\}
$$

By Proposition 3.4.5 $\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \widehat{K}_{\mathcal{O}(\Omega)}$.
Moreover, $\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}(\Omega)}$ and the set $\widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}(\Omega)}$ is relatively closed in Ω.
A function $u: \Omega \longrightarrow \mathbb{R}$ is called an exhaustion function if for any $t \in \mathbb{R}$ the set $\{z \in \Omega: u(z) \leq t\}$ is relatively compact in Ω.
Theorem 4.1.5. Let Ω be an open subset of \mathbb{C}^{n}. Then the following conditions are equivalent:
(PC1) $-\log \delta_{\Omega, X} \in \mathcal{P S H}(\Omega)$ for every $X \in \mathbb{C}^{n}$;
(PC2) $-\log d_{\Omega, \mathfrak{q}} \in \mathcal{P S H}(\Omega)$ for every \mathbb{C}-norm \mathfrak{q};
(PC3) Ω is pseudoconvex;
(PC4) there exists an exhaustion function $u \in \mathcal{P S H}(\Omega) \cap \mathcal{C}(\Omega)$;
(PC5) there exists an exhaustion function $u \in \mathcal{P S H}(\Omega)$;
(PC6) $\widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}(\Omega)}$ is compact in Ω for every compact $K \subset \Omega$;
(PC7) $\widetilde{K}_{\mathcal{P S H}(\Omega)}$ is relatively compact in Ω for every compact $K \subset \Omega$;
(PC8) every point $a \in \partial \Omega$ has an open neighborhood U_{a} such that $U_{a} \cap \Omega$ is pseudoconvex. $\left(^{1}\right)$
Proof.

(8)

The case $\Omega=\mathbb{C}^{n}$ is obvious (in (PC4) we can take for instance $u(z):=\|z\|, z \in \mathbb{C}^{n}$ (cf. Proposition 3.4.26). Thus we may assume that $\Omega \nsubseteq \mathbb{C}^{n}$.
$\overline{(\mathrm{PC} 1)} \Longrightarrow(\mathrm{PC} 2)$ follows from Remark 4.1.4 and Proposition 3.4.17.
The implication $(\mathrm{PC} 2) \Longrightarrow(\mathrm{PC} 3)$ is trivial.
For the proof of $(\mathrm{PC} 3) \Longrightarrow(\mathrm{PC} 4)$ we can take $u(z):=\max \left\{-\log d_{\Omega}(z),\|z\|\right\}, z \in \Omega$.
The implications $(\mathrm{PC} 4) \Longrightarrow(\mathrm{PC} 5)$ and $(\mathrm{PC} 6) \Longrightarrow(\mathrm{PC} 7)$ are trivial.

[^20]For the proof of $(\mathrm{PC} 5) \Longrightarrow(\mathrm{PC} 7)$ observe that if u is as in (PC5), then

$$
\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset\left\{z \in \Omega: u(z) \leq \max _{K} u\right\} \subset \subset \Omega .
$$

In the same way we check that $(\mathrm{PC} 4) \Longrightarrow(\mathrm{PC} 6)$.
$(\mathrm{PC} 7) \Longrightarrow(\mathrm{PC} 1)$ (This is the main part of the proof.) Fix $a \in \Omega, X, Y \in \mathbb{C}^{n} \backslash\{0\}$. We want to show that the function

$$
\Omega_{a, Y} \ni \lambda \longmapsto-\log \delta_{\Omega, X}(a+\lambda Y)
$$

is subharmonic.
First consider the case where X and Y are linearly dependent. We may assume that $X=Y$. Since $\delta_{\Omega, X}(a+\lambda X)=d_{\Omega_{a, X}}(\lambda), \lambda \in \Omega_{a, X}$, we can use Proposition 4.1.2(a).

Now assume that X, Y are linearly independent. It is sufficient to prove (cf. Proposition 3.2.7) that if $\bar{K}(r) \subset \Omega_{a, Y}$, and if $p \in \mathcal{P}(\mathbb{C})$ is such that

$$
-\log \delta_{\Omega, X}(a+\lambda Y) \leq \operatorname{Re} p(\lambda), \quad \lambda \in \partial K(r)
$$

then the same inequality holds for all $\lambda \in K(r)$. In other words, if

$$
\delta_{\Omega, X}(a+\lambda Y) \geq e^{-\operatorname{Re} p(\lambda)}, \quad \lambda \in \partial K(r)
$$

then the same is true for all $\lambda \in K(r)$. Thus we have to show that if

$$
a+\lambda Y+K\left(\left|e^{-p(\lambda)}\right|\right) \cdot X \subset \Omega, \quad \lambda \in \partial K(r)
$$

then the same inclusion holds for all $\lambda \in K(r)$.
For $0 \leq \theta<1$ let

$$
\begin{aligned}
K_{\theta} & :=\left\{a+\lambda Y+\bar{K}\left(\theta\left|e^{-p(\lambda)}\right|\right) \cdot X: \lambda \in \partial K(r)\right\}, \\
M_{\theta} & :=\left\{a+\lambda Y+\bar{K}\left(\theta\left|e^{-p(\lambda)}\right|\right) \cdot X: \lambda \in \bar{K}(r)\right\} .
\end{aligned}
$$

Observe that K_{θ} and M_{θ} are compact. Our problem is to show that if $K_{\theta} \subset \Omega$ for all $0 \leq \theta<1$, then $M_{\theta} \subset \Omega$ for all $0 \leq \theta<1$. Thus assume that $K_{\theta} \subset \Omega$ for all $0 \leq \theta<1$ and let $I_{0}:=\left\{\theta \in[0,1): M_{\theta} \subset \Omega\right\}$.

Notice that $M_{0}=a+\bar{K}(r) Y \subset \Omega$. Hence $I_{0} \neq \varnothing$. Suppose that $\theta_{0} \in I_{0}$. Since $M_{\theta_{0}}$ is compact, there exists a $\theta \in\left(\theta_{0}, 1\right)$ such that $M_{\theta} \subset \Omega$. Consequently, I_{0} is open. It remains to prove that I_{0} is closed in $[0,1)$, i.e. if $M_{\theta} \subset \Omega$ for $0<\theta<\theta_{0}<1$, then $M_{\theta_{0}} \subset \Omega$.

Fix $0<\theta<\theta_{0}$. Observe that

$$
M_{\theta}=\left\{a+\lambda Y+\zeta e^{-p(\lambda)} X:|\lambda| \leq r,|\zeta| \leq \theta\right\} \subset \subset \Omega
$$

Take a $u \in \mathcal{P S H}(\Omega)$ and define

$$
v_{\zeta}(\lambda):=u\left(a+\lambda Y+\zeta e^{-p(\lambda)} X\right), \quad \zeta \in \bar{K}(\theta), \lambda \in \bar{K}(r)
$$

Then v_{ζ} is subharmonic and, therefore, the maximum principle gives

$$
v_{\zeta}(\lambda) \leq \max _{\partial K(r)} v_{\zeta} \leq \max _{K_{\theta}} u \leq \max _{K_{\theta_{0}}} u
$$

Consequently, $M_{\theta} \subset\left(\widetilde{K_{\theta_{0}}}\right)_{\mathcal{P S H}(\Omega)} \subset \subset \Omega$ for any $0<\theta<\theta_{0}$ and hence $M_{\theta_{0}} \subset \Omega$.
The implication $(\mathrm{PC} 3) \Longrightarrow(\mathrm{PC} 8)$ is trivial.
$(\mathrm{PC} 8) \Longrightarrow(\mathrm{PC} 4)$. For $a \in \partial \Omega$ let U_{a} be a neighborhood of a such that $U_{a} \cap \Omega$ is pseudoconvex. Clearly, there exists a smaller neighborhood $V_{a} \subset U_{a}$ such that $d_{\Omega}=d_{U_{a} \cap \Omega}$ in $V_{a} \cap \Omega$ (Exercise). In particular, $-\log d_{\Omega} \in \mathcal{P S H}\left(V_{a} \cap \Omega\right)$. Consequently, there exists a closed set $F \subset \mathbb{C}^{n}$ such that $F \subset \Omega$ and $-\log d_{\Omega} \in \mathcal{P S H}(\Omega \backslash F)$. Let

$$
\varphi_{0}(t):=\max \left\{-\log d_{\Omega}(z): z \in F,\|z\| \leq t\right\}, \quad t \in \mathbb{R}
$$

(with $\max \varnothing=-\infty$). One can easily prove (Exercise) that there exists an increasing convex function $\varphi: \mathbb{R} \longrightarrow \mathbb{R}_{+}$such that $\varphi(t)>\max \left\{t, \varphi_{0}(t)\right\}, t \in \mathbb{R}$. Put

$$
u(z):=\max \left\{-\log d_{\Omega}(z), \varphi(\|z\|)\right\}, \quad z \in \Omega
$$

4. Pseudoconvexity and the $\bar{\partial}$-problem

The function u is obviously continuous. Since $\varphi(\|z\|)>-\log d_{\Omega}(z)$ for z in a neighborhood of F, the function u is plurisubharmonic in Ω (cf. Proposition 3.4.6). Moreover,

$$
\{z \in \Omega: u(z) \leq t\} \subset\left\{z \in \Omega: d_{\Omega}(z) \geq e^{-t},\|z\| \leq t\right\} \subset \subset \Omega, \quad t \in \mathbb{R}
$$

Corollary 4.1.6. (a) Any holomorphically convex open set $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex. $\left({ }^{2}\right)$ In particular, any convex domain is pseudoconvex.
(b) Any hyperconvex domain $D \subset \mathbb{C}^{n}$ (Definition 3.4.32) is pseudoconvex (cf. Exercise 4.2).

Proof. (a) $\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \widehat{K}_{\mathcal{O}(\Omega)}$
(b) Let $u: D \longrightarrow(-\infty, 0)$ be a continuous psh function such that

$$
\{z \in D: u(z) \leq t\} \subset \subset D
$$

for any $t<0$. Then for any compact $K \subset D$ we get

$$
\widetilde{K}_{\mathcal{P S H}(D)} \subset\left\{z \in D: u(z) \leq \max _{K} u\right\} \subset \subset D
$$

Proposition 4.1.7. If $\Omega_{1} \subset \mathbb{C}^{n}, \Omega_{2} \subset \mathbb{C}^{m}$ are pseudoconvex and $f \in \mathcal{O}\left(\Omega_{1}, \mathbb{C}^{m}\right)$, then $\Omega:=f^{-1}\left(\Omega_{2}\right)$ is pseudoconvex (cf. Proposition 2.7.13).
Proof. (Cf. the proof of Proposition 2.7.13.) Let $K \subset \Omega$ be compact. Then

$$
\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \Omega \cap \widetilde{K}_{\mathcal{P S H}\left(\Omega_{1}\right)} \subset \subset \Omega_{1}
$$

Suppose that there exists a sequence $\left(z_{\nu}\right)_{\nu=1}^{\infty} \subset \widetilde{K}_{\mathcal{P S H}(\Omega)}$ such that $z_{\nu} \longrightarrow z_{0} \in \Omega_{1} \cap \partial \Omega$. Observe that for any $z \in \widetilde{K}_{\mathcal{P S H}(\Omega)}$ and $v \in \mathcal{P S H}\left(\Omega_{2}\right)$ we get

$$
v(f(z)) \leq \max _{K} v \circ f=\max _{f(K)} v
$$

Hence

$$
f\left(\widetilde{K}_{\mathcal{P S H}(\Omega)}\right) \subset \widetilde{f(K)}_{\mathcal{P S H}\left(\Omega_{2}\right)} \subset \subset \Omega_{2}
$$

In particular,

$$
f\left(z_{\nu}\right) \in \widetilde{f(K)}_{\mathcal{P S H}\left(\Omega_{2}\right)} \subset \subset \Omega_{2}, \quad \nu \geq 1
$$

and so $f\left(z_{0}\right) \in \Omega_{2}$; contradiction.
Proposition 4.1.8. Ω is pseudoconvex iff the function

$$
\Omega \times \mathbb{C}^{n} \ni(z, X) \longmapsto-\log \delta_{\Omega, X}(z)
$$

is psh.
Proof. The implication \Longleftarrow is obvious. To prove \Longrightarrow let

$$
\Omega \times \mathbb{C}^{n} \ni(z, X) \stackrel{g}{\longmapsto}(z, X, 0) \in \Omega \times \mathbb{C}^{n} \times \mathbb{C} \ni(z, X, \lambda) \stackrel{f}{\longmapsto} z+\lambda X \in \mathbb{C}^{n} .
$$

Put $G:=f^{-1}(\Omega)$. Note that $g\left(\Omega \times \mathbb{C}^{n}\right) \subset G$. By Proposition 4.1.7, G is pseudoconvex. In particular, by (PC1) the function $-\log \delta_{G, Y_{0}}$ is psh in G, where $Y_{0}:=(0,0,1) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \times \mathbb{C}$. Now we only need to prove that

$$
\delta_{\Omega, X}(z)=\delta_{G, Y_{0}}(g(z, X)), \quad(z, X) \in \Omega \times \mathbb{C}^{n}
$$

Indeed, we have

$$
\begin{aligned}
\delta_{\Omega, X}(z)=\sup \{r>0: z+K(r) \cdot X \subset \Omega\} & =\sup \{r>0:\{z\} \times\{X\} \times K(r) \subset G\} \\
& =\sup \left\{r>0:(z, X, 0)+K(r) \cdot Y_{0} \subset G\right\}=\delta_{G, Y_{0}}(g(z, X))
\end{aligned}
$$

$\left(^{2}\right)$ It is natural to ask whether the converse implication is also true. This is the famous Levi Problem, which will be solved in Chapter 5.

Proposition 4.1.9. Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex. Then for any complex affine subspace $V \subset \mathbb{C}^{n}$ the set $\Omega \cap V$ is pseudoconvex in V, i.e. for any $a \in \mathbb{C}^{n}$ and linearly independent vectors v_{1}, \ldots, v_{k} the set

$$
G:=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{C}^{k}: a+\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \in \Omega\right\}
$$

is pseudoconvex in \mathbb{C}^{k}.
Proof. If u is a psh exhaustion function for Ω (cf. (PC5)), then the function

$$
v(\lambda):=u\left(a+\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in G,
$$

is a psh exhaustion function for $G .\left(^{3}\right)$
Corollary 4.1.10. Let Ω_{j} be open in $\mathbb{C}^{n_{j}}, j=1, \ldots, N$. Then $\Omega_{1} \times \cdots \times \Omega_{N}$ is pseudoconvex iff each Ω_{j} is pseudoconvex, $j=1, \ldots, N$.

Proposition 4.1.11. Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex. Then for any biholomorphic mapping $\Phi: \Omega \longrightarrow \Phi(\Omega)$ the set $\Phi(\Omega)$ is pseudoconvex.

Proof. If u is a psh exhaustion function for Ω, then $u \circ \Phi^{-1}$ is a psh exhaustion function for $\Phi(\Omega)$.
Proposition 4.1.12. Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex and let $u \in \mathcal{P S H}(\Omega)$. Then

$$
G:=\{z \in \Omega: u(z)<0\}
$$

is pseudoconvex.
Proof. First assume additionally that u is continuous. Take an arbitrary compact $K \subset G$. Then

$$
\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset\left\{z \in \Omega: u(z) \leq \max _{K} u\right\} \subset G
$$

Consequently, $\widetilde{K}_{\mathcal{P S H}(G)} \subset \widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \subset G$.
Now, let u be arbitrary. Put

$$
\Omega_{\varepsilon}:=\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\}, \quad \varepsilon>0
$$

By the first part of the proof Ω_{ε} is pseudoconvex for any $\varepsilon>0$. Let $u_{\varepsilon} \in \mathcal{P S H}\left(\Omega_{\varepsilon}\right) \cap \mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$ be the ε-regularization of u (cf. Proposition 3.4.24). Define

$$
G_{\varepsilon}:=\left\{z \in \Omega_{\varepsilon}: u_{\varepsilon}(z)<0\right\}, \quad \varepsilon>0
$$

By the first part of the proof we know that G_{ε} is pseudoconvex for any $\varepsilon>0$. It remains to observe that $G_{\varepsilon} \nearrow G$ as $\varepsilon \searrow 0$ and use Proposition 4.1.2(c).
Corollary 4.1.13. An open set $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex iff for arbitrary $\varepsilon>0$ the set $\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\}$ is pseudoconvex.

Proposition 4.1.14. Let

$$
D=\left\{(z, w) \in G \times \mathbb{C}^{k}: H(z, w)<1\right\}
$$

be a Hartogs domain over G with k-dimensional balanced fibers (Definition 1.6.3), where H is as in Remark 1.6.4 (a). Then D is pseudoconvex iff G is pseudoconvex and $\log H \in \mathcal{P S H}\left(G \times \mathbb{C}^{k}\right)$.

In particular, we get the following results:
(a) A balanced domain

$$
D=\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}
$$

where h is the Minkowski functional of D, is pseudoconvex iff $\log h$ is psh on \mathbb{C}^{n} (cf. Proposition 3.4.27).
(b) A complete Hartogs domain

$$
D:=\left\{(z, w) \in G \times \mathbb{C}:|w|<e^{-u(z)}\right\}
$$

$\left({ }^{3}\right)$ Observe that the result follows also from Proposition 4.1.7 with

$$
\mathbb{C}^{k} \ni\left(\lambda_{1}, \ldots, \lambda_{k}\right) \stackrel{f}{\longmapsto} a+\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \in \mathbb{C}^{n} .
$$

4. Pseudoconvexity and the $\bar{\partial}$-problem
where $G \subset \mathbb{C}^{n-1}$ is a domain and $u: G \longrightarrow[-\infty,+\infty$) is upper semicontinuous (cf. Remark 1.6.4(c)), is pseudoconvex iff G is pseudoconvex and $u \in \mathcal{P S H}(G)$.

Proof. \Longleftarrow. Observe that $G \times \mathbb{C}^{k}$ is pseudoconvex and

$$
D=\left\{(z, w) \in G \times \mathbb{C}^{k}: \log H(z, w)<0\right\}
$$

It remains to use Proposition 4.1.12,
\Longrightarrow. We have $G \times\{0\}=D \cap\{w=0\}$. Hence, by Proposition 4.1.9. G is pseudoconvex. Moreover,

$$
\delta_{D,(0, w)}(z, 0)=\frac{1}{H(z, w)}, \quad z \in G, w \in \mathbb{C}^{k}
$$

Hence, by Proposition 4.1.8, $\log H \in \mathcal{P S} \mathcal{H}\left(G \times \mathbb{C}^{k}\right)$.
Proposition 4.1.15. Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex open set, let $K \subset \Omega$ be a compact set, and let $U \subset \Omega$ be an open neighborhood of $\widetilde{K}_{\mathcal{P S H}(\Omega)}$. Then there exists a strictly psh exhaustion function $u \in \mathcal{C}^{\infty}(\Omega)$ such that

$$
u<0 \text { on } K, \quad u>0 \text { on } \Omega \backslash U
$$

Proof. Let u_{0} be a continuous psh exhaustion function on Ω (cf. (PC4)). We may assume that $u_{0}<0$ on K. Define

$$
L:=\left\{z \in \Omega: u_{0}(z) \leq 2\right\}, \quad M:=\left\{z \in \Omega \backslash U: u_{0}(z) \leq 0\right\}
$$

The sets L, M are compact, $M \subset L$.
Suppose that $M \neq \varnothing$. Since $M \cap \widetilde{K}_{\mathcal{P S H}(\Omega)}=\varnothing$, for any point $a \in M$ there exists a function $u_{a} \in$ $\mathcal{P S H}(\Omega)$ such that $u_{a}<0$ on K and $u_{a}(a)>0$. Let $\Omega_{\varepsilon}:=\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\}$ and let $\left(u_{a}\right)_{\varepsilon} \in \mathcal{P S H}\left(\Omega_{\varepsilon}\right) \cap$ $\mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$ denote the ε-regularization of u_{a}. It is clear that there exists an $\varepsilon(a)>0$ such that $L \subset \Omega_{\varepsilon(a)}$, $\left(u_{a}\right)_{\varepsilon(a)}<0$ on K and $\left(u_{a}\right)_{\varepsilon(a)}(a)>0$. Put $v_{a}:=\left(u_{a}\right)_{\varepsilon(a)}$. Since v_{a} is continuous, there exists a neighborhood $V_{a} \subset \Omega_{\varepsilon(a)}$ of a such that $v_{a}>0$ in V_{a}. Since M is compact, there exist points $a_{1}, \ldots, a_{N} \in M$ such that $M \subset V_{a_{1}} \cup \cdots \cup V_{a_{N}}$. Define $\varepsilon:=\max \left\{\varepsilon\left(a_{1}\right), \ldots, \varepsilon\left(a_{N}\right)\right\}, w:=\max \left\{v_{a_{1}}, \ldots, v_{a_{N}}\right\} \in \mathcal{P S H}\left(\Omega_{\varepsilon}\right) \cap \mathcal{C}\left(\Omega_{\varepsilon}\right)$ and observe that $L \subset \Omega_{\varepsilon}, w<0$ on K and $w>0$ on M. Let $c:=\max \left\{1, \max _{L} w\right\}$ and put

$$
v(z):=\left\{\begin{array}{ll}
\max \left\{w(z), c u_{0}(z)\right\} & \text { if } u_{0}(z)<2 \\
c u_{0}(z) & \text { if } u_{0}(z)>1
\end{array} .\right.
$$

Then v is a well-defined continuous psh function on Ω. Observe that $\{v<t\} \subset\left\{u_{0}<2\right\} \cup\left\{u_{0}<t / c\right\} \subset \subset \Omega$ for any $t \in \mathbb{R}$, so v is an exhaustion function. Clearly, $v<0$ on K. Moreover, if $z \in \Omega \backslash U$ and $u_{0}(z)>0$, then $v(z) \geq c u_{0}(z)>0$; if $z \in \Omega \backslash U$ and $u_{0}(z) \leq 0$, then $z \in M$ and therefore $v(z) \geq w(z)>0$. Thus $v>0$ on $\Omega \backslash U$.

If $M=\varnothing$ we put $v:=u_{0}$.
It remains to smooth v. Put

$$
G_{\nu}:=\{z \in \Omega: v(z)<\nu\}, \quad \nu \in \mathbb{Z}
$$

Let $\widetilde{v}_{\varepsilon} \in \mathcal{P S H}\left(\Omega_{\varepsilon}\right) \cap \mathcal{C}^{\infty}\left(\Omega_{\varepsilon}\right)$ be the ε-regularization of v and let $v_{\varepsilon}:=\widetilde{v}_{\varepsilon}+\varepsilon\|z\|^{2}+\varepsilon$. Then v_{ε} is strictly psh and $v_{\varepsilon} \searrow v$ as $\varepsilon \searrow 0$ on Ω. Since v is continuous, $v_{\varepsilon} \longrightarrow v$ locally uniformly on Ω (use the Dini theorem). For each $\nu \in \mathbb{N}_{0}$ let $\varepsilon(\nu)>0$ be such that $G_{\nu} \subset \subset \Omega_{\varepsilon(\nu)}, v<v_{\varepsilon(\nu)}<v+1$ on \bar{G}_{ν} and $v_{\varepsilon(\nu)}<0$ on K. Let $\varphi_{\nu} \in \mathcal{C}_{0}^{\infty}(\Omega,[0,1])$ be such that $\operatorname{supp} \varphi_{\nu} \subset \Omega_{\varepsilon(\nu)}$ and $\varphi_{\nu}=1$ in a neighborhood of \bar{G}_{ν}. Define $\psi_{\nu}:=\varphi_{\nu} \cdot v_{\varepsilon(\nu)}$ on G_{ν} and $\psi_{\nu}=0$ on $\Omega \backslash \operatorname{supp} \varphi_{\nu}$. Observe that ψ_{ν} is a well-defined \mathcal{C}^{∞} function on Ω and $\psi_{\nu}=v_{\varepsilon(\nu)}$ in a neighborhood of $\bar{G}_{\nu}, \nu \in \mathbb{N}_{0}$.

Let $\chi: \mathbb{R} \longrightarrow \mathbb{R}_{+}$be a \mathcal{C}^{∞} increasing convex function such that $\chi(t)=0$ for $t \leq 0$ and $\chi^{\prime}(t)>0$ for $t>0$. Define $V_{\nu}:=\chi\left(\psi_{\nu}+1-\nu\right) \in \mathcal{C}^{\infty}\left(\Omega, \mathbb{R}_{+}\right)$. Observe that:
(a) V_{ν} is psh in a neighborhood of \bar{G}_{ν}.
(b) $V_{\nu}=0$ on $\bar{G}_{\nu-2}$. Indeed, if $z \in \bar{G}_{\nu-2}$, then $\psi_{\nu}(z)+1-\nu<v(z)+1+1-\nu \leq 0$.
(c) V_{ν} is strictly psh and >0 in a neighborhood of $\bar{G}_{\nu} \backslash G_{\nu-1}$. Indeed, if $z \in \bar{G}_{\nu} \backslash G_{\nu-1}$, then $\psi_{\nu}(z)+1-\nu>v(z)+1-\nu \geq 0$. Hence $V_{\nu}(z)>0$ and for $X \in\left(\mathbb{C}^{n}\right)_{*}$ we get

$$
\begin{aligned}
& \mathcal{L} V_{\nu}(z ; X)=\chi^{\prime \prime}\left(\psi_{\nu}(z)+1-\nu\right)\left|\sum_{j=1}^{n} \frac{\partial \psi_{\nu}}{\partial z_{j}}(z) X_{j}\right|^{2}+\chi^{\prime}\left(\psi_{\nu}(z)+1-\nu\right) \mathcal{L} \psi_{\nu}(z ; X) \\
& \geq \chi^{\prime}\left(\psi_{\nu}(z)+1-\nu\right) \mathcal{L} \psi_{\nu}(z ; X)>0
\end{aligned}
$$

We are going to construct a sequence $\left(c_{\nu}\right)_{\nu=1}^{\infty} \subset \mathbb{R}_{>0}$ such that for each $\nu \in \mathbb{N}$ the function $W_{\nu}:=$ $\psi_{0}+c_{1} V_{1}+\cdots+c_{\nu} V_{\nu}$ is $>v$ and strictly psh in a neighborhood of \bar{G}_{ν}. We proceed by induction over ν. Put $W_{0}:=\psi_{0}$ and suppose that c_{1}, \ldots, c_{ν} are already constructed for some $\nu \geq 0$ (this condition is empty for $\nu=0$). By (a), for any $c_{\nu+1}>0$, the function $W_{\nu+1}=W_{\nu}+c_{\nu+1} V_{\nu+1}$ is strictly psh and $>v$ in a neighborhood of \bar{G}_{ν}. We have to find $c_{\nu+1}$ such that $W_{\nu+1}$ is strictly psh and $>v$ in a neighborhood of $H:=\bar{G}_{\nu+1} \backslash G_{\nu}$. Fix an $A>0$ such that $\mathcal{L} W_{\nu}(z ; X) \geq-A\|X\|^{2}, z \in H, X \in \mathbb{C}^{n}$. In virtue of (c) there exists a constant $B>0$ such that $\mathcal{L} V_{\nu+1}(z ; X) \geq B\|X\|^{2}, z \in H, X \in \mathbb{C}^{n}$. Hence $\mathcal{L} W_{\nu+1}(z ; X)=\mathcal{L} W_{\nu}(z ; X)+c_{\nu+1} \mathcal{L} V_{\nu+1}(z ; X) \geq\left(-A+c_{\nu+1} B\right)\|X\|^{2}, z \in H, X \in \mathbb{C}^{n}$, which shows that with $c_{\nu+1} \gg 0$ the function $W_{\nu+1}$ is strictly psh on $\bar{G}_{\nu+1}$. Recall that $V_{\nu+1}>0$ on H (cf. (c)). Hence, if $c_{\nu+1} \gg 0$, then $W_{\nu+1}>v$ on H.

Observe that $W_{\nu}=W_{\mu}$ on $G_{\mu-1}$ for any $\nu>\mu$ (use (b)). Thus $u:=\lim _{\nu \rightarrow+\infty} W_{\nu}$ is a well-defined \mathcal{C}^{∞} strictly psh function on Ω. If $z \in K \subset G_{0}$, then we get $u(z)=W_{1}(z)=\psi_{0}(z)+c_{1} \chi\left(\psi_{1}(z)\right)=\psi_{0}(z)<0$. Moreover, $u>v$ and therefore u is an exhaustion function.

Corollary 4.1.16. Let $\Omega \subset \mathbb{C}^{n}$ be a pseudoconvex open set and let $K \subset \Omega$ be a compact set. Then $\widetilde{K}_{\mathcal{P S H}(\Omega)}=\widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)}$. In particular, the set $\widetilde{K}_{\mathcal{P S H}(\Omega)}$ is closed.

Proof. Obviously, $\widetilde{K}_{\mathcal{P S H}(\Omega)} \subset \widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}}{ }_{(\Omega)}$. Take an $a \notin \widetilde{K}_{\mathcal{P S H}(\Omega)}$ and let $U:=\Omega \backslash\{a\}$. Then by Proposition 4.1.15 there exists a function $u \in \mathcal{P S H}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ such that $u<0$ on K and $u(a)>0$. Consequently, $a \notin \widetilde{K}_{\mathcal{P S H}(\Omega) \cap \mathcal{C}}{ }^{\infty}(\Omega)$.

Definition 4.1.17. We say that an open bounded set $\Omega \subset \mathbb{C}^{n}$ is strongly pseudoconvex if for any point $a \in \partial \Omega$ there exist a polydisc $P \subset \mathbb{C}^{n}$ and a strictly psh function $u \in \mathcal{C}^{2}(P, \mathbb{R})(c f . \S 3.4)$ such that

- $a \in P$,
- $\Omega \cap P=\{z \in P: u(z)<0\}$,
- $P \backslash \bar{\Omega}=\{z \in P: u(z)>0\}$,
- $\operatorname{grad} u(z) \neq 0$ for any $z \in P \cap \partial \Omega$.

Observe that, by (PC8) and Proposition 4.1.12, any strongly pseudoconvex open set is pseudoconvex.
Proposition 4.1.18. Assume that Ω is holomorphically convex open set.
(a) Let $K \subset \Omega$ be compact and let U be an open neighborhood of $\widehat{K}_{\mathcal{O}(\Omega)}$. Then there exists a strictly psh real analytic exhaustion function $u: \Omega \longrightarrow \mathbb{R}$ such that $u<0$ on K and $u>0$ on $\Omega \backslash U$.
(b) $\Omega=\bigcup_{k=1}^{\infty} \Omega_{k}$, where
Ω_{k} is a relatively compact open subset of Ω with $\Omega_{k} \subset \Omega_{k+1}$, and
Ω_{k} is strongly pseudoconvex with real analytic boundary, $k \geq 1$.
Proof. (a) There exists a sequence of holomorphically convex compact sets $\left(K_{j}\right)_{j=1}^{\infty}$ such that $K_{1}=\widehat{K}_{\mathcal{O}(\Omega)}$, $K_{j} \subset \operatorname{int} K_{j+1}, j \geq 1$, and $\Omega=\bigcup_{j=1}^{\infty} K_{j}$; cf. Remark 2.7.11(g). Fix open sets $U_{j}, j \geq 1$, such that $U_{1} \subset U$, $K_{j} \subset U_{j} \subset K_{j+1}, j \geq 1$. Fix a $j \geq 1$. For any point $z \in K_{j+2} \backslash U_{j}$ there exists an $f_{z} \in \mathcal{O}(\Omega)$ such that $\left|f_{z}(z)\right|>1>\left\|f_{z}\right\|_{K_{j}}$. Let V_{z} be a neighborhood of z such that $\left|f_{z}(w)\right|>1$ for $w \in \bar{V}_{z}$. There exist points $z_{1}, \ldots, z_{k(j)}$ such that $K_{j+2} \backslash U_{j} \subset V_{z_{1}} \cup \cdots \cup V_{z_{k(j)}}$. Define $f_{j, \nu}:=f_{z_{\nu}}^{\ell}, \nu=1, \ldots, k(j)$, where $\ell=\ell(j)$ is such that

$$
\sum_{\nu=1}^{k(j)}\left|f_{j, \nu}(z)\right|^{2}<\frac{1}{2^{j+1}}, z \in K_{j}, \quad \sum_{\nu=1}^{k(j)}\left|f_{j, \nu}(z)\right|^{2}>j, z \in K_{j+2} \backslash U_{j}
$$

4. Pseudoconvexity and the $\bar{\partial}$-problem

Put

$$
v:=-1+\sum_{j=1}^{\infty} \sum_{\nu=1}^{k(j)}\left|f_{j, \nu}\right|^{2} .
$$

Observe that the series converges locally normally in Ω. It is clear that $v \in \mathcal{P S H}(\Omega), v<0$ on K, and that $v>j-1$ on $\Omega \backslash U_{j}, j \geq 1$. In particular, $v>0$ on $\Omega \backslash U$ and v is an exhaustion function.

To prove that v is real analytic we proceed as follows.
Define $\Omega^{*}:=\{\bar{z}: z \in \Omega\}$ and $\varphi: \Omega \times \Omega^{*} \longrightarrow \mathbb{C}$,

$$
\varphi(z, w):=-1+\sum_{j=1}^{\infty} \sum_{\nu=1}^{k(j)} f_{j, \nu}(z) \overline{f_{j, \nu}(\bar{w})}
$$

The series converges locally normally in $\Omega \times \Omega^{*}$ and therefore $\varphi \in \mathcal{O}\left(\Omega \times \Omega^{*}\right)$. Since $v(z)=\varphi(z, \bar{z}), z \in \Omega$, the function v is real analytic.

Finally, we put $u:=v+\varepsilon\|z\|^{2}$, where $\varepsilon>0$ is so small that $u<0$ on K. It is clear that u satisfies all the required conditions.
(b) Let u be as in (a). By the Sard theorem (cf. [6], Th. 3.4.3) (4) there exists a sequence $\mathbb{R} \ni t_{k} \nearrow+\infty$ such that $t_{k} \notin u(\{z \in \Omega: \operatorname{grad} u(z)=0\})$. We put $\Omega_{k}:=\left\{z \in \Omega: u(z)<t_{k}\right\}, k \geq 1$.

Let $\left(A_{\nu}\right)_{\nu=0}^{\infty}$ be an arbitrary sequence of subsets of \mathbb{C}^{n}. Define

$$
A_{0}=\lim _{\nu \rightarrow+\infty} A_{\nu} \stackrel{\text { def }}{\Longleftrightarrow} \forall_{\varepsilon>0} \exists_{\nu_{0}}: \forall_{\nu \geq \nu_{0}}: A_{\nu} \subset\left(A_{0}\right)^{(\varepsilon)}, A_{0} \subset\left(A_{\nu}\right)^{(\varepsilon)} .\left(^{5}\right)
$$

One can easily check that if $A_{\nu} \longrightarrow A_{0}, A_{0}$ is bounded, and $u \in \mathcal{C}\left(\mathbb{C}^{n}, \mathbb{R}\right)$, then $\inf _{A_{\nu}} u \longrightarrow \inf _{A_{0}} u$.
Theorem 4.1.19 (Kontinuitätssatz). Let Ω be an open subset of \mathbb{C}^{n}. Then the following conditions are equivalent:
(PC3) Ω is pseudoconvex;
(PC9) for any $k \in \mathbb{N}$, a bounded domain $D \subset \mathbb{C}^{k}$, and a sequence $\left(\gamma_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{O}(D, \Omega) \cap \mathcal{C}(\bar{D}, \Omega)$, the following implication is true:
if $\gamma_{\nu}(\bar{D}) \longrightarrow A$ and $\gamma_{\nu}(\partial D) \longrightarrow A_{0}$, where A is bounded and $A_{0} \subset \subset \Omega$, then $A \subset \subset \Omega$;
(PC10) for every sequence of injective holomorphic mappings $\left(\gamma_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{O}\left(\mathbb{C}, \mathbb{C}^{n}\right)$ such that $\bigcup_{\nu=1}^{\infty} \gamma_{\nu}(\overline{\mathbb{D}}) \subset \Omega$, the following implication is true:
if $\gamma_{\nu}(\overline{\mathbb{D}}) \longrightarrow A$ and $\gamma_{\nu}(\mathbb{T}) \longrightarrow A_{0}$, where A is bounded and $A_{0} \subset \subset \Omega$, then $A \subset \subset \Omega$.
Proof. (PC3) $\Longrightarrow(\mathrm{PC} 9)$. Let $u_{\nu}:=-\log d_{\Omega} \circ \gamma_{\nu}$. Then $u_{\nu} \in \mathcal{P S H}(D) \cap \mathcal{C}(\bar{D})$ (cf. Proposition 3.4.25). In particular, by the maximum principle we have

$$
\max _{\bar{D}} u_{\nu}=\max _{\partial D} u_{\nu}, \quad \nu \geq 1
$$

This means that

$$
\inf _{\gamma_{\nu}(\bar{D})} d_{\Omega}=\inf _{\gamma_{\nu}(\partial D)} d_{\Omega}, \quad \nu \geq 1
$$

Put $d_{\Omega}:=0$ on $\mathbb{C}^{n} \backslash \Omega$. Then $d_{\Omega} \in \mathcal{C}\left(\mathbb{C}^{n}\right)$. We get

$$
\inf _{\gamma_{\nu}(\bar{D})} d_{\Omega} \longrightarrow \inf _{A} d_{\Omega}, \quad \inf _{\gamma_{\nu}(\partial D)} d_{\Omega} \longrightarrow \inf _{A_{0}} d_{\Omega},
$$

which proves that $\inf _{A} d_{\Omega}=\inf _{A_{0}} d_{\Omega}>0$, and so $A \subset \subset \Omega$.
The implication $(\mathrm{PC} 9) \Longrightarrow(\mathrm{PC} 10)$ is obvious.
$(\mathrm{PC} 10) \Longrightarrow(\mathrm{PC} 3)$. We keep all the notations from the proof of the implication $(\mathrm{PC} 7) \Longrightarrow(\mathrm{PC} 1)$ in Theorem 4.1.5. Recall that the only problem is to show that the set I_{0} is closed in $[0,1)$. Take an $I_{0} \ni \theta_{\nu} \longrightarrow \theta_{0} \in[0,1)$ and fix a $\zeta \in \overline{\mathbb{D}}$. Define

$$
\gamma_{\nu}(\lambda):=a+r \lambda Y+\theta_{\nu} \zeta e^{-p(r \lambda)} X, \quad \lambda \in \mathbb{C}, \nu \geq 1
$$

$\left(\begin{array}{l}4 \\ \left.{ }^{4}\right) \text { For any } u \in \mathcal{C}^{2 n}(\Omega, \mathbb{R}) \text {, the set } u(\{z \in \Omega: \operatorname{grad} u(z)=0\}) \subset \mathbb{R} \text { is of Lebesgue measure zero. } \\ \left.{ }^{5}\right) \text { Recall that } A^{(\varepsilon)}:=\bigcup_{a \in A} \overline{\mathbb{P}}(a, \varepsilon) .\end{array}\right.$
4.2. The $\bar{\partial}$-problem

Then γ_{ν} is injective (because X and Y are linearly independent). Obviously,

$$
\Omega \supset \gamma_{\nu}(\overline{\mathbb{D}}) \longrightarrow A, \quad \gamma_{\nu}(\mathbb{T}) \longrightarrow A_{0},
$$

where

$$
\begin{gathered}
A:=\left\{a+r \lambda Y+\theta_{0} \zeta e^{-p(r \lambda)} X:|\lambda| \leq 1\right\} \subset M_{\theta_{0}} \\
A_{0}:=\left\{a+r \lambda Y+\theta_{0} \zeta e^{-p(r \lambda)} X:|\lambda|=1\right\} \subset K_{\theta_{0}} \subset \subset \Omega
\end{gathered}
$$

Consequently, $A \subset \Omega$ and hence (since ζ is arbitrary) $\theta_{0} \in I_{0}$.

4.2. The $\bar{\partial}$-problem

Let $\Omega \subset \mathbb{C}^{n}$ be open, $p, q \in \mathbb{N}_{0}$, and let u be a differential form on Ω of order $p+q$. We say that u is of type $(p, q)\left(u \in \mathcal{F}_{(p, q)}(\Omega)\right)$ if

$$
\begin{equation*}
u=\sum_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}} u_{I, J} d z_{I} \wedge d \bar{z}_{J}, \tag{4.2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Xi_{p}^{n}:=\left\{I=\left(i_{1}, \ldots, i_{p}\right) \in \mathbb{N}^{p}: 1 \leq i_{1}<\cdots<i_{p} \leq n\right\}, \\
& u_{I, J}: \Omega \longrightarrow \mathbb{C}, \\
& d z_{I}:=d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}}, d \bar{z}_{J}:=d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}} .
\end{aligned}
$$

To simplify notation, we will write

$$
\sum_{|I|=p,|J|=q}^{\prime} \cdots
$$

instead of

$$
\sum_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}} \ldots
$$

The representation $\sqrt{4.2 .1}$ is uniquely determined; it is called the canonical representation of u.
Notice that $\mathcal{F}_{(p, q)}(\Omega)=\{0\}$ for $p>n$ or $q>n$.
Let

$$
\mathcal{C}_{(p, q)}^{k}(\Omega):=\left\{u \in \mathcal{F}_{(p, q)}(\Omega): \forall_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}}: u_{I, J} \in \mathcal{C}^{k}(\Omega)\right\}, \quad 0 \leq k \leq \infty
$$

For $u \in \mathcal{C}_{(p, q)}^{1}(\Omega)$ in the form 4.2.1) define

$$
\begin{align*}
& \partial u:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial u_{I, J}}{\partial z_{j}} d z_{j} \wedge d z_{I} \wedge d \bar{z}_{J}, \tag{4.2.2}\\
& \bar{\partial} u:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial u_{I, J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J} . \tag{4.2.3}
\end{align*}
$$

Note that the right-hand sides of 4.2 .2 and 4.2 .3 are not in the canonical form. For instance, the canonical form of 4.2 .3 is the following one

$$
\bar{\partial} u=\sum_{|I|=p,|K|=q+1}^{\prime}\left(\sum_{J \in \Xi_{q}^{n}, j \in\{1, \ldots, n\}} \varepsilon(I, K, J, j) \frac{\partial u_{I, J}}{\partial \bar{z}_{j}}\right) d z_{I} \wedge d \bar{z}_{K}
$$

where for $K=\left(k_{1}, \ldots, k_{q+1}\right)$ and $J=\left(j_{1}, \ldots, j_{q}\right)$,

$$
\varepsilon(I, K, J, j):=0
$$

if $\left\{k_{1}, \ldots, k_{q+1}\right\} \neq\left\{j, j_{1}, \ldots, j_{q}\right\}$, and

$$
\varepsilon(I, K, J, j) \in\{-1,+1\} \text { is such that } d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J}=\varepsilon(I, K, J, j) d z_{I} \wedge d \bar{z}_{K}
$$

if $\left\{k_{1}, \ldots, k_{q+1}\right\}=\left\{j, j_{1}, \ldots, j_{q}\right\}$.

Observe that

$$
\partial: \mathcal{C}_{(p, q)}^{k}(\Omega) \longrightarrow \mathcal{C}_{(p+1, q)}^{k-1}(\Omega), \quad \bar{\partial}: \mathcal{C}_{(p, q)}^{k}(\Omega) \longrightarrow \mathcal{C}_{(p, q+1)}^{k-1}(\Omega), \quad \partial+\bar{\partial}=d
$$

where d denotes the standard exterior differentiation operator.
A form $u \in \mathcal{C}_{(p, q)}^{1}(\Omega)$ is called $\bar{\partial}$-closed if $\bar{\partial} u=0$.
A form $v \in \mathcal{C}_{(p, q+1)}(\Omega)$ is called $\bar{\partial}$-exact if there exists a $u \in \mathcal{C}_{(p, q)}^{1}(\Omega)$ such that $\bar{\partial} u=v$.
The equation $\bar{\partial} u=v$ is called the inhomogeneous Cauchy-Riemann equation or the $\bar{\partial}$-equation or the $\bar{\partial}$-problem.
Remark 4.2.1. (a) Since $\partial+\bar{\partial}=d$, we get

$$
(\partial \circ \partial)(u)=0, \quad(\bar{\partial} \circ \bar{\partial})(u)=0, \quad(\partial \circ \bar{\partial})(u)=-(\bar{\partial} \circ \partial)(u), \quad u \in C_{(p, q)}^{2}(\Omega)
$$

In particular, if $v \in \mathcal{C}_{(p, q+1)}^{1}(\Omega)$ and $v=\bar{\partial} u$ for a form $u \in \mathcal{C}_{(p, q)}^{2}(\Omega)$, then $\bar{\partial} v=0$, i.e. v must be $\bar{\partial}$-closed. (b) For $f \in \mathcal{C}^{1}(\Omega)$ we have

$$
f \in \mathcal{O}(\Omega) \Longleftrightarrow \bar{\partial} f=0
$$

More generally, if $u=\sum_{|I|=p}^{\prime} u_{I} d z_{I} \in \mathcal{C}_{(p, 0)}^{1}(\Omega)$, then

$$
\bar{\partial} u=0 \Longleftrightarrow \forall_{I \in \Xi_{p}^{n}}: u_{I} \in \mathcal{O}(\Omega) .
$$

(c) If $u \in \mathcal{F}_{(p, q)}(\Omega), v \in \mathcal{F}_{(r, s)}(\Omega)$, then $u \wedge v \in \mathcal{F}_{(p+r, q+s)}(\Omega)$.
(d) Let $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right): \Omega^{\prime} \longrightarrow \Omega$ be a holomorphic mapping, where Ω^{\prime} is an open set in \mathbb{C}^{m}. Then

$$
\Phi^{*}\left(\mathcal{F}_{(p, q)}(\Omega)\right) \subset \mathcal{F}_{(p, q)}\left(\Omega^{\prime}\right)
$$

where for $u=\sum_{|I|=p,|J|=q}^{\prime} u_{I, J} d z_{I} \wedge d \bar{z}_{J}$ we put

$$
\begin{aligned}
\Phi^{*}(u): & =\sum_{|I|=p,|J|=q}^{\prime}\left(u_{I, J} \circ \Phi\right) d \Phi_{i_{1}} \wedge \cdots \wedge d \Phi_{i_{p}} \wedge d \bar{\Phi}_{j_{1}} \wedge \cdots \wedge d \bar{\Phi}_{j_{q}} \\
& =\sum_{|I|=p,|J|=q}^{\prime}\left(u_{I, J} \circ \Phi\right) \partial \Phi_{i_{1}} \wedge \cdots \wedge \partial \Phi_{i_{p}} \wedge \bar{\partial}_{j_{1}} \wedge \cdots \wedge \bar{\partial} \bar{\Phi}_{j_{q}}
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
\Phi^{*}\left(\mathcal{C}_{(p, q)}^{k}(\Omega)\right) \subset \mathcal{C}_{(p, q)}^{k}\left(\Omega^{\prime}\right), \quad\left(\Phi^{*} \circ \bar{\partial}\right)(u)=\left(\bar{\partial} \circ \Phi^{*}\right)(u), \quad u \in \mathcal{C}_{(p, q)}^{1}(\Omega) \\
\mathcal{C}_{(p, q)}^{k}(\Omega) \\
\bar{\partial} \downarrow \\
\\
\mathcal{C}_{(p, q+1)}^{k-1}(\Omega)
\end{gathered} \xrightarrow{\Phi^{*}} \begin{gathered}
\mathcal{S}_{(p, q)}^{k}\left(\Omega^{\prime}\right) \\
\mathcal{C}_{(p, q+1)}^{k-1}\left(\Omega^{\prime}\right)
\end{gathered}
$$

In particular, if $\bar{\partial} u=v$, then $\bar{\partial}\left(\Phi^{*}(u)\right)=\Phi^{*}(v)$. Consequently, if $u \in \mathcal{C}_{(p, q)}^{1}(\Omega)$ is $\bar{\partial}$-closed, then $\Phi^{*}(u)$ is also $\bar{\partial}$-closed.
(e)

$$
\bar{\partial}(u \wedge v)=(\bar{\partial} u) \wedge v+(-1)^{p+q} u \wedge(\bar{\partial} v), \quad u \in \mathcal{C}_{(p, q)}^{1}(\Omega), v \in \mathcal{C}_{(r, s)}^{1}(\Omega)
$$

For u as in 4.2.1 we define the support of u by the formula

$$
\operatorname{supp} u:=\bigcup_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}} \operatorname{supp} u_{I, J} .
$$

Proposition 4.2.2. Let $v \in \mathcal{C}_{(0,1)}^{k}\left(\mathbb{C}^{n}\right)$ be a $\bar{\partial}$-closed form with $k \geq 1$, $n \geq 2$, and $\operatorname{supp} v \subset \subset \mathbb{C}^{n}$. Then there exists a function $u \in \mathcal{C}_{0}^{k}\left(\mathbb{C}^{n}\right)$ such that $\bar{\partial} u=v$ and $u=0$ in the unbounded connected component of the set $\mathbb{C}^{n} \backslash \operatorname{supp} v$.

Remark 4.2.3. The above result is not true for $n=1$.
Indeed, let $v=v_{0} d \bar{z} \in \mathcal{C}_{(0,1)}^{\infty}(\mathbb{C})$ be such that $\operatorname{supp} v_{0} \subset \subset \mathbb{C}$ and $\int_{\mathbb{C}} v_{0} d \mathcal{L}^{2} \neq 0$. Suppose that $v_{0}=\frac{\partial u}{\partial \bar{z}}$ for a function $u \in \mathcal{C}_{0}^{1}(\mathbb{C})$. Then, by the Stokes theorem, for sufficiently large $R>0$ we have

$$
0=\int_{\partial K(R)} u d z=\int_{K(R)} \frac{\partial u}{\partial \bar{z}}(z) d \bar{z} \wedge d z=2 i \int_{K(R)} v_{0} d \mathcal{L}^{2} \neq 0
$$

contradiction.
Lemma 4.2.4 (The Cauchy-Green formula). Let $D \subset \mathbb{C}$ be a regular domain (cf. Definition 1.2.4) and let $f \in \mathcal{C}^{1}(\bar{D})$. Then

$$
f(z)=\frac{1}{2 \pi i}\left(\int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta+\int_{D} \frac{\left.\frac{\partial \bar{f}}{\partial \bar{\zeta}} \zeta\right)}{\zeta-z} d \zeta \wedge d \bar{\zeta}\right), \quad z \in D
$$

Proof. Fix an $a \in D$ and take a disc $K(a, \varepsilon) \subset \subset D$. Then, by the Stokes theorem (applied to the domain $\left.D_{\varepsilon}:=D \backslash \bar{K}(a, \varepsilon)\right)$, we have

$$
\begin{aligned}
& \int_{\partial D} \frac{f(\zeta)}{\zeta-a} d \zeta-\int_{C(a, \varepsilon)} \frac{f(\zeta)}{\zeta-a} d \zeta=\int_{\partial D_{\varepsilon}} \frac{f(\zeta)}{\zeta-a} d \zeta=\int_{D_{\varepsilon}} d\left(\frac{f(\zeta)}{\zeta-a} d \zeta\right) \\
&=-\int_{D_{\varepsilon}} \frac{\frac{\partial f}{\partial \bar{\zeta}}(\zeta)}{\zeta-a} d \zeta \wedge d \bar{\zeta} \underset{\varepsilon \longrightarrow 0}{\longrightarrow}-\int_{D} \frac{\frac{\partial f}{\partial \bar{\zeta}}(\zeta)}{\zeta-a} d \zeta \wedge d \bar{\zeta}
\end{aligned}
$$

On the other hand,

$$
\lim _{\varepsilon \longrightarrow 0}\left|\frac{1}{2 \pi i} \int_{C(a, \varepsilon)} \frac{f(\zeta)}{\zeta-a} d \zeta-f(a)\right| \leq \lim _{\varepsilon \longrightarrow 0}(\max \{|f(\zeta)-f(a)|: \zeta \in C(a, \varepsilon)\})=0
$$

Proof of Proposition 4.2.2. Let $v=\sum_{j=1}^{n} v_{j} d \bar{z}_{j}$. Note that the condition $\bar{\partial} v=0$ means that

$$
\begin{equation*}
\frac{\partial v_{j}}{\partial \bar{z}_{k}}=\frac{\partial v_{k}}{\partial \bar{z}_{j}}, \quad j, k=1, \ldots, n . \tag{4.2.4}
\end{equation*}
$$

Suppose that $\operatorname{supp} v \subset \mathbb{P}(R)$. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ define

$$
u(z):=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{v_{1}\left(\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta-z_{1}} d \zeta \wedge d \bar{\zeta}=-\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{v_{1}\left(z_{1}-\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta} d \zeta \wedge d \bar{\zeta}
$$

Observe that $u(z)=0$ for $\left(z_{2}, \ldots, z_{n}\right) \notin \mathbb{P}_{n-1}(R)$. It is clear that $u \in \mathcal{C}^{k}\left(\mathbb{C}^{n}\right)$. Moreover, by 4.2.4, we get

$$
\begin{aligned}
\frac{\partial u}{\partial \bar{z}_{j}}(z) & =-\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\frac{\partial v_{1}}{\partial \bar{z}_{j}}\left(z_{1}-\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta} d \zeta \wedge d \bar{\zeta}=-\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\frac{\partial v_{j}}{\partial \bar{z}_{1}}\left(z_{1}-\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta} d \zeta \wedge d \bar{\zeta} \\
& =\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\frac{\partial v_{j}}{\partial \bar{z}_{1}}\left(\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta-z_{1}} d \zeta \wedge d \bar{\zeta}=\frac{1}{2 \pi i} \int_{K(R)} \frac{\frac{\partial v_{j}}{\partial \bar{\zeta}}\left(\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta-z_{1}} d \zeta \wedge d \bar{\zeta}, \quad z \in \mathbb{C}^{n}, j=1, \ldots, n
\end{aligned}
$$

Now we apply the Cauchy-Green formula (with $D:=K(R)$) and we get

$$
\frac{\partial u}{\partial \bar{z}_{j}}(z)=v_{j}(z)-\frac{1}{2 \pi i} \int_{C(R)} \frac{v_{j}\left(\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta-z_{1}} d \zeta=v_{j}(z), \quad z \in \mathbb{C}^{n}, j=1, \ldots, n
$$

Hence $\bar{\partial} u=v$. In particular, $\bar{\partial} u=0$ outside $\operatorname{supp} v$, i.e. $u \in \mathcal{O}\left(\mathbb{C}^{n} \backslash \operatorname{supp} v\right)$. Consequently, by the identity principle, $u=0$ in the unbounded connected component of the set $\mathbb{C}^{n} \backslash \operatorname{supp} v$.

Proposition 4.2 .2 permits us to give a new elegant proof of the Hartogs extension theorem (cf. Theorem 2.1.2).

Theorem 4.2.5. Let D be a domain in $\mathbb{C}^{n}, n \geq 2$, and let K be a compact subset of D such that $D \backslash K$ is connected. Then $\mathcal{O}(D \backslash K)=\left.\mathcal{O}(D)\right|_{D \backslash K}$.
4. Pseudoconvexity and the $\bar{\partial}$-problem

Proof. Fix an $f \in \mathcal{O}(D \backslash K)$. Let $\varphi \in \mathcal{C}_{0}^{\infty}(D)$ be such that $\varphi=1$ in a neighborhood U of K. Put

$$
F:= \begin{cases}(1-\varphi) \cdot f & \text { in } D \backslash K \\ 0 & \text { in } U\end{cases}
$$

Then clearly F is well defined and $F \in \mathcal{C}^{\infty}(D)$. Define

$$
v:= \begin{cases}\bar{\partial} F & \text { in } D \\ 0 & \text { in } \mathbb{C}^{n} \backslash \operatorname{supp} \varphi\end{cases}
$$

Then v is well defined, $v \in \mathcal{C}_{(0,1)}^{\infty}(D), \bar{\partial} v=0$, and $\operatorname{supp} v \subset \operatorname{supp} \varphi \subset \subset D$. By Proposition 4.2.2 there exists a function $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{C}^{n}\right)$ such that $\bar{\partial} u=v$ and $u=0$ in the unbounded connected component Ω_{∞} of the set $\mathbb{C}^{n} \backslash \operatorname{supp} v$.

Put $\widetilde{f}:=F-u$. Then $\tilde{f} \in \mathcal{C}^{\infty}(D)$ and $\bar{\partial} \tilde{f}=0$. Thus $\tilde{f} \in \mathcal{O}(D)$. Moreover $\widetilde{f}=F=f$ in $(D \backslash \operatorname{supp} \varphi) \cap$ $\Omega_{\infty} \neq \varnothing$. Hence, by the identity principle, $\tilde{f}=f$ in $D \backslash K$.

Definition 4.2.6. Let $S_{p, q}=S_{p, q}\left(\mathbb{C}^{n}\right)$ denote the family of all sets $A \subset \mathbb{C}^{n}$ such that for every open neighborhood G of A and for every $\bar{\partial}$-closed form $v \in \mathcal{C}_{(p, q+1)}^{\infty}(G)$ there exist an open neighborhood \widetilde{G} of A (with $\widetilde{G} \subset G$) and a form $u \in \mathcal{C}_{(p, q)}^{\infty}(\widetilde{G})$ such that $\bar{\partial} u=v$ in \widetilde{G}.

Remark 4.2.7. (a) If $\Omega \subset \mathbb{C}^{n}$ is open, then $\Omega \in S_{p, q}$ iff for any $\bar{\partial}$-closed form $v \in \mathcal{C}_{(p, q+1)}^{\infty}(\Omega)$ there exists a $u \in \mathcal{C}_{(p, q)}^{\infty}(\Omega)$ such that $\bar{\partial} u=v$.
(b) Let $\Phi: \Omega \longrightarrow \Omega^{\prime}$ be biholomorphic, where $\Omega, \Omega^{\prime} \subset \mathbb{C}^{n}$ are open. Then for any $A \subset \Omega$ we have: $A \in S_{p, q} \Longleftrightarrow \Phi(A) \in S_{p, q}$.

Indeed, let $v^{\prime} \in \mathcal{C}_{(p, q+1)}^{\infty}\left(G^{\prime}\right)$ be $\bar{\partial}$-closed, where G^{\prime} is an open neighborhood of $\Phi(A)$. Then $v:=\Phi^{*}\left(v^{\prime}\right) \in$ $\mathcal{C}_{(p, q+1)}^{\infty}(G)$ and $\bar{\partial} v=0$, where $G:=\Phi^{-1}\left(G^{\prime}\right) \supset A\left(\operatorname{cf.}\right.$ Remark 4.2.1(d)). Since $A \in S_{p, q}$, there exist an open neighborhood \widetilde{G} of $A(\widetilde{G} \subset G)$ and $u \in \mathcal{C}_{(p, q)}^{\infty}(\widetilde{G})$ such that $\overline{\bar{\partial}} u=v$ in \widetilde{G}. Put $u^{\prime}:=\left(\Phi^{-1}\right)^{*}(u)$. Then $u^{\prime} \in \mathcal{C}_{(p, q)}^{\infty}\left(\widetilde{G}^{\prime}\right)$ with $\widetilde{G}^{\prime}:=\Phi(\widetilde{G}) \subset G^{\prime}$ and

$$
\bar{\partial} u^{\prime}=\left(\Phi^{-1}\right)^{*}(\bar{\partial} u)=\left(\Phi^{-1}\right)^{*}(v)=\left(\Phi^{-1}\right)^{*}\left(\Phi^{*}\left(v^{\prime}\right)\right)=v^{\prime}
$$

Proposition 4.2.8. Let $\varphi_{1}, \ldots, \varphi_{m} \in \mathcal{O}\left(\mathbb{C}^{n-m}\right)(1 \leq m \leq n-1)$ and let

$$
\mathbb{C}^{n-m} \ni z^{\prime} \stackrel{\mu}{\longmapsto}\left(z^{\prime}, \varphi_{1}\left(z^{\prime}\right), \ldots, \varphi_{m}\left(z^{\prime}\right)\right) \in \mathbb{C}^{n}
$$

Take a set $A \subset \mathbb{C}^{n}$ and put $A^{\prime}:=\mu^{-1}(A) \subset \mathbb{C}^{n-m}$.
(a) If

$$
A \in S_{p, q} \cap \cdots \cap S_{p, q+m-1}
$$

then for any $\bar{\partial}$-closed form $w^{\prime} \in \mathcal{C}_{(p, q)}^{\infty}\left(G^{\prime}\right)$, where G^{\prime} is an open neighborhood of A^{\prime}, there exist an open neighborhood G of A and a $\bar{\partial}$-closed form $w \in \mathcal{C}_{(p, q)}^{\infty}(G)$ such that $w^{\prime}=\mu^{*}(w)$ in $\mu^{-1}(G) \subset G^{\prime}$.

In particular, if $\Omega \subset \mathbb{C}^{n}$ is open and $\Omega \in S_{0,0} \cap \cdots \cap S_{0, m-1}$, then for any $f^{\prime} \in \mathcal{O}\left(\Omega^{\prime}\right)$ there exists an $f \in \mathcal{O}(\Omega)$ such that $f^{\prime}=f \circ \mu$.
(b) If

$$
A \in S_{p, q} \cap \cdots \cap S_{p, q+m},
$$

then $A^{\prime} \in S_{p, q}\left(\mathbb{C}^{n-m}\right)$.
Proof. We will use finite induction on m (with an arbitrary n). $m=1$.
4.2. The $\bar{\partial}$-problem

Figure 4.2.1
(a) Define $\pi: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n-1}, \pi\left(z^{\prime}, z_{n}\right):=z^{\prime}$. Fix a $\bar{\partial}$-closed form $w^{\prime} \in \mathcal{C}_{(p, q)}^{\infty}\left(G^{\prime}\right)$, where G^{\prime} is an open neighborhood of A^{\prime}. Put $\Omega:=\left(G^{\prime} \times \mathbb{C}\right) \cup\left(\mathbb{C}^{n} \backslash \mu\left(\mathbb{C}^{n-1}\right)\right)$. Observe that Ω is an open neighborhood of A. Put

$$
M_{0}:=\left\{z \in \Omega: \pi(z) \notin G^{\prime}\right\}, \quad M_{1}:=\mu\left(G^{\prime}\right)=\Omega \cap \mu\left(\mathbb{C}^{n-1}\right) .
$$

Note that the sets M_{0}, M_{1} are relatively closed in Ω and disjoint. In particular, there exists a function $\chi \in \mathcal{C}^{\infty}(\Omega)$ such that $\chi=j$ in an open neighborhood U_{j} of $M_{j}, j=0,1$ (cf. [32]). Let

$$
\widetilde{w}:=\left\{\begin{array}{ll}
\chi \cdot \pi^{*}\left(w^{\prime}\right) & \text { in } G^{\prime} \times \mathbb{C} \\
0 & \text { in } U_{0}
\end{array} .\right.
$$

Obviously, \widetilde{w} is well defined and $\widetilde{w} \in \mathcal{C}_{(p, q)}^{\infty}(\Omega)$. We have

$$
\mu^{*}(\widetilde{w})=\mu^{*}\left(\chi \cdot \pi^{*}\left(w^{\prime}\right)\right)=(\chi \circ \mu) \cdot(\pi \circ \mu)^{*}\left(w^{\prime}\right)=(\chi \circ \mu) \cdot w^{\prime}=w^{\prime} \text { in } G^{\prime} .
$$

The form \widetilde{w} need not be $\bar{\partial}$-closed. Therefore, we take $w:=\widetilde{w}-Q \cdot u$ with $Q(z):=\varphi_{1}\left(z^{\prime}\right)-z_{n}$, where $u \in \mathcal{C}_{(p, q)}^{\infty}(G)$ will be chosen below. Independently of a choice of u, we have

$$
\mu^{*}(w)=\mu^{*}(\widetilde{w})-\mu^{*}(Q \cdot u)=\mu^{*}(\widetilde{w})=w^{\prime} .
$$

Observe that

$$
\bar{\partial} w=\left\{\begin{array}{rl}
(\bar{\partial} \chi) \wedge \pi^{*}\left(w^{\prime}\right)-Q \bar{\partial} u & \text { in } G^{\prime} \times \mathbb{C} \\
-Q \bar{\partial} u & \text { in } U_{0}
\end{array} .\right.
$$

To get $\bar{\partial} w=0$ we only need to find u such that

$$
v:=\bar{\partial} u=\left\{\begin{array}{ll}
(1 / Q) \cdot(\bar{\partial} \chi) \wedge \pi^{*}\left(w^{\prime}\right) & \text { in }\left(G^{\prime} \times \mathbb{C}\right) \backslash M_{1} \\
0 & \text { in } U_{0} \cup U_{1}
\end{array} .\right.
$$

It is easy to check that $v \in \mathcal{C}_{(p, q+1)}^{\infty}(\Omega)$ and $\bar{\partial} v=0$. Since $A \in S_{p, q}$, there exist an open neighborhood G of A (with $G \subset \Omega$) and $u \in \mathcal{C}_{(p, q)}^{\infty}(G)$ such that $\bar{\partial} u=v$ in G. Consequently, w is $\bar{\partial}$-closed in G and $w^{\prime}=\mu^{*}(w)$ in $\mu^{-1}(G) \subset G^{\prime}$.
(b) Take a $\bar{\partial}$-closed form $v^{\prime} \in \mathcal{C}_{(p, q+1)}^{\infty}\left(G^{\prime}\right)$, where G^{\prime} is an open neighborhood of A^{\prime}. Since $A \in S_{p, q+1}$, assertion (a) implies that there exist an open neighborhood G of A and a $\bar{\partial}$-closed form $v \in \mathcal{C}_{(p, q+1)}^{\infty}(G)$ such that $v^{\prime}=\mu_{\widetilde{G}}^{*}(v)$ in $\mu^{-1}(G)$. Since $A \in S_{p, q}$, there exist an open neighborhood \widetilde{G} of A (with $\widetilde{G} \subset G$) and $u \in \mathcal{C}_{(p, q)}^{\infty}(\widetilde{G})$ such that $\bar{\partial} u=v$ in \widetilde{G}. Put $u^{\prime}:=\mu^{*}(u)$ in $\widetilde{G}^{\prime}:=\mu^{-1}(\widetilde{G})$. Then $u^{\prime} \in \mathcal{C}_{(p, q)}^{\infty}\left(\widetilde{G^{\prime}}\right)$ and $\bar{\partial} u^{\prime}=\mu^{*}(\bar{\partial} u)=\mu^{*}(v)=v^{\prime}$ in \widetilde{G}^{\prime}.
$m-1 \rightsquigarrow m$.

Observe that $\mu=\mu_{2} \circ \mu_{1}$, where

$$
\begin{gathered}
\mathbb{C}^{n-m} \ni z^{\prime} \xrightarrow{\mu_{1}}\left(z^{\prime}, \varphi_{1}\left(z^{\prime}\right)\right) \in \mathbb{C}^{n-m} \times \mathbb{C}, \\
\mathbb{C}^{n-m} \times \mathbb{C} \ni\left(z^{\prime}, z^{\prime \prime}\right) \xrightarrow{\mu_{2}}\left(z^{\prime}, z^{\prime \prime}, \varphi_{2}\left(z^{\prime}\right), \ldots, \varphi_{m}\left(z^{\prime}\right)\right) \in \mathbb{C}^{n} .
\end{gathered}
$$

(a) Take a $\bar{\partial}$-closed form $w^{\prime} \in \mathcal{C}_{(p, q)}^{\infty}\left(G^{\prime}\right)$, where G^{\prime} is an open neighborhood of A^{\prime}. Since (b) is true for $m-1$, the set $A_{1}:=\mu_{2}^{-1}(A)$ belongs to $S_{p, q}\left(\mathbb{C}^{n-m+1}\right)$. Note that $A^{\prime}=\mu_{1}^{-1}\left(A_{1}\right)$. Since (a) is true for $m=1$, there exist an open neighborhood G_{1} of A_{1} and a $\bar{\partial}$-closed form $w_{1} \in \mathcal{C}_{(p, q)}^{\infty}\left(G_{1}\right)$ such that $w^{\prime}=\mu_{1}^{*}\left(w_{1}\right)$ in $\mu_{1}^{-1}\left(G_{1}\right) \subset G^{\prime}$. Now, since (a) is true for $m-1$, there exist a neighborhood G of A and a $\bar{\partial}$-closed form $w \in \mathcal{C}_{(p, q)}^{\infty}(G)$ such that $w_{1}=\mu_{2}^{*}(w)$ in $\mu_{2}^{-1}(G) \subset G_{1}$. Then $w^{\prime}=\mu_{1}^{*}\left(\mu_{2}^{*}(w)\right)=\mu^{*}(w)$ in $\mu^{-1}(G) \subset G^{\prime}$.
(b) Since (b) is true for $m-1$, the set $A_{1}:=\mu_{2}^{-1}(A)$ belongs to $S_{p, q} \cap S_{p, q+1}$. Now we apply the case $m=1$ to A_{1} and we conclude that $A^{\prime}=\mu_{1}^{-1}\left(A_{1}\right) \in S_{p, q}$.

Theorem 4.2.9. Let $\Omega \subset \mathbb{C}^{n}$ be open, $n \geq 2$. If

$$
\Omega \in S_{0,0} \cap \cdots \cap S_{0, n-2}
$$

then Ω is holomorphically convex.
Proof. It is sufficient to show that for any $a \in \Omega$ there exists an $f \in \mathcal{O}(\Omega)$ such that $d\left(T_{a} f\right)=d_{\Omega}(a)$ (Proposition 2.7.5. Fix an $a=\left(a_{1}, \ldots, a_{n}\right) \in \Omega$, let $P:=\mathbb{P}\left(a, d_{\Omega}(a)\right)$, and let $b \in \partial \Omega \cap \bar{P}$. Using a complex affine isomorphism of \mathbb{C}^{n}, we may assume that $b=0$ and $a_{2}=\cdots=a_{n}=0$ (cf. Remark 4.2.7(b)). Let

$$
\Omega^{\prime}:=\left\{z^{\prime} \in \mathbb{C}:\left(z^{\prime}, 0, \ldots, 0\right) \in \Omega\right\}
$$

Note that $0 \in \partial \Omega$. By Proposition 4.2 .8 (with $\left.f^{\prime}\left(z^{\prime}\right):=1 / z^{\prime}\right)$ there exists an $f \in \mathcal{O}(\Omega)$ such that $f\left(z^{\prime}, 0\right)=$ $1 / z^{\prime}$. Obviously, f cannot be extended across b.

Remark 4.2.10. To solve the Levi problem it suffices to show that any pseudoconvex domain belongs to $S_{0,0} \cap \cdots \cap S_{0, n-2}$.

4.3. Runge domains

Definition 4.3.1. A region of holomorphy $\Omega \subset \mathbb{C}^{n}$ is called a Runge region if every function $f \in \mathcal{O}(\Omega)$ can be approximated uniformly on every compact subset of Ω by polynomials of n complex variables.

If Ω is a connected Runge region, then we say that Ω is a Runge domain.
Obviously, if Ω is a Runge region, then each connected component of Ω is a Runge domain.
Note that in the above definition the space of polynomials can be replaced by the space of entire functions. Let K be a compact subset of \mathbb{C}^{n}. Recall (Remark 2.7.11(e)) that

$$
\widehat{K}:=\widehat{K}_{\mathcal{O}\left(\mathbb{C}^{n}\right)}=\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}=\left\{z \in \mathbb{C}^{n}: \forall_{P \in \mathcal{P}\left(\mathbb{C}^{n}\right)}:|\mathbb{P}(z)| \leq\|P\|_{K}\right\}
$$

If $K=\widehat{K}$, then we say that K is polynomially convex.
Remark 4.3.2. (a) If $\Omega \subset \mathbb{C}$, then Ω is a Runge region iff any connected component of Ω is simply connected (cf. 4, VIII.1).
(b) By Proposition 1.6 .2 any balanced domain of holomorphy is a Runge domain.
(c) Let G be a Runge domain in \mathbb{C}^{n-k} and let $D \subset \mathbb{C}^{n}$ be a Hartogs domain of holomorphy over G (cf. Definition 1.6.3 such that one of the following conditions is satisfied:
$\forall_{z \in G} D_{z}$ is connected, k-circled, and $D \cap\left(G \times\{0\}^{k}\right) \neq \varnothing$.
$\forall_{z \in G} D_{z}$ is balanced.
Then, by Propositions 2.6 .3 and 1.6 .5 (b) D is a Runge domain
(d) Let $F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a polynomial mapping and let $\Omega^{\prime} \subset \mathbb{C}^{n}$ be a Runge region. Put $\Omega:=F^{-1}\left(\Omega^{\prime}\right)$. Assume that $\left.F\right|_{\Omega}: \Omega \longrightarrow \Omega^{\prime}$ is biholomorphic. Then Ω is also a Runge region (cf. Example 4.3.8).

Indeed, let $g \in \mathcal{O}(\Omega), K \subset \subset \Omega$, and let $\left(p_{\nu}\right)_{\nu=1}^{\infty}$ be a sequence of polynomials such that $p_{\nu} \longrightarrow g \circ\left(\left.F\right|_{\Omega}\right)^{-1}$ uniformly on $F(K)$. Then $p_{\nu} \circ F \longrightarrow g$ uniformly on K.

Theorem 4.3.3. Let Ω be a region of holomorphy in \mathbb{C}^{n}. The following conditions are equivalent:
(i) Ω is a Runge region;
(ii) $\widehat{K}=\widehat{K}_{\mathcal{O}(\Omega)}$ for any compact $K \subset \Omega$;
(iii) $\widehat{K} \cap \Omega=\widehat{K}_{\mathcal{O}(\Omega)}$ for any compact $K \subset \Omega$;
(iv) $\widehat{K} \cap \Omega \subset \subset \Omega$ for any compact $K \subset \Omega$.
(ii)

(iv)

The implication (i) \Longrightarrow (iii) follows immediately from the fact that polynomials are dense in $\mathcal{O}(\Omega)$.
The implication (ii) \Longrightarrow (iii) is obvious.
The implication (iii) \Longrightarrow (iv) follows from Theorem 2.7 .12 ,
In the sequel (after Proposition 4.3.6) we will prove that (iv) \Longrightarrow (ii) \Longrightarrow (i).
Lemma 4.3.4. Let G be a neighborhood of a polynomially convex compact set $K \subset \mathbb{C}^{n}$. Then there exist $m \in \mathbb{N}$ and $P_{1}, \ldots, P_{m} \in \mathcal{P}\left(\mathbb{C}^{n}\right)$ such that

$$
K \subset\left\{z \in \mathbb{C}^{n}:\left|P_{j}(z)\right| \leq 1, j=1, \ldots, m\right\}=: L \subset \subset G
$$

The set L is called a polynomial polyhedron. Note that L is polynomially convex.
Proof. Let $\varepsilon>0$ be such that $K \subset \overline{\mathbb{P}}(1 / \varepsilon)$. Put $P_{j}(z):=\varepsilon z_{j}, j=1, \ldots, n$. Let $M:=\overline{\mathbb{P}}(1 / \varepsilon) \backslash G$. Since K is polynomially convex, for every point $z \in M$ there exists a polynomial P such that $|\mathbb{P}(z)|>1$ and $\|P\|_{K} \leq 1$. Consequently, there exists a finite number of polynomials P_{n+1}, \ldots, P_{m} such that $\left\|P_{j}\right\|_{K} \leq 1$, $j=n+1, \ldots, m$, and $\max \left\{\left|P_{j}\right|: j=n+1, \ldots, m\right\}>1$ on M. The polynomials P_{1}, \ldots, P_{m} satisfy all the required conditions.
Proposition 4.3.5. Let $v \in \mathcal{C}_{(p, q+1)}^{\infty}\left(\mathbb{P}_{n}(a, \boldsymbol{r})\right)$ be $\bar{\partial}$-closed. Then for every polydisc $\mathbb{P}_{n}\left(a, \boldsymbol{r}^{\prime}\right) \subset \subset \mathbb{P}_{n}(a, \boldsymbol{r})$ there exists a $u \in \mathcal{C}_{(p, q)}^{\infty}\left(\mathbb{P}_{n}\left(a, \boldsymbol{r}^{\prime}\right)\right)$ such that $\bar{\partial} u=v$ in $\mathbb{P}_{n}\left(a, \boldsymbol{r}^{\prime}\right)$.

In particular, every closed polydisc Π belongs to $S_{p, q}$ for any $p, q \in \mathbb{N}_{0}$.
Proof. We use induction on k, where k is such that v is independent of $d \bar{z}_{k+1}, \ldots, d \bar{z}_{n}$ (the case $k=n$ will give the required result). If $k=0$, then $v=0$ and therefore the situation is trivial.

Suppose that the result has been proved for $k-1$, and let v be independent of $d \bar{z}_{k+1}, \ldots, d \bar{z}_{n}$. Write

$$
\begin{equation*}
v=d \bar{z}_{k} \wedge g+h \tag{4.3.1}
\end{equation*}
$$

where $g \in \mathcal{C}_{(p, q)}^{\infty}\left(\mathbb{P}_{n}(a, r)\right), h \in \mathcal{C}_{(p, q+1)}^{\infty}\left(\mathbb{P}_{n}(a, r)\right)$, and g and h are independent of $d \bar{z}_{k}, \ldots, d \bar{z}_{n}$. Write g in the canonical form

$$
g=\sum_{|I|=p,|J|=q}^{\prime} g_{I, J} d z_{I} \wedge d \bar{z}_{J}
$$

Since $\bar{\partial} v=0$, we easily conclude that for any I, J we have

$$
\frac{\partial g_{I, J}}{\partial \bar{z}_{j}}=0, \quad j>k
$$

In other words, the functions $g_{I, J}$ are holomorphic with respect to z_{k+1}, \ldots, z_{n}.
Choose a function $\psi \in \mathcal{C}_{0}^{\infty}\left(K\left(a_{k}, r_{k}\right)\right)$ such that $\psi\left(z_{k}\right)=1$ on $\bar{K}\left(a_{k}, r_{k}^{\prime \prime}\right)$ with $r_{k}^{\prime}<r_{k}^{\prime \prime}<r_{k}$. Let

$$
\begin{aligned}
G_{I, J}(z): & =\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\psi(\tau)}{\tau-z_{k}} g_{I, J}\left(z_{1}, \ldots, z_{k-1}, \tau, z_{k+1}, \ldots, z_{n}\right) d \tau \wedge d \bar{\tau} \\
& =-\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\psi\left(z_{k}-\tau\right)}{\tau} g_{I, J}\left(z_{1}, \ldots, z_{k-1}, z_{k}-\tau, z_{k+1}, \ldots, z_{n}\right) d \tau \wedge d \bar{\tau}
\end{aligned}
$$

4. Pseudoconvexity and the $\bar{\partial}$-problem

The function $G_{I, J}$ is well defined for $z \in \mathbb{P}(a, r)$ and $G_{I, J} \in \mathcal{C}^{\infty}(\mathbb{P}(a, r))$. Observe that

$$
\frac{\partial G_{I, J}}{\partial \bar{z}_{j}}(z)=0, \quad j>k, z \in \mathbb{P}(a, r)
$$

Moreover, by the Cauchy-Green formula (cf. Lemma 4.2.4), we obtain

$$
\frac{\partial G_{I, J}}{\partial \bar{z}_{k}}(z)=\frac{1}{2 \pi i} \int_{K\left(a_{k}, r_{k}\right)} \frac{\partial}{\partial \bar{\tau}}\left(\psi(\tau) g_{I, J}\left(z_{1}, \ldots, z_{k-1}, \tau, z_{k+1}, \ldots, z_{n}\right)\right) \frac{d \tau \wedge d \bar{\tau}}{\tau-z_{k}}=g_{I, J}(z), \quad z \in \mathbb{P}\left(a, r^{\prime \prime}\right)
$$

Define

$$
G:=\sum_{|I|=p,|J|=q}^{\prime} G_{I, J} d z_{I} \wedge d \bar{z}_{J}
$$

Then

$$
\begin{equation*}
\bar{\partial} G=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial G_{I, J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J}=d \bar{z}_{k} \wedge g+h_{1} \text { in } \mathbb{P}\left(a, r^{\prime \prime}\right) \tag{4.3.2}
\end{equation*}
$$

where h_{1} is independent of $d \bar{z}_{k}, \ldots, d \bar{z}_{n}$. Consider in $\mathbb{P}\left(a, r^{\prime \prime}\right)$ the form $v-\bar{\partial} G$. In virtue of 4.3.1 and 4.3.2 we have $v-\bar{\partial} G=h-h_{1}$. Hence $v-\bar{\partial} G$ is independent of $d \bar{z}_{k}, \ldots, d \bar{z}_{n}$. Moreover, $\bar{\partial}(v-\bar{\partial} G)=$ $\overline{\partial v}=0$. Therefore, there exists a $\widetilde{u} \in \mathcal{C}_{(p, q)}^{\infty}\left(\mathbb{P}\left(a, r^{\prime}\right)\right)$ such that $\bar{\partial} \widetilde{u}=v-\bar{\partial} G$. Define $u:=\widetilde{u}+G$. Then $\bar{\partial} u=\bar{\partial} \widetilde{u}+\bar{\partial} G=v$.

Proposition 4.3.6. Let $K \subset \subset \mathbb{C}^{n}$ be polynomially convex and let f be holomorphic in a neighborhood of K. Then there exists a sequence $\left(f_{j}\right)_{j=1}^{\infty} \subset \mathcal{P}\left(\mathbb{C}^{n}\right)$ such that $f_{j} \longrightarrow f$ uniformly on K.
Proof. By Lemma 4.3.4 there exists a polynomial polyhedron L such that $K \subset L$ and f is holomorphic in a neighborhood of L. Choose a closed polydisc $\Pi \supset L$ so that

$$
L=\left\{z \in \Pi:\left|P_{j}(z)\right| \leq 1, j=1, \ldots, m\right\} .
$$

By Proposition $4.3 .5 \Pi \times \overline{\mathbb{D}}^{m} \in S_{0,0} \cap \cdots \cap S_{0, m-1}$. Hence, by Proposition 4.2 .8 with $A:=\Pi \times \overline{\mathbb{D}}^{m}$, there exists a function F holomorphic in a neighborhood of $\Pi \times \overline{\mathbb{D}}^{m} \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$ such that

$$
f(z)=F\left(z, P_{1}(z), \ldots, P_{m}(z)\right)
$$

in a neighborhood of L. Let F_{k} be the k-th partial sum of the Taylor expansion of F in a neighborhood of $\Pi \times \overline{\mathbb{D}}^{m}, k \geq 0$. Then $F_{k} \longrightarrow F$ uniformly on $\Pi \times \overline{\mathbb{D}}^{m}$. Therefore

$$
F_{k}\left(z, P_{1}, \ldots, P_{m}\right) \longrightarrow F\left(z, P_{1}, \ldots, P_{m}\right)=f \text { uniformly on } L .
$$

The end of the proof of Theorem 4.3.3. The implication (ii) \Longrightarrow (i) can be obtained by an immediate application of Proposition 4.3.6.

Now we prove that (iv) \Longrightarrow (ii). Define

$$
K_{1}:=\widehat{K} \cap \Omega, \quad K_{2}:=\widehat{K} \backslash \Omega
$$

By (iv), the set K_{1} is compact. Since K_{2} is a closed subset of \widehat{K}, K_{2} is also compact. Moreover, $K_{1} \cap K_{2}=\varnothing$. Let $f:=0$ in a neighborhood of K_{1} and $f:=1$ in a neighborhood of K_{2}. Then f is holomorphic in a neighborhood of \widehat{K}. Since \widehat{K} is polynomially convex, Proposition 4.3 .6 implies that there exists a polynomial g such that $|g-f|<1 / 2$ on \widehat{K}. Hence $|g|<1 / 2$ on K_{1} and $|g|>1 / 2$ on K_{2}. Since $K \subset K_{1}$ and $K_{2} \subset \widehat{K}$, it must hold $K_{2}=\varnothing$. Therefore $\widehat{K}=K_{1} \subset \Omega$. Let $f \in \mathcal{O}(\Omega)$. By Proposition 4.3.6. the function f can be approximated uniformly on $\widehat{K}=K_{1}$ (in particular, on K) by polynomials of n complex variables. This means that Ω is a Runge domain, i.e. condition (i) of Theorem 4.3.3 is fulfilled. We already know that (i) \Longrightarrow (iii). Hence $\widehat{K} \cap \Omega=\widehat{K}_{\mathcal{O}(\Omega)}$. Finally, $\widehat{K}=\widehat{K}_{\mathcal{O}(\Omega)}$.

Theorem 4.3.3 and Remark 2.7.11(f) give

Corollary 4.3.7. Ω_{j} is a Runge region in $\mathbb{C}^{n_{j}}, j=1,2$, iff $\Omega_{1} \times \Omega_{2}$ is a Runge region in $\mathbb{C}^{n_{1}+n_{2}}$.
In particular, if $D_{j} \subset \mathbb{C}$ is simply connected, $j=1, \ldots, n$, then $D_{1} \times \cdots \times D_{n}$ is a Runge domain in \mathbb{C}^{n}.
Example 4.3.8 (Wermer). Recall (Remark 4.3.2(a)) that for $n=1$ Runge regions are characterized in a purely topological way. This is no longer true for $n \geq 2$. We will show that Runge regions in \mathbb{C}^{n} with $n \geq 2$ are not invariant under biholomorphic mappings. Namely, for $n \geq 2$ we will find a domain $D_{n} \subset \mathbb{C}^{n}$ biholomorphic to \mathbb{D}^{n} and such that D_{n} is not a Runge domain.

First, following [8], we will construct a domain $D \subset \mathbb{C}^{2}$ biholomorphic to \mathbb{D}^{2} such that $\mathbb{T} \times\{0\} \subset D$ but $(1 / 2,0) \notin D$.

Assume for a moment that such a domain is already constructed. Then for any $n \geq 2$ put $D_{n}:=$ $D \times \mathbb{D}^{n-2}$. The domain D_{n} is obviously biholomorphic to \mathbb{D}^{n}. Moreover, $K_{n}:=\mathbb{T} \times\{(0, \ldots, 0)\} \subset D_{n}$, $(1 / 2,0, \ldots, 0) \notin D_{n}$. Suppose that D_{n} is a Runge domain. Then, by Theorem 4.3.3, $\widehat{K}_{n} \subset D_{n}$. On the other hand, by the maximum principle, $\overline{\mathbb{D}} \times\{(0, \ldots, 0)\} \subset \widehat{K}_{n}$. In particular, $(1 / 2,0, \ldots, 0) \in D_{n}$; contradiction.

We pass to the construction. Let

$$
A_{0}:=([-1,1]+i 0) \times([-1,1]+i 0) \subset \mathbb{C}^{2}, \quad A:=\left\{(x+i y, x-i y) \in \mathbb{C}^{2}: x, y \in[-1,1]\right\}
$$

Let U be an arbitrary open neighborhood of A_{0}. Then there exist open rectangles $R_{1}, R_{2} \subset \mathbb{C}$ such that $A_{0} \subset R_{1} \times R_{2} \subset U$. By the Riemann mapping theorem, the domain $R_{1} \times R_{2}$ is biholomorphic to \mathbb{D}^{2}. Thus A_{0} has a neighborhood basis consisting of domains biholomorphic to \mathbb{D}^{2}. Observe that the mapping

$$
\mathbb{C}^{2} \ni\left(z_{1}, z_{2}\right) \longmapsto\left(z_{1}+i z_{2}, z_{1}-i z_{2}\right) \in \mathbb{C}^{2}
$$

maps biholomorphically A_{0} onto A. Consequently, A has a neighborhood basis consisting of domains biholomorphic to \mathbb{D}^{2}.

Put

$$
F(z, w):=(z, P(z, w)), \quad P(z, w):=(1+i) w-i z w^{2}-z^{2} w^{3}
$$

Observe that:

- For any $\zeta \in \mathbb{T}$ we have $(\zeta, \bar{\zeta}) \in A$ and $F(\zeta, \bar{\zeta})=(\zeta, 0)$. Hence $(\mathbb{T}) \times\{0\} \subset F(A)$.
- $(1 / 2,0) \notin F(A)$. Indeed, $P(1 / 2,1 / 2)=(1+i) / 2-i / 8-1 / 32 \neq 0$.
- $\left.F\right|_{A}$ is injective.
- $J_{\mathbb{C}} F \neq 0$ on A. Indeed, we have $J_{\mathbb{C}} F(z, w)=\frac{\partial P}{\partial w}(z, w)=1+i-2 i z w-3 z^{2} w^{2}$ and hence $J_{\mathbb{C}} F(z, \bar{z})=$ $1+i-2 i|z|^{2}-3|z|^{4} \neq 0$.

In particular, there exists an open neighborhood U_{0} of A such that $\left.F\right|_{U_{0}}$ is biholomorphic.
Now, since A has a neighborhood basis consisting of domains biholomorphic to \mathbb{D}^{2}, we find a domain U biholomorphic to \mathbb{D}^{2} such that $A \subset U \subset U_{0}$ and $(1 / 2,0) \notin F(U)$. Finally, we put $D:=F(U)$.

Notice that for $n \geq 3$ the construction of the required domain D_{n} may be essentially simplified. Instead of $D_{n}=D \times \mathbb{D}^{n-2}$ (as above) we will construct (in a simpler way) a domain $G \subset \mathbb{C}^{3}$ biholomorphic to a polydisc such that $(\mathbb{T}) \times\{(1,0)\} \subset G$ but $(0,1,0) \notin G$. Next, for $n \geq 3$ we take $D_{n}:=G \times \mathbb{D}^{n-3}$ and we repeat the above argument showing that D_{n} is not Runge.

The example is also due to Wermer (cf. [13]). Let

$$
F: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{3}, \quad F(x, y, z)=\left(x, x y+z, x y^{2}-y+2 y z\right)
$$

Then $J_{\mathbb{C}} F(x, y, z)=1-2 z$. In particular, F is locally biholomorphic on $\mathbb{C}^{3} \backslash\{z=1 / 2\}$. We will show that F is injective on $U:=\mathbb{C} \times \mathbb{C} \times K(1 / 2)$.

Let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in U$ be such that $F\left(x_{1}, y_{1}, z_{1}\right)=F\left(x_{2}, y_{2}, z_{2}\right)$. Then obviously $x_{1}=x_{2}=: x$ and

$$
x y_{1}+z_{1}=x y_{2}+z_{2}, \quad x y_{1}^{2}-y_{1}+2 y_{1} z_{1}=x y_{2}^{2}-y_{2}+2 y_{2} z_{2}
$$

In other words,

$$
x\left(y_{1}-y_{2}\right)=z_{2}-z_{1}, \quad x\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)-y_{1}+y_{2}+2 y_{1} z_{1}-2 y_{2} z_{2}=0
$$

Thus $\left(z_{2}-z_{1}\right)\left(y_{1}+y_{2}\right)-y_{1}+y_{2}+2 y_{1} z_{1}-2 y_{2} z_{2}=0$ and hence $\left(y_{1}-y_{2}\right)\left(z_{1}+z_{2}-1\right)=0$. Now, since $\left|z_{1}\right|+\left|z_{2}\right|<1$, we conclude that $y_{1}=y_{2}$ and $z_{1}=z_{2}$.
4. Pseudoconvexity and the $\bar{\partial}$-problem

In particular, $\left.F\right|_{\mathbb{P}(0,(2,2,1 / 2))}$ is injective. Let $G:=F(\mathbb{P}(0,(2,2,1 / 2)))$. Observe that $F(x, 1 / x, 0)=$ $(x, 1,0)$. Hence $(\mathbb{T}) \times\{(1,0)\} \subset G$. Obviously, $(0,1,0) \notin G$.

4.4. Hefer's theorem

Let $\Omega \subset \mathbb{C}^{n}, n \geq 2$, be open. Assume that $0 \in \Omega$ and let

$$
\Omega_{k}:=\left\{z^{\prime} \in \mathbb{C}^{k}:\left(z^{\prime}, 0, \ldots, 0\right) \in \Omega\right\}, \quad M_{k}:=\Omega \cap\left(\mathbb{C}^{k} \times\{0\}^{n-k}\right), \quad k=1, \ldots, n-1
$$

Let, moreover, $M_{0}:=\{0\}$. Observe that if

$$
f(z):=\sum_{j=k+1}^{n} z_{j} f_{j}(z), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega
$$

where $f_{j} \in \mathcal{O}(\Omega), j=k+1, \ldots, n$, then $f=0$ on $M_{k}(k=0, \ldots, n-1)$.
Our aim is to prove a converse theorem.
Remark 4.4.1. The case $k=n-1$ is elementary.
Indeed, let $f \in \mathcal{O}(\Omega)$ be such that $f=0$ on M_{n-1}, i.e. $f\left(z^{\prime}, 0\right)=0$ for any $z^{\prime} \in \Omega_{n-1}$. Define

$$
f_{n}(z):=f(z) / z_{n}, \quad z \in \Omega \backslash M_{n-1}
$$

It remains to observe that f_{n} extends holomorphically to Ω.
Remark 4.4.2. Assume that Ω is a star-shaped domain with respect to 0 and $k=0$. Let $f \in \mathcal{O}(\Omega)$ be such that $f(0)=0$. Then we have

$$
f(z)=\int_{0}^{1} \frac{d}{d t} f(t z) d t=\int_{0}^{1} \sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(t z) d t=: \sum_{j=1}^{n} z_{j} f_{j}(z), \quad z \in \Omega
$$

It is clear that $f_{1}, \ldots, f_{n} \in \mathcal{O}(\Omega)$.
Proposition 4.4.3. Assume that

$$
\Omega \in S_{0,0} \cap \cdots \cap S_{0, n-k-2}
$$

for some $k \in\{0, \ldots, n-1\}\left({ }^{6}\right)$. Then for any $f \in \mathcal{O}(\Omega)$ such that $f=0$ on M_{k} there exist $f_{k+1}, \ldots, f_{n} \in$ $\mathcal{O}(\Omega)$ such that

$$
f=\sum_{j=k+1}^{n} z_{j} f_{j} .
$$

Proof. We apply finite induction on $n-k$. The case $n-k=1$ has been solved in Remark 4.4.1.
$n-k \rightsquigarrow n-k+1$.
Assume that $\Omega \in S_{0,0} \cap \cdots \cap S_{0, n-(k-1)-2}\left(\mathbb{C}^{n}\right)$. By Proposition 4.2.8,

$$
\Omega_{n-1} \in S_{0,0} \cap \cdots \cap S_{0,(n-1)-(k-1)-2}\left(\mathbb{C}^{n-1}\right)
$$

Consequently, there exist $F_{k}, \ldots, F_{n-1} \in \mathcal{O}\left(\Omega_{n-1}\right)$ such that

$$
f\left(z^{\prime}, 0\right)=\sum_{j=k}^{n-1} z_{j} F_{j}\left(z^{\prime}\right), \quad z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right) \in \Omega_{n-1}
$$

By Proposition 4.2 .8 there exist $f_{k}, \ldots, f_{n-1} \in \mathcal{O}(\Omega)$ such that $F_{j}\left(z^{\prime}\right)=f_{j}\left(z^{\prime}, 0\right), j=k, \ldots, n-1$. Put

$$
\widetilde{f}:=f-\sum_{j=k}^{n-1} z_{j} f_{j}
$$

$\left({ }^{6}\right)$ If $k=n-1$, then Ω is arbitrary.

Then $\tilde{f} \in \mathcal{O}(\Omega)$ and $\widetilde{f}=0$ on M_{n-1}. Hence $\widetilde{f}=z_{n} f_{n}$ for a function $f_{n} \in \mathcal{O}(\Omega)$. Finally,

$$
f=\sum_{j=k}^{n} z_{j} f_{j} \quad \text { on } \Omega
$$

Theorem 4.4.4. Assume that $\Omega \subset \mathbb{C}^{n}$ is an open set such that

$$
\Omega \times \Omega \in S_{0,0} \cap \cdots \cap S_{0, n-2}\left(\mathbb{C}^{2 n}\right)
$$

(a) For any $f \in \mathcal{O}(\Omega \times \Omega)$ with

$$
f(z, z)=0, \quad z \in \Omega
$$

there exist $f_{1}, \ldots, f_{n} \in \mathcal{O}(\Omega \times \Omega)$ such that

$$
f(z, w)=\sum_{j=1}^{n}\left(z_{j}-w_{j}\right) f_{j}(z, w), \quad z=\left(z_{1}, \ldots, z_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \Omega
$$

(b) (Hefer's theorem) For any $f_{0} \in \mathcal{O}(\Omega)$ there exist $f_{1}, \ldots, f_{n} \in \mathcal{O}(\Omega \times \Omega)$ such that

$$
f_{0}(z)-f_{0}(w)=\sum_{j=1}^{n}\left(z_{j}-w_{j}\right) f_{j}(z, w), \quad z, w \in \Omega
$$

Proof. (a) Let $\Phi: \mathbb{C}^{2 n} \longrightarrow \mathbb{C}^{2 n}$ be given by the formula

$$
\Phi\left(\xi_{1}, \ldots, \xi_{2 n}\right):=\left(\xi_{1}, \ldots, \xi_{n}, \xi_{1}-\xi_{n+1}, \ldots, \xi_{n}-\xi_{2 n}\right)
$$

The mapping Φ is a \mathbb{C}-linear isomorphism. Let $\Psi:=\Phi^{-1}$. Then $\Psi(z, w)=(z, z-w)$. Observe that $\Psi(\Omega \times \Omega) \in S_{0,0} \cap \cdots \cap S_{0, n-2}$ (cf. Remark 4.2.7(b)). Now we apply to $\Psi(\Omega \times \Omega)$ Proposition 4.4.3 with $k=n$. Consequently, there exist $\widetilde{f}_{n+1}, \ldots, \tilde{f}_{2 n} \in \mathcal{O}(\Psi(\Omega \times \Omega))$ such that

$$
f \circ \Phi=\sum_{j=n+1}^{2 n} \xi_{j} \tilde{f}_{j}
$$

Let $f_{j}:=\widetilde{f}_{n+j} \circ \Psi, j=1, \ldots, n$. Then

$$
f=(f \circ \Phi) \circ \Psi=\left(\sum_{j=n+1}^{2 n} \xi_{j} \widetilde{f}_{j}\right) \circ \Psi=\sum_{j=1}^{n}\left(z_{j}-w_{j}\right) f_{j}
$$

(b) follows directly from (a) with $f(z, w):=f_{0}(z)-f_{0}(w)$.

Exercises

4.1. Schwarz type lemma (cf. Lemma 1.4.26): Let $D_{j} \subset \mathbb{C}^{n_{j}}$ be a balanced domain and let h_{j} denote the Minkowski functional of $D_{j}, j=1,2$. Assume that D_{2} is pseudoconvex. Let $F: D_{1} \longrightarrow D_{2}$ be a holomorphic mapping with $F(0)=0$. Using Propositions 3.2.35 and 4.1.14 prove the following results:
(a) $h_{2} \circ F \leq h_{1}$ on D_{1} and $h_{2} \circ F^{\prime}(0) \leq h_{1}$. In particular, $F^{\prime}(0)$ maps D_{1} into D_{2}.
(b) If F is biholomorphic, then $h_{2} \circ F=h_{1}$ on D_{1} and $h_{2} \circ F^{\prime}(0)=h_{1}$. In particular, $F^{\prime}(0)$ is a \mathbb{C}-linear isomorphism which maps D_{1} onto D_{2}.
4.2. Let T be the Hartogs triangle, $T:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|<\left|z_{2}\right|<1\right\}$. Prove that T is pseudoconvex but not hyperconvex.
4.3. Let $F: D \longrightarrow D^{\prime}$ be a proper mapping, where $D, D^{\prime} \subset \mathbb{C}^{n}$ are domains. Suppose that D^{\prime} is pseudoconvex. Show that D is pseudoconvex.
4.4. Let $\omega \subset \mathbb{R}^{n}$ be a domain. Define

$$
T_{\omega}:=\left\{z \in \mathbb{C}^{n}: \operatorname{Re} z \in \omega\right\}
$$

Prove that the following conditions are equivalent:
(i) ω is convex;
(ii) T_{ω} is pseudoconvex.
4. Pseudoconvexity and the $\bar{\partial}$-problem
4.5. Give an example of a pseudoconvex domain in $\mathbb{C}^{n}, n \geq 2$, which is not biholomorphically equivalent to a convex domain.
4.6. Let $D:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1} z_{2}\right|<1\right\}$. Does there exist $\varphi \in \mathcal{O}(D) \cap \mathcal{C}(\bar{D})$ such that $\varphi(1,1)=1$, $|\varphi|<1$ in $\bar{D} \backslash\{(1,1)\} ?$

CHAPTER 5

Hörmander's solution of the $\bar{\partial}$-problem

Summary. In this chapter, following [17, we present a detailed proof of Hörmander's solution of the Levi problem. Section 5.1 contains basic facts from the distribution theory, which are used in the sequel; details are omitted, and it is assumed that the reader who requires to check the proofs, will consult classical monographs on the subject.

The exposition of Hörmander's solution of the Levi problem begins in Section 5.2. The proof is based on the theory of (unbounded) operators in Hilbert spaces, and the solution of the $\bar{\partial}$-problem for pseudoconvex domains in appropriately chosen spaces of differential forms with coefficients which are L^{2}-integrable with respect to convenient weight functions. The main result of this section is Hörmander's L^{2}-estimate. This makes possible to solve the $\bar{\partial}$-problem in pseudoconvex domains for differential forms with coefficients which are locally square integrable.

This enables in turn to do similar, but for differential forms with coefficients in Sobolev spaces, and thus, by the Sobolev inclusion, for forms with smooth coefficients. Thus, in virtue of results in Section 4.2, we obtain the solution of the Levi problem; the details are presented in Section 5.3.

5.1. Distributions

For the reader's convenience we collect below basic facts from distribution theory (the details may be found for instance in 31).

For $K \subset \mathbb{R}^{N}$ let

$$
\mathcal{D}(K):=\left\{f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}, \mathbb{C}\right): \operatorname{supp} f \subset K\right\}, \quad q_{K, k}(f):=\sum_{\alpha \in \mathbb{N}_{0}^{N}:|\alpha| \leq k} \sup _{K}\left|D^{\alpha} f\right|, \quad k \in \mathbb{N}_{0},
$$

where

$$
D^{\alpha}:=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial x_{N}}\right)^{\alpha_{N}}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{N}_{0}^{N}
$$

The seminorms $\left(q_{K, k}\right)_{k \in \mathbb{N}_{0}}$ generate on $\mathcal{D}(K)$ a Fréchet topology; we have

$$
f_{\nu} \xrightarrow{\mathcal{D}(K)} f_{0} \Longleftrightarrow \forall_{\alpha \in \mathbb{N}_{0}^{N}}: D^{\alpha} f_{\nu} \longrightarrow D^{\alpha} f_{0} \text { uniformly on } K
$$

For an open set $\Omega \subset \mathbb{R}^{N}$ let

$$
\mathcal{D}(\Omega):=\mathcal{C}_{0}^{\infty}(\Omega, \mathbb{C})=\bigcup_{K \subset \subset \Omega} \mathcal{D}(K)
$$

We define

$$
f_{\nu} \xrightarrow{\mathcal{D}(\Omega)} f_{0} \stackrel{\text { def }}{\Longleftrightarrow} \exists_{K \subset \subset \Omega}:\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{D}(K), f_{\nu} \xrightarrow{\mathcal{D}(K)} f_{0} .
$$

Let $\mathcal{E}(\Omega):=\mathcal{C}^{\infty}(\Omega)$. The seminorms $\left(q_{K, k}\right)_{K \subset \subset \Omega, k \in \mathbb{N}_{0}}$ generate on $\mathcal{E}(\Omega)$ a Fréchet topology; we have

$$
f_{\nu} \xrightarrow{\mathcal{E}(\Omega)} f_{0} \Longleftrightarrow \forall_{\alpha \in \mathbb{N}_{0}^{N}}: D^{\alpha} f_{\nu} \longrightarrow D^{\alpha} f_{0} \text { locally uniformly in } \Omega .
$$

A linear functional $\mathcal{T}: \mathcal{D}(\Omega) \longrightarrow \mathbb{C}$ is a distribution on $\Omega\left(\mathcal{T} \in \mathcal{D}^{\prime}(\Omega)\right)$ if for any compact $K \subset \Omega$ the mapping $\left.\mathcal{T}\right|_{\mathcal{D}(K)}: \mathcal{D}(K) \longrightarrow \mathbb{C}$ is continuous.
5.1.1. For a linear operator $\mathfrak{T}: \mathcal{D}(\Omega) \longrightarrow \mathbb{C}$ the following conditions are equivalent:
(i) $\mathcal{T} \in \mathcal{D}^{\prime}(\Omega)$;
(ii) for any compact $K \subset \Omega$ there exist $C>0$ and $k \in \mathbb{N}_{0}$ such that

$$
|\mathcal{T}(f)| \leq C q_{K, k}(f), \quad f \in \mathcal{D}(K)
$$

(iii) if $f_{\nu} \xrightarrow{\mathcal{D}(\Omega)} f_{0}$, then $\mathcal{T}\left(f_{\nu}\right) \longrightarrow \mathcal{T}\left(f_{0}\right)$.

We endow $\mathcal{D}^{\prime}(\Omega)$ with the weak topology, i.e.

$$
\mathcal{T}_{\nu} \xrightarrow{\mathcal{D}^{\prime}(\Omega)} \mathcal{T}_{0} \Longleftrightarrow \forall_{f \in \mathcal{D}(\Omega)}: \mathcal{T}_{\nu}(f) \longrightarrow \mathcal{T}_{0}(f)
$$

5.1.2. For $u \in L^{1}(\Omega$, loc $)$ let

$$
[u](f):=\int_{\Omega} u f d \mathcal{L}^{N}, \quad f \in \mathcal{D}(\Omega) .
$$

Then $[u] \in \mathcal{D}^{\prime}(\Omega)$. Moreover, the mapping

$$
\begin{equation*}
L^{1}(\Omega, \operatorname{loc}) \ni u \longmapsto[u] \in \mathcal{D}^{\prime}(\Omega) \tag{5.1.1}
\end{equation*}
$$

is injective. Consequently, we may identify $L^{1}(\Omega$, loc $)$ with a subspace of $\mathcal{D}^{\prime}(\Omega)$ and we will frequently write u instead of $[u]$.

If we consider on $L^{1}(\Omega$, loc $)$ the standard topology, i.e.

$$
u_{\nu} \xrightarrow{L^{1}(\Omega, \text { loc })} u_{0} \Longleftrightarrow \forall_{K \subset \subset \Omega}:\left.\left.u_{\nu}\right|_{K} \xrightarrow{L^{1}(K)} u_{0}\right|_{K},
$$

then the mapping 5.1.1 is continuous.
Let $\mathfrak{T} \in \mathcal{D}^{\prime}(\Omega)$. We say that $\mathfrak{T}=0$ on an open set $U \subset \Omega$ if $\left.\mathcal{T}\right|_{\mathcal{D}(U)}=0$.
The support $\operatorname{supp} \mathcal{T}$ of \mathfrak{T} is the set of all $a \in \Omega$ such that $\mathfrak{T} \neq 0$ on any neighborhood of a; supp \mathcal{T} is relatively closed in $\Omega ; \mathcal{T}=0$ on $\Omega \backslash \operatorname{supp} \mathcal{T}$; if $f_{1}, f_{2} \in \mathcal{D}(\Omega)$ are such that $f_{1}=f_{2}$ in a neighborhood of $\operatorname{supp} \mathcal{T}$, then $\mathfrak{T}\left(f_{1}\right)=\mathfrak{T}\left(f_{2}\right)$.

If supp $\mathcal{T} \subset \subset \Omega$, then \mathcal{T} extends to a distribution on \mathbb{R}^{N}.
5.1.3. For $\mathfrak{T} \in \mathcal{D}^{\prime}(\Omega)$ let

$$
\operatorname{Dom}(\mathfrak{T}):=\{f \in \mathcal{E}(\Omega): \operatorname{supp} \mathcal{T} \cap \operatorname{supp} f \subset \subset \Omega\}
$$

Then $\operatorname{Dom}(\mathcal{T})$ is a linear subspace of $\mathcal{E}(\Omega)$. Obviously, $\mathcal{D}(\Omega) \subset \operatorname{Dom}(\mathcal{T})$. If $\operatorname{supp} \mathcal{T} \subset \subset \Omega$, then $\operatorname{Dom}(\mathcal{T})=$ $\mathcal{E}(\Omega)$. Define

$$
\widetilde{\mathfrak{T}}: \operatorname{Dom}(\mathfrak{T}) \longrightarrow \mathbb{C}, \quad \widetilde{\mathfrak{T}}(f):=\mathcal{T}(\varphi f)
$$

where $\varphi \in \mathcal{D}(\Omega)$ and $\varphi=1$ in a neighborhood of $K_{f}:=\operatorname{supp} \mathcal{T} \cap \operatorname{supp} f$. Then the definition of $\widetilde{\mathfrak{T}}(f)$ is independent of φ and $\widetilde{\mathfrak{T}}=\mathcal{T}$ on $\mathcal{D}(\Omega)$. The operator $\widetilde{\mathfrak{T}}$ is also continuous in the following sense:

$$
\left(\operatorname{Dom}(\mathcal{T}) \ni f_{\nu} \xrightarrow{\mathcal{E}(\Omega)} f_{0} \in \operatorname{Dom}(\mathcal{T}) \text { and } \bigcup_{\nu=1}^{\infty} K_{f_{\nu}} \subset \subset \Omega\right) \Longrightarrow \widetilde{\mathfrak{T}}\left(f_{\nu}\right) \longrightarrow \widetilde{\mathfrak{T}}\left(f_{0}\right)
$$

In particular, if supp $\mathfrak{T} \subset \subset \Omega$, then $\widetilde{\mathfrak{T}}$ is continuous in the standard sense.
Consequently, \mathfrak{T} extends to continuous linear functional on $\mathcal{E}(\Omega)$ iff $\operatorname{supp} \mathfrak{T} \subset \subset \Omega$.
Let $\mathcal{T} \in \mathcal{D}^{\prime}(\Omega)$. For $\alpha \in \mathbb{N}_{0}^{N}$ define

$$
\left(D^{\alpha} \mathcal{T}\right)(f):=(-1)^{|\alpha|} \mathcal{T}\left(D^{\alpha} f\right), \quad f \in \mathcal{D}(\Omega)
$$

The mapping $D^{\alpha} \mathcal{T}$ is called the α-th derivative of \mathcal{T}.
5.1.4. (a) The mapping $\mathcal{D}(\Omega) \ni f \longrightarrow D^{\alpha} f \in \mathcal{D}(\Omega)$ is continuous. Consequently, $D^{\alpha} \mathcal{T} \in \mathcal{D}^{\prime}(\Omega)$.

In particular, any function $u \in L^{1}(\Omega, \operatorname{loc})$ has all derivatives in the sense of distribution.
(b) $D^{\alpha}\left(D^{\beta} \mathcal{T}\right)=D^{\alpha+\beta} \mathcal{T}$.
(c) The mapping $\mathcal{D}^{\prime}(\Omega) \ni \mathfrak{T} \longrightarrow D^{\alpha} \mathfrak{T} \in \mathcal{D}^{\prime}(\Omega)$ is linear and continuous.
(d) If $u \in \mathcal{C}^{k}(\Omega)$, then

$$
D^{\alpha}[u]=\left[D^{\alpha} u\right], \quad|\alpha| \leq k .
$$

For $\eta \in \mathcal{E}(\Omega)$ define

$$
(\eta \mathcal{T})(f):=\mathcal{T}(\eta f), \quad f \in \mathcal{D}(\Omega)
$$

5.1.5. (a) The mapping $\mathcal{E}(\Omega) \times \mathcal{D}(\Omega) \ni(\eta, f) \longrightarrow \eta f \in \mathcal{D}(\Omega)$ is continuous. Consequently, $\eta \mathcal{T} \in \mathcal{D}^{\prime}(\Omega)$.
(b) The mapping $\mathcal{E}(\Omega) \times \mathcal{D}^{\prime}(\Omega) \ni(\eta, \mathcal{T}) \longrightarrow \eta \mathcal{T} \in \mathcal{D}^{\prime}(\Omega)$ is bilinear and continuous.
(c) $\vartheta(\eta \mathfrak{T})=(\vartheta \eta) \mathcal{T}(\vartheta, \eta \in \mathcal{E}(\Omega))$.
(d) If $u \in L^{1}(\Omega$, loc $)$, then $\eta[u]=[\eta u]$.
5.1.6. Let Ω_{j} be open in $\mathbb{R}^{N_{j}}, j=1,2$, let $\mathcal{T} \in \mathcal{D}^{\prime}\left(\Omega_{1}\right)$, and let $f \in \mathcal{E}\left(\Omega_{1} \times \Omega_{2}\right)$ be such that

$$
\bigcup_{x_{2} \in \Omega_{2}} \operatorname{supp} f\left(\cdot, x_{2}\right) \subset \subset \Omega_{1}
$$

(note that the last condition is satisfied if $f \in \mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$). Put

$$
F\left(x_{2}\right)=F_{f}\left(x_{2}\right):=\mathfrak{T}\left(f\left(\cdot, x_{2}\right)\right), \quad x_{2} \in \Omega_{2}
$$

Then $F \in \mathcal{E}\left(\Omega_{2}\right)$ and

$$
D^{\alpha} F\left(x_{2}\right)=\mathfrak{T}\left(D_{x_{2}}^{\alpha} f\left(\cdot, x_{2}\right)\right), \quad x_{2} \in \Omega_{2}, \alpha \in \mathbb{N}_{0}^{N_{2}} .
$$

Moreover, if $f \in \mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$, then $F \in \mathcal{D}\left(\Omega_{2}\right)$ and the mapping

$$
\mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right) \ni f \longmapsto F_{f} \in \mathcal{D}\left(\Omega_{2}\right)
$$

is continuous.
Observe that if $u_{j} \in L^{1}\left(\Omega_{j}\right.$, loc $), j=1,2$, then $u_{1} \otimes u_{2} \in L^{1}\left(\Omega_{1} \times \Omega_{2}\right.$, loc $\left.){ }^{1}\right)$. Moreover, if $u_{j} \in \mathcal{D}\left(\Omega_{j}\right)$, $j=1,2$, then $u_{1} \otimes u_{2} \in \mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\operatorname{supp}\left(u_{1} \otimes u_{2}\right)=\left(\operatorname{supp} u_{1}\right) \times\left(\operatorname{supp} u_{2}\right)$. Let $\mathcal{D}\left(\Omega_{1}\right) \otimes \mathcal{D}\left(\Omega_{2}\right)$ denote the subspace of $\mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$ generated by all functions $u_{1} \otimes u_{2}$ with $u_{j} \in \mathcal{D}\left(\Omega_{j}\right), j=1,2$.
5.1.7. $\mathcal{D}\left(\Omega_{1}\right) \otimes \mathcal{D}\left(\Omega_{2}\right)$ is dense in $\mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$.
5.1.8. (a) Let $\mathcal{T}_{j} \in \mathcal{D}^{\prime}\left(\Omega_{j}\right), j=1,2$. For $f \in \mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)$ define

$$
\begin{aligned}
F_{1}\left(x_{1}\right):=\mathcal{T}_{2}\left(f\left(x_{1}, \cdot\right)\right), x_{1} \in \Omega_{1}, & F_{2}\left(x_{2}\right):=\mathcal{T}_{1}\left(f\left(\cdot, x_{2}\right)\right), x_{2} \in \Omega_{2} \\
\mathcal{U}_{1}(f):=\mathcal{T}_{1}\left(F_{1}\right), & \mathfrak{U}_{2}(f):=\mathcal{T}_{2}\left(F_{2}\right)
\end{aligned}
$$

(note that, by Property 5.1.6, $\left.\mathfrak{u}_{j} \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right), j=1,2\right)$. Then

$$
\mathcal{U}_{1}\left(u_{1} \otimes u_{2}\right)=\mathcal{U}_{2}\left(u_{1} \otimes u_{2}\right)=\mathcal{T}_{1}\left(u_{1}\right) \mathcal{T}_{2}\left(u_{2}\right), \quad u_{j} \in \mathcal{D}\left(\Omega_{j}\right), j=1,2
$$

Consequently, by Property 5.1.7. $\mathfrak{U}_{1}=\mathfrak{U}_{2}$. Put $\mathfrak{T}_{1} \otimes \mathfrak{T}_{2}:=\mathfrak{U}_{1}\left(=\mathcal{U}_{2}\right)$. The distribution $\mathfrak{T}_{1} \otimes \mathfrak{T}_{2}$ is called the tensor product of \mathcal{T}_{1} and \mathfrak{T}_{2}. It is the only distribution on $\Omega_{1} \times \Omega_{2}$ satisfying

$$
\left(\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)\left(u_{1} \otimes u_{2}\right)=\mathfrak{T}_{1}\left(u_{1}\right) \mathcal{T}_{2}\left(u_{2}\right), \quad u_{j} \in \mathcal{D}\left(\Omega_{j}\right), j=1,2
$$

(b) $\left[u_{1}\right] \otimes\left[u_{2}\right]=\left[u_{1} \otimes u_{2}\right]$ for any $u_{j} \in L^{1}\left(\Omega_{j}, \operatorname{loc}\right), j=1,2$.
(c) The operation

$$
\mathcal{D}^{\prime}\left(\Omega_{1}\right) \times \mathcal{D}^{\prime}\left(\Omega_{2}\right) \ni\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \longmapsto \mathcal{T}_{1} \otimes \mathcal{T}_{2} \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)
$$

is bilinear.
(d) $\operatorname{supp}\left(\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)=\left(\operatorname{supp} \mathfrak{T}_{1}\right) \times\left(\operatorname{supp} \mathfrak{T}_{2}\right)$.
(e) $\left(\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right) \otimes \mathcal{T}_{3}=\mathcal{T}_{1} \otimes\left(\mathcal{T}_{2} \otimes \mathcal{T}_{3}\right)$ for any $\mathcal{T}_{j} \in \mathcal{D}^{\prime}\left(\Omega_{j}\right), j=1,2,3$.
(f) $D_{x_{1}}^{\alpha_{1}} D_{x_{2}}^{\alpha_{2}}\left(\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)=\left(D^{\alpha_{1}} \mathcal{T}_{1}\right) \otimes\left(D^{\alpha_{2}} \mathcal{T}_{2}\right)$ for arbitrary $\alpha_{j} \in \mathbb{N}_{0}^{N_{j}}, j=1,2$.
5.1.9. Let $u \in L^{p}\left(\mathbb{R}^{N}\right), v \in L^{q}\left(\mathbb{R}^{N}\right)$ with $1 \leq p, q \leq+\infty, 1 / p+1 / q \geq 1$. Then the function

$$
(u * v)(x):=\int_{\mathbb{R}^{N}} u(x-y) v(y) d \mathcal{L}^{N}(y)
$$

is defined for almost all $x \in \mathbb{R}^{N}$ and $u * v \in L^{r}\left(\mathbb{R}^{N}\right)$, where $1 / r=1 / p+1 / q-1$. The operator

$$
L^{p}\left(\mathbb{R}^{N}\right) \times L^{q}\left(\mathbb{R}^{N}\right) \ni(u, v) \longmapsto u * v \in L^{r}\left(\mathbb{R}^{N}\right)
$$

$\left.{ }^{1}\right)(f \otimes g)(x, y)=f(x) g(y)$.
5. Hörmander's solution of the $\bar{\partial}$-problem
is bilinear symmetric and continuous. Moreover,

$$
\|u * v\|_{L^{r}\left(\mathbb{R}^{N}\right)} \leq\|u\|_{L^{p}\left(\mathbb{R}^{N}\right)}\|v\|_{L^{q}\left(\mathbb{R}^{N}\right)}
$$

If $r=\infty$, then $u * v \in \mathcal{C}\left(\mathbb{R}^{N}\right)$.
The function $u * v$ is called the convolution of u and v. The convolution $u * v$ may be also defined under weaker assumptions on u and v (cf. Property 5.1.11).

Let $\Phi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}_{+}\right)$be such that $\int_{\mathbb{R}^{N}} \Phi d \mathcal{L}^{N}=1$. Put

$$
\Phi_{\varepsilon}(x):=\varepsilon^{-N} \Phi(x / \varepsilon), \quad x \in \mathbb{R}^{N}, \varepsilon>0
$$

For $u \in L^{p}\left(\mathbb{R}^{N}\right)$ let

$$
u_{\varepsilon}:=u * \Phi_{\varepsilon}
$$

The function u_{ε} is called the ε-th regularization of u (with respect to $\left.\Phi\right) ; u_{\varepsilon} \in L^{p}\left(\mathbb{R}^{N}\right)$ and $\left\|u_{\varepsilon}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq$ $\|u\|_{L^{p}\left(\mathbb{R}^{N}\right)}$.
5.1.10. Let $u \in L^{p}\left(\mathbb{R}^{N}\right)(1 \leq p<+\infty)$ be such that $u=0$ outside a compact $K \subset \mathbb{R}^{N}$. Then:
(a) $u_{\varepsilon} \in \mathcal{D}\left(\mathbb{R}^{N}\right), \operatorname{supp}\left(u_{\varepsilon}\right) \subset K+\varepsilon(\operatorname{supp} \Phi)$;
(b) if $u \in \mathcal{C}_{0}\left(\mathbb{R}^{N}\right)$, then $u_{\varepsilon} \longrightarrow u$ uniformly on \mathbb{R}^{N} when $\varepsilon \longrightarrow 0$;
(c) $u_{\varepsilon} \xrightarrow{L^{p}\left(\mathbb{R}^{N}\right)} u$ when $\varepsilon \longrightarrow 0$;
(d) if $u \in \mathcal{C}_{0}^{k}\left(\mathbb{R}^{N}\right)$, then $D^{\alpha}\left(u_{\varepsilon}\right)=\left(D^{\alpha} u\right)_{\varepsilon}$ and $D^{\alpha}\left(u_{\varepsilon}\right) \longrightarrow D^{\alpha} u$ uniformly on \mathbb{R}^{N} when $\varepsilon \longrightarrow 0$ for any $|\alpha| \leq k$.
5.1.11. Let $\mathcal{T}_{j} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right), j=1,2$. Assume that

$$
\begin{equation*}
\forall_{K \subset \subset \mathbb{R}^{N}}:\left\{\left(x_{1}, x_{2}\right) \in\left(\operatorname{supp} \mathcal{T}_{1}\right) \times\left(\operatorname{supp} \mathcal{T}_{2}\right): x_{1}+x_{2} \in K\right\} \subset \subset \mathbb{R}^{2 N} \tag{5.1.2}
\end{equation*}
$$

Put

$$
\left(\mathcal{T}_{1} * \mathcal{T}_{2}\right)(f):=\left(\widetilde{\left(\mathcal{T}_{1} \otimes \mathfrak{T}_{2}\right.}\right)(f \circ \sigma), \quad f \in \mathcal{D}\left(\mathbb{R}^{N}\right)
$$

where $\sigma: \mathbb{R}^{N} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}, \sigma\left(x_{1}, x_{2}\right):=x_{1}+x_{2}$ (cf. Property 5.1.3. Then $\mathcal{T}_{1} * \mathcal{T}_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$.
The distribution $\mathcal{T}_{1} * \mathcal{T}_{2}$ is called the convolution of \mathcal{T}_{1} and \mathcal{T}_{2}.
5.1.12. (a) The operation $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \longrightarrow \mathcal{T}_{1} * \mathcal{T}_{2}$ is bilinear and symmetric.
(b) Condition 5.1 .2 holds if $\operatorname{supp} \mathcal{T}_{1}$ or $\operatorname{supp} \mathcal{T}_{2}$ is compact.
(c) If $u_{1}, u_{2} \in L^{1}\left(\mathbb{R}^{N}, \operatorname{loc}\right), \operatorname{supp} u_{1} \subset \subset \mathbb{R}^{N}$, then

$$
\left[u_{1}\right] *\left[u_{2}\right]=\left[u_{1} * u_{2}\right] .
$$

(d) $\operatorname{supp}\left(\mathcal{T}_{1} * \mathfrak{T}_{2}\right) \subset\left(\operatorname{supp} \mathcal{T}_{1}\right)+\left(\operatorname{supp} \mathfrak{T}_{2}\right)$.
(e) If

$$
\forall_{K \subset \subset \mathbb{R}^{N}}:\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{supp} \mathcal{T}_{1} \times \operatorname{supp} \mathcal{T}_{2} \times \operatorname{supp} \mathcal{T}_{3}: x_{1}+x_{2}+x_{3} \in K\right\} \subset \subset \mathbb{R}^{3 N}
$$

then $\left(\mathcal{T}_{1} * \mathcal{T}_{2}\right) * \mathcal{T}_{3}=\mathfrak{T}_{1} *\left(\mathcal{T}_{2} * \mathcal{T}_{3}\right)$.
(f) $D^{\alpha}\left(\mathcal{T}_{1} * \mathcal{T}_{2}\right)=\left(D^{\alpha} \mathcal{T}_{1}\right) * \mathcal{T}_{2}=\mathcal{T}_{1} *\left(D^{\alpha} \mathcal{T}_{2}\right)$ for any $\alpha \in \mathbb{N}_{0}^{N}$.
(g)

$$
\begin{aligned}
& \left(\mathcal{T}_{\nu} \xrightarrow{\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)} \mathcal{T}_{0} \text { and } \bigcup_{\nu=1}^{\infty} \operatorname{supp} \mathcal{T}_{\nu} \subset \subset \mathbb{R}^{N}\right) \Longrightarrow \mathcal{T}_{\nu} * \mathcal{U}^{\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)} \mathcal{T}_{0} * \mathcal{U} \\
& \left(\mathcal{T}_{\nu} \xrightarrow{\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)} \mathfrak{T}_{0} \text { and } \operatorname{supp} \mathfrak{U} \subset \subset \mathbb{R}^{N}\right) \Longrightarrow \mathcal{T}_{\nu} * \mathcal{U}^{\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)} \mathfrak{T}_{0} * \mathcal{U}
\end{aligned}
$$

(h) If $\mathcal{T} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$ and $u \in \mathcal{D}\left(\mathbb{R}^{N}\right)$, then

$$
\mathcal{T} *[u]=[v]
$$

where

$$
v(x):=\mathcal{T}(u(x-\cdot)), \quad x \in \mathbb{R}^{N}
$$

Moreover, by Property 5.1.6, $v \in \mathcal{E}\left(\mathbb{R}^{N}\right)$.
5.2. Hörmander's inequality

Define

$$
\mathcal{T}_{\varepsilon}:=\mathcal{T} * \Phi_{\varepsilon}
$$

The distribution $\mathcal{T}_{\varepsilon}$ is called the ε-th regularization of \mathcal{T} (with respect to Φ).
5.1.13. (a) If $u \in L^{1}\left(\mathbb{R}^{N}\right.$, loc $)$, then $[u]_{\varepsilon}=\left[u_{\varepsilon}\right]$.
(b) $\operatorname{supp}\left(\mathfrak{T}_{\varepsilon}\right) \subset(\operatorname{supp} \mathfrak{T})+\varepsilon(\operatorname{supp} \Phi)$.
(c) $D^{\alpha} \mathcal{T}_{\varepsilon}=\left(D^{\alpha} \mathcal{T}\right)_{\varepsilon}$. In particular, for any differential operator L with constant coefficients we get $(L(\mathcal{T}))_{\varepsilon}=$ $L\left(\mathcal{T}_{\varepsilon}\right)$.
(d) $\mathcal{T}_{\varepsilon} \xrightarrow{\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)} \mathcal{T}$ when $\varepsilon \longrightarrow 0$.
(e) $\mathcal{T}_{\varepsilon} \in \mathcal{E}\left(\mathbb{R}^{N}\right)$.
(f) If supp $\mathcal{T} \subset \subset \mathbb{R}^{N}$, then $\mathcal{T}_{\varepsilon} \in \mathcal{D}\left(\mathbb{R}^{N}\right)$.

5.2. Hörmander's inequality

Let Ω be an open set in \mathbb{C}^{n}.
For $p, q \in \mathbb{N}_{0}$ let $\mathcal{D}_{(p, q)}^{\prime}(\Omega)$ denote the space of all forms of type (p, q) with coefficients (in the canonical form) in $\mathcal{D}^{\prime}(\Omega)$. If

$$
\mathcal{T}=\sum_{|I|=p,|J|=q}^{\prime} \mathcal{T}_{I, J} d z_{I} \wedge d \bar{z}_{J} \in \mathcal{D}_{(p, q)}^{\prime}(\Omega)
$$

then for any sequence $S=\left(s_{1}, \ldots, s_{q}\right), 1 \leq s_{1}, \ldots, s_{q} \leq n$, we define

$$
\mathcal{T}_{I, S}:= \begin{cases}0 & \text { if } \#\left\{s_{1}, \ldots, s_{q}\right\}<q \\ (\operatorname{sgn} \sigma) \mathcal{T}_{I, \sigma(S)} & \text { if } \#\left\{s_{1}, \ldots, s_{q}\right\}=q\end{cases}
$$

where $\sigma=\sigma_{S}$ is the permutation such that $\sigma(S) \in \Xi_{q}^{n}$; we define $\vec{S}:=\sigma(S)$.
If $j \in\{1, \ldots, n\}, K \in \Xi_{q-1}^{n}$, then we put $j K:=\left(j, k_{1}, \ldots, k_{q-1}\right)$.
Observe that $\mathfrak{T}_{I, j k L}=-\mathfrak{T}_{I, k j L}$.
The operators ∂ and $\bar{\partial}$ defined in $\S 4.2$ on $\mathcal{C}_{(p, q)}^{1}(\Omega)$ can be easily extended to $\mathcal{D}_{(p, q)}^{\prime}(\Omega)$, namely:

$$
\partial \mathfrak{T}:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial \mathfrak{T}_{I, J}}{\partial z_{j}} d z_{j} \wedge d z_{I} \wedge d \bar{z}_{J}, \quad \bar{\partial} \mathfrak{T}:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial \mathfrak{T}_{I, J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J}
$$

Recall the canonical form of $\bar{\partial} \mathfrak{T}$:

$$
\bar{\partial} \mathcal{T}=\sum_{|I|=p,|K|=q+1}^{\prime}\left(\sum_{J \in \Xi_{q}^{n}, j \in\{1, \ldots, n\}} \varepsilon(I, K, J, j) \frac{\partial \mathfrak{T}_{I, J}}{\partial \bar{z}_{j}}\right) d z_{I} \wedge d \bar{z}_{K}
$$

where $\varepsilon=\varepsilon(I, K, J, j) \in\{-1,+1\}$ is such that

$$
d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J}=\varepsilon d z_{I} \wedge d \bar{z}_{K}
$$

if $\left\{k_{1}, \ldots, k_{q+1}\right\}=\left\{j, j_{1}, \ldots, j_{q}\right\}$ and $\varepsilon(I, K, J, j):=0$ otherwise.
Moreover, we define

$$
D^{\alpha, \beta} \mathfrak{T}:=\sum_{|I|=p,|J|=q}^{\prime}\left(D^{\alpha, \beta} \mathcal{T}_{I, J}\right) d z_{I} \wedge d \bar{z}_{J}, \quad \alpha, \beta \in \mathbb{N}_{0}^{n}, \quad \vartheta \mathcal{T}:=\sum_{|I|=p,|K|=q-1}^{\prime}\left(\sum_{j=1}^{n} \frac{\partial \mathcal{T}_{I, j K}}{\partial z_{j}}\right) d z_{I} \wedge d \bar{z}_{K}
$$

(Notice that ϑ is defined if $q \geq 1$.) Observe that

$$
\begin{aligned}
& \partial: \mathcal{D}_{(p, q)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p+1, q)}^{\prime}(\Omega), \quad \bar{\partial}: \mathcal{D}_{(p, q)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p, q+1)}^{\prime}(\Omega), \quad \partial \circ \partial=0, \quad \bar{\partial} \circ \bar{\partial}=0, \quad \partial \circ \bar{\partial}=-\bar{\partial} \circ \partial, \\
& D^{\alpha, \beta}: \mathcal{D}_{(p, q)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p, q)}^{\prime}(\Omega), \quad D^{\alpha, \beta} \circ \partial=\partial \circ D^{\alpha, \beta}, \quad D^{\alpha, \beta} \circ \bar{\partial}=\bar{\partial} \circ D^{\alpha, \beta}, \\
& \vartheta: \mathcal{D}_{(p, q)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p, q-1)}^{\prime}(\Omega), \quad \vartheta: \mathcal{C}_{(p, q)}^{k}(\Omega) \longrightarrow \mathcal{C}_{(p, q-1)}^{k-1}(\Omega), \quad \vartheta \circ \vartheta=0, \quad \vartheta \circ D^{\alpha, \beta}=D^{\alpha, \beta} \circ \vartheta
\end{aligned}
$$

5. Hörmander's solution of the $\bar{\partial}$-problem

Fix a function $\Psi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{C}, \mathbb{R}_{+}\right)$such that

$$
\operatorname{supp} \Psi=\overline{\mathbb{D}}, \quad \Psi(z)=\Psi(|z|), z \in \mathbb{C}, \quad \int_{\mathbb{C}} \Psi d \mathcal{L}^{2}=1
$$

and let

$$
\Phi\left(z_{1}, \ldots, z_{n}\right):=\Psi\left(z_{1}\right) \cdots \Psi\left(z_{n}\right), \quad\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, \quad \Phi_{\varepsilon}(z):=\frac{1}{\varepsilon^{2 n}} \Phi\left(\frac{z}{\varepsilon}\right), \quad \varepsilon>0, z \in \mathbb{C}^{n}
$$

Observe that $\operatorname{supp} \Phi_{\varepsilon}=\overline{\mathbb{P}}_{n}(\varepsilon)$ and $\int_{\mathbb{C}^{n}} \Phi_{\varepsilon} d \mathcal{L}^{2 n}=1, \varepsilon>0$.
Let $\mathfrak{T} \in \mathcal{D}_{(p, q)}^{\prime}(\Omega)$ be such that $\operatorname{supp} \mathcal{T} \subset \subset \Omega\left(\operatorname{supp} \mathcal{T}=\bigcup_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}} \operatorname{supp} \mathcal{T}_{I, J}\right)$. One may identify \mathfrak{T} with an element of $\mathcal{D}_{(p, q)}^{\prime}\left(\mathbb{C}^{n}\right)$.

We define the ε-regularization of \mathcal{T} by the formula

$$
\mathcal{T}_{\varepsilon}:=\sum_{|I|=p,|J|=q}^{\prime}\left(\mathcal{T}_{I, J}\right)_{\varepsilon} d z_{I} \wedge d \bar{z}_{J} \in \mathcal{D}_{(p, q)}^{\prime}\left(\mathbb{C}^{n}\right)
$$

Recall that $\operatorname{supp} \mathcal{T}_{\varepsilon} \subset(\operatorname{supp} \mathcal{T})^{(\varepsilon)}($ Property $5.1 .13(\mathrm{~b}))$. In particular, $\operatorname{supp} \mathcal{T}_{\varepsilon} \subset \Omega$ provided $0<\varepsilon \ll 1$. By Property 5.1.13(c), we get

$$
\begin{equation*}
\partial\left(\mathcal{T}_{\varepsilon}\right)=(\partial \mathfrak{T})_{\varepsilon}, \quad \bar{\partial}\left(\mathcal{T}_{\varepsilon}\right)=(\bar{\partial} \mathfrak{T})_{\varepsilon}, \quad D^{\alpha, \beta}\left(\mathcal{T}_{\varepsilon}\right)=\left(D^{\alpha, \beta} \mathcal{T}\right)_{\varepsilon}, \quad \vartheta\left(\mathcal{T}_{\varepsilon}\right)=(\vartheta \mathcal{T})_{\varepsilon} \tag{5.2.1}
\end{equation*}
$$

If $\varepsilon \longrightarrow 0$, then $\mathcal{T}_{\varepsilon} \xrightarrow{\mathcal{D}_{(p, q)}^{\prime}(\Omega)} \mathcal{T}$, i.e. $\left(\mathcal{T}_{I, J}\right)_{\varepsilon} \xrightarrow{\mathcal{D}^{\prime}(\Omega)} \mathcal{T}_{I, J}$ for any $I \in \Xi_{p}^{n}$ and $J \in \Xi_{q}^{n}$ (Property 5.1.13(d)).
For a continuous function $\varphi: \Omega \longrightarrow \mathbb{R}$ let

$$
L^{2}(\Omega, \varphi):=L^{2}\left(\Omega, e^{-\varphi} \mathcal{L}^{2 n}\right)=\left\{f: \Omega \longrightarrow \mathbb{C}: \int_{\Omega}|f|^{2} e^{-\varphi} d \mathcal{L}^{2 n}<+\infty\right\}
$$

It is clear that $L^{2}(\Omega, \varphi) \subset L^{2}(\Omega$, loc $)$. The space $L^{2}(\Omega, \varphi)$ with the scalar product

$$
(f, g) \longmapsto\langle f, g\rangle_{\varphi}:=\int_{\Omega} f \bar{g} e^{-\varphi} d \mathcal{L}^{2 n}
$$

is a complex Hilbert space. Let $\left\|\|_{\varphi}\right.$ denote the norm generated by the above product. Observe that the space $\mathcal{D}(\Omega)$ is dense in $L^{2}(\Omega, \varphi)$.

Let $L_{(p, q)}^{2}(\Omega, \varphi)\left(\right.$ resp. $L_{(p, q)}^{r}(\Omega$, loc $\left.), 1 \leq r \leq+\infty\right)$ denote the space of all forms of type (p, q) with coefficients in $L^{2}(\Omega, \varphi)$ (resp. $L^{r}(\Omega$, loc $)$). Obviously,

$$
\begin{aligned}
& \mathcal{D}_{(p, q)}(\Omega) \subset\left(\mathcal{C}_{0}^{k}\right)_{(p, q)}(\Omega) \subset \mathcal{C}_{(p, q)}^{k}(\Omega) \subset L_{(p, q)}^{r}(\Omega, \operatorname{loc}) \subset L_{(p, q)}^{1}(\Omega, \operatorname{loc}) \subset \mathcal{D}_{(p, q)}^{\prime}(\Omega) \\
& \mathcal{D}_{(p, q)}(\Omega) \subset\left(\mathcal{C}_{0}^{k}\right)_{(p, q)}(\Omega) \subset L_{(p, q)}^{2}(\Omega, \varphi) \subset L_{(p, q)}^{2}(\Omega, \operatorname{loc}) \subset L_{(p, q)}^{1}(\Omega, \operatorname{loc}) \subset \mathcal{D}_{(p, q)}^{\prime}(\Omega)
\end{aligned}
$$

For $u, v \in L_{(p, q)}^{1}(\Omega$, loc $)$ we define $\langle u, v\rangle: \Omega \longrightarrow \mathbb{C}$ and $\|u\|: \Omega \longrightarrow \mathbb{R}_{+}$by the formulae

$$
\langle u, v\rangle:=\sum_{|I|=p,|J|=q}^{\prime} u_{I, J} \bar{v}_{I, J}, \quad\|u\|:=\sqrt{\langle u, u\rangle} .
$$

If $u, v \in L_{(p, q)}^{2}(\Omega, \varphi)$, then we put

$$
\begin{gathered}
\langle u, v\rangle_{\varphi}:=\int_{\Omega}\langle u, v\rangle e^{-\varphi} d \mathcal{L}^{2 n}=\sum_{|I|=p,|J|=q}^{\prime}\left\langle u_{I, J}, v_{I, J}\right\rangle_{\varphi}, \\
\|u\|_{\varphi}^{2}:=\langle u, u\rangle_{\varphi}=\int_{\Omega}\|u\|^{2} e^{-\varphi} d \mathcal{L}^{2 n}=\sum_{|I|=p,|J|=q}^{\prime}\left\|u_{I, J}\right\|_{\varphi}^{2} .
\end{gathered}
$$

Note that the space $L_{(p, q)}^{2}(\Omega, \varphi)$ with the scalar product $\langle,\rangle_{\varphi}$ is a complex Hilbert space and $\mathcal{D}_{(p, q)}(\Omega)$ is dense in $L_{(p, q)}^{2}(\Omega, \varphi)$.

By Property 5.1.10(d), for any $u \in L_{(p, q)}^{2}(\Omega$, loc $)$ with $\operatorname{supp} u \subset \subset \Omega$ we have

$$
\begin{equation*}
u_{\varepsilon} \xrightarrow{L_{(p, q)}^{2}(\Omega)} u \text {, i.e. } \forall_{I \in \Xi_{p}^{n}, J \in \Xi_{q}^{n}}:\left(u_{I, J}\right)_{\varepsilon} \xrightarrow{L^{2}(\Omega)} u_{I, J} . \tag{5.2.2}
\end{equation*}
$$

For any $\eta \in \mathcal{C}_{(r, s)}^{\infty}(\Omega), \mathcal{T} \in \mathcal{D}_{(p, q)}^{\prime}(\Omega)$ the wedge product $\eta \wedge \mathcal{T}$ (calculated according to standard rules) is well defined and $\eta \wedge \mathcal{T} \in \mathcal{D}_{(r+p, s+q)}^{\prime}(\Omega)$.

Notice that the wedge product $\eta \wedge \mathcal{T}$ is also defined in many other cases, for instance if $\eta \in L_{(r, s)}^{2}$ (Ω, loc) and $u \in L_{(p, q)}^{2}(\Omega$, loc $)$, then $\eta \wedge u \in L_{(r+p, s+q)}^{1}(\Omega$, loc $)$. We have

$$
\bar{\partial}(\eta \wedge \mathfrak{T})=(\bar{\partial} \eta) \wedge \mathfrak{T}+(-1)^{r+s} \eta \wedge(\bar{\partial} \mathfrak{T})
$$

One can prove (cf. [6]) that

$$
\|u \wedge v\| \leq\left(\binom{r+p}{r}\binom{s+q}{s}\right)^{1 / 2}\|u\| \cdot\|v\|, \quad u \in L_{(r, s)}^{2}(\Omega, \operatorname{loc}), v \in L_{(p, q)}^{2}(\Omega, \operatorname{loc})
$$

Moreover, if $r+s \leq 1$ or $p+q \leq 1$, then $\|u \wedge v\| \leq\|u\| \cdot\|v\|$.
Observe that

$$
\begin{equation*}
\vartheta(\eta \mathfrak{T})=\eta \vartheta \mathcal{T}+\mathcal{A}_{\eta}(\mathcal{T}), \quad \eta \in \mathcal{C}^{\infty}(\Omega), \mathcal{T} \in \mathcal{D}_{(p, q)}^{\prime}(\Omega) \tag{5.2.3}
\end{equation*}
$$

where $\mathcal{A}_{\eta}: \mathcal{D}_{(p, q)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p, q-1)}^{\prime}(\Omega)$,

$$
\mathcal{A}_{\eta}(\mathcal{T}):=\sum_{|I|=p,|K|=q-1}^{\prime}\left(\sum_{j=1}^{n} \frac{\partial \eta}{\partial z_{j}} \mathcal{J}_{I, j K}\right) d z_{I} \wedge d \bar{z}_{K}
$$

Suppose that we are given three continuous functions $\varphi_{j}: \Omega \longrightarrow \mathbb{R}, j=1,2,3$. Define operators

$$
\begin{gathered}
L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right) \supset \operatorname{Dom}(T) \ni u \xrightarrow{T} \bar{\partial} u \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right) \\
L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right) \supset \operatorname{Dom}(S) \ni v \xrightarrow{S} \bar{\partial} v \in L_{(p, q+2)}^{2}\left(\Omega, \varphi_{3}\right),
\end{gathered}
$$

where

$$
\begin{aligned}
\operatorname{Dom}(T) & :=\left\{u \in L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right): \bar{\partial} u \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)\right\} \\
\operatorname{Dom}(S) & :=\left\{v \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right): \bar{\partial} v \in L_{(p, q+2)}^{2}\left(\Omega, \varphi_{3}\right)\right\}
\end{aligned}
$$

Observe that $\mathcal{D}_{(p, q)}(\Omega) \subset \operatorname{Dom}(T)$ and $\mathcal{D}_{(p, q+1)}(\Omega) \subset \operatorname{Dom}(S)$. Thus T and S are densely defined. Note that $S \circ T=0$. In particular, $\mathcal{R}(T) \subset \operatorname{Ker}(S)(\mathcal{R}(T):=T(\operatorname{Dom}(T)))$. It is clear that the operators are closed. Consequently, $F:=\operatorname{Ker}(S)$ is a closed subspace of $L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)$.

The following lemma will be the main tool used to solve the $\bar{\partial}$-problem.
Lemma 5.2.1. Assume that $\mathcal{H}_{1}, \mathcal{H}_{2}$ are complex Hilbert spaces. Let

$$
\mathcal{H}_{1} \supset \operatorname{Dom}(T) \xrightarrow{T} \mathcal{H}_{2}
$$

be a linear closed densely defined operator and let F be a closed subspace of \mathcal{H}_{2} such that $\mathcal{R}(T) \subset F$. Assume that

$$
\begin{equation*}
\exists_{C>0}:\|f\|_{\mathcal{H}_{2}} \leq C\left\|T^{*}(f)\right\|_{\mathcal{H}_{1}}, \quad f \in F \cap \operatorname{Dom}\left(T^{*}\right) \tag{5.2.4}
\end{equation*}
$$

Then

$$
\forall_{v \in F} \exists_{u \in \operatorname{Dom}(T) \cap \mathcal{R}\left(T^{*}\right)}: T(u)=v,\|u\|_{\mathcal{H}_{1}} \leq C\|v\|_{\mathcal{H}_{2}}
$$

Proof. Let $P: \mathcal{H}_{2} \longrightarrow F$ denote the orthogonal projection. It is known that $\operatorname{Ker}\left(T^{*}\right)=\mathcal{R}\left(T^{* *}\right)^{\perp}=\mathcal{R}(T)^{\perp}$ (cf. [34]). Hence $F^{\perp}=\operatorname{Ker}(P) \subset \operatorname{Ker}\left(T^{*}\right)$ and therefore

$$
T^{*} \circ P=T^{*}
$$

In particular, $\mathcal{R}\left(T^{*}\right)=T^{*}\left(F \cap \operatorname{Dom}\left(T^{*}\right)\right)$. Now, condition 5.2.4 implies that $\mathcal{R}\left(T^{*}\right)$ is a closed subspace of \mathcal{H}_{1}.
5. Hörmander's solution of the $\bar{\partial}$-problem

Indeed, let $T^{*}\left(f_{\nu}\right) \longrightarrow u_{0} \in \mathcal{H}_{1}$ for $\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset F \cap \operatorname{Dom}\left(T^{*}\right)$. Then, by (5.2.4), $\left\|f_{\nu}-f_{\mu}\right\|_{\mathcal{H}_{2}} \leq C \| T^{*}\left(f_{\nu}\right)-$ $T^{*}\left(f_{\mu}\right) \|_{\mathcal{H}_{1}}, \nu, \mu \geq 1$. Consequently, $\left(f_{\nu}\right)_{\nu=1}^{\infty}$ is convergent, $f_{\nu} \longrightarrow f_{0} \in \mathcal{H}_{2}$. Obviously $f_{0} \in F$. Let $u \in \operatorname{Dom}(T)$. Then

$$
\left\langle u_{0}, u\right\rangle_{\mathcal{H}_{1}}=\lim _{\nu \rightarrow+\infty}\left\langle T^{*}\left(f_{\nu}\right), u\right\rangle_{\mathcal{H}_{1}}=\lim _{\nu \rightarrow+\infty}\left\langle f_{\nu}, T(u)\right\rangle_{\mathcal{H}_{1}}=\left\langle f_{0}, T(u)\right\rangle_{\mathcal{H}_{1}} .
$$

Thus $f_{0} \in \operatorname{Dom}\left(T^{*}\right)$ and $T^{*}\left(f_{0}\right)=u_{0}$.
We pass to the main part of the proof. Fix a $v \in F$ and let $L: \mathcal{R}\left(T^{*}\right) \longrightarrow \mathbb{C}$,

$$
L\left(T^{*}(f)\right):=\langle v, f\rangle_{\mathcal{H}_{2}}, \quad f \in F \cap \operatorname{Dom}\left(T^{*}\right)
$$

By (5.2.4 L is well defined and

$$
\left|L\left(T^{*}(f)\right)\right| \leq C\|v\|_{\mathcal{H}_{2}}\left\|T^{*}(f)\right\|_{\mathcal{H}_{1}}, \quad f \in F \cap \operatorname{Dom}\left(T^{*}\right)
$$

which shows that L is continuous. Since $\mathcal{R}\left(T^{*}\right)$ is closed, the Riesz theorem implies that there exists a $u \in \mathcal{R}\left(T^{*}\right)$ with $\|u\|_{\mathcal{H}_{1}} \leq C\|v\|_{\mathcal{H}_{2}}$ such that

$$
L\left(T^{*}(f)\right)=\left\langle u, T^{*}(f)\right\rangle_{\mathcal{H}_{1}}, \quad f \in \operatorname{Dom}\left(T^{*}\right)
$$

Thus $u \in \operatorname{Dom}\left(T^{* *}\right)=\operatorname{Dom}(T)$ and $T^{* *}(u)=T(u)=v$ (cf. 34]).
The above lemma implies that to solve the equation $\bar{\partial} u=v$ for given $v \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)$ with $u \in$ $L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right)$, it suffices to prove that there exists a $C>0$ such that

$$
\begin{equation*}
\|f\|_{\varphi_{2}} \leq C\left(\left\|T^{*}(f)\right\|_{\varphi_{1}}+\|S(f)\|_{\varphi_{3}}\right), \quad f \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S) \tag{5.2.5}
\end{equation*}
$$

In the first step we will describe a class of continuous functions $\varphi_{j}, j=1,2,3$, for which the proof of (5.2.5) reduces to $f \in \mathcal{D}_{(p, q+1)}(\Omega)$.

Let a sequence $\left(\eta_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{C}_{0}^{\infty}(\Omega,[0,1])$ be such that

$$
\begin{equation*}
\forall_{K \subset \subset \Omega} \exists_{\nu_{0}}: \forall_{\nu \geq \nu_{0}}:\left.\eta_{\nu}\right|_{K} \equiv 1, \tag{5.2.6}
\end{equation*}
$$

and let $\psi \in \mathcal{C}^{\infty}(\Omega, \mathbb{R})$ satisfy

$$
\begin{equation*}
\left\|\bar{\partial} \eta_{\nu}\right\|^{2} \leq e^{\psi}, \quad \nu \in \mathbb{N} \tag{5.2.7}
\end{equation*}
$$

Fix a $\varphi \in \mathcal{C}^{2}(\Omega, \mathbb{R})$ and define $\varphi_{j}:=\varphi-(3-j) \psi, \mathcal{H}_{j}:=L_{(p, q+j-1)}^{2}\left(\Omega, \varphi_{j}\right), j=1,2,3$.
Proposition 5.2.2. $\mathcal{D}_{(p, q+1)}(\Omega)$ is dense in $\operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$ in the graph norm

$$
\operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S) \ni f \longmapsto\|f\|_{\varphi_{2}}+\left\|T^{*}(f)\right\|_{\varphi_{1}}+\|S(f)\|_{\varphi_{3}} .
$$

Proof. We will prove that:

```
\(1^{o} . \forall_{f \in \mathcal{H}_{j}}: \eta_{\nu} f \xrightarrow{\mathcal{H}_{j}} f\) when \(\nu \longrightarrow+\infty, j=1,2,3\).
\(2^{o} . \forall_{f \in \mathcal{H}_{j}}: \operatorname{supp} f \subset \subset \Omega: f_{\varepsilon} \xrightarrow{\mathcal{H}_{j}} f\) when \(\varepsilon \longrightarrow 0, j=1,2,3\).
\(3^{o} . \forall_{\eta \in \mathcal{D}(\Omega), f \in \operatorname{Dom}(S)}: \eta f \in \operatorname{Dom}(S)\).
\(4^{o} . \forall_{f \in \operatorname{Dom}(S)}: S\left(\eta_{\nu} f\right) \xrightarrow{\mathcal{H}_{3}} S(f)\) when \(\nu \longrightarrow+\infty\).
\(5^{o} . \forall_{f \in \operatorname{Dom}(S): ~ s u p p}^{f \subset \subset \Omega}\) : \(S\left(f_{\varepsilon}\right) \xrightarrow{\mathcal{H}_{3}} S(f)\) when \(\varepsilon \longrightarrow 0\).
\(6^{o} . \forall_{\eta \in \mathcal{D}(\Omega), f \in \operatorname{Dom}\left(T^{*}\right)}: \eta f \in \operatorname{Dom}\left(T^{*}\right)\).
\(7^{o} . \forall_{f \in \operatorname{Dom}\left(T^{*}\right)}: T^{*}\left(\eta_{\nu} f\right) \xrightarrow{\mathcal{H}_{1}} T^{*}(f)\) when \(\nu \longrightarrow+\infty\).
\(8^{o} . \mathcal{D}_{(p, q+1)}(\Omega) \subset \operatorname{Dom}\left(T^{*}\right)\).
\(9^{o} . \forall_{f \in \operatorname{Dom}\left(T^{*}\right)}: T^{*}(f)=(-1)^{p-1} e^{\varphi_{1}} \vartheta\left(e^{-\varphi_{2}} f\right)\).
\(10^{\circ} . \forall_{f \in \operatorname{Dom}\left(T^{*}\right): \operatorname{supp} f \subset \subset \Omega}: T^{*}\left(f_{\varepsilon}\right) \xrightarrow{\mathcal{H}_{1}} T^{*}(f)\) when \(\varepsilon \longrightarrow 0\).
```

It is clear that $1^{\circ}-10^{\circ}$ imply the required result.
Property 1° follows from the Lebesgue dominated convergence theorem.
Property 2° follows from 5.2 .2 .
To prove 3° it suffices to recall that $\bar{\partial}(\eta f)=(\bar{\partial} \eta) \wedge f+\eta \bar{\partial} f$.

To prove 4° observe that, by 3°, for $\eta=\eta_{\nu}$, we get

$$
\left\|S\left(\eta_{\nu} f\right)-\eta_{\nu} S(f)\right\|^{2} e^{-\varphi_{3}}=\left\|\left(\bar{\partial} \eta_{\nu}\right) \wedge f\right\|^{2} e^{-\varphi_{3}} \leq\left\|\bar{\partial} \eta_{\nu}\right\|^{2}\|f\|^{2} e^{-\varphi_{3}} \leq e^{\psi}\|f\|^{2} e^{-\varphi_{3}}=\|f\|^{2} e^{-\varphi_{2}}
$$

Hence, by the Lebesgue theorem, $S\left(\eta_{\nu} f\right)-\eta_{\nu} S(f) \xrightarrow{\mathcal{H}_{3}} 0$ when $\nu \longrightarrow+\infty$. We already know by 1^{o} that $\eta_{\nu} S(f) \xrightarrow{\mathcal{H}_{3}} S(f)$. Thus $S\left(\eta_{\nu} f\right) \xrightarrow{\mathcal{H}_{3}} S(f)$.

Property 5° follows from (5.2.1) and (5.2.2).
In particular, we have proved that $\mathcal{D}_{(p, q)}(\Omega)$ is dense in $\operatorname{Dom}(T)$ in the norm

$$
u \longmapsto\|u\|_{\varphi_{1}}+\|T(u)\|_{\varphi_{1}} .
$$

To prove 6° first observe that by $3^{\circ} \bar{\eta} u \in \operatorname{Dom}(T)$ for any $u \in \operatorname{Dom}(T)$. Therefore for any $u \in \operatorname{Dom}(T)$ we get

$$
\langle\eta f, T(u)\rangle_{\varphi_{2}}=\langle f, \bar{\eta} T(u)\rangle_{\varphi_{1}}=\langle f, T(\bar{\eta} u)\rangle_{\varphi_{2}}-\langle f, \bar{\partial} \bar{\eta} \wedge u\rangle_{\varphi_{2}}=\left\langle\eta T^{*}(f), u\right\rangle_{\varphi_{1}}-\langle f, \bar{\partial} \bar{\eta} \wedge u\rangle_{\varphi_{2}} .
$$

Hence, using the Hölder inequality, we obtain

$$
\begin{aligned}
\left|\langle\eta f, T(u)\rangle_{\varphi_{2}}\right| & \leq\left\|\eta T^{*}(f)\right\|_{\varphi_{1}}\|u\|_{\varphi_{1}}+\int_{\Omega}\|f\| \cdot\|\bar{\partial} \bar{\eta}\| \cdot\|u\| e^{-\varphi_{2}} d \mathcal{L}^{2 n} \\
& \leq\left\|\eta T^{*}(f)\right\|_{\varphi_{1}}\|u\|_{\varphi_{1}}+\sup _{\Omega}\left\{\|\bar{\partial} \bar{\eta}\| e^{-\psi / 2}\right\}\|f\|_{\varphi_{2}}\|u\|_{\varphi_{1}}=\operatorname{const}\|u\|_{\varphi_{1}}, \quad u \in \operatorname{Dom}(T) .
\end{aligned}
$$

Consequently, $\eta f \in \operatorname{Dom}\left(T^{*}\right)$ and

$$
\left\langle T^{*}(\eta f), u\right\rangle_{\varphi_{1}}-\left\langle\eta T^{*}(f), u\right\rangle_{\varphi_{1}}=-\langle f, \bar{\partial} \bar{\eta} \wedge u\rangle_{\varphi_{2}}, \quad u \in \operatorname{Dom}(T)
$$

Hence

$$
\left|\int_{\Omega}\left\langle T^{*}(\eta f)-\eta T^{*}(f), u\right\rangle e^{-\varphi_{1}} d \mathcal{L}^{2 n}\right| \leq \int_{\Omega}\|f\| \cdot\|\bar{\partial} \bar{\eta}\| \cdot\|u\| e^{-\varphi_{2}} d \mathcal{L}^{2 n}, \quad u \in \operatorname{Dom}(T),
$$

and so

$$
\left|\int_{\Omega}\left\langle\left(T^{*}(\eta f)-\eta T^{*}(f)\right) e^{-\varphi_{1} / 2}, u e^{-\varphi_{1} / 2}\right\rangle d \mathcal{L}^{2 n}\right| \leq \int_{\Omega}\|f\| e^{-\varphi_{2} / 2}\|\bar{\partial} \bar{\eta}\| e^{-\psi / 2}\|u\| e^{-\varphi_{1} / 2} d \mathcal{L}^{2 n}
$$

for all $u \in \operatorname{Dom}(T)$ and, consequently, for all $u \in L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right)$. Thus

$$
\left|\int_{\Omega}\left\langle\left(T^{*}(\eta f)-\eta T^{*}(f)\right) e^{-\varphi_{1} / 2}, u\right\rangle d \mathcal{L}^{2 n}\right| \leq \int_{\Omega}\|f\| e^{-\varphi_{2} / 2}\|\bar{\partial} \bar{\eta}\| e^{-\psi / 2}\|u\| d \mathcal{L}^{2 n}, \quad u \in L_{(p, q)}^{2}(\Omega)
$$

This implies (Exercise) that

$$
\left\|T^{*}(\eta f)-\eta T^{*}(f)\right\| e^{-\varphi_{1} / 2} \leq\|f\| e^{-\varphi_{2} / 2}\|\bar{\partial} \bar{\eta}\| e^{-\psi / 2} .
$$

In particular, if $\eta=\eta_{\nu}$, then

$$
\left\|T^{*}\left(\eta_{\nu} f\right)-\eta_{\nu} T^{*}(f)\right\|^{2} e^{-\varphi_{1}} \leq\|f\|^{2} e^{-\varphi_{2}}
$$

and therefore, by the Lebesgue theorem, $T^{*}\left(\eta_{\nu} f\right)-\eta_{\nu} T^{*}(f) \xrightarrow{\mathcal{H}_{1}} 0$ when $\nu \longrightarrow+\infty$. Thus, $T^{*}\left(\eta_{\nu} f\right) \xrightarrow{\mathcal{H}_{1}} T^{*}(f)$ and, consequently, 7° is proved.

To prove 8° take an $f \in \mathcal{D}_{(p, q+1)}(\Omega)$ and let

$$
g:=(-1)^{p-1} e^{\varphi_{1}} \vartheta\left(e^{-\varphi_{2}} f\right) \in\left(\mathcal{C}_{0}\right)_{(p, q)}(\Omega) .
$$

For any $u \in \mathcal{D}_{(p, q)}(\Omega)$ we get

$$
\begin{aligned}
\langle g, u\rangle_{\varphi_{1}} & =\sum_{|I|=p,|K|=q}^{\prime} \sum_{j=1}^{n}(-1)^{p-1} \int_{\Omega} e^{\varphi_{1}} \frac{\partial\left(e^{-\varphi_{2}} f_{I, j K}\right)}{\partial z_{j}} \bar{u}_{I, K} e^{-\varphi_{1}} d \mathcal{L}^{2 n} \\
& =\sum_{|I|=p,|K|=q}^{\prime} \sum_{j=1}^{n}(-1)^{p} \int_{\Omega} e^{-\varphi_{2}} f_{I, j K} \frac{\overline{\partial u_{I, K}}}{\partial \bar{z}_{j}} d \mathcal{L}^{2 n}=\langle f, T u\rangle_{\varphi_{2}} .
\end{aligned}
$$

Since the space $\mathcal{D}_{(p, q)}(\Omega)$ is dense in $\operatorname{Dom}(T)$ in the graph norm, we conclude that $f \in \operatorname{Dom}\left(T^{*}\right)$ and $T^{*}(f)=g$.
5. Hörmander's solution of the $\bar{\partial}$-problem

To prove 9° fix an $f \in \operatorname{Dom}\left(T^{*}\right)$ and put $g:=T^{*}(f)$. Then for any $u \in \mathcal{D}_{(p, q)}(\Omega)$ we have

$$
\begin{aligned}
& \sum_{|I|=p,|K|=q}^{\prime} \int_{\Omega} g_{I, K} \bar{u}_{I, K} e^{-\varphi_{1}} d \mathcal{L}^{2 n}=\left\langle T^{*}(f), u\right\rangle_{\varphi_{1}}=\langle f, T(u)\rangle_{\varphi_{2}} \\
&=\sum_{|I|=p,|K|=q}^{\prime} \sum_{j=1}^{n}(-1)^{p} \int_{\Omega} e^{-\varphi_{2}} f_{I, j K} \frac{\overline{\partial u_{I, K}}}{\partial \bar{z}_{j}} d \mathcal{L}^{2 n} .
\end{aligned}
$$

Hence $g=(-1)^{p-1} e^{\varphi_{1}} \vartheta\left(e^{-\varphi_{2}} f\right)$ in the sense of distribution, which gives the required formula for T^{*}.
Finally, to see 10° observe that

$$
(-1)^{p-1} e^{\varphi_{2}-\varphi_{1}} T^{*}=\vartheta+\mathcal{A}
$$

where $\mathcal{A}: \mathcal{D}_{(p, q+1)}^{\prime}(\Omega) \longrightarrow \mathcal{D}_{(p, q+1)}^{\prime}(\Omega)$ is a linear operator with \mathcal{C}^{1} coefficients (cf. 5.2.3). Consequently,

$$
(-1)^{p-1} e^{\varphi_{2}-\varphi_{1}} T^{*}\left(f_{\varepsilon}\right)=(\vartheta f)_{\varepsilon}+\mathcal{A}\left(f_{\varepsilon}\right)
$$

Hence $T^{*}\left(f_{\varepsilon}\right) \xrightarrow{\mathcal{H}_{1}} T^{*}(f)$ when $\varepsilon \longrightarrow 0$.
The proof of the proposition is completed.
Theorem 5.2.3 (Hörmander's \mathbf{L}^{2}-estimates). Under the above notation we have

$$
\begin{align*}
& \int_{\Omega} \sum_{\substack{|I|=|=p\\
| K \mid=q}}^{\prime} \sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial \bar{z}_{k} \partial z_{j}} f_{I, j K} \overline{f_{I, k K}} e^{-\varphi} d \mathcal{L}^{2 n}+\int_{\Omega} \sum_{\substack{|I|=p \\
|J|=q+1}}^{\prime}\left\|\bar{\partial} f_{I, J}\right\|^{2} e^{-\varphi} d \mathcal{L}^{2 n} \\
& \leq 2\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}+\|S(f)\|_{\varphi_{3}}^{2}+2 \int_{\Omega}\|f\|^{2}\|\partial \psi\|^{2} e^{-\varphi} d \mathcal{L}^{2 n}, \quad f \in \mathcal{D}_{(p, q+1)}(\Omega) . \tag{5.2.8}
\end{align*}
$$

In particular, if

$$
\mathcal{L} \varphi(z ; X) \geq 2\left(\|\partial \psi(z)\|^{2}+e^{\psi(z)}\right)\|X\|^{2}, \quad z \in \Omega, X \in \mathbb{C}^{n}
$$

then, by Proposition 5.2.2, we get

$$
\|f\|_{\varphi_{2}}^{2} \leq\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}+\|S(f)\|_{\varphi_{3}}^{2}, \quad f \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)
$$

Proof. Let

$$
\delta_{j}(g):=e^{\varphi} \frac{\partial\left(g e^{-\varphi}\right)}{\partial z_{j}}=\frac{\partial g}{\partial z_{j}}-g \frac{\partial \varphi}{\partial z_{j}}, \quad j=1, \ldots, n
$$

Then

$$
\begin{gather*}
\int_{\Omega} g_{1} \frac{\overline{\partial g_{2}}}{\partial \bar{z}_{k}} e^{-\varphi} d \mathcal{L}^{2 n}=-\int_{\Omega} \delta_{k}\left(g_{1}\right) \overline{g_{2}} e^{-\varphi} d \mathcal{L}^{2 n}, \quad g_{1}, g_{2} \in \mathcal{D}(\Omega), \tag{5.2.9}\\
\delta_{j}\left(\frac{\partial g}{\partial \bar{z}_{k}}\right)-\frac{\partial \delta_{j}(g)}{\partial \bar{z}_{k}}=\frac{\partial^{2} \varphi}{\partial \bar{z}_{k} \partial z_{j}} g, \quad g \in \mathcal{D}(\Omega) . \tag{5.2.10}
\end{gather*}
$$

Observe that

$$
\begin{aligned}
e^{\psi} T^{*}(f)=(-1)^{p-1} \sum_{|I|=p,|K|=q}^{\prime} \sum_{j=1}^{n} \delta_{j}\left(f_{I, j K}\right) d z_{I} \wedge d \bar{z}_{K}+(-1)^{p-1} \sum_{|I|=p,|K|=q}^{\prime} \sum_{j=1}^{n} f_{I, j K} \frac{\partial \psi}{\partial z_{j}} d z_{I} \wedge d \bar{z}_{K} \\
f \in \mathcal{D}_{(p, q+1)}(\Omega)
\end{aligned}
$$

In particular,

$$
\int_{\Omega} \sum_{|I|=p,|K|=q}^{\prime} \sum_{j, k=1}^{n} \delta_{j}\left(f_{I, k K}\right) \overline{\delta_{k}\left(f_{I, j K}\right)} e^{-\varphi} d \mathcal{L}^{2 n} \leq 2\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}+2 \int_{\Omega}\|f\|^{2}\|\partial \psi\|^{2} e^{-\varphi} d \mathcal{L}^{2 n}
$$

$$
f \in \mathcal{D}_{(p, q+1)}(\Omega)
$$

For $f \in \mathcal{D}_{(p, q+1)}(\Omega)$ we have

$$
\|S(f)\|^{2}=\sum_{|I|=p,|J|=q+1}^{\prime} \sum_{j=1}^{n}\left|\frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right|^{2}-\sum_{|I|=p,|K|=q}^{\prime} \sum_{j, k=1}^{n} \frac{\partial f_{I, j K}}{\partial \bar{z}_{k}} \frac{\overline{\partial f_{I, k K}}}{\partial \bar{z}_{j}}
$$

Indeed,

$$
S f=\sum_{|I|=p,|Q|=q+2}^{\prime}\left(\sum_{J \in \Xi_{q+1}^{n},} \varepsilon(I, Q, J, j) \frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right) d z_{I} \wedge d \bar{z}_{Q}
$$

(cf. § 4.2). Hence

$$
\begin{aligned}
\|S f\|^{2}= & \sum_{|I|=p,|Q|=q+2}^{\prime} \sum_{j \notin J} \sum_{k \notin L} \varepsilon(I, Q, J, j) \frac{\partial f_{I, J}}{\partial \bar{z}_{j}} \varepsilon(I, Q, L, k) \frac{\overline{\partial f_{I, L}}}{\partial \bar{z}_{k}} \\
= & \sum_{|I|=p,|J|=q+1}^{\prime} \sum_{j \notin J}\left|\frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right|^{2}+\sum_{|I|=p,|K|=q}^{\prime} \sum_{j, k \notin K, j \neq k} \\
& \varepsilon(I, \overrightarrow{j k K}, \overrightarrow{k K}, j) \varepsilon(I, \overrightarrow{j k K}, \overrightarrow{j K}, k) \operatorname{sgn}\left(\sigma_{k K}\right) \operatorname{sgn}\left(\sigma_{j K}\right) \frac{\partial f_{I, k K}}{\partial \bar{z}_{j}} \frac{\overline{\partial f_{I, j K}}}{\partial \bar{z}_{k}} \\
= & \sum_{|I|=p,|J|=q+1}^{\prime} \sum_{j \notin J}\left|\frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right|^{2}-\sum_{|I|=p,|K|=q}^{\prime} \sum_{j \neq k} \frac{\partial f_{I, k K}}{\partial \bar{z}_{j}} \frac{\overline{\partial f_{I, j K}}}{\partial \bar{z}_{k}} \\
= & \sum_{|I|=p,|J|=q+1}^{\prime} \sum_{j=1}^{n}\left|\frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right|^{2}-\sum_{|I|=p,|K|=q}^{\prime} \sum_{j, k=1}^{n} \frac{\partial f_{I, j K}}{\partial \bar{z}_{k}} \frac{\overline{\partial f_{I, k K}}}{\partial \bar{z}_{j}} .
\end{aligned}
$$

Thus we have proved that

$$
\begin{array}{r}
\int_{\Omega} \sum_{|I|=p,|K|=q}^{\prime} \sum_{j, k=1}^{n}\left(\delta_{j}\left(f_{I, j K}\right) \overline{\delta_{k}\left(f_{I, k K}\right)}-\frac{\partial f_{I, j K}}{\partial \bar{z}_{k}} \frac{\overline{\partial f_{I, k K}}}{\partial \bar{z}_{j}}\right) e^{-\varphi} d \mathcal{L}^{2 n}+\int_{\Omega} \sum_{|I|=p,|J|=q+1}^{\prime} \sum_{j=1}^{n}\left|\frac{\partial f_{I, J}}{\partial \bar{z}_{j}}\right|^{2} e^{-\varphi} d \mathcal{L}^{2 n} \\
\leq 2\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}+\|S(f)\|_{\varphi_{3}}^{2}+2 \int_{\Omega}\|f\|^{2}\|\partial \psi\|^{2} e^{-\varphi} d \mathcal{L}^{2 n}
\end{array}
$$

which, by 5.2 .9 and 5.2 .10 , implies the required inequality.
Notice that 5.2.8 holds for arbitrary $\psi, \varphi \in \mathcal{C}^{2}(\Omega)$. In particular, it holds for $\varphi=\psi=0$.
Theorem 5.2.4. Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex. Then for any $p, q \in \mathbb{N}_{0}$ and for any $\bar{\partial}$-closed form $v \in$ $L_{(p, q+1)}^{2}(\Omega, \operatorname{loc})$, there exist $\varphi_{1}, \varphi_{2} \in \mathcal{C}^{\infty}(\Omega)$ and $u \in \operatorname{Dom}(T) \cap \mathcal{R}\left(T^{*}\right)$ such that $T(u)=v$, where

$$
L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right) \supset \operatorname{Dom}(T) \xrightarrow{T} L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)
$$

is as above.
In particular, for any $\bar{\partial}$-closed form $v \in L_{(p, q+1)}^{2}(\Omega$, loc $)$ there exists a form $u \in L_{(p, q)}^{2}(\Omega$, loc $)$ such that $\bar{\partial} u=v$.

Proof. Let w be a \mathcal{C}^{∞} strictly psh exhaustion function (cf. Proposition 4.1.15).
Let $\chi: \mathbb{R} \longrightarrow \mathbb{R}$ be a \mathcal{C}^{∞} convex increasing function. Take a $\varphi:=\chi \circ w$ and define $\varphi_{j}:=\varphi-(3-j) \psi$, $j=1,2,3$. Let T and S be as above.

We will show that the function χ can be found in such a way that:

- $\mathcal{L} \varphi(z ; X) \geq 2\left(\|\bar{\partial} \psi\|^{2}+\exp (\psi)\right)\|X\|^{2}, z \in \Omega, X \in \mathbb{C}^{n}$,
- $v \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)$ (i.e. $v \in \operatorname{Ker} S$).

Suppose for a moment that χ is constructed. Then by Theorem 5.2.3

$$
\|f\|_{\varphi_{2}}^{2} \leq\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}+\|S(f)\|_{\varphi_{3}}^{2}, \quad f \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)
$$

In particular,

$$
\|f\|_{\varphi_{2}}^{2} \leq\left\|T^{*}(f)\right\|_{\varphi_{1}}^{2}, \quad f \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Ker}(S)
$$

Now, by Lemma 5.2.1 (with $F:=\operatorname{Ker} S$), we find a $u \in \operatorname{Dom}(T) \cap \mathcal{R}\left(T^{*}\right)$ with $T(u)=v$
We pass to the construction of χ. Let $c_{0} \in \mathcal{C}\left(\Omega, \mathbb{R}_{>0}\right)$ be such that

$$
\mathcal{L} w(z ; X) \geq c_{0}\|X\|^{2}, \quad z \in \Omega, X \in \mathbb{C}^{n}
$$

Define

$$
K_{t}:=\{z \in \Omega: w(z) \leq t\}, \quad \tau(t):=\max _{K_{t}}\left\{\left(2 / c_{0}\right)\left(\|\bar{\partial} \psi\|^{2}+e^{\psi}\right)\right\}, \quad a_{t}:=\int_{K_{t} \backslash K_{t-1}}\|v\|^{2} d \mathcal{L}^{2 n}, \quad t \in \mathbb{R}
$$

Now take an increasing convex \mathcal{C}^{∞} function $\chi: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\chi \geq \tau$ and

$$
\chi(\nu-1) \geq \sup _{K_{\nu} \backslash K_{\nu-1}} \psi+\nu \log 2+\log a_{\nu}, \quad \nu \in \mathbb{N} .
$$

Then

$$
\begin{aligned}
\mathcal{L}(\chi \circ w)(z ; X)= & \chi^{\prime \prime}(w(z))\left|\sum_{j=1}^{n} \frac{\partial w}{\partial z_{j}}(z) X_{j}\right|^{2}+\chi^{\prime}(w(z)) \mathcal{L} w(z ; X) \\
& \geq \chi^{\prime}(w(z)) c_{0}(z)\|X\|^{2} \geq \tau(w(z)) c_{0}(z)\|X\|^{2} \geq 2\left(\|\bar{\partial} \psi(z)\|^{2}+e^{\psi(z)}\right), \quad z \in \Omega, X \in \mathbb{C}^{n}
\end{aligned}
$$

Moreover,

$$
\int_{\Omega \backslash K_{0}}\|v\|^{2} e^{-\varphi_{2}} d \mathcal{L}^{2 n} \leq \sum_{\nu=1}^{\infty} a_{\nu} \sup _{K_{\nu} \backslash K_{\nu-1}} e^{\psi-\chi \circ w} \leq \sum_{\nu=1}^{\infty} a_{\nu} e^{-\chi(\nu-1)} \sup _{K_{\nu} \backslash K_{\nu-1}} e^{\psi} \leq \sum_{\nu=1}^{\infty} 2^{-\nu}<+\infty
$$

5.3. Solution of the Levi Problem

Let $\Omega \subset \mathbb{C}^{n}$ be open. For any $k \in \mathbb{N}_{0} \cup\{\infty\}$ let $\mathcal{W}^{k}(\Omega)$ (resp. $\mathcal{W}^{k}(\Omega$, loc $)$) denote the Sobolev space of all functions $u \in L^{2}(\Omega)$ (resp. $u \in L^{2}(\Omega$, loc $)$) such that $D^{\alpha, \beta} u \in L^{2}(\Omega)$ (resp. $D^{\alpha, \beta} u \in L^{2}(\Omega$, loc $)$) for any $\alpha, \beta \in \mathbb{N}_{0}^{n}$ with $|\alpha|+|\beta| \leq k$.

Let $\mathcal{W}_{(p, q)}^{k}(\Omega)$ (resp. $\mathcal{W}_{(p, q)}^{k}(\Omega$, loc $\left.)\right)$ be the space of all forms of type (p, q) with coefficients (in the canonical form) in $\mathcal{W}^{k}(\Omega)$ (resp. $\mathcal{W}^{k}(\Omega$, loc $\left.)\right)$.

Remark 5.3.1. (a) Obviously, $\mathcal{C}_{(p, q)}^{k}(\Omega) \subset \mathcal{W}_{(p, q)}^{k}(\Omega$, loc $)$. It is known that if $k>2 n$, then $\mathcal{W}_{(p, q)}^{k}(\Omega$, loc $) \subset$ $\mathcal{C}_{(p, q)}^{k-2 n}(\Omega)$ (cf. [22]). In particular, $\mathcal{W}_{(p, q)}^{\infty}(\Omega$, loc $)=\mathcal{C}_{(p, q)}^{\infty}(\Omega)$.
(b) $\bar{\partial}\left(\mathcal{W}_{(p, q)}^{k+1}(\Omega\right.$, loc $\left.)\right) \subset \mathcal{W}_{(p, q+1)}^{k}(\Omega$, loc $), k \geq 0$.
(c) $\vartheta\left(\mathcal{W}_{(p, q+1)}^{k+1}(\Omega\right.$, loc $\left.)\right) \subset \mathcal{W}_{(p, q)}^{k}(\Omega$, loc $), k \geq 0$.

The aim of the present section is to prove the following theorem.
Theorem 5.3.2 (Solution of the Levi Problem). Assume that Ω is pseudoconvex. Then

$$
\bar{\partial}\left(\mathcal{W}_{(p, q)}^{k+1}(\Omega, \text { loc })\right)=\left\{v \in \mathcal{W}_{(p, q+1)}^{k}(\Omega, \text { loc }): \bar{\partial} v=0\right\}, \quad p, q \geq 0, \quad k \in \mathbb{N}_{0} \cup\{\infty\}
$$

Hence

$$
\bar{\partial}\left(\mathcal{C}_{(p, q)}^{k+1-2 n}(\Omega)\right) \supset\left\{v \in \mathcal{C}_{(p, q+1)}^{k}(\Omega): \bar{\partial} v=0\right\}, \quad p, q \geq 0, \quad k \in \mathbb{N}_{0} \cup\{\infty\}, k>2 n
$$

In particular, $\Omega \in S_{p, q}$ for any p, q.
Consequently, by Theorem 4.2.9, any pseudoconvex open set is holomorphically convex.
The proof requires some preparations.

Lemma 5.3.3. (a)

$$
\mathcal{W}_{(p, 0)}^{k+1}(\Omega, \text { loc })=\left\{u \in L_{(p, 0)}^{2}(\Omega, \text { loc }): \bar{\partial} u \in \mathcal{W}_{(p, 1)}^{k}(\Omega, \text { loc })\right\}, \quad p \geq 0, \quad k \in \mathbb{N}_{0}
$$

(b)

$$
\mathcal{W}_{(p, q+1)}^{k+1}(\Omega, \operatorname{loc})=\left\{u \in L_{(p, q+1)}^{2}(\Omega, \operatorname{loc}): \bar{\partial} u \in \mathcal{W}_{(p, q+2)}^{k}(\Omega, \operatorname{loc}), \vartheta u \in \mathcal{W}_{(p, q)}^{k}(\Omega, \operatorname{loc})\right\}, \quad p, q \geq 0, \quad k \in \mathbb{N}_{0} .
$$

Proof. (a) Take a $u=\sum_{|I|=p}^{\prime} u_{I} d z_{I} \in L_{(p, 0)}^{2}(\Omega$, loc $)$ such that $\bar{\partial} u \in \mathcal{W}_{(p, 1)}^{k}(\Omega$, loc $)$. Observe that

$$
\bar{\partial} u=\sum_{|I|=p}^{\prime} \bar{\partial} u_{I} \wedge d z_{I}
$$

In particular, $\bar{\partial} u_{I} \in \mathcal{W}_{(0,1)}^{k}(\Omega, \operatorname{loc})$ for any $I \in \Xi_{p}^{n}$ (cf. Remark 4.2.1(b)). It suffices to prove that for each I the function u_{I} belongs to $\mathcal{W}^{k+1}(\Omega, \operatorname{loc})$. Thus we may assume that $p=0$.

Now we proceed by induction on k.
$k=0$.
It suffices to prove that $\left.u\right|_{U} \in \mathcal{W}^{1}(U)$ for any domain $U \subset \subset \Omega$.
Fix such a domain U and let $\chi \in \mathcal{D}(\Omega)$ be such that $\chi=1$ in a neighborhood of \bar{U}. Put $w:=\chi u$. It is enough to show that $w \in \mathcal{W}^{1}(\Omega)$. Since $\bar{\partial} w=(\bar{\partial} \chi) u+\chi \bar{\partial} u$, we conclude that $\bar{\partial} w \in L_{(0,1)}^{2}(\Omega)$.

Thus, without loss of generality, we may assume that $K:=\operatorname{supp} u \subset \subset \Omega$.
We have to show that $\partial u \in L_{(1,0)}^{2}(\Omega)$.
Let u_{ε} denote the ε-regularization of u (cf. §5.1). Recall that $\bar{\partial}\left(u_{\varepsilon}\right)=(\bar{\partial} u)_{\varepsilon}$ (cf. 5.2.1). Hence, since $\bar{\partial} u \in L_{(0,1)}^{2}(\Omega)$, we get

$$
\bar{\partial}\left(u_{\varepsilon}\right) \xrightarrow{L_{(0,1)}^{2}(\Omega)} \bar{\partial} u \text { when } \varepsilon \longrightarrow 0 .
$$

(cf. 5.2.2). Recall that $\operatorname{supp} u_{\varepsilon} \subset K^{(\varepsilon)}$. Fix an $\varepsilon_{0}>0$ such that $K^{\left(\varepsilon_{0}\right)} \subset \Omega$.
Observe that for $f \in \mathcal{D}(\Omega)$ we have

$$
\begin{equation*}
\|\bar{\partial} f\|_{L_{(0,1)}^{2}(\Omega)}=\|\partial f\|_{L_{(1,0)}^{2}(\Omega)} \tag{5.3.1}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\|\bar{\partial} f\|_{L_{(0,1)}^{2}(\Omega)}^{2}=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial f}{\overline{\partial z_{j}}} \overline{\frac{\partial f}{\partial \bar{z}_{j}}} d \mathcal{L}^{2 n} & =-\int_{\Omega} \frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{j}} \bar{f} d \mathcal{L}^{2 n} \\
& =-\sum_{j=1}^{n} \int_{\Omega} \frac{\partial^{2} f}{\partial \bar{z}_{j} \partial z_{j}} \bar{f} d \mathcal{L}^{2 n}=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial f}{\partial z_{j}} \overline{\partial f} \frac{\partial z_{j}}{\partial \mathcal{L}^{2 n}=\|\partial f\|_{L_{(1,0)}^{2}(\Omega)} .}
\end{aligned}
$$

Equality 5.3.1 with $f=u_{\varepsilon_{\nu}}-u_{\varepsilon_{\mu}}$, where $\varepsilon_{0}>\varepsilon_{\nu} \searrow 0$, shows that the sequence $\left(\partial\left(u_{\varepsilon_{\nu}}\right)\right)_{\nu=1}^{\infty}$ is convergent in $\overline{L_{(1,0)}^{2}}(\Omega)$ to a form g. Clearly $g=\partial u$ in the sense of distribution.
$k-1 \rightsquigarrow k$.
We already know that $D^{\alpha, \beta} u \in L_{(p, 0)}^{2}(\Omega$, loc $)$ for any $|\alpha|+|\beta| \leq k$. Since

$$
\bar{\partial}\left(D^{\alpha, \beta} u\right)=D^{\alpha, \beta}(\bar{\partial} u) \in L_{(p, 1)}^{2}(\Omega, \text { loc })
$$

we get (applying the step $k=0$ to the form $\left.D^{\alpha, \beta} u\right)$ that $D^{\alpha, \beta} u \in \mathcal{W}_{(p, 0)}^{1}(\Omega, \operatorname{loc})$ for any $|\alpha|+|\beta| \leq k$. Hence $u \in \mathcal{W}_{(p, 0)}^{k+1}(\Omega$, loc $)$.
(b) Suppose that $u \in L_{(p, q+1)}^{2}(\Omega$, loc $)$ is such that $\bar{\partial} u \in \mathcal{W}_{(p, q+2)}^{k}(\Omega$, loc $)$ and $\vartheta u \in \mathcal{W}_{(p, q)}^{k}(\Omega$, loc $)$.

First consider the case $k=0$.
Observe that for any $\chi \in \mathcal{D}(\Omega)$, if $w:=\chi u$, then $\bar{\partial} w=(\bar{\partial} \chi) u+\chi \bar{\partial} u \in \mathcal{W}_{(p, q+2)}(\Omega)$ and $\vartheta w=$ $\mathcal{A}_{\chi}(u)+\chi \vartheta u \in \mathcal{W}_{(p, q)}^{k}(\Omega)($ cf. 5.2 .3$)$). Hence, similarly as in (a), we may assume that $\operatorname{supp} u \subset \subset \Omega$.

5. Hörmander's solution of the $\bar{\partial}$-problem

By Hörmander's inequality with $\psi=\varphi=0$ we get

$$
\begin{equation*}
\sum_{|I|=p,|J|=q+1}^{\prime}\left\|\bar{\partial} f_{I, J}\right\|_{L_{(0,1)}^{2}(\Omega)} \leq 2\|\vartheta f\|_{L_{(p, q)}^{2}(\Omega)}^{2}+\|\bar{\partial} f\|_{L_{(p, q+2)}^{2}(\Omega)}^{2}, \quad f \in \mathcal{D}_{(p, q+1)}(\Omega) \tag{5.3.2}
\end{equation*}
$$

Let u_{ε} denote the ε-regularization of u. We have $\bar{\partial} u_{\varepsilon}=(\bar{\partial} u)_{\varepsilon}$ and $\vartheta\left(u_{\varepsilon}\right)=(\vartheta u)_{\varepsilon}($ cf. 5.2.1). Hence

$$
\bar{\partial}\left(u_{\varepsilon}\right) \xrightarrow{L_{(p, q+2)}^{2}}(\Omega) \bar{\partial} u, \quad \vartheta\left(u_{\varepsilon}\right) \xrightarrow{L_{(p, q)}^{2}(\Omega)} \vartheta u .
$$

By 5.3.2 with $f=u_{\varepsilon}(0<\varepsilon \ll 1)$ we get

$$
\sum_{|I|=p,|J|=q+1}^{\prime}\left\|\bar{\partial} u_{I, J}\right\|_{L_{(0,1)}^{2}(\Omega)} \leq 2\|\vartheta u\|_{L_{(p, q)}^{2}(\Omega)}^{2}+\|\bar{\partial} u\|_{L_{(p, q+2)}^{2}(\Omega)}^{2} .
$$

Hence, by (a) (with $k=0$), we conclude that $u_{I, J} \in \mathcal{W}^{1}(\Omega)$ for any I, J. Finally, $u \in \mathcal{W}_{(p, q+1)}^{1}(\Omega)$.
$k-1 \rightsquigarrow k$.
We already know that for any $|\alpha|+|\beta| \leq k$ we have $D^{\alpha, \beta} u \in L_{(p, q+1)}^{2}(\Omega$, loc $)$. Observe that

$$
\bar{\partial}\left(D^{\alpha, \beta} u\right)=D^{\alpha, \beta}(\bar{\partial} u) \in L_{(p, q+2)}^{2}(\Omega, \operatorname{loc}), \quad \vartheta\left(D^{\alpha, \beta} u\right)=D^{\alpha, \beta}(\vartheta u) \in L_{(p, q)}^{2}(\Omega, \operatorname{loc})
$$

Hence, applying the case $k=0$ to $D^{\alpha, \beta} u$, we obtain $D^{\alpha, \beta} u \in \mathcal{W}_{(p, q+1)}^{1}(\Omega$, loc). Consequently, $u \in$ $\mathcal{W}_{(p, q+1)}^{k+1}(\Omega$, loc $)$.
Proof of Theorem 5.3.2. Fix a $v \in \mathcal{W}_{(p, q+1)}^{k}(\Omega, \operatorname{loc})$ with $\bar{\partial} v=0\left(k \in \mathbb{N}_{0} \cup\{\infty\}\right)$.
The case $q=0$.
By Theorem 5.2.4 there exists a $u \in L_{(p, 0)}^{2}(\Omega, \mathrm{loc})$ such that $\bar{\partial} u=v$. Hence, by Lemma 5.3.3(a), $u \in \mathcal{W}_{(p, 0)}^{k+1}(\Omega, \mathrm{loc})$.

The case $q \geq 1$.
By Theorem 5.2.4 there exist functions $\varphi_{j} \in \mathcal{C}^{\infty}(\Omega, \mathbb{R}), j=1,2$, such that if

$$
T: L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right) \supset \operatorname{Dom}(T) \xrightarrow{\bar{\partial}} L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right),
$$

then there exists a $u \in \operatorname{Dom}(T) \cap \mathcal{R}\left(T^{*}\right)$ with $T(u)=v$. Recall that

$$
T^{*}(f)=(-1)^{p-1} e^{\varphi_{1}} \vartheta\left(e^{-\varphi_{2}} f\right), \quad f \in \operatorname{Dom}\left(T^{*}\right)
$$

Since $u \in \mathcal{R}\left(T^{*}\right)$ and $\vartheta^{2}=0$, we get $\vartheta\left(\exp \left(-\varphi_{1}\right) u\right)=0$. Hence

$$
\begin{equation*}
\vartheta u=\mathcal{B} u \tag{5.3.3}
\end{equation*}
$$

where \mathcal{B} is a linear operator with \mathcal{C}^{∞} coefficients.
In particular, $\vartheta u \in L_{(p, q)}^{2}(\Omega$, loc $)$. Now, by Lemma 5.3 .3 (b) (with $k=0$) we conclude that $u \in$ $\mathcal{W}_{(p, q+1)}^{1}(\Omega$, loc $)$. Suppose that $u \in \mathcal{W}_{(p, q+1)}^{\ell+1}(\Omega$, loc $)$ with $0 \leq \ell \leq k-1$. Then, by 5.3 .3$), \vartheta u \in \mathcal{W}_{(p, q)}^{\ell+1}(\Omega$, loc $)$ and hence, by Lemma 5.3.3(b), $u \in \mathcal{W}_{(p, q+1)}^{\ell+2}(\Omega, \mathrm{loc})$. Induction on ℓ finishes the proof.

CHAPTER 6

Cousin problems

6.1. Meromorphic functions

Definition 6.1.1. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $S \subset \Omega$ be thin (Definition 2.1.4) and relatively closed in Ω. A function $f: \Omega \backslash S \longrightarrow \mathbb{C}$ is called meromorphic in $\left.\Omega(f \in \mathcal{M}(\Omega)){ }^{1}\right)$ if: $f \in \mathcal{O}(\Omega \backslash S)$,
for every point $a \in S$ there exist a polydisc $P=\mathbb{P}(a, r) \subset \Omega$ and a function $m_{a} \in \mathcal{O}(P), m_{a} \not \equiv 0$, such that the function $\ell_{a}:=f \cdot m_{a}$ extends to a function $\widetilde{\ell}_{a} \in \mathcal{O}(P)$.

A point $a \in \Omega$ is called:
$— \operatorname{regular}(a \in \mathcal{R}(f))$ if there exist $P=\mathbb{P}(a, r) \subset \Omega$ and $m_{a} \in \mathcal{O}(P)$ such that $m_{a}(z) \neq 0$ for any $z \in P$, and the function $\ell_{a}:=f \cdot m_{a}$ extends holomorphically to $P\left(^{2}\right)$

- a pole $(a \in \mathcal{P}(f))$ if there exist $P=\mathbb{P}(a, r) \subset \Omega$ and $m_{a} \in \mathcal{O}(P)$ such that $m_{a} \not \equiv 0, m_{a}(a)=0$, and the function $\ell_{a}:=f \cdot m_{a}$ extends holomorphically to P and $\widetilde{\ell}_{a}(a) \neq 0\left(^{3}\right)$.
- a point of indeterminacy $(a \in \mathfrak{J}(f))$ in the remaining case, i.e. for any $P=\mathbb{P}(a, r) \subset \Omega$ and $m_{a} \in \mathcal{O}(P)$ such that $m_{a} \not \equiv 0$, and the function $\ell_{a}:=f \cdot m_{a}$ extends holomorphically to P, we have $m_{a}(a)=\widetilde{\ell}_{a}(a)=0$ $\left.{ }^{4}\right)$

Remark 6.1.2. (a) The set $\mathcal{R}(f)$ is open and f extends holomorphically onto $\mathcal{R}(f)\left({ }^{5}\right)$
Indeed, if P, m_{a}, ℓ_{a} are as in the definition of a regular point, then we put $\widetilde{f}(z):=\ell_{a}(z) / m_{a}(z), z \in P$. Obviously, $\tilde{f}=f$ in $P \backslash S$.
(b) We may put $f(z):=\infty, z \in \mathcal{P}(f)$. If $a \in \mathcal{J}(f)$, then by Proposition 1.8.5, one cannot define the value of f at a.
(c) For $f\left(z_{1}, z_{2}\right):=z_{1} / z_{2} \in \mathcal{M}\left(\mathbb{C}^{2}\right)$ we have

$$
\mathcal{R}(f)=\mathbb{C} \times \mathbb{C}_{*}, \quad \mathcal{P}(f)=\mathbb{C}_{*} \times\{0\}, \quad \mathcal{J}(f)=(0,0)
$$

(d) $\mathcal{O}(\Omega) \subset \mathcal{M}(\Omega)$.
(e) Meromorphy is a local property. If $\Phi: \Omega \longrightarrow \Omega^{\prime}=\Phi(\Omega)$ is biholomorphic, then $f \in \mathcal{M}\left(\Omega^{\prime}\right) \Longleftrightarrow f \circ \Phi \in$ $\mathcal{M}(\Omega)$.
Proposition 6.1.3. For $n=1$ Definition 6.1 .1 is equivalent to the standard definition of a meromorphic function of one complex variable (cf. 4], Definition V.3.3). Moreover, if $n=1$, then for every $f \in \mathcal{M}(\Omega)$ we have $\mathfrak{J}(f)=\varnothing$.
Proof. Let $\Omega \subset \mathbb{C}$. Suppose that $f: \Omega \longrightarrow \widehat{\mathbb{C}}$ is meromorphic in the standard sense. Denote by S the set of all poles of f and let $k(a)$ be the rank of the pole $a \in S$. Since S consists of isolated points, S is thin and relatively closed in Ω. Moreover, for every $a \in S$, the function $f \cdot(z-a)^{k(a)}$ extends holomorphically to a neighborhood a. This means that the function f is meromorphic in the sense of Definition 6.1.1.

Now, let $f: \Omega \backslash S \longrightarrow \mathbb{C}$ be meromorphic in Ω in the sense of Definition 6.1.1. We may assume that $S:=\Omega \backslash \mathcal{R}(f)$. Since the set S is thin, it must consist of isolated points. It remains to show $S=\mathcal{P}(f)$.

[^21]Indeed, if $\tilde{\ell}_{a}=f \cdot m_{a}$ in $P=K(a, r)$, where $\tilde{\ell}_{a}, m_{a} \in \mathcal{O}(P), m_{a} \not \equiv 0, m_{a}(a)=0$, then the function $g_{a}:=f \cdot(z-a)^{k(a)}$, where $k(a):=\operatorname{ord}_{a} m_{a}-\operatorname{ord}_{a} \widetilde{\ell}_{a}$, extends holomorphically to a neighborhood of a and $\widetilde{g}_{a}(a) \neq 0$.
Proposition 6.1.4 (Identity principle). Let $f, g \in \mathcal{M}(D)$, where $D \subset \mathbb{C}^{n}$ is a domain. Then the following conditions are equivalent:
(i) $\mathcal{R}(f)=\mathcal{R}(g), \mathcal{P}(f)=\mathcal{P}(g), \mathfrak{J}(f)=\mathfrak{J}(g)$, and $f=g$ on $\mathcal{R}(f)$;
(ii) $f=g$ on $\mathcal{R}(f) \cap \mathcal{R}(g)$;
(iii) $f=g$ on a non-empty open subset of $\mathcal{R}(f) \cap \mathcal{R}(g)$.

Proof. Obviously, (i) \Longrightarrow (ii) \Longrightarrow (iii).
(iii) \Longrightarrow (i). Observe that $S:=D \backslash(\mathcal{R}(f) \cap \mathcal{R}(g))=(D \backslash \mathcal{R}(f)) \cup(D \backslash \mathcal{R}(g))$ is thin. In particular, $\mathcal{R}(f) \cap \mathcal{R}(g)$ is a domain and, by the identity principle, $f=g$ on $\mathcal{R}(f) \cap \mathcal{R}(g)$. Let $a \in S$ and let $P=\mathbb{P}(a, r)$ and $m_{a} \in \mathcal{O}(P), m_{a} \not \equiv 0$, be such that the function $\ell_{f, a}:=f \cdot m_{a}$ extends holomorphically to P. Put $\ell_{g, a}:=g \cdot m_{a}$. Then $\ell_{g, a}=\ell_{f, a}$ on $P \backslash S$. Hence $\ell_{g, a}$ extends holomorphically to P and $\widetilde{l}_{g, a}=\tilde{\ell}_{f, a}$. Consequently, we get (i).

Proposition 6.1.5. Let $D \subset \mathbb{C}^{n}$ be a domain. Then $\mathcal{M}(D)$ is a field.
Proof. Let $f: D \backslash S_{f} \longrightarrow \mathbb{C}, g: D \backslash S_{g} \longrightarrow \mathbb{C}$ be meromorphic functions and let $S:=S_{f} \cup S_{g}$. The set S is clearly thin and closed in D, and the functions $f+g, f \cdot g: D \backslash S \longrightarrow \mathbb{C}$ are well defined and holomorphic. For $a \in S$ let $P=\mathbb{P}(a, r) \subset D$ and $m_{f, a}, m_{g, a} \in \mathcal{O}(P), m_{f, a} \not \equiv 0, m_{g, a} \not \equiv 0$, be such that the functions $f \cdot m_{f, a}, g \cdot m_{g, a}$ extend holomorphically to P. Then the functions $(f+g) \cdot m_{f, a} \cdot m_{g, a}$ and $(f \cdot g) \cdot m_{f, a} \cdot m_{g, a}$ also extend holomorphically onto P. Thus $\mathcal{M}(D)$ is a ring.

Suppose now that $f \neq 0$, i.e. $f \not \equiv 0$ in $D \backslash S_{f}$. Let $S:=S_{f} \cup f^{-1}(0)$. The set S is thin and closed in D, and the function $1 / f: D \backslash S \longrightarrow \mathbb{C}$ is well defined and holomorphic. Let $a \in S$.

For $a \in S_{f}$, let $P=\mathbb{P}(a, r) \subset D$, and $m_{f, a} \in \mathcal{O}(P), m_{f, a} \not \equiv 0$, be such that the function $\ell_{f, a}:=f \cdot m_{f, a}$ extends holomorphically onto P. Note that by identity principle we have $\widetilde{\ell}_{f, a} \not \equiv 0$. We can therefore take $m_{1 / f, a}:=\widetilde{\ell}_{f, a}$.

For $a \in D \backslash S_{f}$ such that $f(a)=0$, we can choose P as an arbitrary polydisc $\mathbb{P}(a, r) \subset D \backslash S_{f}$ and define $m_{1 / f, a}:=\left.f\right|_{P}\left(\right.$ by the identity principle $\left.m_{1 / f, a} \not \equiv 0\right)$.

Consequently, $1 / f$ is a meromorphic function, and therefore $\mathcal{M}(D)$ is a field.

6.2. The Mittag-Leffler and Weierstrass theorems

Let us recall two classical theorems of one complex variable (cf. [4], Theorems VIII.3.2, V.5.15).
Theorem 6.2.1 (Mittag-Leffler). For any open subset $\Omega \subset \mathbb{C}$, a set $B \subset \Omega$ without accumulation points in Ω, and a family of polynomials $\left(P_{a}\right)_{a \in B} \subset \mathcal{P}(\mathbb{C})$ with $P_{a}(0)=0$, $a \in B$, there exists a function $f \in \mathcal{M}(\Omega)$ such that $f \in \mathcal{O}(\Omega \backslash B)$ and for every $a \in B$ the function

$$
f-P_{a}\left(\frac{1}{z-a}\right)
$$

extends holomorphically to a neighborhood of a.
The above theorem may be reformulated as follows:
Theorem 6.2.2. For any open subset $\Omega \subset \mathbb{C}$, an open covering $\left(\Omega_{\alpha}\right)_{\alpha \in A}$ of Ω, and a family $f_{\alpha} \in \mathcal{M}\left(\Omega_{\alpha}\right)$, $\alpha \in A$, such that

$$
f_{\alpha}-f_{\beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A, \quad\left(^{6}\right)
$$

there exists a function $f \in \mathcal{M}(\Omega)$ such that

$$
f-f_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

$\left.{ }^{(}{ }^{6}\right)$ That is, the function $f_{\alpha}-f_{\beta}$ extends holomorphically to $\Omega_{\alpha} \cap \Omega_{\beta}$.

Proof that Theorem 6.2.2 implies Theorem 6.2.1. Let Ω, B, and $\left(P_{a}\right)_{a \in B}$ be as in the assumptions of Theorem 6.2.1. Choose $r_{a}>0, a \in B$, so small that $K\left(a, r_{a}\right) \cap K\left(b, r_{b}\right)=\varnothing$ for every $a \neq b, a, b \in B$. Define

$$
A:=\{*\} \cup B, \quad \Omega_{*}:=\Omega \backslash B, \quad \Omega_{a}:=K\left(a, r_{a}\right), a \in B, \quad f_{*}:=0, \quad f_{a}:=P_{a}(1 /(z-a)), a \in B
$$

One can easily check that all the assumptions of Theorem 6.2 .2 are satisfied. Let $f \in \mathcal{M}(\Omega)$ be from the assertion of Theorem 6.2.2. Then $f=f-f_{*} \in \mathcal{O}\left(\Omega_{*}\right)=\mathcal{O}(\Omega \backslash B)$ and $f-P_{a}(1 /(z-a))=f-f_{\alpha} \in$ $\mathcal{O}\left(\Omega_{a}\right) \subset \mathcal{O}\left(K\left(a, r_{a}\right)\right)$ for every $a \in B$.

Proof that Theorem 6.2.1 implies Theorem 6.2.2. Let $\Omega,\left(\Omega_{\alpha}\right)_{\alpha \in A}$, and $\left(f_{\alpha}\right)_{\alpha \in A}$ be as in the assumptions of Theorem 6.2.2 Put

$$
B_{\alpha}:=\mathcal{P}\left(f_{\alpha}\right), \quad B:=\bigcup_{\alpha \in A} B_{\alpha}
$$

Since $f_{\alpha}-f_{\beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), B_{\alpha} \cap \Omega_{\beta} \subset B_{\beta}$ for any $\alpha, \beta \in A$. In particular, the set B has no accumulation points in Ω. For $a \in B_{\alpha}$, let $P_{\alpha, a} \in \mathcal{P}(\mathbb{C})$ be such that $P_{\alpha, a}(0)=0$ and $f_{\alpha}-P_{\alpha, a}(1 /(z-a))$ extends holomorphically to a neighborhood of a. Since $f_{\alpha}-f_{\beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$, we conclude that $P_{\alpha, a}$ is independent of α. Put $P_{a}:=P_{\alpha, a}$. Let $f \in \mathcal{M}(\Omega)$ be a function from the assertion of Theorem6.2.1. Then $\mathcal{P}(f)=B$ and for any $\alpha \in A$ and $a \in B_{\alpha}$, the function

$$
f-f_{\alpha}=\left[f-P_{a}\left(\frac{1}{z-a}\right)\right]-\left[f_{\alpha}-P_{a}\left(\frac{1}{z-a}\right)\right]
$$

extends holomorphically to a neighborhood of a.
Let $\mathcal{O}^{*}(\Omega):=\{f \in \mathcal{O}(\Omega): f(z) \neq 0, z \in \Omega\}$.
Theorem 6.2.3 (Weierstrass). For any open subset $\Omega \subset \mathbb{C}$, a set $S \subset \Omega$ without accumulation points in Ω, and a function $k: S \longrightarrow \mathbb{Z}_{*}$, there exists a function $f \in \mathcal{M}(\Omega)$ such that $f \in \mathcal{O}^{*}(\Omega \backslash S)$ and for every a $\in S$ the function $\ell_{a}:=f \cdot(z-a)^{-k(a)}$ extends holomorphically to a neighborhood of a with $\widetilde{\ell}_{a}(a) \neq 0\left(^{7}\right)$.

An equivalent formulation is following.
Theorem 6.2.4. For any open subset $\Omega \subset \mathbb{C}$, an open covering $\left(\Omega_{\alpha}\right)_{\alpha \in A}$ of Ω, and a family $f_{\alpha} \in \mathcal{M}\left(\Omega_{\alpha}\right)$, $\alpha \in A$, such that

$$
f_{\alpha} / f_{\beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A
$$

there exists a function $f \in \mathcal{M}(\Omega)$ such that

$$
f / f_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

Proof that Theorem 6.2.4 implies Theorem 6.2.3. Let Ω, S and $k: S \longrightarrow \mathbb{Z}_{*}$ be as in the assumptions of Theorem6.2.3. Choose $r_{a}>0, a \in S$, so small that $K\left(a, r_{a}\right) \cap K\left(b, r_{b}\right)=\varnothing$ for every $a \neq b, a, b \in S$. Define

$$
A:=\{*\} \cup S, \quad \Omega_{*}:=\Omega \backslash S, \quad \Omega_{a}:=K\left(a, r_{a}\right), a \in S, \quad f_{*}:=1, \quad f_{a}:=(z-a)^{k(a)}, a \in S
$$

It is easily seen that all the assumptions of Theorem 6.2 .4 are satisfied. Let $f \in \mathcal{M}(\Omega)$ be the function from the assertion of Theorem 6.2.4. Then $f=f / f_{*} \in \mathcal{O}^{*}\left(\Omega_{*}\right)=\mathcal{O}^{*}(\Omega \backslash S)$ and $f \cdot(z-a)^{-k(a)}=f / f_{\alpha} \in$ $\mathcal{O}^{*}\left(\Omega_{a}\right)=\mathcal{O}^{*}\left(K\left(a, r_{a}\right)\right)$ for every $a \in S$.
Proof that Theorem 6.2.3 implies Theorem 6.2.4. Let $\Omega,\left(\Omega_{\alpha}\right)_{\alpha \in A}$, and $\left(f_{\alpha}\right)_{\alpha \in A}$ be as in the assumptions of Theorem 6.2.4 Put

$$
S_{\alpha}:=\mathcal{P}\left(f_{\alpha}\right) \cup f_{\alpha}^{-1}(0), \quad S:=\bigcup_{\alpha \in A} S_{\alpha}
$$

Since $f_{\alpha} / f_{\beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), S_{\alpha} \cap \Omega_{\beta} \subset S_{\beta}$ for any $\alpha, \beta \in A$. In particular, the set S has no accumulation points in Ω. For $a \in S_{\alpha}$ let

$$
k(\alpha, a):=\left\{\begin{aligned}
-\left(\text { order of pole of } f_{\alpha} \text { at } a\right) & \text { if } a \in \mathcal{P}\left(f_{\alpha}\right) \\
\left(\text { order of zero of } f_{\alpha} \text { at } a\right) & \text { if } f_{\alpha}(a)=0
\end{aligned}\right.
$$

${ }^{(7)}$ That is, the function f has at a a zero of order $k(a)$, if $k(a)>0$, and a pole of rank $-k(a)$, if $k(a)<0$.

Since $f_{\alpha} / f_{\beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$, we conclude that $k(\alpha, a)$ is independent of α. Put $k(a):=k(\alpha, a)$. Let $f \in \mathcal{M}(\Omega)$ be the function from the assertion of Theorem 6.2.3. Then f has no zeros or poles outside S, and for every $\alpha \in A$ and $a \in S_{\alpha}$ the function

$$
\frac{f}{f_{\alpha}}=\frac{f \cdot(z-a)^{-k(a)}}{f_{\alpha} \cdot(z-a)^{-k(a)}}
$$

extends to a non-vanishing holomorphic function in a neighborhood of a.

6.3. First Cousin Problems

Definition 6.3.1. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $\mathcal{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ be an open covering of Ω. We say that the first holomorphic Cousin problem has a solution for \mathfrak{U} if for any family of functions

$$
\varphi_{\alpha, \beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A
$$

such that

$$
\varphi_{\beta, \alpha}=-\varphi_{\alpha, \beta}, \quad \alpha, \beta \in A,\left(^{8}\right) \quad \varphi_{\alpha, \beta}+\varphi_{\beta, \gamma}+\varphi_{\gamma, \alpha}=0 \text { in } \Omega_{\alpha} \cap \Omega_{\beta} \cap \Omega_{\gamma}, \quad \alpha, \beta, \gamma \in A
$$

there exist functions

$$
\varphi_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

such that

$$
\varphi_{\alpha, \beta}=\varphi_{\beta}-\varphi_{\alpha} \text { in } \Omega_{\alpha} \cap \Omega_{\beta}, \quad \alpha, \beta \in A
$$

The family $\left(\varphi_{\alpha, \beta}\right)_{\alpha, \beta \in A}$ is called the data for the first holomorphic Cousin problem for \boldsymbol{U}.
We say that the first holomorphic Cousin problem has a solution for Ω if it has a solution for any open covering. We write $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$.

In the above definitions the class \mathcal{O} of holomorphic functions may be substituted by another class \mathcal{F} (i.e. we assume that $\varphi_{\alpha, \beta} \in \mathcal{F}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$ and we require that $\left.\varphi_{\alpha} \in \mathcal{F}\left(\Omega_{\alpha}\right)\right)$. For example, $\mathcal{F}=\mathcal{C}^{k}$. Then we can define the first \mathcal{F}-Cousin problem for \boldsymbol{U} (resp. the first \mathcal{F}-Cousin problem for Ω). We write $\Omega \in \mathcal{C P}^{1}(\mathcal{F})$.

We say that the first meromorphic Cousin problem has a solution for \mathcal{U} if for every family

$$
f_{\alpha} \in \mathcal{M}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

such that

$$
f_{\alpha}-f_{\beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A
$$

there exists a function $f \in \mathcal{M}(\Omega)$ such that

$$
f-f_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

The family $\left(f_{\alpha}\right)_{\alpha \in A}$ is called the data for the first meromorphic Cousin problem for $\boldsymbol{\mathcal { U }}$.
If the first meromorphic Cousin problem has a solution for any open covering \mathcal{U}, then we say that the first meromorphic Cousin problem has a solution for Ω. We write $\Omega \in \mathcal{C P}^{1}[\mathcal{M}]$.
Remark 6.3.2. (a) The first holomorphic and meromorphic Cousin problems are invariant under biholomorphic mappings, i.e. for every biholomorphic mapping $\Phi: \Omega \longrightarrow \Omega^{\prime}=\Phi(\Omega)$ we have

$$
\Omega \in \mathcal{C P}^{1}(\mathcal{O}) \Longleftrightarrow \Omega^{\prime} \in \mathcal{C P}^{1}(\mathcal{O}), \quad \Omega \in \mathcal{C P}^{1}[\mathcal{M}] \Longleftrightarrow \Omega^{\prime} \in \mathcal{C P}^{1}[\mathcal{M}]
$$

(b) If $n=1$, then by Theorem 6.2.2, $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$ for every $\Omega \subset \mathbb{C}$.

Proposition 6.3.3. $\Omega \in \mathcal{C P}^{1}(\mathcal{O}) \Longrightarrow \Omega \in \mathcal{C P}^{1}[\mathcal{M}]$.
$\left.{ }^{8}\right)$ In particular, $\varphi_{\alpha, \alpha}=0, \alpha \in A$.

Proof. Let $\left(f_{\alpha}\right)_{\alpha \in A}$ be data for the first meromorphic Cousin problem for an open covering $\mathcal{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ of Ω. Define

$$
\varphi_{\alpha, \beta}:=f_{\alpha}-f_{\beta} \text { in } \Omega_{\alpha} \cap \Omega_{\beta}, \quad \alpha, \beta \in A
$$

It is clear that we have defined data for the first holomorphic Cousin problem for \mathcal{U}. Let $\varphi_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right)$, $\alpha \in A$, be a solution of this problem. Put $f:=f_{\alpha}+\varphi_{\alpha}$ in $\Omega_{\alpha}, \alpha \in A$. We have $\left(f_{\alpha}+\varphi_{\alpha}\right)-\left(f_{\beta}+\varphi_{\beta}\right)=$ $\varphi_{\alpha, \beta}-\left(\varphi_{\beta}-\varphi_{\alpha}\right)=0$ in $\Omega_{\alpha} \cap \Omega_{\beta}$. Thus the function f is well defined. Moreover, $f-f_{\alpha}=\varphi_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right)$.

Proposition 6.3.4 (Cartan). For $\Omega \subset \mathbb{C}^{2}$, if $\Omega \in \mathcal{C P}^{1}[\mathcal{M}]$, then Ω is a region of holomorphy.

Figure 6.3.1

Proof. Suppose that for some $a=\left(a_{1}, a_{2}\right) \in \Omega$ we have $d\left(T_{a} g\right) \geq r>d_{\Omega}(a)$ for any $g \in \mathcal{O}(\Omega)$. Choose $b \in \partial \Omega$ such that $|a-b|=d_{\Omega}(a)$. Applying a suitable affine biholomorphism we may assume that $b=0$ and $a_{1}=0$ (cf. Remark 6.3.2(a)). Put $U:=\Omega_{0, e_{2}}$. Note that $0 \in \partial U$. Let

$$
\begin{gathered}
\Omega_{1}:=\Omega \cap(\mathbb{C} \times U), \quad \Omega_{2}:=\Omega \backslash(\{0\} \times U) \\
f_{1}(z):=\left(1 / z_{1}\right) \exp \left(1 / z_{2}\right), z=\left(z_{1}, z_{2}\right) \in \Omega_{1}, \quad f_{2}(z):=0, z \in \Omega_{2}
\end{gathered}
$$

It is easy to see that $\Omega_{1} \cup \Omega_{2}=\Omega$ and $f_{1}-f_{2} \in \mathcal{O}\left(\Omega_{1} \cap \Omega_{2}\right)$. Therefore we have got data for the first meromorphic Cousin problem. Let $f \in \mathcal{M}(\Omega)$ be a solution of this problem. In particular, $f=f-f_{2} \in \mathcal{O}\left(\Omega_{2}\right)$ and hence $g:=z_{1} f \in \mathcal{O}\left(\Omega_{2}\right)$. On the other hand, $g=z_{1}\left(f-f_{1}\right)+\exp \left(1 / z_{2}\right) \in \mathcal{O}\left(\Omega_{1}\right)$. Therefore $g \in \mathcal{O}(\Omega)$ and hence g extends holomorphically onto some neighborhood of $0 \in \mathbb{C}^{2}$. In particular, the function $g\left(0, z_{2}\right)=\exp \left(1 / z_{2}\right)$ extends holomorphically to some neighborhood of $0 \in \mathbb{C}$; contradiction.

Proposition 6.3.5. $\Omega \in \mathcal{C P}^{1}\left(\mathcal{C}^{\infty}\right)$ for any open set $\Omega \subset \mathbb{C}^{n}$.
Proof. Fix an open covering $\mathfrak{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ and data $\varphi_{\alpha, \beta} \in \mathcal{C}^{\infty}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \alpha, \beta \in A$. Let $\left(\sigma_{j}\right)_{j \in J}$ be a \mathcal{C}^{∞}-partition of unity subordinated to \mathcal{U} and let $\varrho: J \longrightarrow A$ be such that $\operatorname{supp} \sigma_{j} \subset \Omega_{\varrho(j)}, j \in J$. Define

$$
\varphi_{\alpha}:=\sum_{j \in J} \sigma_{j} \varphi_{\varrho(j), \alpha} \text { in } \Omega_{\alpha}
$$

where $\sigma_{j} \varphi_{\varrho(j), \alpha}:=0$ in $\Omega_{\alpha} \backslash \operatorname{supp} \sigma_{j}$. Then $\varphi_{\alpha} \in \mathcal{C}^{\infty}\left(\Omega_{\alpha}\right)$ and in $\Omega_{\alpha} \cap \Omega_{\beta}$ we have

$$
\varphi_{\beta}-\varphi_{\alpha}=\sum_{j \in J} \sigma_{j}\left(\varphi_{\varrho(j), \beta}-\varphi_{\varrho(j), \alpha}\right)=\sum_{j \in J} \sigma_{j} \varphi_{\alpha, \beta}=\varphi_{\alpha, \beta}
$$

Theorem 6.3.6. If $\Omega \in S_{0,0}$ (cf. §4.4), then $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$.
In particular, if Ω is a region of holomorphy, then $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$ (cf. Theorem 5.3.2).

Proof. Fix an open covering $\mathcal{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ and data $\varphi_{\alpha, \beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \alpha, \beta \in A$. By Proposition 6.3.5 there exist $\psi_{\alpha} \in \mathcal{C}^{\infty}\left(\Omega_{\alpha}\right), \alpha \in A$, such that $\varphi_{\alpha, \beta}=\psi_{\beta}-\psi_{\alpha}$. In particular, $v:=-\bar{\partial} \psi_{\alpha}$ in Ω_{α}, is a well-defined differential form of class $\mathcal{C}_{(0,1)}^{\infty}(\Omega)$. Since $\Omega \in S_{0,0}$, there exists a function $u \in \mathcal{C}^{\infty}(\Omega)$ such that $\bar{\partial} u=v$. Put $\varphi_{\alpha}:=\psi_{\alpha}+u$ in $\Omega_{\alpha}, \alpha \in A$. Then $\bar{\partial} \varphi_{\alpha}=0$ and so $\varphi_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right)$. Moreover, $\varphi_{\beta}-\varphi_{\alpha}=\psi_{\beta}-\psi_{\alpha}=\varphi_{\alpha, \beta}$ in $\Omega_{\alpha} \cap \Omega_{\beta}$ for any $\alpha, \beta \in A$.

6.4. Second Cousin Problems

Definition 6.4.1. Let $\Omega \subset \mathbb{C}^{n}$ be open and let $\mathcal{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ be an open covering of Ω. We say that the second holomorphic Cousin problem has a solution for \mathcal{U} if for any family of functions

$$
\varphi_{\alpha, \beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A
$$

such that

$$
\varphi_{\beta, \alpha} \cdot \varphi_{\alpha, \beta}=1, \quad \alpha, \beta \in A, \quad \varphi_{\alpha, \beta} \cdot \varphi_{\beta, \gamma} \cdot \varphi_{\gamma, \alpha}=1 \text { in } \Omega_{\alpha} \cap \Omega_{\beta} \cap \Omega_{\gamma}, \quad \alpha, \beta, \gamma \in A, \quad\left({ }^{9}\right)
$$

there exist functions

$$
\varphi_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

such that

$$
\varphi_{\alpha, \beta}=\varphi_{\beta} / \varphi_{\alpha} \text { in } \Omega_{\alpha} \cap \Omega_{\beta}, \quad \alpha, \beta \in A
$$

The family $\left(\varphi_{\alpha, \beta}\right)_{\alpha, \beta \in A}$ is called the data for the second holomorphic Cousin problem for \boldsymbol{U}.
We say that the second holomorphic Cousin problem has a solution for Ω if it has a solution for any open covering. We write $\Omega \in \mathcal{C P}^{2}(\mathcal{O})$.

In the above definitions the class \mathcal{O}^{*} of non-vanishing holomorphic functions may be substituted by another class \mathcal{F}^{*} (we assume that $\varphi_{\alpha, \beta} \in \mathcal{F}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$ and we require that $\varphi_{\alpha} \in \mathcal{F}^{*}\left(\Omega_{\alpha}\right)\left({ }^{10}\right)$. Then we can define the second \mathcal{F}-Cousin problem for \mathcal{U} (resp. the second \mathcal{F}-Cousin problem for Ω). We write $\Omega \in \mathcal{C P}^{2}(\mathcal{F})$.

We say that the second meromorphic Cousin problem has a solution for \mathcal{U} if for every family

$$
f_{\alpha} \in \mathcal{M}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

such that

$$
f_{\alpha} / f_{\beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \quad \alpha, \beta \in A
$$

there exists a function $f \in \mathcal{M}(\Omega)$ such that

$$
f / f_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right), \quad \alpha \in A
$$

The family $\left(f_{\alpha}\right)_{\alpha \in A}$ is called the data for the second meromorphic Cousin problem for $\boldsymbol{\mathcal { U }}$.
If the second meromorphic Cousin problem has a solution for any open covering \mathcal{U}, then we say that the second meromorphic Cousin problem has a solution for Ω. We write $\Omega \in \mathcal{C P}^{2}[\mathcal{M}]$.

Remark 6.4.2. (a) The second holomorphic and meromorphic Cousin problems are invariant under biholomorphic mappings (cf. Remark 6.3.2 (a)).
(b) If $n=1$, then by Theorem 6.2.4, $\Omega \in \mathcal{C P}^{2}[\mathcal{M}]$ for every $\Omega \subset \mathbb{C}$.

Proposition 6.4.3. $\Omega \in \mathcal{C P}^{2}(\mathcal{O}) \Longrightarrow \Omega \in \mathcal{E} \mathcal{P}^{2}[\mathcal{M}]$ (cf. Proposition 6.3.3). $\left({ }^{11}\right)$

[^22]Proof. Let $\left(f_{\alpha}\right)_{\alpha \in A}$ be data for the second meromorphic Cousin problem for $\boldsymbol{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$. Define

$$
\varphi_{\alpha, \beta}:=f_{\alpha} / f_{\beta} \text { in } \Omega_{\alpha} \cap \Omega_{\beta}, \quad \alpha, \beta \in A
$$

We have defined data for the second holomorphic Cousin problem for \mathfrak{U}. Let $\varphi_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right)$, $\alpha \in A$, be a solution of this problem. Put $f:=f_{\alpha} \cdot \varphi_{\alpha}$ in $\Omega_{\alpha}, \alpha \in A$. Then $\left(f_{\alpha} \cdot \varphi_{\alpha}\right) /\left(f_{\beta} \cdot \varphi_{\beta}\right)=\varphi_{\alpha, \beta} \cdot\left(\varphi_{\alpha} / \varphi_{\beta}\right)=1$ in $\Omega_{\alpha} \cap \Omega_{\beta}$ (thus f is well defined) and $f / f_{\alpha}=\varphi_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right)$.

Remark 6.4.4. Let $D \subset \mathbb{C}^{n}$ be a simply connected domain and let $f \in \mathcal{C}^{*}(D)$. Then there exists a function $\widetilde{f} \in \mathcal{C}(\Omega)$ such that $f=\exp (\widetilde{f})$. Moreover, $f \in \mathcal{O}^{*}(D)$ iff $\widetilde{f} \in \mathcal{O}(D)$.
Theorem 6.4.5. If $\Omega \in \mathcal{E P}^{1}(\mathcal{O}) \cap \mathcal{C P}^{2}(\mathcal{C})$, then $\Omega \in \mathcal{C P}^{2}(\mathcal{O})$. ${ }^{(12)}$
Proof. Fix a covering $\mathfrak{U}=\left(\Omega_{\alpha}\right)_{\alpha \in A}$ and data $\varphi_{\alpha, \beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \alpha, \beta \in A$, for the second holomorphic Cousin problem. Consider two cases.
$1^{o}: \Omega_{\alpha}$ is simply connected for every $\alpha \in A$.
Let $\psi_{\alpha} \in \mathcal{C}^{*}\left(\Omega_{\alpha}\right), \alpha \in A$, be such that $\varphi_{\alpha, \beta}=\psi_{\beta} / \psi_{\alpha}$ in $\Omega_{\alpha} \cap \Omega_{\beta}, \alpha, \beta \in A$ (recall that $\Omega \in \mathcal{C P}^{2}(\mathcal{C})$). Let $\widetilde{\psi}_{\alpha} \in \mathcal{C}\left(\Omega_{\alpha}\right)$ be such that $\psi_{\alpha}=\exp \left(\widetilde{\psi}_{\alpha}\right)$ (Remark 6.4.4, $\alpha \in A$. Define $\widetilde{\psi}_{\alpha, \beta}:=\widetilde{\psi}_{\beta}-\widetilde{\psi}_{\alpha}$ in $\Omega_{\alpha} \cap \Omega_{\beta}$. Since $\exp \left(\widetilde{\psi}_{\alpha, \beta}\right)=\exp \left(\widetilde{\psi}_{\beta}\right) / \exp \left(\widetilde{\psi}_{\alpha}\right)=\psi_{\beta} / \psi_{\alpha}=\varphi_{\alpha, \beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$, we get $\widetilde{\psi}_{\alpha, \beta} \in \mathcal{O}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right)$. Therefore the family $\widetilde{\psi}_{\alpha, \beta}, \alpha, \beta \in A$, gives data for the first holomorphic Cousin problem for \mathcal{U}. By our assumptions, this problem has a solution $\chi_{\alpha} \in \mathcal{O}(\Omega), \alpha \in A$, such that $\tilde{\psi}_{\alpha, \beta}=\chi_{\beta}-\chi_{\alpha}$. Now let $\varphi_{\alpha}:=\exp \left(\chi_{\alpha}\right) \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right)$, $\alpha \in A$. Then $\varphi_{\beta} / \varphi_{\alpha}=\exp \left(\chi_{\beta}-\chi_{\alpha}\right)=\exp \left(\widetilde{\psi}_{\alpha, \beta}\right)=\varphi_{\alpha, \beta}$.
2^{o} : the general case.
Let $\left(U_{j}\right)_{j \in J}$, be an open covering subordinated to \mathcal{U} such that each set U_{j} is simply connected. Let $\varrho: J \longrightarrow A$ be such that $U_{j} \subset \Omega_{\varrho(j)}, j \in J$. Define

$$
\widehat{\varphi}_{j, k}:=\left.\varphi_{\varrho(j), \varrho(k)}\right|_{U_{j} \cap U_{k}}, \quad j, k \in J .
$$

By 1^{o} there exist functions $\widehat{\varphi}_{j} \in \mathcal{O}^{*}\left(U_{j}\right), j \in J$, such that $\widehat{\varphi}_{j, k}=\widehat{\varphi}_{k} / \widehat{\varphi}_{j}$ in $U_{j} \cap U_{k}, j, k \in J$. Put $\varphi_{\alpha}:=\widehat{\varphi}_{j} \cdot \varphi_{\varrho(j), \alpha}$ in $\Omega_{\alpha} \cap U_{j}$. Observe that

$$
\frac{\widehat{\varphi}_{j} \cdot \varphi_{\varrho(j), \alpha}}{\widehat{\varphi}_{k} \cdot \varphi_{\varrho(k), \alpha}}=\widehat{\varphi}_{k, j} \cdot \varphi_{\varrho(j), \varrho(k)}=1 \text { in } \Omega_{\alpha} \cap U_{j} \cap U_{k}
$$

Consequently, φ_{α} is well defined in Ω_{α} and $\varphi_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right)$. Moreover, in $\Omega_{\alpha} \cap \Omega_{\beta} \cap U_{j}$ we have

$$
\frac{\varphi_{\beta}}{\varphi_{\alpha}}=\frac{\widehat{\varphi}_{j} \cdot \varphi_{\varrho(j), \beta}}{\widehat{\varphi}_{j} \cdot \varphi_{\varrho(j), \alpha}}=\varphi_{\alpha, \beta} .
$$

Example 6.4.6 (Oka). Let $D:=A \times A \subset \mathbb{C}^{2}$, where

$$
A:=\{z \in \mathbb{C}: 3 / 4<|z|<5 / 4\} .
$$

Then D is a domain of holomorphy such that $D \notin \mathcal{C P}^{2}[\mathcal{M}]\left({ }^{13}\right)$
Indeed (cf. [19]), suppose that $D \in \mathcal{C P}^{2}(\mathcal{O})$ and let

$$
M:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: z_{1}-z_{2}=1\right\}
$$

Notice that $\left(z_{1}, z_{2}\right) \in M \cap D$ iff $\operatorname{Re} z_{1}-\operatorname{Re} z_{2}=1, \operatorname{Im} z_{1}=\operatorname{Im} z_{2}$. Put

$$
M_{-}:=M \cap D \cap\left\{\operatorname{Im} z_{1}=\operatorname{Im} z_{2}<0\right\}, \quad M_{+}:=M \cap D \cap\left\{\operatorname{Im} z_{1}=\operatorname{Im} z_{2}>0\right\}
$$

[^23]Observe that $M_{-} \cup M_{+}=M \cap D$. In particular, M_{-}and M_{+}are closed in D. Put

$$
\begin{gathered}
D_{1}:=D \cap\left\{\operatorname{Im} z_{1}>0, \operatorname{Im} z_{2}>0\right\}, \quad D_{2}:=D \backslash M_{+}, \\
f_{1}\left(z_{1}, z_{2}\right):=z_{1}-z_{2}-1, \quad f_{2}\left(z_{1}, z_{2}\right):=1
\end{gathered}
$$

Then $D_{1} \cup D_{2}=D$ and $f_{1} / f_{2} \in \mathcal{O}^{*}\left(D_{1} \cap D_{2}\right)$.
Suppose that there exists a function $f \in \mathcal{M}(D)$ such that $f / f_{j} \in \mathcal{O}^{*}\left(D_{j}\right), j=1,2$. Consequently, $f\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}-1\right) h\left(z_{1}, z_{2}\right)$ for $\left(z_{1}, z_{2}\right) \in D_{1}$, where $h \in \mathcal{O}^{*}\left(D_{1}\right)$, and $\left.f\right|_{D_{2}} \in \mathcal{O}^{*}\left(D_{2}\right)$.

Put

$$
F(\alpha, \beta):=f\left(e^{i \alpha}, e^{i \beta}\right), \quad \alpha, \beta \in \mathbb{R}
$$

Observe that

$$
\{(\alpha, \beta) \in[0,2 \pi] \times[0,2 \pi]: F(\alpha, \beta)=0\}=\{(\pi / 3,2 \pi / 3)\}=:\{c\}
$$

Let γ denote the boundary of the square $[0,2 \pi] \times[0,2 \pi]$ (considered as a curve with positive orientation with respect to the square).

Figure 6.4.1

Define

$$
\mathbb{I}:=\int_{\gamma} \frac{d F}{F}=\int_{\gamma} \frac{1}{F} \frac{\partial F}{\partial \alpha} d \alpha+\frac{1}{F} \frac{\partial F}{\partial \beta} d \beta
$$

Since F is periodic $\left({ }^{14}\right)$, we get $\mathbb{I}=0$. Let γ_{ε} denote the boundary of the square $[-\varepsilon, \varepsilon] \times[-\varepsilon, \varepsilon]$ (considered as a curve). Since the form $d F / F$ is closed in $[0,2 \pi] \times[0,2 \pi] \backslash\{c\}$, we get

$$
\mathbb{I}=\int_{c+\gamma_{\varepsilon}} \frac{d F}{F}, \quad 0<\varepsilon \ll 1
$$

Recall that $F=G \cdot H$ in a neighborhood of c, where

$$
G(\alpha, \beta):=e^{i \alpha}-e^{i \beta}-1, \quad H(\alpha, \beta):=h\left(e^{i \alpha}, e^{i \beta}\right)
$$

Since $d F / F=d G / G+d H / H$ and $d H / H$ is closed in a neighborhood of c, we get

$$
0=\mathbb{I}=\int_{c+\gamma_{\varepsilon}} \frac{d G}{G}, \quad 0<\varepsilon \ll 1 .
$$

Observe that

$$
J_{\mathbb{R}} G(\alpha, \beta)=\operatorname{det}\left[\begin{array}{c}
-\sin \alpha, \sin \beta \\
\cos \alpha,-\cos \beta
\end{array}\right]=\sin (\alpha-\beta)
$$

$\left({ }^{14}\right) F(\alpha, \beta)=F(\alpha+2 k \pi, \beta+2 \ell \pi), k, \ell \in \mathbb{Z}$.

Hence $J_{\mathbb{R}} G\left(c_{1}, c_{2}\right)=\sin (-\pi / 3) \neq 0$ and, therefore, G is a diffeomorphism in a neighborhood U of c. Consequently, for $0<\varepsilon \ll 1$, the curve $\sigma_{\varepsilon}:=G \circ\left(c+\gamma_{\varepsilon}\right)$ is a Jordan curve with $(0,0) \in \operatorname{int} \sigma_{\varepsilon}$ and

$$
0=\int_{c+\gamma_{\varepsilon}} \frac{d G}{G}=\int_{\sigma_{\varepsilon}} \frac{d z}{z} \neq 0
$$

contradiction.
Example 6.4.7 (Serre). Let

$$
D:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-1\right|<1\right\}
$$

Then D is a homotopically simply connected domain of holomorphy such that $D \notin \mathcal{C P}^{2}[\mathcal{M}]$ (cf. [11]).
Proposition 6.4.8. Assume that $\Omega \in \mathcal{E P}^{2}[\mathcal{M}]$. Then for every $(n-1)$-dimensional complex submanifold $M \subset \Omega$, there exists a function $f \in \mathcal{O}(\Omega)$ such that
$M=f^{-1}(0)$,
for any open subset $U \subset \Omega$ and $g \in \mathcal{O}(U)$ with $M \cap U \subset g^{-1}(0)$ we have $g / f \in \mathcal{O}(U)$.
The function f with the above properties is called a defining function for M.
Proof. It is well known that M may be locally described (up to a biholomorphism) as $\left\{z_{n}=0\right\}$. More precisely, for every point $a \in M$ there exist a neighborhood U_{a} and a biholomorphic mapping $\Phi_{a}: U_{a} \longrightarrow \mathbb{D}^{n}$ such that $\Phi_{a}\left(M \cap U_{a}\right)=\mathbb{D}^{n-1} \times\{0\}$. Moreover, if $a \in U \subset U_{a}$ and $g \in \mathcal{O}(U)$ are such that $M \cap U \subset g^{-1}(0)$, then the function $\left(1 / z_{n}\right)\left(g \circ \Phi_{a}^{-1}\right)$ extends holomorphically to $\Phi_{a}(U)\left({ }^{15}\right)$.

For $a \in \Omega$ let
$\Omega_{a}:=\mathbb{P}\left(a, r_{a}\right) \subset \Omega \backslash M, f_{a}:=1$, if $a \notin M$,
$\Omega_{a}:=\mathbb{P}\left(a, r_{a}\right) \subset U_{a}, f_{a}:=\left.\left(\left(\Phi_{a}\right)_{n}\right)\right|_{\Omega_{a}}$, if $a \in M$.
We have obtained data for the second meromorphic Cousin problem. Now, any solution of this problem is a defining function for M.
Proposition 6.4.9. Let $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$ and let M be an $(n-1)$-dimensional complex submanifold of Ω for which there exists a function $\widetilde{f} \in \mathcal{C}(\Omega)$ such that
$M=\widetilde{f}^{-1}(0)$,
for every open subset $U \subset \Omega$ and $g \in \mathcal{O}(U)$, if g is a defining function for $M \cap U$, then $g / \tilde{f} \in \mathcal{C}^{*}(U)$.
Then there exists a defining function for $M .\left({ }^{16}\right)$
Proof. Let $\Omega_{a}, f_{a}, a \in \Omega$ be as in the proof of Proposition6.4.8. It follows from the assumptions that $f_{a} / \tilde{f} \in$ $\mathcal{C}^{*}\left(\Omega_{a}\right)$ for every $a \in \Omega$. Since Ω_{a} is a polydisc (and hence simply connected), Remark 6.4.4 implies that there exists a function $g_{a} \in \mathcal{C}\left(\Omega_{a}\right)$ such that $\exp \left(g_{a}\right)=f_{a} / \widetilde{f}$. We have $\exp \left(g_{a}-g_{b}\right)=f_{a} / f_{b} \in \mathcal{O}^{*}\left(\Omega_{a} \cap \Omega_{b}\right)$ in $\Omega_{a} \cap \Omega_{b}$ and so (Remark 6.4.4) $\varphi_{a b}:=g_{a}-g_{b} \in \mathcal{O}\left(\Omega_{a} \cap \Omega_{b}\right)$. We have obtained data for the first holomorphic Cousin problem. Let $\varphi_{a} \in \mathcal{O}(\Omega), a \in \Omega$, be such that $\varphi_{a, b}=\varphi_{b}-\varphi_{a}$ for every $a, b \in \Omega$. Define $f:=f_{a} \exp \left(\varphi_{a}\right) \mathrm{w} \Omega_{a}$. In $\Omega_{a} \cap \Omega_{b}$ we have

$$
\frac{f_{a} \exp \left(\varphi_{a}\right)}{f_{b} \exp \left(\varphi_{b}\right)}=\exp \left(g_{a}-g_{b}\right) \exp \left(\varphi_{a}-\varphi_{b}\right)=\exp \left(\varphi_{a, b}\right) \exp \left(\varphi_{b, a}\right)=1
$$

Hence f is a well-defined holomorphic function in Ω. Directly from the definition of f it follows that f is a defining function for M.
Remark 6.4.10. Let M be a k-dimensional complex submanifold of an open set $\Omega \subset \mathbb{C}^{n}(1 \leq k \leq n-1)$ and let $f: M \longrightarrow \mathbb{C}$. Then the following conditions are equivalent:
(i) $f \in \mathcal{O}(M)$ in the complex manifold sense, i.e. for any point $a \in M$ there exists local coordinates $\varphi: \mathbb{D}^{k} \longrightarrow U$ such that $f \circ \varphi \in \mathcal{O}\left(\mathbb{D}^{k}\right)$, where U is a neighborhood of a;
(ii) for any point $a \in M$ there exist $P=\mathbb{P}_{n}(a, r) \subset \Omega$ and $\widetilde{f}_{a} \in \mathcal{O}(P)$ such that $\widetilde{f}_{a}=f$ on $M \cap P$.

[^24]Proposition 6.4.11. Let $\Omega \in \mathcal{C P}^{1}(\mathcal{O})$ and let $M \subset \Omega$ be an $(n-1)$-dimensional complex submanifold of Ω for which there exists a defining function $F_{0} \in \mathcal{O}(\Omega)$. Then for any function $f \in \mathcal{O}(M)$ there exists an $\tilde{f} \in \mathcal{O}(\Omega)$ with $\widetilde{f}=f$ on $M .\left({ }^{17}\right)$
Proof. For $a \in \Omega$ let $\Omega_{a}=\mathbb{P}(a, r)$, where the polydisc $\mathbb{P}(a, r)$ is such that $\mathbb{P}(a, r) \cap M=\varnothing$ if $a \notin M$, there exists a function $f_{a} \in \mathcal{O}(\mathbb{P}(a, r))$ such that $f_{a}=f$ on $M \cap \mathbb{P}(a, r)$ if $a \in M$ (cf. Remark 6.4.10).
Put $f_{a}:=0$ if $a \notin M$. Observe that $f_{a}-f_{b}=0$ on $M \cap \Omega_{a} \cap \Omega_{b}$ (if $M \cap \Omega_{a} \cap \Omega_{b} \neq \varnothing$). Since F_{0} is a defining function, there exists a function $\varphi_{a, b} \in \mathcal{O}\left(\Omega_{a} \cap \Omega_{b}\right)$ such that $f_{a}-f_{b}=F_{0} \varphi_{a, b}$ on $\Omega_{a} \cap \Omega_{b}, a, b \in \Omega$. Observe that $\varphi_{a, b}, a, b \in \Omega$, are data for the first holomorphic Cousin problem.
Let $\varphi_{a} \in \mathcal{O}\left(\Omega_{a}\right)$ be such that $\varphi_{a, b}=\varphi_{b}-\varphi_{a}, a, b \in \Omega$. Then

$$
\left(f_{a}+F_{0} \varphi_{a}\right)-\left(f_{b}+F_{0} \varphi_{b}\right)=f_{a}-f_{b}-F_{0}\left(\varphi_{b}-\varphi_{a}\right)=F_{0} \varphi_{a, b}-F_{0} \varphi_{a, b}=0 \text { on } \Omega_{a} \cap \Omega_{b} .
$$

Consequently, the function $\tilde{f}:=f_{a}+F_{0} \varphi_{a}$ on $\Omega_{a}, a \in \Omega$, is the required extension.

Exercises

6.1. Let

$$
D:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-1\right|<1\right\}
$$

Prove that D is simply connected - complete the following sketch of the proof.
Let

$$
Q:=\left\{\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{3}: w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=1\right\}
$$

Then the mapping

$$
D \ni\left(z_{1}, z_{2}, z_{3}\right) \longmapsto\left(\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}}, \frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}}, \frac{z_{3}}{\sqrt{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}}, z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-1\right) \in Q \times \mathbb{D}
$$

is a homeomorphism ($\sqrt{ }$ denotes the principal branch of the square root).
For $w=x+i y \in \mathbb{C}^{3}$ with $x, y \in \mathbb{R}^{3}$ we have: $w \in Q$ iff $\|x\|^{2}-\|y\|^{2}=1,\langle x, y\rangle=0$. Consider the mapping

$$
[0,1] \times Q \ni(t, x+i y) \xrightarrow{H}\left(\sqrt{1+t^{2}\|y\|^{2}} \frac{x}{\|x\|}, t y\right) \in Q
$$

Then H is a homotopy of Q to the 2-dimensional real Euclidean sphere in \mathbb{R}^{3}. In particular, Q is simply connected and, therefore, D is a simply connected domain.

[^25]
List of symbols

General symbols

$\mathbb{N}:=$ the set of natural numbers, $0 \notin \mathbb{N}$;
$\mathbb{Z}:=$ the ring of integers;
$\mathbb{Q}:=$ the field of rational numbers;
$\mathbb{R}:=$ the field of real numbers;
$\mathbb{C}:=$ the field of complex numbers;
$\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}=$ the Riemann sphere;
$\operatorname{Re} z:=$ the real part of $z \in \mathbb{C}$;
$\operatorname{Im} z:=$ the imaginary part of $z \in \mathbb{C}$;
$\bar{z}:=\operatorname{Re} z-i \operatorname{Im} z:=$ the conjugate of z;
$\bar{w}:=\left(\bar{w}_{1}, \ldots, \bar{w}_{n}\right) ;$
$A_{*}:=A \backslash\{0\}$, e.g. $\mathbb{C}_{*} ;$
$A_{+}:=\{a \in A: a \geq 0\}$, e.g. $\mathbb{Z}_{+}, \mathbb{R}_{+} ;$
$A_{-}:=\{a \in A: a \leq 0\}$, e.g. $\mathbb{R}_{-} ;$
$A_{>0}:=\{a \in A: a>0\}$, e.g. $\mathbb{R}_{>0}$;
$A_{*}^{n}:=\left(A_{*}\right)^{n}, A_{+}^{n}:=\left(A_{+}\right)^{n}, A_{>0}^{n}:=\left(A_{>0}\right)^{n}$ (to simplify notation);
$A+B:=\{a+b: a \in A, b \in B\}, A, B \subset \mathbb{C}^{n} ;$
$A \cdot B:=\{a \cdot b: a \in A, b \in B\}, A \subset \mathbb{C}, B \subset \mathbb{C}^{n} ;$
$\left(e_{1}, \ldots, e_{n}\right):=$ the canonical basis in $\mathbb{C}^{n}, e_{j}:=\left(e_{j, 1}, \ldots, e_{j, n}\right), e_{j, k}=0$ for $j \neq k$ and $e_{j, j}:=1, j=1, \ldots, n$;
$\langle z, w\rangle:=\sum_{j=1}^{n} z_{j} \bar{w}_{j}=$ the Hermitian scalar product in $\mathbb{C}^{n} ;$
$\|z\|=: \sqrt{\langle z, z\rangle}=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}=$ the Euclidean norm in $\mathbb{C}^{n} ;$
a \mathbb{C}-linear operator $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ is unitary if $\left\langle L\left(z^{\prime}\right), L\left(z^{\prime \prime}\right)\right\rangle=\left\langle z^{\prime}, z^{\prime \prime}\right\rangle, z^{\prime}, z^{\prime \prime} \in \mathbb{C}^{n}$ (or, equivalently, $\left.\|L(z)\|=\|z\|, z \in \mathbb{C}^{n}\right) ;$
$\mathfrak{U}\left(\mathbb{C}^{n}\right):=$ the group of all unitary isomorphisms of $\mathbb{C}^{n} ;$
$\mathbb{B}(a, r)=\mathbb{B}_{n}(a, r):=\left\{z \in \mathbb{C}^{n}:\|z-a\|<r\right\}=$ the Euclidean ball with center at $a \in \mathbb{C}^{n}$ and radius $r>0$ $\left(\mathbb{B}(a,+\infty):=\mathbb{C}^{n}\right) ;$
$\mathbb{B}(r)=\mathbb{B}_{n}(r):=\mathbb{B}_{n}(0, r), r>0 ;$
$\mathbb{B}_{n}:=\mathbb{B}_{n}(1)=$ the unit Euclidean ball in $\mathbb{C}^{n} ;$
$K(a, r):=\mathbb{B}_{1}(a, r), a \in \mathbb{C}, r>0 ; K(a,+\infty):=\mathbb{C}$;
$C(a, r):=\partial K(a, r), a \in \mathbb{C}, r>0$; sometimes, we identify $C(a, r)$ with the curve $[0,2 \pi] \ni \theta \longmapsto a+r e^{i \theta}$;
$K(r):=\mathbb{B}_{1}(r)=K(0, r), r>0 ;$
$C(r):=\partial K(r), r>0 ;$
$\mathbb{D}:=\mathbb{B}_{1}=\{z \in \mathbb{C}:|z|<1\}=$ the unit disc;
$\mathbb{T}:=\partial \mathbb{D} ;$
$\boldsymbol{V}_{j}:=\mathbb{C}^{j-1} \times\{0\} \times \mathbb{C}^{n-j} \subset \mathbb{C}^{n}, j=1, \ldots, n ;$
$|z|:=\max \left\{\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right\}=$ the maximum norm in $\mathbb{C}^{n} ;$
$\mathbb{P}(a, r)=\mathbb{P}_{n}(a, r):=\left\{z \in \mathbb{C}^{n}:|z-a|<r\right\}=$ the polydisc with center at $a \in \mathbb{C}^{n}$ and radius $r>0 ;$
$\mathbb{P}(r)=\mathbb{P}_{n}(r):=\mathbb{P}_{n}(0, r) ;$
$\mathbb{P}(a, \boldsymbol{r})=\mathbb{P}_{n}(a, \boldsymbol{r}):=K\left(a_{1}, r_{1}\right) \times \cdots \times K\left(a_{n}, r_{n}\right)=$ the polydisc with center at $a \in \mathbb{C}^{n}$ and multiradius (polyradius) $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{>0}^{n}$;
$\mathbb{P}(\boldsymbol{r})=\mathbb{P}_{n}(\boldsymbol{r}):=\mathbb{P}(0, \boldsymbol{r}) ;$
$\operatorname{conv}(A):=$ the convex hull of A;
$A \subset \subset X \stackrel{\text { def }}{\Longleftrightarrow} A$ is relatively compact in X;
$\Omega_{a, X}:=\{\lambda \in \mathbb{C}: a+\lambda X \in \Omega\}, \Omega \subset \mathbb{C}^{n}, a \in \mathbb{C}^{n}, X \in \mathbb{C}^{n} ;$
$f_{a, X}(\lambda):=f(a+\lambda X), \lambda \in \Omega_{a, X}, f: \Omega \longrightarrow \mathbb{C}^{m} ;$
$d_{\Omega}(a):=\sup \{r>0: \mathbb{P}(a, r) \subset \Omega\}, \Omega \in \operatorname{top} \mathbb{C}^{n}, a \in \Omega ;$
$\operatorname{top} \Omega:=$ the Euclidean topology of $\Omega, \Omega \subset \mathbb{C}^{n}$;
$\operatorname{int}_{X} A:=$ the interior of A in the topology of $X, A \subset X$;
$\operatorname{cl}_{X} A:=$ the closure of A in the topology of $X, A \subset X$;
$\partial_{0}\left(A_{1} \times \cdots \times A_{n}\right):=\left(\partial A_{1}\right) \times \cdots \times\left(\partial A_{n}\right):=$ the distinguished boundary of $A ;$
$D \subset \mathbb{C}$ is regular $\stackrel{\text { def }}{\Longleftrightarrow} \partial D$ consists of a finite union of pairwise disjoint Jordan piecewise \mathcal{C}^{1} curves with positive orientation with respect to D;
$R(A):=\left\{\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right):\left(z_{1}, \ldots, z_{n}\right) \in A\right\}:=$ the modular image of $A \subset \mathbb{C}^{n} ;$
$\log A:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left(e^{x_{1}}, \ldots, e^{x_{n}}\right) \in A\right\}=$ the logarithmic image of an n-circled set $A \subset \mathbb{C}^{n} ;$
$p(\nu)$ holds for $\nu \gg 1 \stackrel{\text { def }}{\Longleftrightarrow}$ there exists ν_{0} such that $p(\nu)$ holds for $\nu \geq \nu_{0}$;
$p(\varepsilon)$ holds for $0<\varepsilon \ll 1 \stackrel{\text { def }}{\Longleftrightarrow}$ there exists $\varepsilon_{0}>0$ such that $p(\varepsilon)$ holds for $0<\varepsilon \leq \varepsilon_{0}$;
$z^{\alpha}:=z_{1}^{\alpha_{1}} \cdots \cdots z_{n}^{\alpha_{n}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n} ;$
$\alpha!:=\alpha_{1}!\cdots \alpha_{n}!, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n} ;$
$|\alpha|:=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n} ;$
$\alpha \leq \beta \stackrel{\text { def }}{\Longleftrightarrow} \alpha_{j} \leq \beta_{j}, j=1, \ldots, n \quad\left(\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}\right)$;
$\binom{\alpha}{\beta}:=\binom{\alpha_{1}}{\beta_{1}} \cdots \cdot\binom{\alpha_{n}}{\beta_{n}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{+}^{n}, \beta \leq \alpha ;$
$1:=(1, \ldots, 1) \in \mathbb{N}^{n}$;
$\|f\|_{A}:=\sup \{|f(a)|: a \in A\}, f: A \longrightarrow \mathbb{C} ;$
$\left.\mathcal{F}\right|_{A}:=\left\{\left.f\right|_{A}: f \in \mathcal{F}\right\}, \mathcal{F}$ is a family of mappings $X \longrightarrow Y$ and $A \subset X ;$
$\operatorname{supp} f:=\overline{\{x: f(x) \neq 0\}}=$ the support of f;
$\mathcal{C}^{\uparrow}(\Omega):=$ the set of all upper semicontinuous functions $u: \Omega \longrightarrow[-\infty,+\infty]\left(\Omega \in \operatorname{top} \mathbb{C}^{n}\right)$;
$\mathcal{L}^{N}:=$ Lebesgue measure in $\mathbb{R}^{N} ;$
$L^{p}(A):=$ the space of all Lebesgue measurable functions $u: A \longrightarrow \mathbb{C}$ such that $\int_{A}|u|^{p} d \mathcal{L}^{N}<+\infty, A \subset \mathbb{R}^{N} ;$ $L^{p}(\Omega$, loc $):=$ the space of all Lebesgue measurable functions $u: \Omega \longrightarrow \mathbb{C}$ such that $\left.f\right|_{K} \in L^{p}(K)$ for any compact $K \subset \Omega \in \operatorname{top} \mathbb{R}^{N}$;
$L^{p}(\Omega$, loc $) \ni f_{\nu} \xrightarrow{L^{p}(\Omega, \text { loc })} f_{0} \in L^{p}(\Omega$, loc $) \stackrel{\text { def }}{\Longleftrightarrow} \forall_{K \subset \subset \Omega}:\left.\left.f_{\nu}\right|_{K} \xrightarrow{L^{p}(K)} f_{0}\right|_{K}$.

Chapter 1

$f_{\mathbb{R}}^{\prime}(a):=$ the real Fréchet differential of f at $a ;$
$f_{\mathbb{C}}^{\prime}(a)=f^{\prime}(a):=$ the complex Fréchet differential of f at a;
$\mathcal{C}^{k}\left(\Omega_{1}, \Omega_{2}\right):=$ the space of all C^{k}-mappings $F: \Omega_{1} \longrightarrow \Omega_{2} ; k \in \mathbb{Z}_{+} \cup\{\infty\} ;$
$\mathcal{C}^{k}(\Omega):=\mathcal{C}^{k}(\Omega, \mathbb{C}) ;$
$\mathcal{C}_{0}^{k}(\Omega):=\left\{f \in \mathcal{C}^{k}(\Omega): \operatorname{supp} f \subset \subset \Omega\right\} ;$
$\frac{\partial f}{\partial z_{j}}(a):=\frac{1}{2}\left(\frac{\partial f}{\partial x_{j}}(a)-i \frac{\partial f}{\partial y_{j}}(a)\right), \quad \frac{\partial f}{\partial \bar{z}_{j}}(a):=\frac{1}{2}\left(\frac{\partial f}{\partial x_{j}}(a)+i \frac{\partial f}{\partial y_{j}}(a)\right) ;$

$$
J_{\mathbb{R}} f(a):=\operatorname{det}\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial z_{n}}(a), \frac{\partial f_{1}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial \bar{z}_{n}}(a) \\
\frac{\partial f_{n}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{n}}{\partial z_{n}}(a), \frac{\partial f_{n}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial f_{n}}{\partial \bar{z}_{n}}(a) \\
\frac{\partial \bar{f}_{1}}{\partial z_{1}}(a), \ldots, \frac{\partial f_{1}}{\partial z_{n}}(a), \frac{\partial f_{1}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial \bar{f}_{1}}{\partial \bar{z}_{n}}(a) \\
\ldots \\
\frac{\partial \bar{f}_{n}}{\partial z_{1}}(a), \ldots, \frac{\partial \bar{f}_{n}}{\partial z_{n}}(a), \frac{\partial \bar{f}_{n}}{\partial \bar{z}_{1}}(a), \ldots, \frac{\partial \bar{f}_{n}}{\partial \bar{z}_{n}}(a)
\end{array}\right]=\text { the real Jacobian of } f \text { at } a ;
$$

$D^{\alpha, \beta}:=\left(\frac{\partial}{\partial z_{1}}\right)^{\alpha_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial z_{n}}\right)^{\alpha_{n}} \circ\left(\frac{\partial}{\partial \bar{z}_{1}}\right)^{\beta_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial \bar{z}_{n}}\right)^{\beta_{n}}, \alpha, \beta \in \mathbb{Z}_{+}^{n} ;$
$D^{\alpha}:=D^{\alpha, 0}=\left(\frac{\partial}{\partial z_{1}}\right)^{\alpha_{1}} \circ \cdots \circ\left(\frac{\partial}{\partial z_{n}}\right)^{\alpha_{n}}, \alpha \in \mathbb{Z}_{+}^{n} ;$
$\frac{\partial f}{\partial z_{j}}(a):=\lim _{\mathbb{C} \ni \lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(a+\lambda e_{j}\right)-f(a)\right)=$ the j-th complex partial derivative of f at a;
$J_{\mathbb{C}} f(a):=\operatorname{det}\left(\left[\frac{\partial f_{j}}{\partial z_{k}}(a)\right]_{j, k=1, \ldots, n}\right)=$ the complex Jacobian of f at $a ;$
$\mathcal{O}_{s}(\Omega):=$ the space of all separately holomorphic functions on Ω;
$\mathcal{D}(\Sigma):=$ the domain of convergence of a power series Σ;
$T_{a} f(z):=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} \frac{1}{\alpha!} D^{\alpha} f(a)(z-a)^{\alpha}=$ the Taylor series of f at a;
$d\left(T_{a} f\right):=\sup \left\{r>0: \mathbb{P}(a, r) \subset \mathcal{D}\left(T_{a} f\right)\right\}=$ the radius of convergence of the series $T_{a} f ;$
$\mathcal{O}\left(\Omega_{1}, \Omega_{2}\right)$ - the set of all holomorphic mappings $F: \Omega_{1} \longrightarrow \Omega_{2}$;
$\mathcal{O}(\Omega):=\mathcal{O}(\Omega, \mathbb{C}) ;$
$\widehat{f}_{a}:=$ the germ of f at a;
$\mathcal{P}\left(\mathbb{C}^{n}\right):=$ the space of all complex polynomials of n-complex variables;
$\mathcal{H}^{\infty}(\Omega):=$ the space of all bounded holomorphic functions on Ω;
$\mathcal{A}^{k}(\Omega):=\left\{f \in \mathcal{O}(\Omega): \forall_{\alpha \in \mathbb{Z}_{+}^{n},|\alpha| \leq k}: \exists_{\varphi_{\alpha} \in \mathcal{C}(\bar{\Omega})}: \varphi_{\alpha}=D^{\alpha} f\right.$ in $\left.\Omega\right\}, k \in \mathbb{Z}_{+} \cup\{\infty\} ;$
$L_{h}^{p}(\Omega):=\mathcal{O}(\Omega) \cap L^{p}(\Omega)$.

Chapter 2

$\operatorname{Aut}(\Omega)=$ the group of all automorphisms of $\Omega \subset \mathbb{C}^{n}$;
$\operatorname{Aut}_{a}(\Omega):=\{h \in \operatorname{Aut}(\Omega): h(a)=a\}, a \in \Omega$.
$\widehat{K}_{\mathcal{F}}:=\left\{z \in \Omega: \forall f \in \mathcal{F}:|f(z)| \leq\|f\|_{K}\right\}, \mathcal{F} \subset \mathcal{O}(\Omega) ;$
$\widehat{K}:=\widehat{K}_{\mathcal{P}\left(\mathbb{C}^{n}\right)}=\widehat{K}_{\mathcal{O}\left(\mathbb{C}^{n}\right)}$.

Chapter 3

$\Delta:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \bar{\partial}}=$ the Laplacian operator in $\mathbb{R}^{2} ;$
$\mathcal{H}(\Omega):=$ the space of all harmonic functions on $\Omega \subset \mathbb{C}$;
$\mathbf{P}(u ; a, r ; z):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-|z-a|^{2}}{\left|r e^{i \theta}-(z-a)\right|^{2}} u\left(a+r e^{i \theta}\right) d \theta ;$
$\mathbf{J}(u ; a, r):=\mathbf{P}(u ; a, r ; a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta}\right) d \theta ;$
$\mathbf{S}(u ; a, r ; z):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r e^{i \theta}+(z-a)}{r e e^{i \theta}-(z-a)} u\left(a+r e^{i \theta}\right) d \theta ;$
$\mathcal{S H}(\Omega):=$ the set of all subharmonic functions on $\Omega \subset \mathbb{C}$;
$\mathbf{A}(u ; a, r):=\frac{1}{\pi r^{2}} \int_{K(a, r)} u d \mathcal{L}^{2} ;$
$\mathcal{P H}(\Omega):=$ the space of all pluriharmonic functions on $\Omega \subset \mathbb{C}^{n}$;
$\mathbf{P}(u ; a, \boldsymbol{r} ; z):=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{r_{1}^{2}-\left|z_{1}-a_{1}\right|^{2}}{\left|r_{1} e^{i \theta} \theta_{1}-\left(z_{1}-a_{1}\right)\right|^{2}} \cdots \frac{r_{n}^{2}-\left|z_{n}-a_{n}\right|^{2}}{\left|r_{n} e^{e^{\theta} \theta_{n}}-\left(z_{n}-a_{n}\right)\right|^{2}} \times$

$$
u\left(a_{1}+r_{1} e^{i \theta_{1}}, \ldots, a_{n}+r_{n} e^{i \theta_{n}}\right) d \theta_{1} \ldots d \theta_{n}
$$

psh: =plurisubharmonic;
$\mathcal{P S H}(\Omega):=$ the set of all plurisubharmonic functions on $\Omega \subset \mathbb{C}^{n} ;$
$\mathbf{J}(u ; a, \boldsymbol{r}):=\mathbf{P}(u ; a, \boldsymbol{r} ; a)$;
$\mathbf{A}(u ; a, \boldsymbol{r}):=\frac{1}{\left(\pi r_{1}^{2}\right) \ldots\left(\pi r_{n}^{2}\right)} \int_{\mathbb{P}(a, \boldsymbol{r})} u d \mathcal{L}^{2 n} ;$
$\mathcal{L} u(a ; X):=\sum_{j, k=1}^{n} \frac{\partial^{2} u}{\partial z_{j} \bar{z}_{k}}(a) X_{j} \bar{X}_{k}=$ the Levi form;
$\Omega_{\varepsilon}:=\left\{z \in \Omega: d_{\Omega}(z)>\varepsilon\right\} ;$
$u_{\varepsilon}:=$ the ε-regularization of $u \in \mathcal{P S H}(\Omega)$.

Chapter 4

$\widetilde{K}_{\mathcal{S}}:=\left\{z \in \Omega: \forall_{u \in \mathcal{S}}: u(z) \leq \max _{K} u\right\}, \mathcal{S} \subset \mathcal{P S H}(\Omega) ;$
$B_{q}(a, r):=\left\{z \in \mathbb{C}^{n}: q(z-a)<r\right\}, a \in \mathbb{C}^{n}, r>0, q: \mathbb{C}^{n} \longrightarrow \mathbb{R}_{+}$is a \mathbb{C}-norm;
$d_{\Omega, q}(a):=\sup \left\{r>0: B_{q}(a, r) \subset \Omega\right\}, a \in \Omega \subset \mathbb{C}^{n} ;$
$\delta_{\Omega, X}(a):=\sup \{r>0: a+K(r) \cdot X \subset \Omega\}, a \in \Omega \subset \mathbb{C}^{n} \ni X ;$
$\Xi_{p}^{n}:=\left\{I=\left(i_{1}, \ldots, i_{p}\right) \in \mathbb{N}^{p}: 1 \leq i_{1}<\cdots<i_{p} \leq n\right\} ;$
$\sum_{|I|=p}^{\prime} \cdots=\sum_{I \in \Xi_{p}^{n}} \cdots ;$
$\mathcal{F}_{(p, q)}(\Omega):=$ the space of all forms of type (p, q);
$\mathcal{C}_{(p, q)}^{k}(\Omega):=$ the space of all (p, q)-forms with coefficients in $\mathcal{C}^{k}(\Omega)$;
$\mathcal{D}_{(p, q)}(\Omega):=$ the space of all (p, q)-forms with coefficients in $\mathcal{C}_{0}^{\infty}(\Omega)$;

$$
\partial u:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial u_{I, J}}{\partial z_{j}} d z_{j} \wedge d z_{I} \wedge d \bar{z}_{J} ; \quad \bar{\partial} u:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial u_{I, J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J}=\text { the } \bar{\partial} \text {-operator; }
$$

Piotr Jakóbczak, Marek Jarnicki, Lectures on SCV
List of symbols

$$
\begin{aligned}
\Phi^{*}(u): & =\sum_{|I|=p,|J|=q}^{\prime}\left(u_{I, J} \circ \Phi\right) d \Phi_{i_{1}} \wedge \cdots \wedge d \Phi_{i_{p}} \wedge d \bar{\Phi}_{j_{1}} \wedge \cdots \wedge d \bar{\Phi}_{j_{q}} \\
& =\sum_{|I|=p,|J|=q}^{\prime}\left(u_{I, J} \circ \Phi\right) \partial \Phi_{i_{1}} \wedge \cdots \wedge \partial \Phi_{i_{p}} \wedge \overline{\partial \bar{\Phi}}_{j_{1}} \wedge \cdots \wedge \overline{\partial \Phi_{j_{q}}}
\end{aligned}
$$

$S_{p, q}=S_{p, q}\left(\mathbb{C}^{n}\right):=$ the family of all sets $A \subset \mathbb{C}^{n}$ such that for every open neighborhood G of A and for every $\bar{\partial}$-closed form $v \in \mathcal{C}_{(p, q+1)}^{\infty}(\underset{\sim}{G})$ there exist an open neighborhood \widetilde{G} of A (with $\widetilde{G} \subset G$) and a form $u \in \mathcal{C}_{(p, q)}^{\infty}(\widetilde{G})$ such that $\bar{\partial} u=v$ in \widetilde{G}.

Chapter 5

$q_{K, k}(f):=\sum_{\alpha \in \mathbb{Z}_{+}^{N}:|\alpha| \leq k} \sup _{K}\left|D^{\alpha} f\right|, k \in \mathbb{Z}_{+} ;$
$\mathcal{D}(K):=\left\{f \in \mathcal{C}_{0}^{\infty}(\Omega): \operatorname{supp} f \subset K\right\} ;$
$\mathcal{D}(K) \ni f_{\nu} \xrightarrow{\mathcal{D}(K)} f_{0} \in \mathcal{D}(K) \stackrel{\text { def }}{\Longleftrightarrow} \forall_{\alpha \in \mathbb{Z}_{+}^{N}}: D^{\alpha} f_{\nu} \longrightarrow D^{\alpha} f_{0}$ uniformly on $K ;$
$\mathcal{D}(\Omega):=\mathcal{C}_{0}^{\infty}(\Omega) ;$
$\mathcal{D}(\Omega) \ni f_{\nu} \xrightarrow{\mathcal{D}(\Omega)} f_{0} \in \mathcal{D}(\Omega) \stackrel{\text { def }}{\Longleftrightarrow} \exists_{K \subset \subset \Omega}:\left(f_{\nu}\right)_{\nu=1}^{\infty} \subset \mathcal{D}(K), f_{\nu} \xrightarrow{\mathcal{D}(K)} f_{0} ;$
$\mathcal{E}(\Omega):=\mathcal{C}^{\infty}(\Omega) ;$
$\mathcal{E}(\Omega) \ni f_{\nu} \xrightarrow{\mathcal{E}(\Omega)} f_{0} \in \mathcal{E}(\Omega) \stackrel{\text { def }}{\Longleftrightarrow} \forall_{\alpha \in \mathbb{Z}_{+}^{N}}: D^{\alpha} f_{\nu} \longrightarrow D^{\alpha} f_{0}$ locally uniformly in Ω;
$\mathcal{D}^{\prime}(\Omega):=$ the space of all distributions on Ω;
$\mathcal{T}_{\nu} \xrightarrow{\mathcal{D}^{\prime}(\Omega)} \mathcal{T}_{0} \Longleftrightarrow \forall_{f \in \mathcal{D}(\Omega)}: \mathcal{T}_{\nu}(f) \longrightarrow \mathcal{T}_{0}(f) ;$
$[u](f):=\int_{\Omega} u f d \mathcal{L}^{n}, f \in \mathcal{D}(\Omega), u \in L^{1}(\Omega$, loc $) ;$
$\mathcal{T}_{1} \otimes \mathcal{T}_{2}:=$ the tensor product of distributions;
$\mathcal{T}_{1} * \mathcal{T}_{2}:=$ the convolution of distributions;
$\mathcal{T}_{\varepsilon}=\mathfrak{T} * \Phi_{\varepsilon}=$ the ε-regularization of \mathfrak{T};
$L^{2}(\Omega, \varphi):=\left\{u \in L^{2}(\Omega\right.$, loc $\left.): \int_{\Omega}|u|^{2} \exp (-\varphi) d \mathcal{L}^{2 n}<+\infty\right\}, \Omega \in \operatorname{top} \mathbb{C}^{n} ;$
$\mathcal{V}_{(p, q)}(\Omega)$ - the space of all (p, q)-forms with coefficients in $\mathcal{V}(\Omega)$, e.g. $\mathcal{D}_{(p, q)}^{\prime}(\Omega), L_{(p, q)}^{2}(\Omega$, loc $), L_{(p, q)}^{2}(\Omega, \varphi)$;

$$
\begin{gathered}
\partial \mathcal{T}:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial \mathcal{T}_{I, J}}{\partial z_{j}} d z_{j} \wedge d z_{I} \wedge d \bar{z}_{J} ; \quad \bar{\partial} \mathcal{T}:=\sum_{|I|=p,|J|=q}^{\prime} \sum_{j=1}^{n} \frac{\partial \mathcal{T}_{I, J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J} ; \\
D^{\alpha, \beta} \mathfrak{T}:=\sum_{|I|=p,|J|=q}^{\prime}\left(D^{\alpha, \beta} \mathcal{T}_{I, J}\right) d z_{I} \wedge d \bar{z}_{J}, \quad \alpha, \beta \in \mathbb{Z}_{+}^{n} ; \\
\vartheta \mathcal{T}:=\sum_{|I|=p,|K|=q-1}^{\prime}\left(\sum_{j=1}^{n} \frac{\partial \mathfrak{T}_{I, j K}}{\partial z_{j}}\right) d z_{I} \wedge d \bar{z}_{K} ; \quad \mathcal{T}_{\varepsilon}:=\sum_{|I|=p,|J|=q}^{\prime}\left(\mathcal{T}_{I, J}\right)_{\varepsilon} d z_{I} \wedge d \bar{z}_{J}
\end{gathered}
$$

$\varphi_{j}:=\varphi-(3-j) \psi, \mathcal{H}_{j}:=L_{(p, q+j-1)}^{2}\left(\Omega, \varphi_{j}\right), j=1,2,3 ;$
$\operatorname{Dom}(T):=\left\{f \in L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right): \bar{\partial} f \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right)\right\} ;$
$T: L_{(p, q)}^{2}\left(\Omega, \varphi_{1}\right) \supset \operatorname{Dom}(T) \ni f \longrightarrow \bar{\partial} f \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right) ;$
$\operatorname{Dom}(S):=\left\{f \in L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right): \bar{\partial} f \in L_{(p, q+2)}^{2}\left(\Omega, \varphi_{3}\right)\right\} ;$
$S: L_{(p, q+1)}^{2}\left(\Omega, \varphi_{2}\right) \supset \operatorname{Dom}(S) \ni f \longrightarrow \bar{\partial} f \in L_{(p, q+2)}^{2}\left(\Omega, \varphi_{3}\right) ;$
$\mathcal{R}(L):=L(\operatorname{Dom}(L)), L: X \supset \operatorname{Dom}(L) \longrightarrow Y$ is linear;
$\mathcal{W}^{k}(\Omega):=\left\{u \in L^{2}(\Omega): D^{\alpha, \beta} u \in L^{2}(\Omega),|\alpha|+|\beta| \leq k\right\}, k \in \mathbb{Z}_{+} \cup\{\infty\} ;$
$\mathcal{W}^{k}(\Omega, \operatorname{loc}):=\left\{u \in L^{2}(\Omega, \operatorname{loc}): D^{\alpha, \beta} u \in L^{2}(\Omega, \operatorname{loc}),|\alpha|+|\beta| \leq k\right\}, k \in \mathbb{Z}_{+} \cup\{\infty\}$.

Chapter 6

$\mathcal{M}(\Omega):=$ the set of all meromorphic functions on $\Omega \subset \mathbb{C}^{n} ;$
$\mathcal{R}(f):=$ the set of all regular points of $f \in \mathcal{M}(\Omega)$;
$\mathcal{P}(f):=$ the set of all poles of $f \in \mathcal{M}(\Omega)$;
$\mathcal{J}(f):=$ the set of all points of indeterminacy of $f \in \mathcal{M}(\Omega)$;
$\mathcal{F}^{*}(\Omega):=\{f \in \mathcal{F}(\Omega): f(z) \neq 0, z \in \Omega\}$, e.g. $\mathcal{O}^{*}(\Omega) ;$
$\Omega \in \mathcal{C P}^{1}(\mathcal{F}) \stackrel{\text { def }}{\Longleftrightarrow}$ the first Cousin problem with data in \mathcal{F} has a solution for any open covering of Ω;
$\Omega \in \mathcal{C P}{ }^{1}(\mathcal{O}) \stackrel{\text { def }}{\Longleftrightarrow}$ the first holomorphic Cousin problem has a solution for any open covering of Ω; $\Omega \in \mathcal{C P}^{1}[\mathcal{M}] \stackrel{\text { def }}{\Longleftrightarrow}$ the first meromorphic Cousin problem has a solution for any open covering of Ω;
$\Omega \in \mathcal{C P}^{2}(\mathcal{F}) \stackrel{\text { def }}{\Longleftrightarrow}$ the second Cousin problem with data in \mathcal{F} has a solution for any open covering of Ω;
$\Omega \in \mathcal{C P}^{2}(\mathcal{O}) \stackrel{\text { def }}{\Longleftrightarrow}$ the second holomorphic Cousin problem has a solution for any open covering of Ω;
$\Omega \in \mathcal{C P}^{2}[\mathcal{M}] \stackrel{\text { def }}{\Longleftrightarrow}$ the second meromorphic Cousin problem has a solution for any open covering of Ω.

Bibliography

1. H. Behnke \& K. Stein, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und die Weilsche Integraldarstellung, Math. Annalen 122 (1950), 276-278.
2. C. A. Berenstein \& R. Gay, Complex Variables, Springer Verlag, 1991.iiii
3. E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publishers, 1989. 57
4. J. B. Conway, Functions of One Complex Variable, Springer Verlag, 1973. 1 iii $4,5,10,13,14,16,27,32,33,36,39,60$ 100121,122
5. R. Courant \& D. Hilbert, Methoden der mathematischen Physik I, Springer Verlag, 1931. 64
6. H. Federer, Geometric Measure Theory, Springer Verlag, 1969. 35,94113
7. J. E. Fornæss \& R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Annalen. 248 (1980), 47-72. 83
8. J. E. Fornæss \& B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton University Press, 1987. 103
9. C. Goffman \& G. Pedrick, First Course in Functional Analysis, Prentice-Hall, Englewood Cliffs, N.J.,1965. 44
10. H. Grauert \& K. Fritzsche, Several Complex Variables, Springer Verlag, 1976. iii
11. H. Grauert \& R. Remmert, Theorie der Steinschen Räume, Springer Verlag, 1977. 129
12. R. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. I (Function Theory), vol. II (Local Theory), vol. III (Homological Theory), Wadsworth \& Brooks/Cole, 1990. iii
13. R. Gunning \& H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J.,1965. iii 103130
14. W. K. Hayman \& P. B. Kennedy, Subharmonic Functions, Academic Press, 1970. 59,6369
15. G. M. Henkin \& J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag Berlin, 1984. iii
16. M. Hérve, Les Fonctions Analytiques, Presses Universitaires de France, 1982.
17. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North Holland, 1990. iii, 107 , 126
18. M. Klimek, Pluripotential Theory, Oxford University Press, 1991. 59
19. S. G. Krantz, Function Theory of Several Complex Variables, Pure \& Applied Mathematics, John Wiley \& Sons, 1982 .iii 127
20. F. Leja, Theory of Analytic Functions, PWN, Warsaw, 1957 (in Polish). 15
21. S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley \& Sons, 1988. 6566
22. R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland, 1968. 54, 118
23. R. Narasimhan, Several Complex Variables, The University of Chicago Press, 1971. iii
24. P. Pflug, Holomorphiegebiete, pseudokonvexe Gebiete und das Levi-Problem, Lecture Notes in Math. 432, Springer Verlag, 1975. iii
25. M. M. Range, Holomorphic Functions and Integral Repesentations in Several Complex Variables, Springer Verlag, 1986.iii
26. R. Remmert, Theory of Complex Functions, Springer Verlag, 1991.iii
27. R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Annalen 175 (1968), 251-286. 83
28. J.-P. Rosay, Injective holomorphic mappings, Amer. Math. Monthly, 89(9) (1982), 587-588. 35
29. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, 1974. $36,66,70,72$
30. W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Grundlehren d. math. Wiss. 241, Springer Verlag, 1980. 38
31. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966. 64107
32. L Schwartz, Analyse Mathématique, Hermann, Paris, 1981. 707599
33. B. V. Shabat, An Introduction to Complex Analysis, vol. I,II, Nauka, Moscow, 1976 (in Russian). iii 49
34. J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, Berlin-Heidelberg York, 1980. 113.114
35. V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, The M.I.T. Press, 1966.7 iii 59 , 73 , 74
36. V. P. Zaharjuta, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, Teor. Funkcii Funkcional. Anal. i Prilozen. 19 (1974), 133-157. 83

Index

```
Abel's lemma, 6
analytic set, 57
automorphism group
    of \(\mathbb{B}_{n}, 38\)
    of \(\mathbb{D}^{n}, 37\)
```

balanced set, 6
barrier function, 43
Bergman boundary, 28
biholomorphic mapping, 12
canonical representation, 95
Cartan theorem, 36, 37
Cauchy
-Green formula, 97
inequalities, 11
integral formula, 5
-Riemann equations, 2
circular set, 6
complete n-circled set, 6
complex
Hessian, 77
Jacobian, 3
partial derivative, 1
convolution, 110
of distributions, 110
Cousin problems, 124
data for
the first holomorphic Cousin problem, 124
the first meromorphic Cousin problem, 124
the second holomorphic Cousin problem, 126
the second meromorphic Cousin problem, 126
first \mathcal{F}-Cousin problem
for $\Omega, 124$
for $\mathcal{U}, 124$
first holomorphic Cousin problem for $\Omega, 124$ for $\mathcal{U}, 124$
first meromorphic Cousin problem
for $\Omega, 124$
for $\mathcal{U}, 124$
second \mathcal{F}-Cousin problem
for $\Omega, 126$
for $\boldsymbol{U}, 126$
second holomorphic Cousin problem for $\Omega, 126$ for $\mathcal{U}, 126$
second meromorphic Cousin problem
for $\Omega, 126$
for $\mathcal{U}, 126$
data for
the first Cousin problem
holomorphic, 124
meromorphic, 124
the second Cousin problem
holomorphic, 126
meromorphic, 126
defining function, 129
$\partial-$
operator, 95
stability, 42
$\bar{\partial}-$
closed form, 96
equation, 96
exact form, 96
operator, 95
problem, 96
derivative of a distribution, 108
determining set, 28
Dirichlet problem, 61
for a disc, 62
for an annulus, 63
distinguished boundary, 5
distribution, 107
domain
of convergence of a power series, 8
of existence, 42
of holomorphy, 42
entire function, 10
envelope of holomorphy, 52
ε-regularization, 110
of a distribution, 111
exhaustion function, 88
$\mathcal{F}-$
convexity, 45
domain of holomorphy, 42
envelope of holomorphy, 52
extension, 51
hull, 45
region of holomorphy, 4152
first Cousin problem

Index

\mathcal{F}-Cousin problem for $\Omega, 124$
for $\boldsymbol{U}, 124$
holomorphic Cousin problem
for $\Omega, 124$
$\mathcal{U}, 124$
meromorphic Cousin problem
for $\Omega, 124$ $\boldsymbol{U}, 124$
formal partial derivative, 1
geometric series, 6
germ, 25
Green function, 63
group of automorphisms, 35
of $\mathbb{B}_{n}, 38$
of $\mathbb{D}^{n}, 37$
Hadamard's three circles theorem for subharmonic functions, 75
harmonic function, 59
Harnack's theorem, 63
Hartogs
domain, 21
extension theorem, 32
-Laurent
domain, 22
series, 40
lemma
for psh functions, 81
for subharmonic functions, 69
on separately holomorphic functions, 1518
series, 22, 41
theorem on separately holomorphic functions, 15
triangle, 57
Hefer's theorem, 105
holomorphic
convexity, 45
extension, 51
function, 10
hull, 45
mapping, 10
mappings on Riemann domains, 51
Hörmander's L^{2}-estimates, 116
hyperconvexity, 83
identity principle, 1051
for harmonic functions, 60
for liftings, 51
for meromorphic functions, 122
implicit mapping theorem, 12
inhomogeneous Cauchy-Riemann
equation, 96
irreducibility, 57
isomorphism of Riemann regions, 50
Jacobian, 3
Kontinuitätssatz, 94
Laurent series, 39
Levi
form, 77
Problem, 90
Liouville theorem, 11
for psh functions, 78
for subharmonic functions, 73
local pseudoconvexity, 88
logarithmic
convexity, 7
image, 7
plurisubharmonicity, 78
subharmonicity, 74
maximal
\mathcal{F}-extension, 52
holomorphic extension, 52
maximum principle, 13
for harmonic functions, 60
for psh functions, 80
for subharmonic functions, 65
mean value property for subharmonic functions, 6567
meromorphic function, 121
identity principle for meromorphic functions, 122
point of indeterminacy of a meromorphic function, 121
pole of a meromorphic function, 121
regular point of a meromorphic function, 121
minimum principle for harmonic
functions, 60
Minkowski functional, 19
Mittag-Leffler theorem, 122
Montel theorem, 14
morphism of Riemann regions, 50
n-circled set, 6
natural Fréchet space, 43
Oka
example, 127
principle, 127, 129
theorem for subharmonic functions, 73
Osgood's theorem, 4
partial derivative, 1
pluriharmonic function, 76
plurisubharmonic function, 78
Poincaré theorem, 14
point of indeterminacy of a meromorphic function, 121
Poisson integral formula, 62
polar set, 68
pole of a meromorphic function, 121
polynomial
convexity, 45100
hull, 45
polyhedron, 101
power series, 5
pseudoconvexity, 87
\mathbb{R}-analytic function, 15
radius of convergence of a Taylor
series, 9
rank theorem, 13
real
Hessian, 84

Jacobian, 3
region
of existence, 42
of holomorphy, 42
regular
planar domain, 4
point, 57
of a meromorphic function, 121
regularity with respect to the Dirichlet problem, 61
regularization, 71, 81
of a form, 112
removable singularities
of psh functions, 81
of subharmonic functions, 68,69
Riemann
domain, 50
region, 50
removable singularities theorem, 32
ring of germs, 25
Runge
domain, 100
region, 100
schlicht set, 50
Schwarz lemma for subharmonic
functions, 75
second Cousin problem
\mathcal{F}-Cousin problem
for $\Omega, 126$
for $\mathcal{U}, 126$
holomorphic Cousin problem
for $\Omega, 126$
for $\mathcal{U}, 126$
meromorphic Cousin problem for $\Omega, 126$ for $\mathcal{U}, 126$
separately
harmonic function, 76
holomorphic function, 4
Serre example, 129
sheaf of germs, 52
Shilov boundary, 28
singular point, 57
solution of the Dirichlet problem, 61
strictly plurisubharmonic function, 82
strong pseudoconvexity, 93
subharmonic function, 64
support
of a distribution, 108
of a form, 96
Taylor series, 9
tensor product of distributions, 109
theorem
Cartan theorem, 3637
Hartogs'
extension theorem, 32
theorem on separately holomorphic functions, 15
Hefer's theorem, 105
implicit mapping theorem, 12
Kontinuitätssatz, 94

Liouville theorem, 11
for psh functions, 78
Mittag-Leffler theorem, 122
Montel theorem, 14
Osgood's theorem, 4
Poincaré theorem, 14
rank theorem, 13
Riemann removable singularities theorem, 32
Thullen theorem, 53
Vitali theorem, 14
Weierstrass
Division Theorem, 23
Preparation Theorem, 23
theorem, 12,123
thin set, 32
Thullen theorem, 53
transitivity of $\operatorname{Aut}(D), 35$
type of a differential form, 95
univalent set, 50
upper regularization, 66
Vitali theorem, 14
weak hyperconvexity, 83
Weierstrass
Division Theorem, 23
polynomial, 23
Preparation Theorem, 23
theorem, 12,123
Wermer example, 103
Wirtinger derivative, 1
z_{n}-normalization, 25

[^0]: ${ }^{4}$) $A_{+}:=\{a \in A: a \geq 0\}$. To simplify notation we write \mathbb{N}_{0}^{n} instead of $\left(\mathbb{N}_{0}\right)^{n}$.
 $\left({ }^{5}\right)$ If $U \subset \mathbb{C}$ is open, then $\mathcal{O}(U)$ denotes the space of all holomorphic functions on U in the sense of the one-variable theory.
 $\left({ }_{7}^{6}\right)$ That is, f is separately holomorphic iff f is locally separately holomorphic.
 $\left.{ }^{7}\right) \mathbb{P}(a, \boldsymbol{r})=\mathbb{P}_{n}(a, \boldsymbol{r}):=K\left(a_{1}, r_{1}\right) \times \cdots \times K\left(a_{n}, r_{n}\right)$, where $K(a, r):=\{z \in \mathbb{C}:|z-a|<r\} ; \mathbb{P}(a, r)=\mathbb{P}_{n}(a, r):=$ $\mathbb{P}(a,(r, \ldots, r))$.

[^1]: $\left({ }^{9}\right) A_{>0}:=\{a \in A: a>0\}$. To simplify notation we write $\mathbb{R}_{>0}^{n}$ instead of $\left(\mathbb{R}_{>0}\right)^{n}$.
 $\left({ }^{10}\right) \mathbb{P}(\boldsymbol{r})=\mathbb{P}_{n}(\boldsymbol{r}):=\mathbb{P}(0, \boldsymbol{r}), \mathbb{P}(r)=\mathbb{P}_{n}(r):=\mathbb{P}(0, r)$.
 $\left.{ }^{11}\right) \mathbb{D}$ denotes the unit disc.
 (${ }^{12)}$ More generally: if $a_{0} \in \mathbb{C}^{n}$ is fixed, then the set A is called circular with respect to a_{0} if $a_{0}+\lambda\left(a-a_{0}\right) \in A$ for arbitrary $\lambda \in \mathbb{T}, a \in A$. The other definitions may be generalized similarly.

[^2]: $\left.{ }^{13}\right) K(r):=K(0, r)$.
 (${ }^{14}$) Observe that if $A \subset \mathbb{C}^{n}$ is n-circled (resp. complete n-circled), then int A is n-circled (resp. complete n-circled). Moreover, if $A \subset \mathbb{C}^{n}$ is n-circled, then int $\log A=\log \operatorname{int} A$.

[^3]: $\left.{ }^{18}\right)$ Here and in the sequel, if we write $f(z)=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}(z-a)^{\alpha}, z \in A$, then we assume that A is contained in the domain of convergence of the series.

[^4]: $\left({ }^{21}\right)$ If $G \subset \mathbb{R}^{n}$ is open and $f: G \longrightarrow \mathbb{C}$, then f is \mathbb{R}-analytic if for any $x_{0} \in G$ there exist $\left(a_{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{n}} \subset \mathbb{C}$ and an open neighborhood $U_{x_{0}} \subset G$ of x_{0} such that for any $x \in U_{x_{0}}$ the family $\left(a_{\alpha}\left(x-x_{0}\right)^{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{n}}$ is summable and $f(x)=$ $\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}\left(x-x_{0}\right)^{\alpha}$. By Abel's lemma 1.3 .3 the series $\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}\left(z-x_{0}\right)^{\alpha}$ is normally convergent in a \mathbb{C}^{n}-neighborhood $\widetilde{U}_{x_{0}} \subset \mathbb{C}^{n}$ of x_{0} with $\widetilde{U}_{x_{0}} \cap \mathbb{R}^{n} \subset U_{x_{0}}$. Put $\widetilde{f}_{x_{0}}(z):=\sum_{\alpha \in \mathbb{N}_{0}^{n}} a_{\alpha}\left(z-x_{0}\right)^{\alpha}, z \in \widetilde{U}_{x_{0}}$. Then $\widetilde{f}_{x_{0}} \in \mathcal{O}\left(\widetilde{U}_{x_{0}}\right)$ and $\widetilde{f}_{x_{0}}=f$ in $\widetilde{U}_{x_{0}} \cap \mathbb{R}^{n}$.

 Thus we have the following equivalent definition: f is \mathbb{R}-analytic if for any point $x_{0} \in G$ there exist a \mathbb{C}^{n}-neighborhood $\widetilde{U}_{x_{0}} \subset \mathbb{C}^{n}$ of x_{0} with $\widetilde{U}_{x_{0}} \cap \mathbb{R}^{n} \subset G$ and $\widetilde{f} \in \mathcal{O}\left(\widetilde{U}_{x_{0}}\right)$ such that $\widetilde{f}_{x_{0}}=f$ in $\widetilde{U}_{x_{0}} \cap \mathbb{R}^{n}$.

 Obviously, \mathbb{R}-analytic functions are of class \mathcal{C}^{∞}.

[^5]: $\left({ }^{30}\right)$ More generally, a Weierstrass polynomial with center at $a=\left(a^{\prime}, a_{n}\right) \in \mathbb{C}^{n}$ of degree p is a function W of the form $W\left(z^{\prime}, z_{n}\right)=\left(z_{n}-a_{n}\right)^{p}+\sum_{j=1}^{p} W_{j}\left(z^{\prime}\right)\left(z_{n}-a_{n}\right)^{p-j}$, where the W_{j} are holomorphic in a neighborhood of $a^{\prime} \in \mathbb{C}^{n-1}$ and $W_{j}\left(a^{\prime}\right)=0, j=1, \ldots, p$.

[^6]: ${ }^{(32)}$ The value of the germ F at a point a is well defined.
 $\left.{ }^{(33}\right)$ The theorem is not true if W is not a germ of the Weierstrass polynomial; for instance $1=(1 / W) \cdot W$, where W is a germ of a polynomial such that $W(0) \neq 0$.

[^7]: $\left.{ }^{34}\right) \Omega$ is fat if $\Omega=\operatorname{int} \bar{\Omega}$.

[^8]: $\left.{ }^{1}\right)$ Assume that $\left(P^{\prime} \times \Omega^{\prime}\right) \cap\left(P^{\prime \prime} \times \Omega^{\prime \prime}\right) \neq \varnothing$ and let $\left(z_{0}, w_{0}\right) \in\left(P^{\prime} \times \Omega^{\prime}\right) \cap\left(P^{\prime \prime} \times \Omega^{\prime \prime}\right)$ be fixed. Let Ω_{0}^{\prime} be the connected component of $\Omega^{\prime} \cap \Omega^{\prime \prime}$ that contains w_{0}. There exists an $\Omega \subset \Omega^{\prime} \cap \Omega^{\prime \prime}$ such that $\left(P^{\prime} \cap P^{\prime \prime}, \Omega\right) \in \mathfrak{F}$ and $\Omega \cap \Omega_{0}^{\prime} \neq \varnothing$. By the Cauchy theorem, we conclude that $f_{P^{\prime}, \Omega^{\prime}}\left(z_{0}, w\right)=f_{P^{\prime} \cap P^{\prime \prime}, \Omega}\left(z_{0}, w\right)=f_{P^{\prime \prime}, \Omega^{\prime \prime}}\left(z_{0}, w\right)$ for any $w \in \Omega$. Hence, by the identity principle, $f_{P^{\prime}, \Omega^{\prime}}\left(z_{0}, w_{0}\right)=f_{P^{\prime \prime}, \Omega^{\prime \prime}}\left(z_{0}, w_{0}\right)$.
 $\left(^{2}\right)$ Let U_{a}, K_{a} be as in 1°. It is clear that there exists an Ω as in the definition of \mathfrak{F} such that $K_{a} \subset \Omega, w_{0} \in \Omega$, and $\{a\} \times \Omega \subset \subset D$. Let $P \subset \subset U_{a}$ be an open convex neighborhood of a such that $\bar{P} \times \Omega \subset \subset D$. Then (P, Ω) satisfies all the required conditions.
 ${ }^{3}$) See the end of $\S 4.2$ for another proof.
 $\left.{ }^{4}\right)$ For example, $f(z):=1 / z, z \in \mathbb{C} \backslash\{0\}$.
 ${ }^{5}$) Note that M need not be closed in Ω.
 ${ }^{6}$) That is, every point $a \in D$ has a neighborhood U_{a} such that f is bounded in $U_{a} \backslash M$.

[^9]: $\left({ }^{8}\right)$ Notice that the assumption that D is bounded is essential (take for instance $D=G=\mathbb{C}^{2}, F\left(z_{1}, z_{2}\right):=\left(z_{1}+f\left(z_{2}\right), z_{2}\right)$, where $f \in \mathcal{O}(\mathbb{C})$ is a nonlinear entire function such that $f(0)=0)$.
 $\left({ }^{9}\right)$ Cf. Exercise 4.1

[^10]: ${ }^{11}$) Cf. Corollary 1.4 .7
 ${ }^{(12)}$ Observe that D is a complete n-circled domain.
 $\left.{ }^{(13}\right)$ If K, C, and θ are as in (b), then $\left\|a_{\alpha} z^{\alpha}\right\|_{\widetilde{K}(j)} \leq C \theta^{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}, \alpha \in \mathbb{Z}^{n}$, where $\widetilde{K}^{(j)}:=\left\{\left(z^{\prime}, \lambda z_{j}, z^{\prime \prime}\right):\left(z^{\prime}, z_{j}, z^{\prime \prime}\right) \in\right.$ $K, \lambda \in \overline{\mathbb{D}}\}$. Moreover, $\bigcup_{K \subset \subset D} \operatorname{int} \widetilde{K}^{(j)}=\widetilde{D}^{(j)}$.

[^11]: $\left({ }^{14}\right)$ Any compact subset of D can be covered by a finite number of compacts of the above type.

[^12]: $\left({ }^{15}\right) \Omega$ is fat if $\Omega=\operatorname{int} \bar{\Omega}$.

[^13]: $\left({ }^{20}\right) \boldsymbol{V}_{j}=\mathbb{C}^{j-1} \times\{0\} \times \mathbb{C}^{n-j}, \widetilde{D}^{(j)}=\left\{\left(z^{\prime}, \lambda z_{j}, z^{\prime \prime}\right):\left(z^{\prime}, z_{j}, z^{\prime \prime}\right) \in D, \lambda \in \overline{\mathbb{D}}\right\}$.
 $\left({ }^{21}\right)\langle$,$\rangle denotes the standard scalar product in \mathbb{R}^{n}$.

[^14]: ${ }^{(22)}$ Indeed, suppose that $\alpha_{j}<0$ and $D \cap \boldsymbol{V}_{j} \neq \varnothing$. Fix a $z=\left(z_{1}, \ldots, z_{n}\right) \in D \backslash \boldsymbol{V}_{0}$. Then, by $(*), z(\lambda):=$ $\left(z_{1}, \ldots, z_{j-1}, \lambda z_{j}, z_{j+1}, \ldots, z_{n}\right) \in D \backslash \boldsymbol{V}_{0}$ for any $\lambda \in \mathbb{\mathbb { D }} \backslash\{0\}$. Consequently, $\left|b^{\alpha}\right| \geq\left|z(\lambda)^{\alpha}\right|=|\lambda|^{\alpha j}\left|z^{\alpha}\right|, \lambda \in \mathbb{D} \backslash\{0\}$. Letting $\lambda \longrightarrow 0$ we get a contradiction.
 $\left({ }^{23}\right)$ Otherwise, $a=\left(a_{1}, \ldots, a_{s}, 0, \ldots, 0\right) \in D$.

[^15]: $\left({ }^{27}\right)(f \otimes g)(x, y):=f(x) g(y)$.

[^16]: $\left(^{2}\right)$ Note that the function $h(x+i y)=x$ is harmonic in \mathbb{C} and $h=0$ on the line $i \mathbb{R}$. Therefore the assumption on the zero set of harmonic function cannot be so weak as in the identity principle for holomorphic functions.

[^17]: $\left({ }^{10}\right)$ Note that if M is a closed subset of D, then every function $u \in \mathcal{S H}(D \backslash M)$ satisfies this condition (with $R(a):=$ $\left.d_{D \backslash M}(a)\right)$. Moreover, by Lemma 3.2.18 the integral $\mathbf{J}(u ; a, r)$ is well defined for small r.
 $\left.{ }^{11}\right)$ We apply for instance Proposition 3.2 .5 since $h_{\varepsilon}=-\infty$ on M, it is sufficient to observe that $h_{\varepsilon}\left(z_{0}\right) \leq \mathbf{J}\left(h_{\varepsilon} ; z_{0}, r\right)$ for $z_{0} \in G \backslash M$.
 $\left.{ }^{12}\right)$ First we consider $u: \Omega \longrightarrow \mathbb{R}$ and next we observe that in the general case we have $e^{\max \{u,-\nu\}} \searrow e^{u}$ when $\nu \nearrow+\infty$.
 $\left.{ }^{13}\right)$ First we consider $u: \Omega \longrightarrow \mathbb{R}_{>0}$ and next we observe that in the general case we have $(u+\varepsilon)^{p} \searrow u^{p}$ when $\searrow 0$.

[^18]: $\left({ }^{15}\right)$ That is, $u\left(t_{1} z_{1}+\cdots+t_{N} z_{N}\right) \leq t_{1} u\left(z_{1}\right)+\cdots+t_{N} u\left(z_{N}\right)$ for any $z_{1}, \ldots, z_{N} \in D$ and $t_{1}, \ldots, t_{N} \geq 0$ with $t_{1}+\cdots+t_{N}=1 ;$ cf. Exercise 3.11

[^19]: $\left.{ }^{16}\right)$ One can prove (but it is much more difficult) that if $u: \Omega \longrightarrow \mathbb{R}$ is such that $u_{a, e_{j}} \in \mathcal{H}\left(\Omega_{a, e_{j}}\right)$ for any $a \in \Omega$ and $j=1, \ldots, n$, then $u \in \mathcal{C}^{2}(\Omega, \mathbb{R})$.
 $\left({ }^{17}\right)$ Let $u_{1}\left(z_{1}, z_{2}\right)=u_{1}\left(x_{1}, y_{1}, x_{2}, y_{2}\right):=x_{1} x_{2}, u_{2}\left(z_{1}, z_{2}\right)=u_{2}\left(x_{1}, y_{1}, x_{2}, y_{2}\right):=x_{1}^{2}-x_{2}^{2}$. Then $u_{1} \in \mathcal{H}_{s}\left(\mathbb{C}^{2}\right) \backslash \mathcal{P H}\left(\mathbb{C}^{2}\right)$, $u_{2} \in \mathcal{H}\left(\mathbb{C}^{2}\right) \backslash \mathcal{H}_{s}\left(\mathbb{C}^{2}\right)$.
 $\left({ }^{18}\right)$ We have got another proof of the inclusion $\mathcal{P H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega)$.

[^20]: $\left(^{1}\right)$ That is, Ω is locally pseudoconvex.

[^21]: ${ }^{1}$) Note that a function meromorphic in Ω need not be defined on whole of Ω.
 ${ }^{2}{ }^{2}$) Obviously, $\Omega \backslash S \subset \mathcal{R}(f)$.
 $\left.{ }^{3}\right) \boldsymbol{\mathcal { P }}(f) \subset S$.
 ${ }^{(4)} \boldsymbol{J}(f) \subset S$.
 $\left.{ }^{(5}\right)$ In particular, we may always assume that $\Omega \backslash S=\mathcal{R}(f)$.

[^22]: ${ }^{9}$) In particular, $\varphi_{\alpha, \alpha}^{2}=\varphi_{\alpha, \alpha}^{3}=1$ in Ω_{α}, and hence $\varphi_{\alpha, \alpha} \equiv 1$.
 $\left({ }^{10}\right) \mathcal{F}^{*}(U):=\left\{\varphi \in \mathcal{F}(U): \forall_{z \in U}: f(z) \neq 0\right\}$.
 $\left({ }^{11}\right)$ One can also prove (but it is much more difficult) that if Ω is a region of holomorphy, then the converse implication is true, namely, $\Omega \in \mathcal{C} \mathcal{P}^{2}[\mathcal{M}] \Longrightarrow \Omega \in \mathcal{C P}^{2}(\mathcal{O})$; we have the following

 Theorem (17]). If Ω is a region of holomorphy, then for any data $\varphi_{\alpha, \beta} \in \mathcal{O}^{*}\left(\Omega_{\alpha} \cap \Omega_{\beta}\right), \alpha, \beta \in A$, for the second holomorphic Cousin problem, there exist functions $f_{\alpha} \in \mathcal{O}\left(\Omega_{\alpha}\right), \alpha \in A$, such that $f_{\alpha}=\varphi_{\alpha, \beta} \cdot f_{\beta}$ in $\Omega_{\alpha} \cap \Omega_{\beta}$ for any $\alpha, \beta \in A$.

 Consequently, the functions $f_{\alpha}, \alpha \in A$, form data for the second meromorphic Cousin problem. If $f \in \mathcal{M}(\Omega)$ is such that $f / f_{\alpha} \in \mathcal{O}^{*}\left(\Omega_{\alpha}\right)$, then the functions $\varphi_{\alpha}:=f / f_{\alpha}, \alpha \in A$, give a solution of the initial problem.

[^23]: $\left({ }^{12}\right)$ This is an example of the so-called Oka principle saying that 'everything' which can be done continuously in regions of holomorphy can be also done holomorphically.
 $\left({ }^{13}\right)$ By Theorem 6.4.5 $D \notin \mathcal{C P}^{2}(\mathcal{C})$.

[^24]: $\left.{ }^{(15}\right)$ This means that $\left(\Phi_{a}\right)_{n}$ is a defining function of $M \cap U_{a}$.
 $\left({ }^{16}\right)$ Recall the Oka principle from Theorem 6.4.5

[^25]: ${ }^{(17)}$ In fact, the following general result is true (cf. [13).
 Let $\Omega \subset \mathbb{C}^{n}$ be a domain of holomorphy and let M be an analytic subset of Ω; cf. Exercise 2.7. Then $\mathcal{O}(M)=\left.\mathcal{O}(\Omega)\right|_{M}$, where $\mathcal{O}(M)$ denotes the space of all functions $f: M \longrightarrow \mathbb{C}$ such that for any point $a \in M$ there exist $P=\mathbb{P}_{n}(a, r)$ and $\widetilde{f}_{a} \in \mathcal{O}(P)$ with $\widetilde{f}_{a}=f$ in $P \cap M$.

