FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

Contents

I Notation and terminology| . . . . . . . . . . L L 1
2 Preliminaries] . . . . . . . . oL e 2
13 Classical Banach and normed spaces| . . . . . . . . . . . . L L e 7
[3.1 DEQUENCE SPACES| « « v v o e v e e e e e e e e e e e e e e e e e e e 7
[3.2 Function spaces|. . . . . . . . 8
[3.3 “Pseudofunction” spaces = LP spaces| . . . . . . . . .. L 9
2! Hilbert spaces|. . . . . . . o e 10
5] Central tools of functional analysis| . . . . . . . . . . . . . . 21
16 Metrisable topological vector spaces| . . . . . . . ..o 27
7 Locally convex spaces| . . . . . . . . L e e 31
8 Weak and weak™ topologies| . . . . . . . .. 36
9  Krem-Smulian and Eberlein[-Smulian] theorems| . . . . . . . . . .. .. ... 44
IL0 Vector integrall . . . . . . . . e 49
|11 Riesz representation theorem for C'(K)-spaces| . . . . . . . . . . . . o 53
[11.1  From a regular content to a Radon measure| . . . . . . . . .. ... Lo Lo Lo 56
[11.2  From non-negative linear functionals to Radon measures|. . . . . . . . .. ... .. ... .... 58
[11.3  Signed and complex-valued measures| . . . . . . . . . ... Lo Lo 60
[11.4  From bounded linear functionals to scalar regular measures| . . . . . . . . ... ... ... ... 63
12 Haar measure] . . . . . . . . . . e e e e 65
[13 Three fixed point theorems| . . . . . . . . . . L 69
[14  Appendix: proot of Carathéodory and Radon-Nikodym theorems| . . . . . . ... .. ... .. ... .. 73

1 Notation and terminology
e N={0,1,2,...}, Ny =N\{0}, Ry =10,00).
e The symbol K is reserved to denote the field of real or complex numbers.
e All vector spaces are over the field R or C. If the field of a vector space is not specified, it is denoted by K.

e The terms function and mapping are treated as synonyms, whereas the term operator will be used only in
reference to R-linear mappings. A functional is a scalar-valued function.

e For any linear operator T between two vector spaces N(T') and R(T') stand for, respectively, the kernel and the
range (the image) of T.

e Neighbourhoods do not need to be open. Subspaces do not need to be linear. Convex sets may be empty. Vector
spaces can be trivial (that is, they can contain only their origins). Linear isometries do not need to be surjective.

e A Banach space is a normed vector space whose norm is complete.

e As a rule (unless otherwise stated), the norm on a vector space X is denoted by | - || x-

e NVS and TVS are abbreviations for, respectively, a normed vector space and a topological vector space.

e Open and closed unit balls in a NVS X, to be denoted by (resp.) Bx and By, are the sets {z € X: |z|x <1}
and {r € X: ||z x < 1}. Similarly, balls in metric spaces are denoted by B(a,r) and B(a,r). A unit vector in

a NVS is a vector of norm 1.

e Finite Cartesian products of topological spaces are equipped with the product topologies.
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2 Preliminaries

2.1 Definition.
Let X be a vector space over K, and A C K and B,C' C X be arbitrary subsets. We define sets A- B and B + C

of X by the formulas:

ABY{t u: teA ueBl, B+C%¥{b+c: beB, ceC).

So, both A- B and B 4+ C = C + B are subsets of X.
def def

Similarly, for any t e K,v € X and BC X, t-B = {t}- Bandv+ B =B+v = {v} + B.
A subset W of X is said to be:

o conver if tW + (1 —t)W C W for all ¢ € [0, 1];

o symmetric if —W =W;

e balanced if Bx - W C W;

e absolutely convex if W is convex and yW = W for any v € K with || = 1.

In particular, W is absolutely convex iff it is both convex and balanced. Similarly, if K = R, then W is absolutely
convex iff it is both convex and symmetric.

2.2 Proposition.
Let X be a normed vector space.

(A) The mapping
(2:1) KxXxX>3((tzy —»tr+tyeX
18 continuous.

(B) For anya € X andr >0, Bx(a,r) = a+7Bx, Bx(a,7) = a+rBx; Bx(a,r) = Bx(a,r) and int Bx(a,r) =
BX(aar)'

(proof—ezercise)

Part (A) of the above basic result serves as a defining condition for a more general notion (than normed vectors
spaces):

2.3 Definition.
A topological vector space is a pair (X,7) where X is a vector space and 7 is a topology on X such that the
mapping is continuous. ToVS will stand for a Hausdorff TVS.

A TVS is normable if its topology is induced by a certain norm defined on the underlying vector space.

A 0-neighbourhood in a TVS X is a neighbourhood of the origin of X.

Basic properties of TVS’s are listed below.

2.4 Proposition.
Let X be a topological vector space.

(A) For any a € X andt € K\ {0}, the function X > x — tx +a € X is a homeomorphism.

(B) For any 0-neighbourhood U in X there exists a 0-neighbourhood V' that is both open and balanced and satisfies
V+VvcU.

(C) The space X is both contractible and locally contractible as a topological space.
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(D) X is ToVS iff it is To, iff X is T5, iff the set {0} is closed in X.

Recall that a topological space M is

o contractible if there are ¢ € M and a continuous mapping H: M x [0,1] — M such that H(z,0) = ¢ and
H(z,1) =« for all x € M,

e [ocally contractible if for any point a € M and its neighbourhood U in M there exists a neighbourhood V' C U
of a and a continuous mapping H: V x [0,1] — U such that H(z,0) = a and H(z,1) = for all z € V.

In particular, a (locally) contractible space is (locally) arcwise connected.

Proof of Proposition[2.4] Item (A) is left to the reader as a simple exercise.

To show (B), fix a O0-neighbourhood U'. It follows from the continuity of the function Kx Kx X x X 5 (p,q,z,y) —
pr+qy € X at (0,0,0,0) that there exist £ > 0 and an open 0-neighbourhood W in X such that (e Bx)-W+(eBg)-W C
U. We define V as (eBg) - W. It is easily seen that V is balanced and satisfies V +V C U. Finally, V' is open because
0 € W and hence

v={J o,
pEe Bk
p7#0
and each of the above sets pW is open, by (A).

We pass to (C). Observe that the (continuous) function X x [0,1] 5 (z,t) — tx € X witnesses the contractibility of

X. To show its local contractibility, fix a neighbourhood U of a point a € X and choose a balanced 0-neigbourhood W

such that W C U — a (we use here both items (A) and (B)). Then V CWiaisa neighbourhood of a contained in U
such that (1—t)a+tx € V for all z € V and ¢ € [0, 1]. Consequently, the function V' x [0,1] 3 (z,t) — (1—-t)a+tx € U
is well defined and continuous, and we are done.

Now assume X is Ty and choose arbitrary non-zero vector v € X. It follows from Ty axiom that there exists an

open set U such that U N {0, v} is a one-point set. If v ¢ U, then 0 ¢ U’ 4y — U and U is an open neighbourhood of

v. This shows that the set X \ {0} is open in X. So, it follows from (A) that X is T7. Now fix a closed set A in X and
a vector u ¢ A. Then B 4 4 — wis a closed set that does not contain the origin of X. We infer from (B) that there
is an open symmetric 0-neighbourhood V such that (V + V) N B = &. Equivalently, V N (B + V) = @. Observe that
B +V is open (since B+ V = J,cp(b+V)) and contains B (as 0 € V). So, the sets u +V Suandu+B+V D A
are open and disjoint, as we wished. O

2.5 Remark.

As it is well-known, each topological vector space is a topological group and every Ty-topological group is actually
T, 1 On the other hand, there are known examples of locally convex TVS’s that are not Ty. We will not use any
of these properties in this textbook.

For the sake of completeness, we now list general properties of the class of all topological vector spaces.

2.6 Proposition.

(A) Cartesian products of (families of arbitrary size of) TVS’s equipped with the product topologies are TVS’s as
well.

(B) Cartesian products of a finite number of NVS’s are normable.
(C) A linear subspace of a TVS equipped with the induced topology is a TVS.

(D) For any linear subspace F of an arbitrary TVS E, the quotient space E/F is a TVS when equipped with the
quotient topology. Moreover, in that case the quotient map w: E — E/F is open; and E/F is Ty iff F is
closed.

(E) A linear operator T: E — F between two TVS’s is continuous iff it is continuous at the origin of E.

(F) For any linear operator T: X —'Y between two TVS’s denote by mr: X — X/N(T) the quotient map and by
T: X/N(T) =Y the unique linear operator such that T =T omr. Then T is continuous (resp. open) iff so
s T'.
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Proof. We skip all boring technical details and here we prove only selected parts.

If E, F and 7 are as specified in (D) and U is an open subset of E, then 7= 1(7(U)) = U + F = User(U + f).
Consequently, 71 (7(U)) is open in E and therefore 7(U) is open in E/F as well. Further, E/F is ToVS iff its origin
forms a closed set, iff F'=771({0}) is closed in E.

Now assume that T, 7 and T are as specified in (F). Since 77 is both continuous and open (by (D)), it is clear
that T has any of these two properties provided so has T. Conversely, if T' is continuous and U is an open subset of
Y, then the set T~1(U) = mp(T~(U)) is also open. Similarly, if T is open and V is an open set in E/F, then the set
T(V) =T(np'(V)) is open in Y as well. O

2.7 Remark.
It is less trivial to show that K“ is non-normable. (We leave it as a more difficult exercise.) In particular, the
product of an infinite family of non-trivial NVS’s is never normable.

Further properties of normed vector spaces are established in the two results stated below.

2.8 Theorem.
Let F be a closed linear subspace of a normed vector space E and let m: E — E/F denote the quotient map. Then
the formula

16l g/ r & inf{||a]|z: a€ E, m(a) = b}

defines a norm on E/F that is compatible with the quotient topology. Moreover, if E is a Banach space, the above
norm is complete.

Proof. A verification that || - [| g/ is indeed a norm is left to the reader. It follows from the very definition of || - ||z,
that m(Bg) = Bg/p and ||7(a)||g/r < |la||g for each a € E. In particular, 7 is both continuous and open when
considered as a function from (E, || - ||g) into (E/F,| - |g/r). So, we infer from item (F) of Proposition that the
identity map on E/F, considered as a function from the quotient topology into the [ - || g/ p-norm topology is both
continuous and open. So, it is a homeomorphism, which finishes the first part of the proof.

Now assume that, in addition, E is a Banach space. Consider an arbitrary sequence (b, )., of vectors of E/F such
that [|b,||p/p < 27" for all n > 0. To show that the norm || - [|g,p is complete, it is enough to prove that the series
>0 | by, converges in E/F. To this end, for each n we choose a,, € E such that 7(a,) = b, and ||a, ||z < 27™. Since E is
Banach, the series >~ | a,, converges in E, say to p € E. Then 7(p) = m(lim, o0 D ey @k) = My o0 Y pyq T(an) =
lim;, 00 > p—q bk, and we are done. O

2.9 Proposition. (Banach)
For a linear operator T: X — Y between normed vector spaces X and Y the following conditions are equivalent:

(i) T is continuous;
(ii) T is Lipschitz;
(iii) the set T(Bx) is bounded in | - ||y

Proof. 1f (iii) holds and (a,),.; is a sequence of non-zero vectors in X that converge to zero, then the vectors
by, = T(an/|lan||x) form a bounded sequence in Y. Hence ||T(ay)|ly = llan|lx - [|bnlly = 0 (n — o0), which proves
that (iii) is followed by (i). Conversely, if (iii) does not hold, then lim, o [|T(as)|ly = oo for a suitable sequence

(an);>; C Bx. Without loss of generality, we may and do assume that T'(a,) # 0. Then the vectors ¢, %ef TSy

converge to the origin of X, but ||T(¢cy,)|ly = 1 and thus T is discontinuous. So, conditions (i) and (iii) are equivalent.
Since T is linear, it is easily seen that also (ii) and (iii) are equivalent, which finishes the proof. O

2.10 Definition.
Let X and Y be normed vector spaces over the same field K. The set £ (X,Y) of all continuous linear operators
from X into Y becomes a vector space over K with pointwise operations. It is equipped with the operator norm

defined as follows: B
|T|| = [[Tlop = sup{[|T(z)[ly: =z € Bx} (I'€ Z(X.,Y)).

4 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

One proves in a standard manner that Z(X,Y) is a Banach space provided so is Y. One writes .Z(X) in place
of Z(X, X).

When Y = K, the space .Z(X,K) is denoted by X* (or X’) and called the dual Banach space of X (or simply
the dual). Similarly, the Banach space X** & (X*)* is called the bidual of X.

Linear operators between normed vector spaces that are continuous are (equivalently) called bounded.

2.11 Remark.
It is easy to check that for any continuous linear operator T: X — Y between normed vector spaces, ||T|| is the
least Lipschitz constant of T'; and that | T|| = sup{||T(x)|ly: = € X, ||z||x = 1}, provided X is non-trivial.

2.12 Proposition.

Let Xy be a dense linear subspace of a normed vector space X and Y be a Banach space. Every bounded linear
operator To: Xg — Y admits a unique extension T: X — Y that is bounded and linear as well. Moreover,
Tl = |Toll; and if Ty is isometric, so is T.

Proof. Since Ty is Lipschitz and Y is a complete metric space, T is extendable to a Lipschitz map T: X — Y with
the same Lipschitz constant. It is easy to check that T is linear, and isometric if Tp is so (exercise). The uniqueness of
T follows from the density of Xj in X. O

It turns out that a finite-dimensional vector space admits a unique Hausdorff topology that makes it a TVS, as
shown by:

2.13 Theorem.
Let E be a non-trivial finite-dimensional ToVS and ey, ..., e, be a fized basis of the vector space E. Then the
topology of E coincides with the topology induced by the norm || - |1 on E given by

n
I3 axen
k=1

n
def
‘1§Z|ak‘ (Oél,...7O[n€K).
k=1

Proof. Denote by 7y and 71, respectively, the given topology on E and the one induced by the norm || - ||;. Since the
mapping K" 2 (ai,...,a,) = >y axer € (E,79) is continuous, we infer that the identity map from (E, ;) into
(F, 1) is continuous as well (equivalently, 79 C 71). So, it remains to check that the identity map in the reverse direction
is also continuous (it is sufficient to check the continuity only at 0). To this end, we fix £ > 0 and consider the sphere
S(e) def {z € E: |z||1 =¢}. Since K = S(g) is compact w.r.t. 71, it is so w.r.t. 75. Thus, F' \ K is a 0-neighbourhood
in 79 (here we make use of the Hausdorfl separation axiom). So, it follows from Proposition that there exists a
balanced 0-neighbourhood U in (E, 79) that is disjoint from K. In particular, for any z € U, {tz: t € [0,1]} N K = @
and thus |||y < e. This shows that U C By, (0, ) and implies the continuity at the origin of the identity map, which
finishes the proof. O

As immediate consequences of the above theorem, we obtain the following two results.

2.14 Corollary.
A finite-dimensional linear subspace of a ToVS is closed.

Proof. Let X be a ToVS and F its finite-dimensional linear subspace. Take any vector u € X that belongs to the

closure of F' and consider the linear subspace E <f Ku+ F. Since FE is finite-dimensional, it follows from T heoremm
that E in normable (in the induced topology). In particular, F' is closed in E, as a complete subset in the metric
induced by a norm on E, and thus v € F. O
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2.15 Corollary.
Let T: X — Y be a linear operator between two ToVS’s. If the range of T is finite-dimensional, then T is
continuous iff the kernel of T is closed.

Proof. The necessity (of the closedness of the kernel) is clear. To see its sufficiency, we may and do assume (by replacing
Y by the range of T') that Y has finite dimension. Then T' = T o 7 where 7: X — X/N(T) is the quotient map and
T: X/N(T) — Y is a (uniquely determined) linear operator. Since E ©fx /N(T') is finite-dimensional and Hausdorff,
we infer from Theorem that both F and Y are normable and, consequently, T" is continuous. Therefore T is
continuous as well and we are done. O

Theorem shows that, in particular, all finite-dimensional ToVS’s are locally compact. That there are no other
locally compact ToVS’s is shown by

2.16 Theorem.
A locally compact ToVS is finite-dimensional.

Proof. Fix a compact 0-neighbourhood K in a ToVS E and choose an open 0-neighbourhood V such that V+V C K.
Since all translations of V' cover K, the compactness of K yields the existence of a finite non-empty set S such that
K C V + 5. Denote by F the linear span of S. We will show that £ = F, which will finish the proof. To this end,
observe that K+ K C (V+S)+ (V+S)Cc(V+V)+F C K+ F.So, K+ K C K+ F. Now simple induction
argument shows that

(2:2) K+..+KCK+F for any n > 0.
[ ———

n

Fix for a moment an arbitrary vector x € E. It follows from the continuity at 0 of the function R > ¢ — tz € X that
%x € K for some integer n > 0. But then z belongs to the left-hand side of . We conclude that £ = K + F.
This formula implies that the quotient space E/F is compact. Being ToVS (by Corollary , E/F has to be trivial
[why?—exercise!] and therefore E = F. O

2.17 Remark.
The property that an infinite-dimensional NVS is not locally compact may be proven by a more direct argument,
due to F. Riesz. It is based on the following simple observation:

(%) If F is a closed proper linear subspace of a NVS E, then for any € € (0,1) there exists a unit vector u € E
such that dist(u, E) > €.

Assuming (*) holds, one defines inductively unit vectors vq,vg, ... in E such that ||v; — vg||lg > % for all distinct
j and k. (We get v, from (x) applied to F,, = lin{v;: j < n} [Fy = {0}] and ¢ = 1.) This sequence witnesses
non-compactness of Bg. Of course, then no other closed ball in E can be compact.

The property () simply follows from Theorem (recall that the open unit ball in F'/E is covered by the
open unit ball of E via the quotient map).

2.18 Theorem. (Defining a TVS by a basis of [possibly non-open| 0-neighbourhoods)
Let E be a vector space and O a non-empty collection of subsets of E such that for any W, Wy, Wy € O the
following conditions are satisfied:

(TVO0) there exists Z € O such that 0 € Z C W1 N Wo;

(

TV1)
(TV2) there exists U € € such that Bx - U C W;
)

there exists V. € O such that V +V C W;

(TV3) W is absorbing; that is, (0,00) - W = E.

Then there exists a unique topology 7 on E such that (E,T) is a topological vector space and O is a basis of
[possibly non-open| 0-neighbourhoods in (E,T). Moreover,

6 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

e U C E belongs to 7 iff for any x € U there is V € O such that x +V C U;
e (E,7) is ToVS ¢ff € = {0}.

(without proof)

Proof. First we briefly explain why 7 is unique. If U is open and = € U, then U — z is a 0-neighbourhood, so there is
V € & such that V. C U — z (as 0 is a basis of O0-neighbourhoods). Equivalently,  +V C U. Conversely, if U C E is
such that for each x € U there is V, € & satisfying x +V, C U, then U = |, (z 4 int(V})) and therefore U is open.

Now we check that the collection 7 of all sets U that satisfy the above condition is a topology on Y. Since & # &,
we only need to verify that U; N Uy € 7 for any Uy,Us € 7. To this end, we fix x € U; N Uy and choose two sets
W1, Wy € O such that x+ W), C Uy for k = 1,2. Now (TVO0) gives us Z € & that is contained in Wi NW5. Consequently,
x + Z C Uy NUs and therefore U NU5 € 7.

We will now show the most intriguing part of the theorem; that is, we will show that each member of & is a
(possibly non-open) 0-neighbourhood. To this end, fix V' € ¢ and define U as the set of all z € V such that x+ W C V'
for some W € & (dependent on z). As 0 € V' (by (TV0)), also 0 € U; and U C V. Thus, it remains to show that
U € 7. So, fix € U. Then there is W € & such that x + W C V. Now (TV1) yields D € & satisfying D +D C W.
Then for any y € D we have x +y+ D C x4+ D+ D C V, which shows that + D C U and hence U € 7. Now observe
that € is a basis of 0-neighbourhoods of (E, 7).

Now we will check that (E, 7) is a topological vector space. To this end, we fix a,b € E, t € K and a neighbourhood
U € 7 of ta + b. There exists V] € & such that ta+ b+ V; C U. By (TV1) (applied twice) and (TV2), there exist
V5, V3 € O such that

(23) Vo+Vo+VoCV) and BK'V3C‘/2.

Next, (TV3) yields a scalar s > 0 such that sa € V3. Take an integer N such that |t| 4 |s| < N. An easy induction
argument shows that, thanks to (T'V1), for each n > 0 and any V' € & there exists V" € 0 satisfying V"' + ...+ V" C
—_————

V. In particular, there is D € & such that D+ ...+ D C V3. It follows from the previous paragraph that D is a
| ———

N
O-neighbourhood. As it is easily seen that all translations are homeomorphisms (because “G + 2 € 7 <= G € 77),

we conclude that a + D and b+ D are neighbourhoods of, respectively, a and b. We will now check that
(2:4) (t+sBk)-(a+ D)+ (b+D)CU,

which will conclude the proof that (E,7) is a TVS. So, fix arbitrary p € Bx and z,y € D. We have to show that
(t+ sp)(a+ x) + b+ y belongs to U. As ta+ b+ V; € U, it is enough to check that (¢ + sp)z + psa +y € V1. Now
observe that, thanks to the latter relation in (2:3)):

e ycVy (as D C V3 CVa);
e p(sa) € Bk - V3 C Vs
o |t+sp| <|t|+|s| <N and Nz € V3 (as 2 € D) and therefore (t + sp)z = 222 - Nz € Bx - V3 C Va.

All the above properties, combined with the latter relation in , yield (¢t + sp)x + psa+y € Vo + Vo + Vo C V7,
which shows (2:4)).

Finally, if (E,7) is ToVS, then clearly (& = {0} (as € is a basis of 0-neighbourhoods). And vice versa: if this
intersection consists only of the origin of E, then (E, ) is Ty, which is equivalent to Tp. O

3 Classical Banach and normed spaces
3.1 Sequence spaces

o Ly, = EE where p € [1, x]

(¢,-P1) For any sequence (z,),-, C K,

1/p
def ( >z 1’) if p< oo
[ )y 4 \&emmt fonl”) <00 g
SUp,~ |Zn] if p=o00

0, 00].

def [ oo
(6y-P2) £, = {(z0)i, €Ki | (a)o2y lp < 00}
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(€,-P3) (Lp, | - |lp) is a Banach space; it is separable iff p < co.

(£p-P4) For finite p, £ is linearly isometric to £, where ¢ = oo for p =1 and ¢ = p%l otherwise.

(€,-P5) || - |Ip is a standard or classical norm on £, (it is the default norm on that space). The triangle inequality
for that norm with 1 < p < oo is known as the Minkowski’s inequality.

(¢,-P6) For g defined as in (£,-P4) and any two sequences (), , (yn )y C K the following inequality, known as
the Hélder’s inequality, holds:

o0
Z [yl < 1 (@n)nzy llp - | n)nz llg-
n=1

e cp and ¢

(¢-P1) c is the subspace of £, consisting of all convergent sequences.
(¢-P2) ¢p is the subspace of ¢ of all null sequences; that is, of all sequences that converge to 0.

(¢-P3) Both ¢y and ¢ are equipped with the norm || - ||oo. (This is a standard, classical and default norm on these
spaces. )

(¢-P4) Both (co, || - |lo) and (¢, || - ||) are separable Banach spaces.
(c-P5) Both the duals ¢f and ¢* are linearly isometric to ;.
(¢-P6) c and ¢( are isomorphic Banach spaces, but they are not linearly isometric.
® Coo
(coo-P1) Tt is the subspace of ¢ of all sequences that are eventually 0; that is, (xn)zozl C K belongs to cqq if x, =0
for all sufficiently large n.
(co0-P2) cqp is a dense subspace of ¢y and all ¢, with finite p. It is dense neither in ¢ nor £o.
(co0-P3) There is no standard or classical or default norm on cgg.

(coo-P4) There does not exist a complete norm on cgg. This follows from a more general statement which asserts
that no vector space over R or C whose linear dimension is 8y (that is, whose Hamel basis is countably
infinite) admits a complete norm and is a direct consequence of the Baire category theorem. (Indeed, each
such a space E can be written as UZO:l F,, where each F;, is finite-dimensional. In any norm on E all these
subspaces F;, are closed. So, if there were a complete norm on F, we would infer from the Baire theorem
that int(F,) # @ for some n; this would easily imply that F,, = E.)

(c00-P5) cop is separable in every norm (exercise).

3.2 Function spaces
e C([0,1]) and C(K)-spaces
(C(K)-P1) For any non-empty compact Hausdorff space K (e.g., for K = [0,1]), C(K) = C(K,K) consists of all
continuous scalar-valued functions defined on K.

- 1s equipped with the sup-norm, commonly denoted by one of the symbols: || - |, || * |lsups || * [|max;,
C(K)-P2) C(K) i ipped with th ly d d b f th bol p
|-l (I flloo = supgex | f(2)]). It is a standard / classical / default norm of that space.

(C(K)-P3) (C(K),| - |ls) is a Banach space. It is separable iff K is metrisable.

(C(K)-P4) [Riesz(-Markov-Kakutani) representation theorem] The dual C'(K)* is linearly isometric to the Banach space
of all regular scalar-valued Borel measures on K, equipped with the total variation norm. More precisely,
for any continuous linear functional ¢ on C(K) there exists a unique regular scalar-valued Borel measure
1 such that

o(f) = /K fdp (f € CE)).

What is more, ||u] = ||9|.

(C(K)-P5) [Banach-Mazur theorem] Every separable normed vector space over K is linearly isometric to a linear
subspace of C([0,1],K) (see Theorem (p. in Chapter [g).

[ ) Co(X)

(Co(X)-P1) For any locally compact Hausdorff space X, the space Co(X) = Co(X,K) consists of all continuous scalar-
valued functions defined on X that vanish at infinity; that is, a continuous mapping f: X — K belongs to
Co(X) iff for any € > 0 there is a compact set K C X such that |f(z)| < e for any z ¢ K.

(Co(X)-P2) By default, Cy(X) is equipped with its standard / classical norm || - |loo (cf. (C(K)-P2)).
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(Co(X)-P3) (Co(X), | - lso) is a Banach space. It is separable iff X is second countable.
(Co(X)-P4) The dual of Cy(X) is characterised in the same way as for compact X (cf. (C(K)-P4)).

e 0 (X) = B(X) for arbitrary non-empty set X

(B(X)-P1) For any non-empty set X, the space (o (X) = £X (X) = B(X) = B(X,K) consists of all bounded scalar-

valued functions defined on X.

(B(X)-P2) By default, £o,(X) is equipped with its standard / classical norm || - || (cf. (C(K)-P2)).

)-P3) (loo(X), || - |lco) is & Banach space. It is separable iff the set X is finite (in that case this Banach space is

finite-dimensional).

(B(X)-P4) £oo(X)* is linearly isometric to the Banach space of all finitely additive scalar-valued measures (defined on

the whole power set of X) with finite total variation (as a norm). (There is also other classical description
of this dual: since £ (X) is linearly isometric to a certain space of the form C(K), the space £oo(X)* is
characterised by (C(K)-P4). Here K is the so-called Cech-Stone compactification of the discrete topological
space X.)

e C*([0,1]) with finite k > 0

(Ck-P1) The space C*([0,1]) = C*(]0,1],K) of all scalar-valued function of class C* (where k is finite!) on [0, 1]

is equipped with the topology of uniform convergence of all derivatives up to k. More precisely, functions
fi, fa, ... € C*([0,1]) converge (in the standard topology of that space) to g € C*([0,1]) iff the functions

fl(j)7 z(j), ... converge uniformly to g(j) for j=0,...,k.

(C*k-P2) Although C*([0,1]) has a standard topology (defined above), there is no single standard or classical norm

on that space—we can speak about a “collection of standard norms” instead. Each of the norms of the form

k k ; k .
IS = (g 1 F D)7 (where p € [1,00)) as well as || £[|% = max(| fl|oc - - - [|f*)[|c) belong to this
collection and any norm from this collection is compatible with the standard topology of that space. (There
is no standard notation for the norms introduced here.)

(C*-P3) Equipped with any of the norms described in the above item, C*([0,1]) is a separable Banach space. It is

(quite naturally) isomorphic to K* x C([0,1]) (exercise), so its dual is well-known.

(Ck-P4) Tt is a more difficult exercise to show that there does not exist a norm on C*([0,1]) that induces the

3.3

topology of uniform convergence of all derivatives. Although C°°(]0,1]) has a standard topology (just
aforementioned), it is not normable. Also, there is no standard or classical norm topology on C*°(]0, 1]).

“Pseudofunction” spaces = LP spaces

For any non-negative measure p on a measurable space (€2,9), one considers a natural equivalence relation
[13 ”

~," of p-almost everywhere equality on the set . (£2,90) of all scalar-valued 9-measurable functions defined

on Q. (So, f ~, g or, as is commonly written, f = g p-a.e., if p({w € Q: f(w) # g(w)}) = 0.) The quotient

space L(, u) f A (Q, M)/ ~,, has a natural structure of a vector space over K and the assignemt .# (€2, 901) >

[ Jo|fldu (as well as f — [, fdu for p-integrable f) is constant on equivalence classes from L(, ). So, to
simplify the notation, we write fQ |f]dp (and fQ f du for f being the equivalence class of a p-integrable function)
for any f € L(Q, ) to denote this common value of the respective integrals corresponding to functions from f.

For f € L(, 1) and p € [1, 00] the following quantity is also well defined:

1/p
def (fgmpdp) if p < oo,
£l =
esssup | f] if p=oo

where, for real-valued g, esssup g Lof inf{t € R: p(g~1((t,00))) = 0} (with the convention that inf(@) = 00).
LP(u) = LP(Q, u) = LP(Q,K) consists of all f € L(Q, i) such that || f]|, < co.

(LP(w), || - Ilp) is a Banach space and || - ||, is its standard / classical / default norm. For any o-finite Borel
measure u on a Polish space (that is, on a completely metrisable separable space), LP (1) is separable for finite
p. L (p) is hardly ever separable.

When p is the one-dimensional Lebesgue measure on an interval I, we will write LP(I) instead of LP(u).
In most classical cases (that is, when p vanishes at all points of Q), LP(u) is not a function space. The last
statement means that the assignment f +— f(w) for arbitrarily fixed w € Q does not define a function on LP(u).

For 1 < p < oo, the dual LP(u)* is linearly isometric to L9(u) where g = z%' (For o-finite p this is a classical

result; for other measures the proof is more subtle but is based on the o-finite case.)
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e Very often L!(u1)* is linearly isometric to L°(u)—it is the case for o-finite measures. However, in its full generality
this statement is false.

e For all LP spaces, analogs of the Minkowski’s and Holder’s inequalities hold. Both of them are fundamental tools
in studies of LP spaces. Another useful tool is the classical Radon-Nikodym theorem.

4 Hilbert spaces

4.1 Definition.
A sesquilinear form is any function ¢: V' x W — K (where V and W are two vector spaces over the same field)
that satisfies the following two conditions:

(SF1) ¢(-,w) is linear for any w € W
(SF2) ¢(v,-) is antilinear for any v € V; that is, it is additive and ¢ (v, cu) = ¢p(v, u) for all c € K and u € W.
If, in addition, W =V and ¢ satisfies

¢(ua 'U) = ¢('Ua 'LL) ('LL, CAS V)v

it is called a symmetric sesquilinear form or a Hermitian form on V.
A Hermitian form ¢ on V such that for all non-zero u € V,

d(u,u) >0

(resp. ¢(u,u) > 0) is said to be an inner product or a scalar product (resp. a semi-inner product) on V and V is
called an inner product space or a scalar product space.
Inner products on a vector space V are commonly denoted by (-, —)y or simply (-, —).

4.2 Remark.
In the realm of real vector spaces, “sesquilinear” is a synonym of “bilinear”; and Hermitian forms coincide with
symmetric bilinear ones.

4.3 Theorem. (Schwarz(-Cauchy-Bunyakovsky-...) inequality)
Let ¢ be a semi-inner product on a vector space. Then for all u,v € V:

(4:1) |, 0) [ < p(u, u)p(v,v).

Moreover, if ¢ is an inner product, then the above inequality becomes an equation iff u and v are linearly dependent.

Proof. Fix u and v and choose unit scalar  such that |¢(u,v)| = yé(u, v). Everywhere in this proof ¢ is a real number.
It follows that ¢(yu + tv, yu + tv) > 0. Equivalently (since ¢(a + b,a +b) = ¢(a,a) +2Re¢p(a,b) + ¢(b,b)),

(4:2) o(us ) + 216w, V)t + G0, 0)2 =0 (€ R).
Since all the coefficients in the above inequality are non-negative, we conclude that either:
e d(v,v) = ¢(u,v) =0; or

e ¢(v,v) > 0 and the discriminant of the above quadratic form is non-positive; that is, 4|¢(u, v)|? —4¢(u, u) (v, v) <
0.

It is clear that in both the above cases holds.

Now assume that ¢ is inner and that becomes an equation. Then either ¢(v,v) = 0 and, consequently, v = 0;
or else the discriminant of vanishes, which implies that this left-hand side of this inequality has a root, say
s € R. But then ¢(yu + sv,yu + sv) = 0 and hence u = —ysv. Anyway, v and v are linearly dependent. The reverse
implication is left to the reader. O

10 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

4.4 Corollary.
If ¢ is a [semi-linner product on V, then the assignment v — /¢(v,v) defines a [semi-lnorm || - ||v on V. If ¢ is
an inner product and u,v € V are such that ||u + v|lv = ||ul]lv + ||v|lv, then u = tv or v = tu for some t > 0.

Proof. We only need to check the triangle inequality. To this end, we fix u,v € V and square both sides of the
inequality \/gb(u +v,u+v) < \/gb(u,u) + \/gb(v,fu) to reduce it to 2Re ¢(u, v) < 24/é(u, u)¢(v,v), which is implied
by the Schwarz inequality (4:1)).

Now assume that ¢ is an inner product and ||u + v||yv = ||u||v + ||v]lv. Then, continuing the above argument, we
get that
(4:3) Re ¢(u,v) = \/¢(u, u)(v,v).

In particular, |¢(u, v)|? = é¢(u,u)p(v,v). So, u and v are linearly dependent. We may and do assume that v # 0. Then
u = cv for some ¢ € K. Substituting this formula to (4:3), we obtain Rec - ¢(v,v) = |c|¢(v,v) and, consequently,
c>0. O

4.5 Definition.

Each inner product space (V, (-, —)v) is equipped with the norm || - ||y given by ||v||v def (v,v)y . If this norm is
complete, we call (V, || - |lv) a Hilbert space. In other words, a Hilbert space is a Banach space whose norm comes
from a certain inner product.

4.6 Proposition.
Let u and v be two vectors in an inner product space (V, (-, =)y ).

(Par) [Parallelogram identity] ||u+ v||3 + [[u — v|3 = 2[jull} + 2[jv|)3 .
(RP) [Polarization identity for K = R] (u,v)v = (||u+v||} — ||u— v[|}) provided that K = R.
(CP) [Polarization identity for K = C] (u,v)y = 1(|lu+v||} — [lu— 0|} +illu+iv||} —illu—iv|}) provided

that K = C.

(proof—ezercise)

It turns out that the Parallelogram identity, introduced in the above result, characterises norms that come from
inner products, as shown by

4.7 Theorem. (Jordan—von Neumann)
Let || - ||v be a norm on a vector space V' that satisfies the Parallelogram identity (see (Par) in Propositz'on.
Then the formula (KP) defines an inner product on V.

(without proof)

4.8 Proposition.

(A) For any semi-norm p on a vector space E the set p~1({0}) is a linear subspace of E and the formula

|l (2)|| 7 def p(z) (x € E) correctly defines a norm || - || on F def E/p~t({0}) where m: E — F is the

canonical projection.

(B) The metric completion of a normed vector space admits a natural Banach space structure that extends the
structure of the given space.

(C) For any semi-inner product space (E,¢) the formula (m(x),7(y))r def ¢(z,y) correctly defines an inner
product on F &' E/{z € E: ¢(z,x) =0} where m: E — F is the canonical projection.
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(D) The metric completion of an inner product space admits a natural Hilbert space structure that extends the
structure of the given space.

(proof—ezercise)

4.9 Example.

(A) £5is a Hilbert space, as well as all spaces of the form ¢5(X). Indeed, the following formula defines a (standard)
inner product on that space:

o0
def _
((@n)ner s Yn)mer s = Z LnlYn.
n=1

(B) More generally, for any non-negative measure u (on a set ), L?(u) is a Hilbert space. A standard inner
product on L?(p) is given by

(.92 / F(0)7(@) dpa(w).

The following result is a starting point in the Hilbert space theory.

4.10 Theorem. (Best approximation in Hilbert spaces)
Let (H,| - ||g) be a Hilbert space. Every non-empty closed convex set W in H contains a unique point ¢ that
minimizes the norm; that is:

llell g = inf{||w||g: we W}

Proof. Let (vn),—; C W be a sequence such that lim, o ||vp|lg = d Lof inf{||lwl|g: w € W}. We claim that this
sequence converges in H. Indeed, it is a Cauchy sequence (below we apply the Parallelogram identity and use the fact

that 2t € W, thus [|[22ti= |4 > d):
Up, + Uy H2
2 H

< 2(|lvallFr + llvmllE — 2d%) = 0 (min(n,m) — o).

v = vmllFr = 2llvallFr + 2llvmllZ = llvn + vm |7 = 2 (vnllir + llvm I — 2’

Denote by g the limit of vq, v, ... and note that g € W (as W is closed) and ||g||zr = lim,— 00 ||vn||l#r = d. To show the
uniqueness of g, take arbitrary h € W such that ||h||z = d. Then # € W aswell and d < H #
H

Consequently, ||g + h||z = |lg|lz + ||k||#. So, we infer from Corollary [4.4] that g = th or h = tg for some ¢ > 0. But
g/l = [|Allm and thus h = g. O

< HQHH;”]—LHH —d.

4.11 Corollary.
Let W be a non-empty closed convex set in a Hilbert space (H, || - ||m). For any vector a € H there exists a unique
vector b € W that realizes the distance of a from W ; that is:

le —b|lg = inf{]la —w||g: we W}, beW.

The above vector b is called the best approzimation of a (in W).

Proof of Corollary[£11] It is enough to observe that b is the best approximation of a in W iff the vector b — a has
minimal norm among all the vectors from W — a, and to apply Theorem O
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4.12 Definition.

Two vectors a and b in an inner product space (E, (-, —)g) are orthogonal if {a,b)r = 0. Orthogonality of these

vectors shall be denoted by a L b. More generally, for two subsets A and B of E we will write A 1 B to express

that a L b for any a € A and b € B. If A consists of a single vector x, we will also write z | B in place of A L B.
For any set A C E, At stands for the set of all vectors u € E such that u L A. In the case when E is a Hilbert

space and F' is a closed linear subspace, F'* is called the orthogonal complement of F.

4.13 Proposition.
Let a, b and c be three vectors in a scalar product space (E,{(-,—)g). Then:

(a) ala < a=0;

(b) alb < bla;

(¢) ifaLlbandalc, thena L xb+ yc for any scalars x and y;
(d) [Pythagorean equation] if a L b, then

(4:4) lla + bl = llall + [1bl1%;

(e) f K=R and (4:4) holds, then a L b;
(f) if K=C, thena L b iff ||a+ z|% = |lal|% + ||2]|% for z € {b,ib}.

(proof—exercise)

4.14 Theorem. (Best approximation in a linear subspace)
Let E ba a closed linear subspace of a Hilbert space (H,{-,—)m). For a € H and b € E the following conditions
are equivalent:

e b is the best approzimation of a in E;

e a—blF.

Proof. First assume b € E is such that a —b L E. Then, for any w € E (thanks to (4:4)),
la—wlF = ll(a—b)+ (b —w)f = lla—blF +Ib—wlF > [la—blF,

which shows that b is the best approximation of a in F.

Conversely, assume that b € E is such that n L (a—b, ¢) g is non-zero for some unit vector ¢ € E. Then f &ef b+nc

also belongs to E and satisfies a — f L ¢ [exercise]. In particular, a — f L nc (= f — b) and therefore (again by (4:4)))
la=0bllF = l(a—f)+ (fF=b)IF = lla— flIF +|f —bl3 > |la— f||3, which shows that b is not the best approximation
of ain E. 0

4.15 Definition.

Let (H, | - |lz) be a Hilbert space and E be its closed linear subspace. For any x € H denote by Pg(z) the best
approximation of x in E. Equivalently (cf. Theorem , Pg(x) is a unique vector v € E such that a —v L E.
Pr: H — E is called the orthogonal projection onto the subspace E.

4.16 Theorem.
For each closed linear subspace E of a Hilbert space (H, (-, —) ) the orthogonal projection Pg is linear and bounded.
Moreover,
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(a) R(Pg) = E and P? = P; in particular, H is the direct sum of E and N(Pg), and both these subspaces are
closed and linear;

( ) EL’.
|1Pell =1 4f E # {0};

(b
(c
d
(e

)
)
) (Pez,y)y = (x, Pry) for all z,y € H;
) (

Pgx,z)g >0 for any x € H.

Proof. Fix two vectors z,y € H and, for clarity, set v = Pg(z) and v = Pg(y). Then both z — v and y — v are
orthogonal to E. So, a(x —u) + (y —v) L E as well for each a € K. Since au+v € E, we get Pp(azx+y) = au+wv. In
this way we have shown that Pg is linear. Moreover, since x —u | u, we infer from that [|z]|% = ||(z —u) +ul|% =
|lz—Pg(2)||?+|| Pe(x)||% > || Pe(x)||%. Consequently, P is bounded and || Pg|| < 1. Further, it is clear that Pg(H) C E
and Pg(v) = v for any v € E. These two properties imply that Pg(H) = E and P? = P. In partlcular the assertion
of (c) and the last property of (a) easily follow. Moreover, Pg(z) = 0 iff z L E (thanks to Theorem [4.14), which yields
(b).

Finally, continuing notation introduced at the very beginning of this proof, we obtain {z — u,y — v} L {u,v}. So,
(u,v)g = (u,y)g as well as (u,v)yg = (x,v)y. Combining these two equations we get (d), and substituting y = = one
obtains (u,z)y = ||ul|%, which is followed by (e). O

4.17 Remark.

Theorem [4.16] asserts, among other things, that each closed linear subspace E of a Hilbert space H admits a closed
(linear) supplement; that is, for each such E there exists a closed linear subspace F' of H such that ENF = {0}
and E+ F = H. A deep result due to Lindenstrauss and Tzafriri states that such a property characterises Hilbert
spaces among Banach ones (up to isomorphism). More precisely, if a Banach space has the property that each its
closed linear subspace admits a closed supplement, then this space is isomorphic to a certain Hilbert space.

4.18 Theorem. (Orthogonal decomposition)
Let A be an arbitrary subset of a Hilbert space H. Then:

o the set F %' AL is a closed linear subspace of H;

o the set B % (A+)* coincides with the closed linear span linA of A;
e H is the direct sum of E and F';

o E=N(Pr)=R(Pg) and F = R(Pr) = N(Pg).

In particular, for any closed linear subspace V of H, V = (V)4

Proof. 1t is easy to see that F' is a closed linear subspace. In particular, so is E. Moreover, A C E and, consequently,

linA C E as well. Denote by P the orthogonal projection onto Eq 4T A. Then N(P) = F [why?] and H is the direct
sum of Fy and F' (see Theorem . By a similar argument, H is the direct sum of F' and E. Since Fy C FE, we
conclude that Ey = E. In particular, the last statement of the theorem is proved. The remaining parts are left to the
reader as (trivial) exercises. O

4.19 Theorem. (F. Riesz representation theorem for Hilbert spaces)
For any bounded linear functional ¢ on a Hilbert space (H, (-, —)g) there exists a unique vector a € H such that:

(4:5) o(x) = (x,a)g (x € H).

Moreover, ||6|| = |lallx-
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Proof. Denote by E the kernel of ¢ (which is a closed linear subspace of H). If E = H, we set a = 0 (in particular,

ol = |lal]). Below we assume E # {0}. It follows from Theorem 4.18| that E+ # {0} (since (E1)t # H). Let p be

a unit vector orthogonal to E. Since p ¢ E, we have ¢(p) # 0. Set a & ¢(p)p and observe that |ja||lg = |¢(b)| and

é(a) = |¢(p)|?. Hence,
(4:6) aL B ga)=llal} > 0.

Using (4:6)), we will show that

(4:7) ¢(z) = (z,a)p (v € H).

To this end, fix z € H and set y ety - ﬁl(sz) a. A direct calculation shows that ¢(y) = 0. So, y € E and therefore
a L y. This yields 0 = (y,a)y = (z,a)g — g;(x), which proves (4:7). To convince onself that ||¢|| = [a| #, first one
applies the Schwarz inequality (to get ||¢|| < ||la||g) and finally one substitutes « = Tala:

To see the uniqueness of a, assume b € H is such that (z,b)y = (x,a)y for any x € H. Equivalently, a —b L H.

In particular, a — b L a — b and hence a — b = 0. O

Basic consequences of the above result follow.

4.20 Corollary.
Let (H,{-,—)m) and (K, (-, —)x) be two Hilbert spaces.

(A) For any T € X(H, K) the formula ®(z,y) def (Tz,y) i correctly defines a sesquilinear form ®: H x K — K
such that

(4:8) sup{|®(z,y)|: = € By, y € Bg} < .

Actually, the above quantity equals ||T)|.

(B) Conversely, if ®: H x K — K is a sesquilinear form for which (4:8) holds, then there exists a unique
T € Y(H,K) such that ®(z,y) = (Tx,y)i for allz € H andy € K.

Proof. Part (A) is left as an exercise. Here we focus only on (B). For any « € H the formula ¢, (y) f ®(x,y) correctly

defines a bounded linear functional on K. So, we infer from Theorem that there is a unique vector from K, to be
denoted by Tz, such that ¢,(y) = (y, Tx)k. In other words, ®(z,y) = (y,Tx), = (Tx,y)k. It readily follows from
the uniqueness part of the Riesz’ theorem that T: H — K is linear. Its continuity is left to the reader. O

4.21 Corollary.
For any bounded linear operator T: H — K between Hilbert spaces (H,(-,—)m) and (K, (-, —)k) there exists a
unique bounded linear operator T*: K — H such that

(4:9) (Tr,y)k = (&, T y)n (x e H, yeK).

Moreover, | T|| = T

Proof. Tt is sufficient to apply the previous result to ®: K x H 3 (y,z) — (y,Txz)x € K. The details are left to the
reader. O

4.22 Definition.
The operator T*, defined in Corollary for T € £(H, K), is called the adjoint operator (or simply the adjoint)
of T

An operator T' € Z(H) is said to be:

e selfadjoint if T =T,
e unitary if T*T = TT* = Iy where Iy is the identity operator on H;
o normal if TT* =T*T.
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4.23 Proposition.
Let (H,{-,—)n), (K,{,=)k) and (W,{-,—)w) be Hilbert spaces.

(A) The function L (H,K)>T — T* € Z(K, H) is an antilinear isometric involution (that is, (T*)* =T).
(B) (TS)* =8*T* foranyT € L(H,K) and S € L(W,H); and I}; = Iy.

(C) A bounded linear operator A: H — H is selfadjoint iff (Ax,y)g = (x,Ay)y for all z,y € H. If K = C,
A=A iff (Az,z)g € R for allx € H.

(D) A bounded linear operator U: H — K is unitary iff it is a bijective isometry, iff U is surjective and
(Uz,Uy)c = (x,y)p for all z,y € H. If U is a unitary operator, so is U* and U* = UL,

(E) An operator Ve £ (H, K) is an isometry iff V*V = Iy.

(F) The orthogonal projection onto any closed linear subspace of H is selfadjoint.

(proof—ezercise)

4.24 Remark.
In the realm of complex Hilbert spaces, each bounded linear operator acting on a single Hilbert spaces (that is,
not between two different spaces) is a linear combination of two selfadjoint operators. Indeed, if T' € Z(H), then

Re(T') &f T"'TT* and Im(T") €of T;iT* are selfadjoint and T' = Re(T") + ¢ Im(7T"). Since all the bounded selfadjoint

operators on a given Hilbert space always form a vector space over R, such a phenomenon does not occur in the
realm of real Hilbert spaces.

4.25 Definition.
An orthogonal system in a Hilbert space (H, (-, —) ) is any collection of pairwise orthogonal vectors. More precisely,
a family {us}scs C H is orthogonal iff us L u; for all distinet indices s,t € S. If, in addition, |lus| g =1 for any
s € S, the system {us}ses is called orthonormal.

An orthonormal (resp. orthogonal) basis of H is a maximal orthonormal system (resp. maximal orthogonal
system counsisting of non-zero vectors).

4.26 Example.

(A) Consider the Hilbert space £2(X) (where X is an arbitrary non-empty set; e.g. X =Ny or X = {1,...,n})
with its standard inner product:

(U, V) g, (x) = Z u(z)v(x).

zeX

The following functions form an orthonormal basis of ¢5(X), called canonical:

1 z=s
fs(x)z{o s s (s € X).

(B) Consider L*([—m,x]) with the following inner product:

def 1 T N
<fa g>L2([77T,7TD = % . f(t)g(t) dt.
All the trigonometric functions:
fo(z) =1, f1(z) = cos(x), . fn(x) = cos(nx),
g1(x) = sin(z), . gn(z) = sin(nz),

form an orthogonal system in L?([—, 7]). Actually, this is an orthogonal basis of that space (but this property
is less trivial).
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(C) Now consider L?([0,7]) with the following inner product:

™

(fs9)L2(j0,7)) & 1/0 f(t)g(t) dt.

The functions fo, f1,... (restricted to [0,n]) defined in the previous example form an orthogonal basis of
L*([0, @]).

(D) Equip the circle group T & {z € C: |z] = 1} with its probabilistic Haar measure A; that is,

of 1 .
A(A) & s-[{te0.2m): ¢ € 4)|  (ACT Borel)

where |B| (for a Borel set B C R) stands for the (one-dimensional) Lebesgue measure of B. One proves that
xe(z) =28  (k€Z, z€T)

are all continuous homomorphisms from T into T and they form an orthonormal basis of L?(\). (More
generally, for an arbitrary compact Abelian group G, all the continuous homomorphisms from G into T form
an orthonormal basis of L?(u) where y is the probabilistic Haar measure of G.)

4.27 Proposition.
Let (H,|| - ||m) be a Hilbert space.

(A) For any orthogonal system (resp. basis) {us}ses C H consisting of non-zero vectors, the vectors v def Toca

form an orthonormal system (resp. basis).
(B) An orthogonal system consisting of non-zero vectors is linearly independent.

(C) Let B = {us}scs be an orthonormal system (resp. orthogonal system consisting of non-zero vectors) in H.
Then A is an orthonormal (resp. orthogonal) basis iff the following condition is fulfilled:

(4:10) (veH,VseS8: vlu;) = v=0.

(proof—ezercise)

4.28 Theorem.
Let {us}ses be an orthonormal system in a Hilbert space (H, (-, —)m). Then, for any vector g € H:

(OS1) The series ) (9, us)mus converges unconditionally in H (in the norm topology) to a certain vector
heH.

(0S2) g—h L ug for any s € S.
(083) |77 = Yses (g us)ul* and |lglF = llg — Rl + A%

(OS4) Bessel’s inequality:
> Hgsus)ul® < gl

ses

In particular, there are only countably many indices s € S for which (g, us)g # 0.

Proof. Fix a finite set F' C S, say F' = {s1,...,s,} (where n is the size of F'). Set hp &of >t (g us, ) Hus,. A direct

j=1
calculation shows that g — hp L {us: s € F}. So, it follows from (4:4) that

(4:11) held =" Hgudul®  and  llgly = llg = bl + Y (g, us)ul.

seF sEF
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In particular,

(4:12) S g udal? < gl < oo.
seF

Consequently, the set J def {s €8: (g,us)g # 0} is at most countable (why?). Denoting by N € {0,1,2,...,00} its
size, we may write J = {t,,})_, (where t,, € S are all different; we assume here that {t,,}2_; is the empty set). Note
that Y (g, us)rus = Zi\[:l(g, ut, ypue, (provided the left-hand side expression of this equation is well defined) and
Yses g ushu|* = 25:1 [{g,us, ) rr|?. Observe that if J is finite, all the claims of the theorem easily follow. Below we
assume that N = oo.

Substituting F' = {t1,...,t,} in and letting n — oo, we get > oo, |{(g, ut, ) r|* < ||g]|%, which is equivalent
to (OS4). In particular, for any £ > 0 there is finite m such that > >~ . [(g,us,)u|* < €2, which implies that for
any finite set F' C S disjoint from {t1,...,t,,} one has ||hp|lg < e (cf. ) This implies that the series specified

in (OS1) is unconditionally convergent to h e oo (g, ut, ) mrue, . For simplicity, set hy, def > or_1(9, us, ) e, . Since

both g and h are orthogonal to ug for s € S\ J, and g — h,, L uy, for k < n, we get (0S2). Finally, (OS3) follows from
(4:11) applied to F' = {t1,...,t,} by letting n — co. O

As a consequence of the above result, we obtain the following important

4.29 Theorem.
Let B = {es}ses be an orthonormal basis in a Hilbert space (H,{-,—)m). Then, for any vector v € H:

(OB1) v =73, cq{v,es)mes and this series converges unconditionally in the norm topology.

(OB2) Parseval’s identity:
IF1% = o, es)ul®

ses

(OB3) Tin% = H.

Proof. Tt follows from (OS1) that the series specified in (OB1) is unconditionally convergent to some vector h such
that g — h L 9. We infer from (4:10)) that 2 = g, which implies (OB1) and (OB3). Finally, (OB2) is implied by the
first part of (OS3). O

4.30 Definition.
For any metrisable space X let dens(X) denote the least cardinal number among sizes of dense subsets of X. (In
particular, dens(X) < Ny iff X is separable.)

4.31 Proposition.
Let H be a Hilbert space.

(A) There exists an orthonormal basis in H.

(B) All the orthonormal bases of H have the same cardinality. More precisely, if B is an orthonormal basis of
H, then:

dim(H) if H is finite-dimensional

dens(H) if H is infinite-dimensional

card(#) = {

Proof. Part (A) follows from Zorn’s lemma. To show (B), we consider two cases. If H is finite-dimensional, then any
of its orthonormal bases has to be a ‘Hamel’ basis, thanks to part (B) of Proposition and (OB3). So, its size
equals dim(H). On the other hand, if H is infinite-dimensional, its orthonormal basis % has to be infinite (again
by (OB3)). Moreover, since ||e — f|lg = v/2 for any distinct e, f € %, we conclude that dens(%#) = card(%). But
dens(#) < dens(H) (inequality valid in metrisable spaces), which yields card(#) < dens(H). To see the reverse
inequality, consider the set @ of all finite linear combinations of vectors from % with scalars from a countable dense
subset of K (e.g., from Q if K =R or from Q +Q if K = C). Since & is infinite, it follows that card(Q) = card(%).
However, @ is dense in H (thanks to (OB3)) and therefore dens(H) < card(Q), which finishes the proof. O
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4.32 Definition.
For any Hilbert space H, the cardinality of any of its orthonormal basis is called Hilbert space dimension or briefly
dimension of H and denoted by dim(H).

4.33 Example.
It follows from properties exhibited in Example that:

e dim(L%(]0,1])) = No;
e dim(43(X)) = card(X).

In particular, for any cardinal number « there exists a Hilbert space of dimension a.

4.34 Theorem. (Uniqueness of Hilbert spaces)
Let H be a non-trivial Hilbert space of dimension o and X be a set of cardinality .. Then there exists a unitary
(linear) operator U: H — €3(X). In particular:

e Any two Hilbert spaces (over the same field) of the same dimension are linearly isometric.

o All infinite-dimenional separable Hilbert spaces over the same field are linearly isometric.

Proof. Let {f.}zex stand for the canonical basis of 2(X), defined in Example and denote by ¢oo(X) the subspace
of £5(X) consisting of all the functions f € £3(X) for which the set {z € X: f(z) # 0} is finite. Take any orthonormal
basis {e;}zex of H and consider a well defined linear operator Uy: coo(X) — H given by Uo(f) = >, cx f(7)eq. It
follows from orthogonality of all the vectors e, that |[Uo(f)||z = [|f]le,(x)ll- In particular, Uy is isometric and extends
uniquely to a linear isometric operator U: ¢2(X) — H (note that coo(X) is dense in ¢5(X)). Then R(U) is linear and
closed (why?), which implies (thanks to (OB3)) that U is surjective. So, it is a unitary operator, and the proof is
finished. O

4.35 Corollary.
Let B = {en}2, be an orthonormal system in a Hilbert space (H, (-, —)p). Then:

(a) 2 is an orthonormal basis of H iff lin% = H, iff
(4:13) IRl17 <> 1By en)ul?
n=1

forallh € H.

(b) For any sequence (an),., C K the series Y .- | ane, is convergent in H (in the norm topology) iff (an),., €
ly.

(¢) For any (an),—, € {2 and h Lef S0 L anen (€ H), one has a,, = (h,e,)u for all n.

In particular, if B is an orthonormal basis of H, then for any h € H there exists a unique sequence (an)zo:l cK
such that the series fo:l anen converges in the norm topology to h.

Proof. Tf A is an orthonormal basis of H, then (OB2)—(OB3) hold. Conversely, if (OB3) holds and u € H is orthogonal
to each e,, then v L lin% = H and therefore u = 0, which shows that then % is an orthonormal basis of H. Finally,
if is satisfied for any h € H, then h = 0 is the only vector from H that is orthogonal to £ (so, again, £ is the
orthonormal basis of H.

Now take any sequence (a,),., of scalars. If the series specified in (b) converges, then the sequence of all
| > r_y arexll? (= Sr_; lax|?) is bounded and therefore (a,)., € fs. Conversely, if (a,),., € (2, then the par-
tial sums of the series under the consideration form a Cauchy sequence (exercise) and hence the series converges.

The remaining parts are left to the reader. O
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4.36 Theorem.
Let E be a closed linear subspace of a Hilbert space (H,(-,—)m) and let {es}ses be an orthonormal basis of E.

Then:
Pg(z) =) (z,es)mes (v € H).
ses

Proof. We know from (OS1)-(0S2) that the series (z,es)mes converges unconditionally (in the norm topology) to

some h € H such that z — h | % ef {es: s € S}. In particular,  C (x — h)* and, consequently (thanks to (OB3)
and Theorem {4.18)), E = linZ C (x — h)*. We also have h € E and thus Pg(z) = h, by Theorem O

4.37 Example.
The Parseval’s identity may be used to find explicit values of certain series. Below we give an illustrative example
of this method.

Consider H = L?([0,7]) with the inner product (-, —)y and orthogonal basis {f,}>, defined in part (C) of

Example [4.26] Setting e, def T ff T we obtain an orthonormal basis of H. It is easy to check that:

1 n=>0
en<x>{ﬂm(m) ", @elba.

Now let g(x) = z. A direct calculations show that:

2
o llgli7r = %

e (g,€0)H = 5;
o (g,en)m = T2 for n > 0.
It follows from the Parseval’s identity that ||g||% = |(g,e0) n|* + E;’il (g, en) #|?, which yields

a4

> 8
(4:14) kzzom =5

Further, observe that Y -, L =377, @ + Yo ﬁ7 which implies that Y07 | = 1237 m The
last formula, combined with (4:14)), finally gives:

400’
—n 90

which is a well-known formula due to Euler.
Digression: Euler found the explicit formulas for all series of the form ¢ (k) ef >

even integer. In particular, ng) is always rational (for p € N;) and its integer denominator is precisely described

(in terms of p). Explicit value of {(n) is known for no odd n > 1. (However, Apéry proved that ((3) is irrational.)

o 1

n—1 7% Where k is a posivite

4.38 Example. (Gram-Schmidt process)

Let g1,9g2,... be a finite or infinite sequence of vectors in a scalar product space (F, (-, —)g). The algorithm
described below is known as the Gram-Schmidt process (or Gram-Schmidt algorithm) and it allows us to achieve
two effects:

e to determine if this sequence consists of linearly independent vectors; and

e if they are linearly independent, to construct an orthonormal system ey, es, ... such that lin{es,...,ex} =
lin{gy, ..., gx} for all possible k.

The algorithm goes as follows:

(Step 0) start from n = 1 and define f1 = gu;
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(Step 1) whenever fj has been defined, compute «y, def (fr, [r)E;

(Step 2) if ay # 0, define e, = \/fT’Lk;

(Step 3) if a = 0 for some k, then the vectors gy, ..., gi are linearly dependent and the algorithm finishes;
(Step 4) if all a1, ..., ) are non-zero, pass to n = k+1 and set f, = g, — Z;le %ﬂfj, and return to Step 1.

It is left as an exercise to verify that this procedure has all the properties listed above.
The above scheme enables us, e.g., to construct an orthonormal basis of L?([a, b]) consisting of polynomials such
that the nth polynomial (with n > 0) has degree equal to n. Such sequences are known as orthogonal polynomials.

4.39 Remark.

The property of orthonormal bases in separable Hilbert spaces formulated in the last sentence of Corollary
may be seen as foundations for a more general notion, namely of Schauder bases in Banach spaces: a sequence
(en),—; of vectors in a separable Banach space E is said to be a Schauder basis of E if for any vector x € E there
is a unique sequence (a,,), - ; of scalars such that the series >~ | ane, converges in the norm topology to z. All
classical separable Banach spaces have Schauder bases. However, there are known examples of separable Banach
spaces that admit no such basis. More on this notion the reader can find in any classical book on Banach spaces.

4.40 Remark.

A deep result due to Toruticzyk (from the 80’s of the 20th century) asserts that each infinite-dimensional Banach
space F is homeomorphic to ¢3(X) where X is a set of cardinality dens(F). It was a solution of a Banach’s
question from the Scottish Book. A similar result is false if one searches for homeomorphisms that are uniformly
continuous in both directions.

5 Central tools of functional analysis

In this chapter we will present results which have made functional analysis an important branch of mathematics.
Almost all of them are due to Banach and his collaborators.

5.1 Theorem. (Uniform Boundedness Principle)
Let X be a Banach space and for each s € S (where S is a non-empty set) let Ty: X — Y be a bounded linear
operator from X into a normed vector space Y. If

(5:1) sup || Ts(x)]
seS

y, <00

for all x € X, then sup,cg || Ts|| < 0.

Proof. For n > 0 let F,, consist of all # € X such that ||Ts(z)|ly, < n for each s € S. It follows from that
X =UpZ, F, and since F,, = (\,cg T ' (nBy,), we infer that all these sets are closed. So, the Baire category theorem
implies that Fy has non-empty interior for some N. Fix a € X and r > 0 so that a + rBx C Fx. Then, for arbitrary
r € Bx and s € S we have a,a+ rz € Fy, thus | Ts(a)|ly, < N and, similarly, || Ts(a + rz)|ly, < N. We conclude that

ITs(z) ]y, < %(\|Ts(a+rx)| v, + |Ts(a)|ly,) < %, and therefore ||| < % for any s € S. O

5.2 Corollary. (Banach-Steinhaus Theorem)
If T1,T5, T3, ... are bounded linear operators from a Banach space X into a mormed vector space Y such that

T, (x) 5 L(z) (n — o0) for any x € X and some L: X — Y, then L is a bounded linear operator as well.

Proof. Tt is easily seen that L is a linear operator. The pointiwise convergence implies that ([5:1) is satisfied for all

z € X.So, M def sup,,so | Tn]| < oo, by Theorem Consequently, |L(z)|ly = lim,—e0 [|Tn(z)]ly < M||x||x, which
finishes the proof. O
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5.3 Theorem. ([Banach] Isomorphism Theorem)
Let T: X — Y be a bounded bijective linear operator between two Banach spaces. Then the inverse T~' of T is
bounded as well.

The above result shall be generalised (to the context of complete metric TVS’s) in the next chapter. As we will
see, the proof of a general case is more subtle than the one presented below (although quite similar).

Proof of Theorem[5.3] Since Y = |J2, T(nBx), it follows from the Baire category theorem that b+ cBy C F def

T(NBX_) for some b € Y, ¢ > 0 and N € Ny. As T(NBy) is a symmetric convex set, so is its closure F. Hence
—b+ cBy C F. So, for any y € By we have that b+ cy, —b + cy € F and therefore also cy = 1(b+ cy) + (b + cy)

belongs to F. We conclude that By C 1F =T (£ By). In this way have shown that By C T(rBx) for some r > 0. In
particular,

_ _ 1
(5:2) Yy € By 3z € rBx: |y —T(2)|y < 3
Fix v € By. We will now construct inductively a sequence (xn)flo:l C rBx such that
n 1 .
k=1

for all n > 0. The case n = 1 immediately follows from applied to y = v. Now assume that for some m > 0 the
vectors 1, ..., T, has already been defined so that holds for n = 1,...,m. Then y def 2m(v — Yt i T ()
belongs to By and it follows from that there is a vector @41 € rBx such that |2 (v — Y7 52T (xy)) —
T(@mi1)lly < % Dividing both sides of these inequality by 2™, we obtain for n = m + 1, as we wished.

Now since ||z || x < 7 for each k > 0, we infer that the series ) | 5521 converges in X, say to u. Then [ju|x < 2r
and T'(u) = v, by (5:3). Consequently, T~'(By) C 2rBx and hence [T~ < 2r. O

As immediate consequences of the above result, we obtain the next two results.

5.4 Theorem. ([Banach] Open Mapping Theorem)
If a bounded linear operator T: X — Y between Banach spaces is surjective, then it is an open map.

Proof. Tt follows from part (F) of Proposition (p.[3) that there exists a continuous linear operator T: X/N(T) — Y
such that T = T o mp where 77: X — X/N(T) is the quotient map. Item (D) therein shows that 77 is an open map.
Further, we conclude from Theorem [2.8] (p. ) that X/N(T) is a Banach space. Finally, since T is surjective, T is a
bijection. Thus, Theorem yields that T is a homeomorphism. Consequently, 7" is open as the composition of two
such maps. O

5.5 Theorem. ([Banach]| Closed Graph Theorem)
LetT: X —Y be a linear operator between Banach spaces X andY . Then T is bounded iff the following condition
is satisfied:

(*) (zn, € X, lim z, =0, lim T(z,)=y€Y) = y=0.
n—oo

n—oo

Proof. We only need to show the sufficiency of (). To this end, consider the graph T’ Lef {(z,T(x)): x€ X} of T and
a linear bijection L: I' 3 (z,y) — a € X. The condition (x) (combined with linearity of T') implies that I" is a closed
subspace of X x Y, and thus it is a Banach space. Since L is continuous, we conclude from Theorem that L1 is
a bounded operator, and the assertion follows. O

The following result is a prime example illustrating the power of the Closed Graph Theorem.

5.6 Corollary.
If a Banach space X is the direct sum of its two closed linear subspaces E and F', then the projection Pg: X — E
onto E along F' is bounded.
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Proof. Assume x1,x9,... € X converge to 0 and lim, o Pg(z,) = e € E. Then the vectors z, — Pg(z,) belong to
F and tend to —e. It follows from the closedness of F' that —e € EN F = {0} and therefore e = 0. The Closed Graph
Theorem finishes the proof. O

5.7 Definition.
A function p: X — R (defined on a real vector space X) is said to be sublinear if:

o f(tx) =1tf(x) for all z € X and ¢t > 0;
o f(x+y) < f(z)+ f(y) for any z,y € X.

It is worth underlying that sublinear functionals can take negative values.

5.8 Example.
The following functions are classical sublinear functionals take are not semi-norms:

o p(f) =sup f(X), f € leo(X) (where X is an arbitrary non-empty set);
e ¢(f) =limsup,_, f(2),f € lx(Z) where Z is one the sets: N, Ry, Z, R.

It is also readily seen that linear functionals are sublinear and that the pointwise supremum of a non-empty
collection of sublinear functionals (defined on a common vector space) is sublinear as well provided it is real-
valued. The next theorem (due to Hahn and Banach) implies that all sublinear functionals can be expressed as
pointwise suprema of certain non-empty families of linear functionals (defined on the underlying vector space).

5.9 Theorem. (Hahn-Banach Theorem)
Let p: X — R be a sublinear functional on a real vector space X and X, be a linear subspace of X. Then every
linear functional ¢o: X, — R such that

Po(x) <plz) (v €X,)

extends to a linear functional ¢: X — R satisfying

(5:4) o(x) < p(x) (z € X).

Proof. Tt follows from the Zorn’s lemma that among all possible linear extensions 1: V' — R of ¢, (where V is a linear
subspace of X containing X,) satisfying appropriate inequality (for all z € V) there exists a maximal functional,
say ¢: W — R. It remains to show that W = X. To this end, we assume that W # X and take any u € X\W. To obtain
a contradiction, it is enough to find a linear extension 1: V' — R of ¢ fulfilling (for all x € V) where V. =W +Ru.
So, we are looking for a real number ¢ (which we will assign to u) such that (¢¥(z + tu) =) ¢(z) + tc < p(x + tu) for
any € W and t € R. Note that ¢ has to satisfy the following inequalities:

o < PETIUE) 4yg
o o> d@plazi)

for all ¢t > 0 and = € W. Equivalently:

(5:5) sup{w: zeW, t>0}§c§inf{w: :z:GX,t>()}.

Observe that there exists ¢ satisfying the above inequalities (and, consequently, ¢ can be extended to ¢: V — R) iff

px + tu) — ¢(z)

sup{ P(x) — p(x — tu) t

; .er,t>O}§inf{ :xeX,t>O}.

To show that the above inequality holds, it is enough to verify that ¢(x)_11(x_tu) < p(y+s?_¢(y) for all z,y € W and
any positive scalars s and t. But the last inequality is equivalent to ¢(sx + ty) < sp(x — tu) + tp(y + su), which is
satisfied, since

d(sz + ty) < p(sx + ty) < p(sx — stu) + p(ty + stu) = sp(x — tu) + tp(y + su).
Consequently, there exists ¢ satisfying (5:5)) and therefore ¢ is not a maximal functional—and we are done. O

23 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

Most important consequences of Theorem follow.

5.10 Theorem. (Classical Hahn-Banach Theorem)
For any continuous linear functional ¢,: E, — K defined on a linear subspace E, of a mormed vector space
(E,|| - |g) there exists ¢ € E* such that ¢ | E, = ¢o and ||P|| = ||do||-

Proof. First we consider the real case (that is, when K = R). Set M e lpoll and p = M]|| - ||z, and note that p is a
sublinear functional and ¢, < p [ E,. So, we infer from Theorem that ¢ extends to a linear functional ¢: E — R
such that ¢ < p. In particular, ¢(z) < M||z||g and —¢(z) < M| — z|| g, hence |¢(x)| < M||z||g. This shows that
¢ € X* and ||¢|| < M. But also [|§| > [|¢,|| = M, which finishes the proof in the real case.

Now we pass to the complex case. Since any complex normed vector space is real as well, it follows from the first part
of the proof that there exists a continuous R-linear functional ¢: E' — R that extends Re ¢, and has the same norm (as

Re ¢,). We define ¢: E — C by the rule ¢(x) def (x) — ip(iz). Observe that ¢ is R-linear and continuous, and, since
1 is real-valued, Re ¢ = 1. It is less obvious that ¢(ix) = i¢(x) (because ¢(iz) = P (iz) —ip(—zx) = i(¢Y(z) —i(iz))).
So, ¢ € X*. Further, since both ¢ | E, and ¢, are C-linear and their real parts coincide, these two functionals coincide
as well (why?). In particular, ||¢|| > ||¢o|. Finally, for any z € E take a unit scalar v such that |¢(z)| = yé(z) and
note that |¢(z)| = ¢(yz) = Rep(yz) = ¥ (vz) < || Redoll - [vzllE < ||d6l| - ||| £, and we are done. O

5.11 Corollary. (“Norm extraction theorem”)

For any non-zero vector x in a normed vector space E there exists ¢ € E* such that ¢(z) = ||z||g and ||¢] = 1.
Proof. Consider E, ' Kz and ¢,: E, > wz — wl|z| p € K, and apply Theorem O
5.12 Remark.

There are plenty Banach spaces whose each non-zero vector admits a unique bounded linear functional satisfying
the assertion of the above result. (In particular, all £,(X) and LP (1) spaces with 1 < p < cc.) Each such a Banach
space is called smooth.

Corollary implies

5.13 Corollary.
For any vector z in a normed vector space E, ||z||g = supyep,. [¢(7)]-

5.14 Definition.
For any normed vector space E define kg: E — E** by the rule:

kp(x) =¢; where e;: X* 3¢ o(z) e K

The mapping kg is called the canonical embedding of E into its bidual.

5.15 Theorem.
For any normed vector space E, kg is linear and isometric.

Proof. Linearity of kg is left as an easy exercise. Its remaining property follows from Corollary as: [|kp(z)|| =
ez (¢)| = [zl - 0

SU.deEBE*
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5.16 Corollary.
A subset A of a normed vector space E is bounded iff $(A) is a bounded subset of K for any ¢ € E*.

Proof. We may and do assume that A is non-empty. The ‘only if’ part of the result is trivial, whereas the ‘if’ part
follows from the Uniform Boundedness Principle. Indeed, under the assumption formulated in the result, we get
sup,e 4 [kE(a)(4)| < oo for any ¢ € E*. Consequently, since E* is Banach, we infer from Theorem [5.1] (combined with

Theorem [5.15)) that (sup,e 4 [|all =) sup,cq [[KE(a)|| < co. O

5.17 Definition.
A Banach space is reflexive if its canonical embedding is surjective.

5.18 Proposition.
FEach Hilbert space is reflexive.

Proof. Fix a Hilbert space (H, (-, —)y) and for each vector h € H set ¢y & (-,hyp. It follows from Theorem m
(p. that the operator ®: H > h — @), € H* is bijective and isometric. It is easily seen that it is antilinear. In
particular, the formula

(bps b - < (g, p) i

correctly defines an inner product on H* that induces the norm of that space. So, H* is a Hilbert space and hence
for any ¢ € H** there exists £ € H* such that ¢ = (-,&) g~ (again, thanks to the Riesz representation theorem). But
¢ is of the form & = ¢y, for some h € H. So, for any © € H, ¥(¢s) = (s, dn) g = (h,x)g = ¢.(h). Consequently,
km(h) =1 and we are done. O

5.19 Remark.
One proves that all spaces £,(X) and LP(u) with 1 < p < oo are reflexive. In Theorem p- 43| (see Chapter
we will give an intrinsic characterisation of reflexive Banach spaces.

Note also that if kg is surjective for some normed vector space E, then E is automatically Banach (and hence
it is a reflexive Banach space).

We end the chapter with an interesting application of the Hahn-Banach theorem, devoted to the so-called means
or Banach limats.

5.20 Definition.
A linear functional L: (% — R is called a Banach limit if for any sequence (a, )5, € (% :

e liminf, o an, < L((an),—,) < limsup,,_, a,, and

o L((an+1)y21) = L(an)p_y)-

5.21 Remark.
It follows from the axioms of Banach limits that they are unit vectors of the dual of £5_.

Banach limits are special cases of more general means that are defined for arbitrary (non-empty) semi-groups.
For any semi-group (S, -) a linear functional M: (% (S) — R is said to be a (left) mean if for all f € £ (S) and
each s € S:

o inf £(S) < M(f) < sup £(5), and
o M(fs) = M(f) where fs(z) = f(sz) (x € 9).
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In general, means are non-unique (on a fixed semi-group) and may not exist. The semi-group S is called (left)-
amenable if it admits a left mean. There exist countable groups that are not amenable. On the other hand, one
proves that all Abelian semi-groups are amenable. Amenability of (N, +) is established in the next result.

5.22 Theorem.
There exists a Banach limit.

Proof. Recall that a real-valued sequence (a,,), -, is called Cesaro summable if there exists a real number A such that
limy, s M = A. The above number A is called the Cesaro sum of (ay),. . For the purpose of this proof we
will denote thls term by C-lim,, o0 G-
Denote by V and C: V — R and p: & — R, respectively, the space consisting of all Cesaro summable bounded
real-valued sequences, and functionals given by the formulas:
C((an)pzy) = C-lim, o0y ((an):;l ev),

n=1

p((an)ff:l) = limsup a,, ((an)ff:l € gﬂfo)
n—oo

Observe that V is a linear subspace of /£ | C is linear and p is sublinear. Moreover, C' < p | V (exercise). So, it follows
from Theorem that C extends to a linear functional L: /X — R such that L < p. We will now show that L is
a Banach limit. To this end, fix a bounded real-valued sequence (a, ), and note that L(— (a,), ;) < p(— (an)y—;),
which yields L((a,),—,) > —limsup,_,..(—a,) = liminf, . a,. Of course, L((a,),—,) < limsup,_,. an. So, it
remains to check that L((ay,),—; —(ant1),-;) = 0. To obtain this equation, it is sufficient to verify that (a,, — an+1),-,
is Cesaro convergent and its Cesaro sum is equal to 0 (because L extends C'). But both these properties easily follow

from the boundedness of (a,),_,: setting b, df Gp — Api1, We get |b1+'ﬁ'+b” = lal_Z"“I < 2”(%)7;’311”“7 which finishes
the proof. ]

5.23 Definition.
For any subset A of a normed vector space E we define the annihilator A+ of A as the set of all ¢ € E* that
vanish at all points of A; that is, ¢ € E* belongs to A+ if ¢(a) = 0 for all a € A.

Similarly, for any set B C E*, the preannihilator +B of B is the set of all points € E at which all functionals
from B vanish; in other words, if B C E* is non-empty, then +B = ﬂ¢eB N(9).

5.24 Remark.
For any Hilbert space H the assignment H > h — (-,h) € H* establishes a natural / canonical one-to-one
correspondence between bounded linear functionals on H and vectors from H. Under this identification, for any
set A, the annihilator A+ of A (introduced in Deﬁnition@ , coincides with the set, denoted by the same symbol
(A1), of all vectors that are orthogonal to A (cf. Definition @, p- . So, no essential confusion occurs.

It is also worth remembering that for any set B C E* (where E is a normed vector space), B is a subset of
E, whereas Bt is a subset of E**. It is an easy exercise to check that kg (*B) = kg(E) N B+. However, kg (1B)
differs from B+ in general.

5.25 Proposition.
Let E be a normed vector spaceand A C E and B C E* be arbitrary sets.

(a) At is a closed linear subspace of E* and “B is a closed linear subspace of E.
(b) A+ = (lin(A))* and +B = H(lin(B)).
(c) H(A*) = Tn(A).

Proof. Ttems (a) and (b) are left to the reader. Here we focus only on (c). Since A is contained in +(AL), it follows
from (a) that also F Lef lin(A) C H(A1). To see the reverse implication, fix an arbitrary vector @ € E'\ F and define

26 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

o: F+Ka = K by ¢o(f +ta) =t (where f € F and t € K). Since N(¢,) = F, we infer from Corollary (p- [6)
that ¢, is bounded. Now it follows from the Hahn-Banach theorem that ¢, extends to ¢ € E*. Then ¢ € AL, but
#(a) # 0 and therefore a ¢ (A1), which finishes the proof. O

It is worth underlying here that a similar result as item (b) above does not hold for the annihilator of the pre-
annihilator (that is, in general (*B)* differs from lin(B) for a subset B of the dual E* of a Banach space E; cf.

Proposition p- in Secion [g).

Annihilators play important role in describing the dual spaces of a subspace and of a quotient space, as shown by

5.26 Theorem.
Let E be a normed vector space.

(A) For a closed linear subspace F' of E, the assignment
(E/F)* > ¢+ pom € F*

correctly defines a bijective linear isometry ® where w: E — E/F is the quotient map and E/F is endowed
with the quotient norm (introduced in Theorem 2.8] p. [{)).

(B) For any linear subspace V of E the rule
Vi3 | VisTl(¢) e B*/VE  (¢peEY)

correctly defines a bijective linear isometry W where I1: E* — E*/VL is the quotient map and E*/V* is
endowed with the quotient norm.

Proof. We start from (A). Observe that ® is a well defined linear operator. Moreover, since 7(Bg) = Bg/r, we
infer that ® is isometric. Finally, if ¢ € E* vanishes at all points of F', we may correctly define a linear functional
¢: E/F — K by the rule ¢ om = 4. Then ¢(Bg,r) = 1(Bg) and hence ¢ is bounded. So, ®(¢) = ¢ and we are done.

We pass to (B), which is much less elementary than (A). Firstly, it follows from the Hahn-Banach theorem that each
«a € V* can be written in the form ¢ [ V for certain ¢ € E*. Secondly, if ¢1 and ¢o are two functionals from E* that
coincide on V, then ¢; — ¢ € V+ and, consequently, II(¢;) = II(¢2). These two remarks explain why ¥ is well (and
fully) defined. Observe also that U is a linear surjection. So, it remains to show it is isometric. To this end, note that for
each o € V* there is ¢ € E* such that @ = ¢ [ V and ||| = ||| (thanks to Theorem[5.10). So, ¥(c) = II(¢) and hence
19(a)]| < 6]l = lall. On the other hand, ¥ (a)| = mf{|l — A]l: 8 €V} > mt{](G— ) I VI: §€ VL= al,
which finishes the proof. O

6 Metrisable topological vector spaces

6.1 Definition.
Let E be a vector space. A semi-metric d: E x E — Ry is invariant if d(z + z,y + z) = d(z,y) for all z,y,2 € E.
A wvalue on E is a function p: E — Ry that satisfies all the following conditions (for all z,y € E):

(v0) p(z) =0 < = =0;
(v1) p(—z) = p(z);
(v2) p(z+y) < plx)+p(y).

If p fulfills only (v1)—(v2) and vanishes at the origin of E, it is called a semi-value. A semi-value ¢: E — R, is
said to be

o balanced if q(yx) = q(z) for all z € F and v € K with |y| = 1;
e monotone if for any vector x € E the function Ry > ¢ — ¢(tz) € R, is monotone increasing.

Each invariant [semi-Jmetric p: E x E — R} induces a [semi-|value ¢,: E 3 z — p(z,0) € R on E. Conversely,
each [semi-]value p: E — Ry induces an invariant [semi-]metric d,: E X E 3 (z,y) — p(z —y) € Ry on E.
Actually, there is a one-to-one correspondence between [semi-]values and invariant [semi-Jmetrics.
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6.2 Proposition.
Let p be a value on a vector space E that is both balanced and monotone. Then (E,d,) is a topological vector space
iff infyso p(tx) =0 for any x € E.

Proof. Necessity is clear. To show sufficiency, we fix three seqeunces (o)., C K, (2,),—, C FE and (y,),, C E
that converge, respectively, to 8 € K, a € E and b € E (the last two convergences are w.r.t. d,). We need to check
that then the numbers d, (o, z, + yn, Ba + b) converge to 0. Since p is balanced, we obtain:

dp(antn + Yn, fa + b) = planzn — fa+ yn —b) < plan(zn — a)) + p((an — B)a) + p(yn — b)
= p(lan|(zn — a)) + p(lan — Bla) + p(yn —b).
Further, it follows from the monotonicity of p that:
e p(Jan|(zn —a)) < p(N(x, —a)) where N > 0 is an integer such that |a,| < N for all n > 0;
e there exists lim,_,q+ p(sa).

The latter property, combined with our assumption about p (in the statement of the result), implies that lim,_,q+ p(sa) =

. def . . . . .
0. Therefore, setting s,, = |a, — 5| and continuing our previous estimations, we get:

dp(anxn + Yn, Ba +b) < p(|an|(zn — a)) + p(spa) + p(yn — b) < p(N(z, —a)) + p(sna) + p(yn — b)
< Np(zn — a) + p(sna) + p(yn — b) = Ndy(xy, a) + p(sna) + dp(yn,b) = 0 (n — o0)
and we are done. O

The following result is a special case of a more general Kakutani-Birkhoff theorem (on metrisability of topological
groups).

6.3 Theorem. (Metrisability of TVS’s)

A TVS is metrisable iff it is first countable and Ty. Moreover, for any Ty-topological vector space E that has a
countable basis of 0-neighbourhoods there exists a value p that is both balanced and monotone, and for which dy, is
compatible with the given topology of E.

Proof. 1t is sufficient to prove the second claim of the theorem. For clarity, denote by 7 the topology of E. It follows from
the first countability of F that there exist 0-neighbourhoods Uy = E, Uy, Us, ... that form a basis of neighbourhoods
of the origin and have the following properties:

e U, + U, C U,_q for each n > 0;
e cach U, is both open and balanced.

Since F is Ty, we have

(6:1) () Un = {0}.

Denote by I the set of all rationals of the form % where k and n are positive integers. We define the sets {Vi bwer

2’!1.
recursively as follows:
e V, = F for each w > 1 from I;
e Von = U, for any n > 0;

° V%:V%+Unf0ranyoddk>1andn>0.

Equivalently, if w < 1 has the form w = le 2-% where ki, ..., k, are all positive and distinct, then

(62) Vw:Uk1+~~~+Ukp~

To simplify further arguments, we will write ?:1 Uk, to denote the set Uy, + ...+ Uy, .

Since the algebraic sum of two open (resp. balanced) sets is open (resp. balanced) as well, we infer that
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(%) for any w € I, V,, is an open and balanced 0-neighbourhood.

Our nearest aim is to show the following important property:

(6:3) Vs + Vi C Vigy (s,t €1).

We start from the proof of a special case of :

(6:4) Ve+U, CViig-n (seIn(0,1), n>0).

To this end, express s in the form s = 2?21 27 where 0 < k; < ... < k,. We will show (6:4) by induction on n. If
n =0, (6:4) is trivial. Now assume n > 0 and that (6:4) holds for n — 1. If k, = n for some g € {1,...,p}, then (since
U,+U,C Unfl)Z

P
Vet Un=(Q_Us,)) +Un=(Q_Us,) + Un +Un C (Q_Us,) +Un1 = Voo 5ot + Uns
Jj=1 J#q J#q

and it follows from the induction hypothesis that Vs~ S, 27k T Un—1 C Vi where w = (3, 27Ky 2lmn = g4 27
which yields (6:4). Finally, if k; # n for any j, then V, + U =( ;7:1 Uk;) +Upn = Vyio-n (thanks to (6:2)). So, (6:4)
has been proved

Now we turn to the proof of . To this end we fix s,t € I. We may and do assume that s+t < 1. Express t in
the form ¢t = 7 where k is odd. We will show (6:3) by induction on k. The case k = 1 is covered by (6:4]). Hence, we
assume k > 1 (15 odd) and that holds whenever the odd numerator of the second index therein is less than k. But

then V; = V,, + U,, where w = 2;”. Note that the odd numerator of w is less than k and therefore Vs + V,, C Visyy
(by the induction hypothesis). Finally, an application of (6:4) yields Vi1 + Up C Vi iy12-» and thus:

‘/S_F‘/;:‘/s"i'vw"*'UnC‘/v.s+w+UnC‘/s+w+2*":Vs-l-t)

which finishes the proof of (6:3]).
Now we define p: E — [0,1] by:
p(x) def inf{lweI: ze€V,}
(recall that V3 = E). It readily follows from (6:1), (x) and (6:3) that p is a value on E that is both balanced
and monotone. Moreover, it is easy to check that inf;sop(tz) = 0 for all z € E (since each V,, is a balanced 0-
neighbourhood). We infer from Proposition that (E,d,) is a TVS. Thus, it remains to check that the identity map

between (E,7) and (E,d,) is continuous at the origin in both directions. But both these properties follow from the
following two inclusions (whose simple proof is left to the reader):

Ba,(0,7) C Vi C By, (0,7) (rel).

6.4 Definition.
A net (z5),cx in a TVS E is called Cauchy (or fundamental) if for any 0-neighbourhood U in E there exists an
index w € Q) such that x, — z, € U for all indices 0,7 € ¥ satisfying ¢ > w and 7 > w.

A T5VS is said to be complete if any its Cauchy net is convergent.

6.5 Proposition.
(A) A convergent net in a TVS is Cauchy.
(B) Let E be a TVS whose topology is induced by an invariant metric d. Then:

o The metric d is complete iff E is a complete TVS.

e The metric completion of (E,d) admits a natural TVS structure that extends the structure of the space
E and with respect to which its metric is invariant.

(proof—exercise)
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The following is a counterpart of Theorem (p. [4) for metrisable TVS’s. Since the proof goes almost the same
manner, we skip it.

6.6 Theorem.
Let F be a closed linear subspace of a TVS E whose topology is induced by an invariant metric D, and let
w: E — E/F denote the quotient map. Then the formula

q(b) def inf{D(a,0): a € E, w(a) =b}

defines a value on E/F such that dg is compatible with the quotient topology. Moreover, if D is complete, then dg
18 complete as well.

(proof—ezercise)

6.7 Definition.
An F-space is a pair (F,d) where E is a metrisable TVS and d is a compatible metric that is both invariant and
complete.

It turns out that Isomorphism Theorem, Open Mapping Theorem and Closed Graph Theorem hold also for F-
spaces, as shown by the next three results.

6.8 Theorem. (Generalised Open Mapping Theorem)
Let (E,dg) and (F,dr) be two F-spaces. For a continuous linear operator T: E — F the following conditions are
equivalent:

(i) T is an open mapping;
(ii) T is surjective;

(iii) R(T) is of second Baire category (that is, it cannot be expressed as a countable union of nowhere dense sets).

Proof. Implications (i) = (ii) = (iii) are left as simple exercises. Here we focus only on the hardest part; that is, we
will show that (i) is followed by (iii). To this end, it is sufficient (why?) to show that for any r > 0, the set T'(Bq,(0,7))
is a 0-neighbourhood.

Observe that E = |, nBqg, (0,r) (because 0-neighbourhoods are absorbing; cf. the proof of Theorem [2.16} p. @
So, R(T) = Us=, nT(Bq,(0,r)) and it follows from our assumption in (iii) that the closure of nT(Bg,(0,r)) has
non-empty interior for some n > 0. Since the multiplication by n is a homeomorphism of F', we infer that the closure

of T(By (0, 7)) has non-empty interior. This property is valid for all » > 0. In particular, there is a non-empty open set

V C F that is contained in the closure C of T'(Bg4,(0,7/2)). But then U 4y _V is contained in C' — C and the latter

set is contained in the closure of T'(Byg, (0,7/2) — Bg,, (0,7/2)) (which follows from the continuity of (z,y) — x —y in
F). However, U is a 0-neighbourhood in F' and By, (0,7/2) — Bg,(0,7/2) C B4, (0,r), which yields:

(6:5) 0 € int T(By,, (0,7)).

Again, the above relation is valid for all positive r.
Using (6:5]) and starting from eq E r, we inductively construct positive numbers €1, €5, ... such that for all n > 0:

e &, <27 "pr; and
® Ba,.(0,0) € T(Bay(0,60-1))-
In particular, for all n > 0:
(6:6) Vy € By, (0,e,) 3z € E: dp(z,0) <e,_1 A dp(y —T(z),0) < epi1-

We will show that By, (0,e1) C T(Bg,(0,2r)), which will finish the proof (because of the arbitrarity of r).
Take an arbitrary y € By, (0,1). It follows from that there exists 21 € By, (0,&0) such that dp(y—T(x1),0) <
€9. Now assume that we have already defined x4, ...,z (for some k > 0) such that z; € By, (0,e;_1) (forj =1,...,k)
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and dp(y — Z?Zl T(z;),0) < €xq1. Then y — Z?Zl T(z;) € Ba,(0,ex4+1) and we conclude from that there exists

i1 € Bag(0,2) with dp((y — X5, T(2))) = T(@r41)) < exyo.
In this way we have constructed a sequence (x,,),-, C E such that for all n > 0:

e dp(x,,0) <ep_1; and
o dr(y, T(X k=1 1)) < enta (= 0).

Since dg is complete and ZZOZO £, < 00, we infer from the triangle inequality that the series ) - | x,, is convergent,
say to a. Then d(a,0) < Y.°  en < 2r and T'(a) = lim,, oo T(3_j_; 1) = y, and we are done. O

As immediate consequences of the above theorem, we obtain the following two result (for a proof of the latter,
consult the proof of Theorem [5.5)).

6.9 Theorem. (Isomorphism Theorem)
Let T: X — Y be a continuous bijective linear operator between two F-spaces. Then the inverse T~' of T is
continuous as well.

6.10 Theorem. (Closed Graph Theorem)
Let T: X —'Y be a linear operator between F-spaces X and Y. Then T is continuous iff the following condition
is satisfied:

(x, € X, lim x, =0, lim T(z,)=y€Y) = y=0.

n—oo n—oQ

6.11 Remark.

One proves that a metrisable TVS is completely metrisable iff it is complete as a TVS. A most common proof of
this result uses Theorem [6.3] Proposition the Alexandrov-Hausdorff theorem (that characterises completely
metrisable spaces among metrisable ones as absolute ¥ sets) and the Baire category theorem. We leave the details
to interested readers as a (little) challenge.

7 Locally convex spaces

7.1 Definition.
A locally convex space is a TVS that possesses a basis of 0-neighbourhoods consisting of convex sets.

7.2 Proposition.
(A) Both the interior and the closure of a convex set in a TVS is convex as well.

(B) Each convex 0-neighbourhood in a TVS contains a 0-neighbourhood that is both open and absolutely convex.

(proof—ezercise)

7.3 Definition.
Let K be a convex 0O-neighbourhood in a TVS E. The Minkowski functional of K is a function px: E — R4
defined as follows:

pi(z) =inf{r >0: z €rK}

(the set appearing on the right-hand side of the above formula is non-empty because each 0-neighbourhood is
absorbing).
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Basic properties of Minkowski functionals are listed below.

7.4 Proposition.
Let K and L be two convex 0-neighbourhoods in a TVS E.

The function px is sublinear and continuous.

(a
(

b) If K is absolutely convex, then pg is a semi-norm.

() px'([0,1)) € K € pg'([0,1).

)
)
) P
(d) If K C L, then pr, < px.

Proof. Since both (c) and (d) easily follow from the defining formulas of px and pr, we will show only (a) and (b).
Positive homogeneity of px (that is, the equation px (tx) = tpi(x) for a scalar ¢ > 0) is also a direct consequence
of the defining formula. To show the triangle inequality, fix arbitrary z,y € E and real numbers s and ¢ such that
pr(x) < s and pi(y) < t. There are positive reals a and b such that a < s, b <t and x € aK and y € bK. Then
both éx and %y belong to K and it follows from the convexity of K that 47 - 71‘ + by = ziy lies in K as well.
Consequently, px(z+y) < a+b < s+t and hence px(z+y) < pr(x) + pr (y). If in addltlon K is absolutely convex,
then pg (yx) = px (z) for any unit scalar v € K (because yK = K for such ) which implies that px is a semi-norm.
It remains to check that px is continuous. Since |px (x) — px (y)| < max(pk (x — y),px(y — x)), it is enough to show
that pr is continuous at the origin of E. And the last property is a consequence of the relation e K C pz'([0,¢]) (for
any € > 0). O

7.5 Definition.
Let P = {ps}scs be a collection of semi-norms defined on a common vector space E. Topology 7p on E induced
by P is given by a basis of (open) 0-neighbourhoods of the form:

(7:1) U(P,e) d:Cf{xEE| Vpe P: p(x) <e} (e >0, P C P finite).

In other words, a set V' C E belongs to 7p iff for any © € V' there are a finite set P C P and a real number € > 0
such that x + U(P,e) C V. It is not difficult to verify that (F,7p) is a topological vector space. Since the sets
U(P,¢) are convex, we conclude that this space is locally convex.

P is said to be separating if for any non-zero vector u € E there exists an index s € S such that ps(u) > 0.

7.6 Proposition.
Let P be a collection of semi-norms on a vector space E.

o A net (z,),cy, C E converges tow € E in the topology induced by P iff limscx p(xs —w) = 0 for allp € P.
e (E,7p) is Hausdorff iff P is separating.

e Fach semi-norm from P is continuous w.r.t. Tp.

(proof—ezercise)

7.7 Theorem. (Defining locally convex topology by semi-norms)
For every locally convex space (E,T) there is a collection P of semi-norms on E such that T = 7p.

Proof. Let 2 be any basis of 0-neighbourhoods that consists of absolutely convex sets. (Such a basis exists thanks to
Proposition and local convexity of E.) Let P consist of all semi-norms of the form px with K € £ (cf. item (b)
of Propositi. Since P consists of continuous functions, we infer that U(P,e) € 7 and, consequently, 7p C 7. On
the other hand, if V' is a 0-neighbourhood in (E, 7), then K C V for some K € #. But U(P,1) C K for P def {rK}
(by item (c) of Proposition and hence U(P,1) C V', which shows that the identity map from (E,7p) to (E,7) is
continuous at the origin. So, 7 C 7p, and we are done. O
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7.8 Corollary. (Metrisability of locally convex spaces)
A locally convex space is metrisable iff its topology is induced by a separating countable collection of semi-norms.
Moreover, for a separating collection P = {p1,pa,ps,...} of semi-norms on a vector space E, the formula

z:: 1+pn @) (z e E)

correctly defines a balanced monotone value on & such that the metric dy is compatible with the topology Tp.

Proof. The ‘only if” part follows from the previous proof (since Z specified therein may be countable). On the other
hand, the ‘if’ part follows from the additional claim, whose proof is left as an exercise. O

7.9 Proposition.
Let the topology of a locally convex space E be induced by a family P of semi-norms. A linear functional f: E — K
is continuous iff there exist a finite set P C P and a real number M > 0 such that

(7:2) f@)| <MY p) (ze€B)
peP

Proof. Sufficiency of (7:2)) is left to the reader. We will show only the main part of this result—mamely, necessity of

(7:2). So, we assume f is continuous and take a finite set P C P and & > 0 such that f(U(P,e)) C Bg. Set M = def 2

and fix arbitrary z € E. If § f > pep P(z) equals zero, then tx € U(P,¢) for each ¢ > 0 and hence |f(tx)| < 1 (for all

such t). Consequently, f(z) =0 and (7:2) holds for z. In the other case, that is, when S > 0, then ;= € U(P,¢) and
therefore | f(5§)| < 1. Equivalently, |f(x)| < M.S, and we are done. O

As a consequence of the above result, we obtain

7.10 Corollary.
Let E be a locally convex space. Any continuous linear functional ¢,: E, — K defined on a linear subspace E, of
E extends to a continuous linear functional ¢: E — K.

Proof. Let P be a collection of semi-norms on E that induces the topology of this space (see Theorem . Then the
collection P, def {p | E,: p € P} induces the topology of E,. So, we infer from Proposition that

|bo(2)] <MY p(x) (x€E,)

pEP

for certain constant M > 0 and a finite set P C P. Mimicing the proof of Theorem (that was presented for norms,
but works perfectly also for semi-norms), we can construct a linear functional ¢: E — K that extends ¢, and satisfies
lp(@)] < M3 pp(x) for all z € E. Consequently, ¢ is continuous (by Proposition [7.9), and we are done. O

A natural question of when a TVS is normable was answered by Kolmogorov with the aid of the following (classical)
notion.

7.11 Definition.
A set A in a topological vector space E is bounded (in the sense of TVS’s) if for any 0-neighbourhood U in F
there is a positive real number r such that A C rU.

7.12 Example.
Since E = |Jo-, nint(U) for any O-neighbourhood U in a TVS E, it follows that compact subsets of TVS’s are
bounded.
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7.13 Proposition.
Let (ay,),>, be a fized sequence of positive real numbers that converge to 0. For a subset A of a topological vector
space E the following conditions are equivalent:

(i) A is bounded (in the sense of Definition[7.11));
(ii) anzy, — 0 (n — 00) for any (z,),o, C A;

(iii) tpxn — 0 (n— 00) for all (z,),~; C A and (t,),-; C K such that lim,_,  t, = 0.

n=1

(proof—ezercise)

7.14 Theorem. (Kolmogorov normability theorem)
A topological vector space is normable iff it is Ty and contains a 0-neighbourhood that is both convexr and bounded.

Proof. Since all balls in normed vector spaces are bounded (in the sense of Definition [']), we only need to prove
the ‘if” part of the theorem. To this end, fix a T2 VS E and a convex 0-neighbourhood W that is bounded. Reducing the
set W if necessary, we may and do assume that W is absolutely convex and open (note that a subset of a bounded set
is bounded as well). It follows from the boundedness of W that the sets {rWW: r > 0} form a basis, to be denoted by
A, of 0-neighbourhoods of E. So, it follows from the proof of Theorem that the collection {px: K € %} induces
the topology of E. But p,yy = 2% (exercise), which implies that the topology of E is induces by the semi-norm pyy.
Since FE is Ty, we infer that py is a norm and we are done. O

The next two results are another central tools in functional analysis.

7.15 Theorem. (Separation of open convex sets)
Let U and V be two disjoint convex sets in a TVS E. If U is open, there exists a continuous linear functional
¢: E — K and a real number t such that

(7:3) Re¢(u) <t < Redp(v) (wel, veV).

Proof. If U or V is empty, it suffices to set ¢ = 0 (and ¢ = +1). Below we assume that both these sets are non-empty.
Wealso fixace U and be V. ot
Set w = b — a and observe that w is non-zero and W = U + (—=V) + w is a 0-neighbourhood that is both open

and convex. Let p def pw and ¥: R-w > tw — tp(w) € R. Since p is sublinear, we infer that p(—tw) + p(tw) > 0
for t > 0. Equivalently, p(—tw) > —tp(w) = ¥(—tw) for all ¢ > 0 and hence ¥» < p | Rw. It follows from the Hahn-
Banach theorem that v extends to an R-linear functional ¢: E' — R such that ¢ < p. In particular, ¢(w) = p(w) and
d(e(=W NW)) C [—e,¢] for each € > 0 (why? cf. item (c) of Proposition [7.4). We conclude that ¢ is continuous.
Further, since UNV = @, it follows that 0 ¢ U + (=V') and, consequently, w ¢ W. Hence p(w) > 1. So, if u € U and
v € V are arbitrary, then v — v +w € W and thus ¢(u — v + w) < p(u —v+w) <1 < p(w) = ¢(w), which yields

d(u) < ¢(v) (welU, veV).

Set t = inf ¢(V'). Then ¢(u) <t < ¢(v) for all w € U and v € V. Finally, note that for any u € U there is ¢ > 0 such
that u + ew € U (because U is open). Consequently, ¢(u + ew) < t. This inequality, combined with ¢(w) > 1, yields
that ¢(u) < t.

If the field is real, the proof is finished. And when K = C, it is sufficient to define ®: E — C by ®(z) = ¢(z) —i¢(iz)
to obtain a continuous C-linear functional ® for which Re(®) = ¢, which finishes the proof in that case. O

7.16 Theorem. (Separation of closed convex sets)
Let A and B be two disjoint convez sets in a locally convex space E. If A is compact and B is closed, then there
exists a continuous linear functional ¢: E — K and two real numbers s and t with such that

(7:4) Re¢(a) < s <t < Regp(b) (a€ A, be B).
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Proof. As in the proof of the previous result, we may and do assume that both A and B are non-empty. Observe that

D¥E \ B is an open set that contains A. So, for any point a € A there exists an open 0-neighbourhood W, such

that a + W, + W, C D. It follows from the compactness of A that there exists a finite non-empty set F C A such
that A C (J,cp(a + Wy). Since E is locally convex, there exists a 0-neighbourhood V' that is open and convex and

contained in (), W,. We claim that

(7:5) (A+V)NnB=g2.
Indeed, if b € A and v € V, then there is a € F such that b € a + W,. Consequently, b+v € a + W, + W, C D and

hence b+ v ¢ B. Now noting that A + V is open and convex, we may apply Theorem to obtain a continuous
linear functional ¢: F — K and a real number ¢ such that Re (A + V) C (—oo,t) and Re ¢(B) C [t,0). Since A is

compact, s def sup Re ¢(A) is less than ¢, and the conclusion follows. O

As a consequence of the above result, we obtain important

7.17 Corollary.
For any two distinct points a and b of a locally convex Ts-space E there exists a continuous linear functional

¢: E — K such that ¢(a) # &(b).

Proof. Just apply Theoremﬁto AL {a} and B = {b}. O

Our last topic of this chapter is related to extreme points in compact convex sets (which naturally generalise the
notion of vertices of planar polygons). A formal definition is given below.

7.18 Definition.
Let A be a convex set in a vector space. A point a € A is said to be extreme (in A) if there are no points z,y € A
distinct from a for which a = %’y In other words, a is extreme in A iff:

(:c,yGA, a:xTw) = x=y=a.
The set of all extreme points of A is denoted by ext(A). We will denote its closed convex hull (that is, the smallest
set containing ext(A) that is both closed and convex) by conv ext(A).
More generally, a convex subset B of A is called a face (of A) if the following condition holds:

(z,yeA, IT_FyEB) = z,y € B.

7.19 Example.
All the properties listed below are left as easy exercises.

A) ext([0,1]) = {0, 1}.

)
B) For any non-zero Hilbert space H, ext(By) = 0By.
C) ext(B,,) = @.

)

(
(
(
(

D) If U is an open convex set in a non-zero topological vector space, then ext(U) = @.

7.20 Proposition.
Let A be a convex set in a vector space E.

(a) A point b€ A is extreme in A iff {b} is a face of A.

(b) If B and C are convex subsets of A such that C C B and C' is a face of B and B is a face of A, then C is a
face of A as well.
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(c) If p: A — F is an affine function (where F is an arbitrary vector space) and b € ext(¢(A)), then ¢~1({b}) is
a face of A.

(d) The intersection of an arbitrary non-empty collection of faces of A is a face of A as well.

(proof—ezercise)

The following lemma is a special case of a more general theorem that we will establish next (see Theorem
below). However, this lemma is a key part of the proof of the latter result.

7.21 Lemma.
If K is a compact convex non-empty set in a locally convex Ta-space E, then ext(K) # &.

Proof. In this proof we treat E as a real vector space, even if it is complex.

It follows from Zorn’s lemma and from item (d) of Proposition that among all non-empty closed faces of
K there exists a minimal set (w.r.t. the inclusion), say L. It is sufficient to show that L consists of a single point
(why?). To this end, assume (on the contrary) that there are distinct points a and b that belong to L. We infer from

Corollary that there is a continuous linear functional ¢: E — R such that ¢(a) # ¢(b). Then I % d(L) is a

non-degenerate compact interval in R, say I = [p, q] with p < q. It follows from Proposition that LN ¢~ 1({q}) is
a (non-empty closed) face of K, and it is a proper subset of L, which contradicts minimality of L. O

7.22 Theorem. (Krein-Milman Theorem)
Let K be a compact convex set in a locally convex Ts-space E. Then

K = convext(K).

Proof. As in the previous proof, we treat E as a real vector space, even if it is complex.

Of course, L 4 conv ext(K) is contained in K. If these two sets differ, take an arbitrary point a € K that is not

in L and apply Theorem to obtain a continuous linear functional ¢: E — R such that ¢(a) < min¢(L). Then
= @(K) is a compact non-degenerate interval in R, say I = [p,¢] with p < ¢q. Note that p ¢ ¢(L) and therefore
S ¥ KN ¢~ 1({p}) is disjoint from L. Moreover, S is a non-empty closed face of K. So, it follows from Lemma
that S has an extreme point, say c. Then ¢ € ext(K) \ L (thanks to Proposition [7.20)), which contradicts the definition

of L and finishes the whole proof. O

Later, in Theorem [10.13| (p. , we will prove a result that is, in a sense, the converse of the above theorem.

7.23 Remark.
The assertions of both Lemma and Theorem are valid in a slightly more general setting: instead of
requiring that the space E is locally convex, a sufficient assumption is that all the continuous linear functionals
on E separate points of K. Both the proofs presented above work perfectly under this weaker assumption.
‘Generalisation’ of Theorem (to the non-locally convex context) discussed above is superficial as any
compact convex set K with the property that all continuous real-valued affine functions on K separate points
of K is actually isomorphic (in the category of topological convex spaces with continuous affine functions as
morphisms) to a compact convex set in a certain locally convex Th-space. (A proof of this observation is not too
difficult as is left to interested readers.)

In the next chapter, in Example (p- , we will give an example of Krein-Milman Theorem application.

8 Weak and weak™ topologies

We begin this part with an abstract and quite general context that later on will be applied to normed vector spaces.
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8.1 Definition.
We say two vector spaces X and Y (over the same field) form a dual pair w.r.t. a function B: X x Y — K if all
the following conditions are fulfilled:

e B is bilinear;
e for any non-zero x € X there exists y € Y with B(z,y) # 0;
e for any non-zero y € Y there exists z € X with B(z,y) # 0.

Whenever X and Y form a dual pair (w.r.t. B), we define (in a similar way) two topologies—one on X and the
other on Y:

e 0(X,Y) = the topology on X induced by a separating collection of semi-norms {p, },cy where p,: X >z —
|B(‘Ta Yy | € R+;

)
e o(Y, X) = the topology on Y induced by a separating collection of semi-norms {q, },cx where ¢,: Y > y —
|B($, y)| € R+'

In this way we obtain two locally convex Thy-spaces: (X,0(X,Y)) and (Y, 0(Y, X)).
In practice (with dual pairs), instead of ‘B(xz,y)’ one usually writes ‘(x,y).’

8.2 Definition.
Let E be a locally convex Ty-space. The dual space of E (or briefly, the dual of E), to be denoted E*, is the vector
space of all continuous linear functionals on F.

8.3 Example.
Let E be a locally convex Th-space. Then F and E* form a dual pair w.r.t. the function:

E X E*> (z,¢0) — ¢(x) € K|

which simply follows from Corollary

The name ‘dual pair’ is explained by the following

8.4 Proposition.
Let X and Y form a dual pair w.r.t. (-,—): X XY — K and be equipped with their topologies of the dual pair.
Then the assignments

X3z (z,)eY”
Yoy—(,y) e X*

correctly define linear isomorphisms between respective vector spaces.

Proof. 1t is sufficient to show the assertion for the first assignment. To this end, for each z € X set ¢,: Y > y —
(z,y) € K and note that e, is a linear functional on Y. Continuing notation introduced in Definition observe that
lex(y)| = ¢o(y) and hence ¢, is continuous (thanks to Proposition [7.9). We infer that ®: X 3 z + ¢, € Y* is a well
defined linear operator. Since the collection {g.}.cx is separating, it follows that ® is one-to-one. To show that ® is
surjective, take any ¢ € Y*. Another application of Proposition [7.9] shows that for some constant M > 0 and a finite
number of vectors x1,...,xny € X we have:

N
W)l <MY Jea ()] (yeY).
k=1

In particular, the kernel N(¢) of ¢ contains ﬂiv:l N(eyz, ). So, it follows from a basic result from linear algebra that
then ¢ is a linear combination of ¢, ,...,¢,,; that is, ¢ = Zgﬂ ey, = @(Z,Igvzl aixk), and we are done. O

37 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

8.5 Definition.
Let F be a locally convex Ts-space. Then E and E* form a dual pair in a canonical way described in Example 8.3
Weak topology on E is the topology o(E, E*). Similarly, weak* topology on E* is defined as o(E*, E).

It is worth underlying that the weak topology of E is weaker than the given one.

As a special case of Proposition [8:4] we obtain the following important

8.6 Theorem. (Weak and weak™ continuous linear functionals)
Let E be a locally convex Ts-space.

(a) A linear functional ¢: E — K is continuous in the weak topology of E iff it is so in the given topology of E.

(b) Weak* continuous linear functionals on E* are precisely the evaluation functionals (that is, linear functionals
of the form ¢ — ¢(x) where x € X is arbitrarily fized).

(proof—exercise)

Very often weak topologies differ from the given ones. However, the collections of closed convex sets coincide in
both these topologies, as shown by

8.7 Theorem. (Weakly closed convex sets)
A convex set in a locally convex To-space E is closed iff it is weakly closed.

Proof. For clarity, denote by 7 and w, respectively, the given and the weak topologies on E. Since id: (E,7) — (E,w)
is continuous, it follows that an arbitrary weakly closed set is closed w.r.t. 7. To see the converse for convex sets,
consider a non-empty closed convex set W w.r.t. 7 and fix any vector v € E'\ W. It follows from Theorem that
there exists ¢ € E* such that Re¢(v) < inf Rep(W). In particular, ¢(v) ¢ cl(¢(W)). But ¢ is weakly continuous
(thanks to Theorem and therefore the image of the weak closure of W under ¢ is contained in cl(¢(W)). So, we
infer that v does not lie in the weak closure of W, which shows that W is weakly closed. O

As an immediate consequence of Corollary we obtain an important (as well as basic) property of locally
convex spaces:

8.8 Proposition.
A linear subspace F' of a locally convex Ty-space F is a locally convex To-space as well. Moreover, the weak topology
of F' coincides with the topology induced from the weak topology of E.

(proof—ezercise)

8.9 Definition.
Let A be an arbitrary subset of a locally convex Ty-space E. The polar of A is the set A° C E* consisting of all
¢ € E* such that ¢(A) C Bg; that is, ¢ € E* belongs to the polar A° of A iff

Va € A: |¢p(a)|] < 1.
Similarly, the prepolar of a set B C E* is the set °B € F consisting of all x € E such that
Vo € B: |p(x)| < 1.
Finally, the bipolar of A (C E), denoted by A°° is the set °(A°).
Recall that the absolutely convex hull of A is the set

n n
abs conv(A) def {Ztkak: n>1, t,....t, €K, a1,...,a, € 4, Z|tk| < 1}
k=1 k=1
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(it is the smallest set among all absolutely convex supersets of A in E). We will denote by abs conv(A) the closure
of the above set.

8.10 Theorem. (Bipolar Theorem)
Let E be a locally convex Ty-space. Then for any non-empty set A C E,

A°° = abs conv(A).

Proof. 1t is straightforward that:
e the prepolar of any subset of E* is always absolutely convex and closed; and
o AC A°°.

So, we infer that W def bs conv(A) is contained in the bipolar of A. To convince oneself that actually these two sets
coincide, take any a ¢ W. It follows from Theorem that there exists ¢ € E* such that supRe (W) < Re ¢(a).

Since W is absolutely closed, we get that M L supRe @(W) coincides with sup{|¢(w)|: w € W}. In particular,

M > 0. Let r be any real number such that M < r < Re¢(a). Then r > 0 and % € A°. However, M > 1 and hence
a does not belong to the prepolar of A°. In other words, a ¢ A°°, which finishes the proof. O

Now we will study in a more detail weak and weak* topologies in the realm of normed vector spaces.

8.11 Proposition.
For any normed vector space E the operator kg: E — E** is a topological embedding when E and E** are equipped
with, respectively, the weak and the weak™ topologies.

(proof—exercise)

Sequences that are convergent in the weak or weak™ topology are of great importance. Basic properties of them
are established below.

8.12 Theorem.
(A) A weakly convergent sequence in a normed vector space is bounded.

(B) A weak™ convergent sequence in a Banach space is bounded.

Proof. Both the items are immediate consequences of the Uniform Boundedness Principle (Theorem p- see
also Corollary . Indeed, if E is a normed vector space (resp. a Banach space) and (xn)zozl C E weakly converges
to zg € E (resp. (¢n),—, weak* converges to ¢9 € E*), we consider bounded linear functionals w,: E* — K given
by wn, = kg(z,) where n > 0 (resp. w,: E — K given by w,(x) = ¢,(x), n > 0). It follows from our assumptions

that wy,ws, ... converge pointwise to wg. So, Theorem implies that sup,,~ ||wn| < 00. But |wy|| = ||| (resp.
lwnll = l|@nll), and we are done. >
8.13 Remark.

We leave it as an interesting exercise to give an example of a norm unbounded weak™ convergent sequence in the
dual Banach space of a certain incomplete normed vector space.

8.14 Example.
As C(K)-spaces are universal for normed vector spaces (which means that each normed vector space is linearly
isometric to a linear subspace of a certain space of the form C'(K) for compact K), it is of great importance to know

39 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

which sequences are weakly convergent in such spaces (cf. Proposition . Below we give a full characterisation
of them in a slightly more general context.

Let X be a non-empty locally compact Hausdorff space. Functions fi, fa,... € Co(X) converge weakly to a
function g € Cy(X) iff both the following conditions are satisfied:

o lim,, ., fn(x) = g(z) for all z € X; and

® sup,,~o [ fulleo < 00

To see the necessity of these conditions, consider evaluation functionals e,: Co(X) 3 f — f(z) € K to in-
fer the former, and use Theorem [8:12] to get the latter. Conversely, if both these conditions are satisfied, then
f1, f2,... converge weakly to g, thanks to the Riesz representation theorem: each bounded linear functional
¢: Co(X) — K has an integral form ¢(f) = [, f(x)7(x)du(x) for some probabilistic Borel measure p on X and
a bounded Borel function 7: X — K. Now it follows from the Lebesgue’s dominated convergence theorem that
limy oo [y fr(@)7(2) du(z) = [y g(z)7(2z) du(z) (here we need the boundedness of the sequence (fn),—; [!]). In
other words, lim, o ¢(frn) = #(g), and we are done.

As an immediate consequence of Theorem [B.7] we obtain

8.15 Theorem. (Mazur)
Let a sequence (x,,),-, of vectors of a normed vector space E be weakly convergent to a € E. Then for each n > 0

there exist non-negative real numbers tgn), ceey %") such that 37 _, t,(cn) =1 and

ILm ||a — Zt;")mnH =0.
k=1

Proof. We may and do assume that a = 0. For each n > 0 let W,, be the set of all vectors of the form 2221 thxk
where t1,...,t, are non-negative reals that sum up to 1. Set

- inf{||w]: weW,}.

Then W,, C W,41 and ¢, > cp+1 > 0. Moreover, the norm closure W of UZO=1 W, is a closed convex set in F¥ and
hence it is also weakly closed, by Theorem In particular, 0 € W. We infer that lim,, .. ¢, = 0 and the conclusion
follows. O

8.16 Proposition.
A linear subspace V of E* (where E is a normed vector space) is weak* closed iff V = (tV)L.
More generally, for any set A C E*, (*fA)* coincides with the weak* closure of lin(A).

Proof. Tt is sufficient to show only the second claim. It follows from its definition that the annihilator is always a
weak* closed linear subspace. Hence the weak* closure W of lin(A) is contained in (*A)*. On the other hand, for any
¢ ¢ W there is a weak* continuous linear functional £: E* — K such that supRe&(W) < Re (o) (by Theorem [7.16)).
Since W is a linear subspace, we infer that (W) = {0}. Further, it follows from Theorem that £ is of the form
&(a) = a(b) (a € E*) for some b € E. Then b € 1A and, consequently, ¢ ¢ (tA)L (as ¢(b) # 0), which finishes the
proof. O

Another central tool of functional analysis is stated below.

8.17 Theorem. (Banach-Alaoglu Theorem)
For any normed vector space E the closed unit ball of E* is compact in the weak™ topology.

Proof. This result is an immediate consequence of the Tychonoff’s theorem (on the compactness of the product of

compact spaces). Indeed, let E serve as a set of indices. For any non-zero p € E set K, L |lp|| Bk and let Ky et {0}.

40 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

Observe that the function
O: B3 ¢ (¢(p)per € [[ K=K"
pEE
is a topological embedding when E* is equipped with the weak* topology and K¥ with the product one. So, Bg- is
weak® compact iff its image via ® is a compact set in K. Since <I>(BE*)7C [Ler Kp (C K¥) and T def [Ler Kp
is compact (by the Tychonoff’s theorem), we only need to check that ®(Bg-) is closed in K¥, which is immediate

because ®(Bp-) consists precisely of all (t,),cr € K that satisfy all the following conditions (for all p,q € E and
s € K):

° 1, € Ky
® lptq =1tp tig

o gy = Stp.

8.18 Theorem. -
Let E be a normed vector space and S stand for the ball Bg- equipped with the weak® topology. The following
conditions are equivalent:

(i) Q is metrisable;
(i) Q is first countable;

(iii) E is separable.

Proof. First assume that F is separable. Let D = {d;,ds,...} be a dense set in Bg. Then the formula

ef o 1 )
I¢lp =" Srlo(da)l (6 € B7)

n=1

correctly defines a (new) norm on E* (which is, in general, non-equivalent to the original norm of E*). To show (i), it
is sufficient to check that this norm induces a metric that is compatible with the weak™ topology (only) on 2. To this
end, fix (¢o),cy; C Q2 and ¥ € Q. Observe that if (¢5), .y, converges to ¢ (in €2), then

(3:1) lim (6 — b =0

(as [|¢o — Y|l < D p_y |00 (d) — 9 (dr)| +2'7™). Conversely, if (8:1]) holds, then lim, ey ¢, (dy) = 9(dy) for any k > 0.
Now fix arbitrary a € Bg and € > 0. Then there is k > 0 such that ||a — di|| < /3. Further, there exists og € ¥ such
that |¢s(di) — ¥ (di)| < /3 whenever o > 0. Then, for all such o,

9o (a) —P(a)| < [do(a — di)| + |do(di) — P (di)| + [¢(di — a)| < 2]l — di|| + |¢o (dr) — P(di)| <e,

which shows that lim,ex; ¢ (a) = 1(a). Since a runs over all points of Bg, we simply conclude that ¢, & ¥, and we
are done.

Now assume that  is first countable. This implies that there exist a sequence (F, )., of finite subsets of E and
a sequence (e,,),—, of positive real numbers such that the sets

U, ¥ (Ve eFy: |6(z)] <en}  (n>0)

form a basis of neighourhoods of the origin in Q. As V def lin(J;2, F) (C E) is separable, it is enough to show

that V = E. To this end, take any ¢ € V1. If ¢ was non-zero, take any b € E with ¥(b) = ||| and observe
that V &' {$ € Q: |6(b)] < 1} is a neighourhood of the origin in §2 that excludes Hi}i\l and, consequently, does not

contain any of the sets U, (as ﬁ € N2, Uy). The above argument shows that V+ = {0} and hence V = E, by
Proposition (p.[26). As (ii) trivially follows from (i), the whole proof is finished. O

As a consequence of the last two results, we obtain

41 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

8.19 Theorem. (Banach-Mazur Theorem)
Every separable normed vector space is linearly isometric to a linear subspace of C([0,1],K).

Proof. Let E be a separable normed vector space. Denote by K the ball Bg- equipped with the weak* topology. We
have already known that K # & is compact and metrisable. Moreover, being a convex subset of a locally convex space,
it is both connected and locally connected (exercise). So, it follows from the Hahn-Mazurkiewicz theorem that there
exists a continuous surjection u: [0,1] — K. We will involve the map w in the last step of the proof.

For any = € F define &: K — K by the rule &(¢) = ¢(z). Observe that & € C(K,K) and that

T:E>z— e C(KK)

is a linear operator. Moreover, T is isometric, thanks to Corollary (p. . So, to finish the proof, it is sufficient
to notice that the function S: C(K,K) > f+— fou € C([0,1],K) is a linear isometry (because u is surjective) and to
consider the composition SoT: E — C([0,1],K) (that is also a linear isometry). O

The idea used in the above proof can also be involved to obtain the following

8.20 Theorem. (Mazur’s theorem)
The closed convex hull of a compact set in a Banach space is compact as well.

Proof. Let E be a Banach space and € be the closed unit ball in E*, equipped with the weak* topology. We know
that € is a compact space. As in the previous proof, for each z € E we define &: Q@ — K by #(¢) = ¢(x). Then
:E>zx— &€ C(QK) is a correctly defined linear isometry. So, for any convex set W C E the image of the
closed convex hull of W via ® coincides with the closed convex hull of ®(W) (as E is a complete metric space).
Therefore, instead of considering arbitrary Banach spaces, we can assume that £ = C(£,K) instead. And for such
spaces compact sets are characterised by a classical Ascoli-like theorem. It says that a set K C C(Q,K) has compact
closure (in the uniform convergence topology) iff K is bounded and all functions from K are equicontinuous; that is,
if for any x € Q and each € > 0 there is a neighbourhood U of x such that diamg f(U) < ¢ for all f € K. With the
aid of this characterisation we can easily proof that the convex hull W of a compact subset M of E = C(Q,K) has
compact closure. To this end, first we observe that W is bounded (as all balls in E are convex). Next, for fixed x € Q
and € > 0 we find (thanks to the compactness of M) a neighbourhood U of x witnessing equicontinuity of M (for ).
Now arbitrary function g € W can be written in the form g = 22:1 ti fr where tq,...,t, are non-negative scalars
that sum up to 1, and f1,..., f, belong to M. So, it follows that | fx(p) — fx(q)| < € for all p,q € U. Consequently, for
such p and ¢ we also have [g(p) — g(a)| = | X5y te(fr(p) — fu(@))| < 3op_y tel fu(p) — fx(g)| < &, which shows that W
is equicontinuous and the conclusion follows. O

We are now ready to give an important example related to the Krein-Milman Theorem (Theorem [7.22)).

8.21 Example.
Let X be a compact Hausdorff space. Denote by Z(X) and M,.(X), respectively, the o-algebra of all Borel subsets
of X and the real vector space of all signed (that is, real-valued) regular Borel measures on X. For any pu € M,.(X)

let ¢,: C(X,R) — R be given by ¢,(f) def Jx f(x)dp(z). According to the Riesz representation theorem, the
assignment

M,(X) 5 1 g € C(X, R)*

correctly defines a bijective linear operator ®. The image K of the set Prob,(X) of all regular probabilistic Borel
measures on X under ® consists precisely of all linear functionals L: C(X,R) — R that are non-negative (that is,
such that L(f) > 0 for all non-negative f € C(X,R)) and send the function constantly equal to 1 to the scalar 1.
As such, K is weak* compact (and, of course, convex). One transports the weak* topology of K to Prob,(X) (via
®) and calls this topology on Prob,.(X) again weak*. (Such a terminology is present e.g. in dynamical systems).
In this way Prob,(X) becomes a compact convex set w.r.t. its weak™® topology. Convergence in this space is
characterised as follows: a net (i¢),cy, C Prob,(X) tends (weak*) to A € Prob,(X) iff

(8:2) lim deu(,:/xfdA (f € C(X,R)).

When X is metrisable, one proves that all probabilistic Borel measures on X are regular and thus one writes simply
Prob(X) instead of Prob,(X) in that case. Prob(X) (for metrisable X) is metrisable in the weak* topology.
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It is not difficult to show that ext(Prob, (X)) consists precisely of all measures 0, (a € X) where

SR

(exercise). In particular, ext(Prob, (X)) is compact and naturally homeomorphic to X. It follows from the Krein-

Milman theorem that all probabilistic measures that are supported on finite sets form a (weak*®) dense subset of
Prob,.(X).

8.22 Theorem. (Goldstine’s theorem) B
For every normed vector space E, the set kg(Bg) is weak™ dense in Bg«~.

Proof. For simplicity, set K def 4 £(Bg) and consider X 4f e with the weak* topology. Since K is absolutely convex
and X is locally convex, we infer from Theorem that the weak* closure of K coincides with its bipolar. However,
it follows from item (b) of Theorem [8.6| that X* may naturally be identified with E. Under this identification, K°
coincides with Bg (thanks to Corollary [5.13] p. . Consequently, K°° = Bg-- and we are done. O

As a consequence, we obtain the following result, sometimes attributed to Banach.

8.23 Theorem.
A normed vector space is a reflexive Banach space iff its closed unit ball is weakly compact.

Proof. If E is a reflexive Banach space, then By in the weak topology is homeomorphic to Bg«~ in the weak* topology

via kg (by Proposition [8.11). So, the weak compactness of By follows from Theorem Conversely, if By is weakly
compact, then kg(Bg) = Bg+«, thanks to Theorem and (again) Proposition Consequently, kg is surjective
and we are done. O

There is also another characterisation of reflexivity (for Banach spaces), but its proof is much more difficult
(therefore we skip it):

8.24 Theorem. (James’ theorem)
A normed vector space is a reflexive Banach space iff any its bounded linear functional attains its morm. More
precisely, a normed vector space E is a reflexive Banach space iff for any ¢ € E* there exists x € By such that

¢(x) = [l
(without proof)

Basic consequences of Theorem [8.23] are listed in the following

8.25 Corollary.
(A) A closed linear subspace of a reflexive Banach space is reflexive as well.

(B) If T: E — F is a bounded surjective linear operator between two Banach spaces and E is reflexive, then so
is F. In particular, a Banach space that is isomorphic (as a Banach space) to a reflexive Banach space is
reflexive as well.

Proof. If V is a closed linear subspace of a reflexive Banach space F, then V is weakly closed in E (by Theorem [8.7]).
Consequently, (By =) BpNV is weakly compact (as a weakly closed subset of a weakly compact set—see Theorem |8.23))
and the conclusion follows from Theorem [8.23

Now if T: E — F is as specified in (B), then T is open (by Theorem p. . So, there is 7 > 0 such that
Bp C rT(Bg). Note that T is continuous in the weak topologies of E and F (why?); and Bp is weakly closed in F
(again by Theorem . Therefore T(Bg) is weakly compact and so is Br. Consequently, F' is reflexive (again thanks

to Theorem [8.23)). O
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8.26 Definition.
Let T: E — F be a bounded linear operator between normed vector spaces. The adjoint operator of T, denoted
T*: F* — E*, is defined by T*(¢) = po T (¢ € F*).

8.27 Proposition.
For any bounded linear operator T': E — F' between normed vector spaces, the operator T* is bounded as well and
|T*|| = ||T||. Moreover,

(8:3) T**okg =kpoT.

Proof. Observe that ||T(¢)|| = ||¢o T|| < ||¢]| - ||T'||, which implies that || 7| < ||T']|. In particular, T** is well defined
and ||T**|| < ||T*||. Note that for any ¢ € F* and « € E we have:

(T (ke (2))(¢9) = (ke(x) 0 T7)(¢) = (kE(2)(T"(9)) = (rE(2))(¢o T)
= (¢oT)(z) = ¢(T(2)) = (kr(T(x)))(9),

which implies that T**(kg(z)) = kp(T(x)) or, equivalently, T** o kg = kp o T. In particular, for any z € E,
IT@) = lwr(T @) = 1T (kp@)[| < [T - [se(@)]] < T[] - ||2]] and hence [T < [T~ O

Equation (8:3)) says that, when identifying E with a subspace of E** via kg and similarly for F', the operator T**
extends T'. In particular, if E is reflexive, T' and T** ‘coincide.’

8.28 Theorem.
Let E and F be two normed vector spaces.

(A) For any T € Z(E, F) the operator T*: F* — E* is continuous in the weak* topologies of E* and F*.
(B) For a linear operator S: F* — E* the following conditions are equivalent:

(i) S is continuous in the weak* topologies;

(ii) there exists a bounded linear operator T: E — F such that S =T*.

Proof. We start from (A). Let (¢5),cy, C F* converges to ¢ € F* in the weak™ topology. This means that this net
converges pointwise to ¢. Since T is continuous, we infer that the functionals T o ¢, converge pointwise to T o ¢.
Equivalently, the functionals T*(¢,) converge to T*(¢) in the weak™ topology, and we are done.

We now turn to (B). Thanks to (A), we only need to show that (ii) follows from (i). To this end, we assume S
satisfies (i). For any = € E the functional e, : E* — K (e, (¢) = ¢(x)) is weak™ continuous and hence so is ¢, 0 S. We

conclude from Theorem [8.6] that there is a (unique) vector v € F such that e; 0.5 = ¢, (ey: F 3 & — £(v) € K). The

uniqueness of v allows us to set T'(z) def . Tn this way we obtain a function T': E — F. The equation ¢; o S = e,

means that

(8:4) S(@)=¢oT  (¢€F).

Since the functionals from F™* separate the points of F', we infer from that T is linear. So, it remains to check
that T is bounded (because then shows that S = T*). To this end, take any sequence z1, 22, ... € E convergent
to 0. We claim that then (T(x,)),_; converges weakly to 0 (in F). Indeed, for any ¢ € F* we have (thanks to (8:4))
(T (xn)) = (S(¢)(zn) = 0 (n — 00). Now we apply Theoremto conclude that the sequence (T'(z,)),-, is norm
bounded. In this way we have shown that T transforms sequences convergent to 0 into bounded sequences. A linear
operator (between normed vector spaces) with this property is automatically continuous (exercise!). O

9 Krein-Smulian and Eberlein[-Smulian] theorems

The aim of this chapter is to prove the following two celebrated results of functional analysis:

44 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

9.1 Theorem. (Krein-Smulian Theorem, 1940) B
Let E be a Banach space and A C E* a convex set. Then A is weak* closed iff AN nBg~ is weak* closed (or,
equivalently, weak® compact) for each n > 0.

It is worth underlying that the above result is false (in general) when E' is only a normed vector space.

9.2 Theorem. (Eberlein[-Smulian] Theorem, 1947)
A subset of a Banach space is weakly sequentially compact iff it is weakly compact.
More generally, if A is a subset of a Banach space E such that:

(wepe) for any infinite subset D of A there exists a point d € E such that U N D is infinite for any weak
neighbourhood U of d in E,

then the weak closure K of A in E is both weakly compact and sequentially weakly compact, and has the following
property:

o for any B C K and any point z from the weak closure of B there exists a sequence by,bs,... € B that
converges weakly to z.

Weak sequential compactness of weakly compact subsets of Banach spaces was discovered by Smulian in 1940
(actually this is a rather easy observation, see Corollarybelow). The converse (that is, weak compactness of weakly
sequentially compact sets) was obtained by Eberlein in 1947. F. Albiac and N.J. Kalton in their book Topics in Banach
Space Theory (Graduate Texts in Mathematics 233, Second Edition, Springer, 2016) call this result Eberlein-Smulian
theorem. They write there: “The Eberlein-Smulian theorem was probably the deepest result of earlier (pre-1950)
Banach space theory.”

The proofs of the above theorems will be preceded by auxiliary lemmas. To simplify statements, we fix a Banach
space E (from now to the end of this chapter) and call a set A C E* clob* if ANnBg- is weak* closed for any n > 0.

9.3 Lemma.
Any clob* set A C E* is closed in the norm topology, and r(A+ u) is clob* as well for any r > 0 and u € E*.

Proof. The norm closedness of A easily follows from the boundedness of norm convergent sequences. Fix an integer N >
0 such that [|ul| < N as wellas 2 < N, set K 4 B+ and note that for anyn >0, 2K —u C (n+1)NK. Since 2K —u is
weak™ closed (e.g. by the Banach-Alaoglu theorem), we infer that the set (2K —u)NA (= (2K —u)N((n+1)NKNA))
is weak™ closed as well (as A is clob*). Thus, so is nK Nr(A+u) = r[(ZK —u) N A] + ru, and we are done. O

9.4 Lemma.
For any r > 0, the collection F, def {F°: @#F C %BE finite} consists of weak* closed sets, is downward directed
and

(| @=rBe-.

QEF,

Proof. 1t is clear that F° is weak™ closed and that F'° N D° = (F'U D)°, which yields downward directedness. Denote
by S the collection of all finite non-empty subsets of LBg. Then Noer, @ = Npes F° = (Upes F)° = (1Bg)° =
T(BE)O = T‘BE*. O

9.5 Lemma. -
If A C E* is a clob* set disjoint from Bg~, then there is a vector x € E such that

(9:1) Reg(z) >1 (¢ € A).
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Proof. We may and do assume that A # &. First we will construct inductively a sequence of finite non-empty sets
Fy, Fi,... C E such that for all n > 0:

(1,) F, C 21="Bp: and
(2,) AN2"Bp- NN, Ff = 2.

We start from Fp % {0}. Observe that (19)—(20) hold (as AN Bg- = @). Now assume that n > 0 and Fp, ..., F,_;

have been defined. Set K %' A n 2"Bp N ﬂZ;Ol Fy. Since A is clob*, K is weak® compact (by the Banach-Alaoglu

theorem). Denote by S the collection of all finite non-empty subsets of 2= Bp. It follows from Lemma that
KNNges S° = KN2""'Bp. = &, where the last equality follows from (2,,_1). So, we conclude from properties listed
in Lemma and weak* compactness of K that there is a set F,, € S such that K N F; = &. In this way (1,,)—(2,)
are satisfied.

Having the sets Fy, Fy, ..., we arrange all the elements of |J)—, F}, in a sequence (p, )., in a way such that
(9:2) Jim{|pp[| = 0

(this is possible by (1,,) and the finiteness of each F),). It follows from (2,) that
(9:3) An{p,: n>0}°=a.

Further, enables us to define correctly a (bounded) linear operator P: E* 5 ¢ — (¢(py)),—, € co. Note that
P(A) is convex and disjoint from B, (the latter property is implied by ) So, it follows from Theorem (p.
that there exists a bounded linear non-zero functional ¢: ¢ — K such that supRe{(B,,) < inf Re{(P(A)). Without
loss of generality, we may and do assume that ||| = 1. Then supRe&(B.,) = 1 (why?) and Re{(P(¢)) > 1 for
any ¢ € A. Finally, ¢ is of the form {((wy,),2;) = > orey anw, where (a,),-; C Kand > 7, |a,| = 1. We define

n=1

% >0 | anpn (the series converges in E—why?). Then, for any ¢ € A:

Red(x) = Re( " and(pn) ) = Re&((@(pa))isy) = Re¢(P()) = 1,

Now we are ready to give

Proof of Theorem[9.1] Fix u € E*\ A. It is suffient to show that u does not belong to the weak* closure of A. It follows
from Lemma that A is norm closed. So, there is 7 > 0 such that AN (u+ 1Bp-) = @. Then Bp- Nr(A—u) = @

as well. Another application of Lemma yields that r(A — w) is clob*. Thus, we infer from Lemma that there

exists © € E such that Re¢(x) > 1 for all ¢ € (A — u). In other words, r(A —u) C H &f {¢p € E*: Reg(x) > 1}.

Since H is weak* closed and does not contain the zero functional, we see that 0 is not in the weak™ closure of (A —u).
Equivalently, u is not in the weak* closure of A, and we are done. O

9.6 Corollary.
If E is a Banach space and F' C E* is a convex cone (that is, if F is convex and rF C F for all r > 0), then F
is weak™® closed iff F N Bg+ 1s weak™ closed.

(proof—ezercise)

In particular, the above result applies to linear subspaces F' of E*.

9.7 Corollary.
If E is a separable Banach space, then a conver set A C E* is weak™® closed iff it is sequentially weak* closed.

Proof. If A is sequentially weak® closed, then A N ILB g+ is weak® closed (for any n > 0), since nBg+ is metrisable
in the weak* topology (as it is homeomorphic to B+ equipped with the weak* topology, and E is separable—see
Theorem [8.18)). So, weak* closedness of A follows from Theorem O

The following consequence of the Krein-Smulian theorem is very useful.
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9.8 Theorem.
Let £ and F be Banach spaces. A linear operator T: E* — F* is continuous in the weak™ topologies of E* and
F* iff sois T | Bg~.

Proof. Assume the restriction S of T to the closed unit ball is continuous in the weak™ topologies. First consider
any v € F and set £ = kp(v). We claim that £ o T is continuous in the weak® topology. Indeed, since £ o T is a
linear functional, it follows from Corollary (p. @ that this function is weak™ continuous iff its kernel N is weak*
closed. But N N Bg- = S~H(N(€)) is weak* closed (since both S and ¢ are weak* continuous). Now an application of
Corollary yields that N is weak* closed and, consequently, £ o T is weak™ continuous.

Now take any net (¢,),cy, C £* convergent to 0 in the weak™ topology. We only need to show that (T'(¢s))sex
converges to 0 in the weak™ topology of F*. This is equivalent to the statement that lim,ex(7(¢5))(v) = 0 for any
v € F, which is valid thanks to the first part of the proof (as (T'(¢5))(v) = (kp(v) 0 T)(ds))- O

Now we pass to weak compactness. We begin with a simple

9.9 Lemma.
A weakly compact set in a separable Banach space is weakly metrisable.

Proof. Let K be a weakly compact subset of a separable Banach space X. For any non-zero vector x € X take a
functional ¢, € X* with ¢, (x) # 0. Since X is separable (and metrisable), the cover {¢;!(K\ {0})},ex\ (o3 of X \ {0}
has a countable subcover (of X \ {0}). This means that there is a sequence a1, @s,... € X* such that for any two
distinct vectors = and y in X one can find an index n > 0 with a,(x) # a,(y). In particular, the function

P: K>z (ay(z)),, €KY

is one-to-one. It is also continuous when K is equipped with the weak topology and K“ with the product one. Hence
® is a topological embedding (since K is compact in the weak topology) into a metrisable space, and we are done. [

9.10 Corollary. (Smulian theorem)
A weakly compact set in a Banach space is sequentially weakly compact.

Proof. Let x1,x2,... be vectors from a weakly compact set K in E. Then the closure F' of a linear span of this
sequence is a separable Banach space as well as a weakly closed set in E (by Theorem. Since the weak topology of
F' coincides with the topology induced from the weak topology of E, we conclude that K N F is a weakly compact set
in F. So, Lemma applies and K N F is weakly metrisable. Being metrisable and compact (in the weak topology),
K N F is sequentially compact. Therefore our given sequence has a subsequence that is weakly convergent to a certain

point from K N F', and we are done. O
9.11 Lemma. B
For any finite-dimensional linear subspace V' of E** there is a finite set I C Bg« such that for any £ € V':
lel e
L < maxfle()l: o).

Proof. The unit sphere S of V' (that is, the set of all unit vectors in V') is compact and therefore there exists a finite
set J C S that is a %—net in S; that is, for any g € S there is p € J such that

1
(9:4) =Bl < 7

Further, for any p € J there is a unit vector ¢, € E* such that p(1,,) is a real number greater than %. We define I as
the set of all 1, where u runs over all elements of J. Now take an arbitrary functional 5 € S and choose u € J such

that (9:4) holds. Then for ¢ %' 1), (€ I) we get

>

1
= 11,

B > 0] ~ 108~ m(@)] > 5 ~ |
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and the whole conclusion easily follows. O

9.12 Lemma.

Let A be a bounded subset of E that satisfies (wepe) and W denote the weak™ closure of kg(A) in E**. Then W
is weak* compact and for any & € W there is a sequence of vectors from A that converge weakly to some ¢ € E
such that kg(c) = €. In particular, the weak closure of A is weakly compact.

Proof. Boundedness of A implies that W is weak* compact (by the Banach-Alaoglu theorem). We fix £ € W and will
show that there exists a sequence (a,),.; C A that converges weakly in E to certain ¢ € E such that kg(c) = &.
Since £ belongs to the weak® closure of kg (A), it follows that:

(%) for any finite set C C E* and € > 0 there is a € A such that |{(¢) — ¢(a)| < e for all ¢ € C.

We will now construct inductively a sequence a1, ag, ... of vectors from A and an increasing sequence of finite subsets
Fy, C F5 C ... of Bg« such that for any n > 0:

(9:5) £6) ~ b < - (9EF)

and

(9:6) Inll < 2max{[n(¢): ¢ € Fn}  (n€lin{ —rp(a;): 0<j<n})

where ag &ef ), Setting Fj def {0}, we assume that ag,...,a;_1 and Fy C F} C ... C Fy_1 C Bg- have been already

defined. Applying Lemma to V = lin{¢ — kp(a;): 0 < j < k}, we obtain a finite set I C B+ such that

holds for n = k and F} def F_1UI. Now (x) with C = Fy and € = % gives us a point ay € A such that (9:5) holds
for n = k.
In this way both the sequences (a,,),-, and (F),),_, have been constructed. Now (wcpc) of A yields a point ¢ € E

such that any weak neighbourhood of ¢ in E contains infinitely many entries of (a,)"-, (such c exists even if the set

n=1
DY {an: n >0} is finite). In particular, ¢ belongs to the weak closure of D. Since the norm closure Z of Z def lin(D)

is weakly closed (by Theorem , we conclude that c € Z.

Fix for a moment ¢ € M def Up—y Fn, say ¢ € Fy,, and € > 0. Since {z € E: |¢(z) — ¢(c)| < e} is a weak
neighbourhood of ¢, we conclude that there are infinitely many indices n > m such that |¢(a,) — ¢(c)| < . But then,

for any such n (since F,, C F,):

£06) — 6] < 16(8) — 6(an)| + [6(an) — H(0)] <~ +2,
by (9:5). Letting n — oo, we get |£(¢) — ¢(c)| < € and, consequently:
(9:7) (@) =0o(c) (P M).

On the other hand, vields that for any 1 € X € lin{¢ — kg(an): n >0} =lin({€} U{rg(an): n>0}) (the last
equality is valid because ap = 0):

(9:8) Il < 2sup{[n(¢)|: ¢ € M}.

Observe that the set of all n € E** that satisfy is norm closed in E**. (Indeed, M C Bpg- and therefore the
right-hand side of defines as semi-norm ¢ on E** such that ¢(n) < 2|n|| for any n € E**.) In particular,
is valid for all n € X (where X is the norm closure of X). Finally, since kg(D) C X, we infer that kg(Z) C X and,
consequently, kg (c) € X. So, applied to n = ¢ — kg(c) (€ X) combined with gives £ = kg(c).

The above argument shows that W C kg(FE). Since W is weak* compact, it follows from Proposition that

the set K &' ngl(W) is weakly compact. Since D C K, also ¢ € K. Now Lemma applied to K N Z implies that

(an);2; has a subsequence that is weakly convergent to ¢ (since ¢ is a limit point of the sequence (a,),- ), and finally
we are done. O

Proof of Theorem[9.2] Observe that each weakly sequentially compact set satisfies (wepe). By Corollary the same
is true for weakly compact sets. So, it remains to prove the additional claim. To this end, let A be as specified in the
theorem. We claim A in bounded. Indeed, if A is unbounded, Corollary yields that there exists ¢ € E* such that
#(A) is unbounded. Equivalently, there exists a one-to-one sequence (ay)—; C A such that lim,_, |¢(a,)| = oco.
Observe that then for any vector b € E| its weak neighbourhood {x € E: |¢(x)| < |¢(b)| + 1} contains only a finite

number of points from D def {an: n > 0} and, consequently, D witnesses that (wcpc) does not hold for A. Thus, A is
bounded.
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It follows from Lemma that the weak closure K of A is weakly compact. Hence, K is weakly sequentially
compact as well (by Corollary . Now take any B C K and a point z that belongs to the weak closure of B in
E. Then kg(z) is in the weak* closure of kg (B). Since B satisfies (wcpe) (as a subset of a weakly compact set), thus
Lemma applies to B (in place of A). So, we conclude that there is a sequence (bn)zo=1 C B that converges weakly
to some ¢ € E such that kp(c) = kg(z). But then ¢ = z and the proof is finished. O

The following result is a direct consequence of the Eberlein theorem and Theorem [8.23

9.13 Corollary.
A Banach space is reflexive iff every bounded sequence has a weakly convergent subsequence.

(proof—ezercise)

9.14 Example.

According to Conway, the following example is due to von Neumann. Let A = {z(m,k): 1 < m < k} where
z(m, k) = (zn(m, k));—, and z,,(m, k) = 1, zx(m, k) = m and z,,(m, k) = 0 otherwise. Then 0 belongs to the
weak closure of A in ¢35, but there is no sequence of elements of A that converges weakly to 0. The details are left
to interested readers.

We end this chapter with another result attributed to Krein and Smulian:

9.15 Theorem. (Krein-Smulian theorem on weak compactness)
If a subset of a Banach space is weakly compact, then its closed convex hull is weakly compact as well.

10 Vector integral

In this chapter we present the most classical version of the so-called Pettis integral. The details are specified below.

10.1 Definition.
Let E be a locally convex Th-space and (2,97, 1) a measure space. A function f: Q — F is Pettis integrable (or,
more precisely, Pettis u-integrable) if:

e for any ¢ € E*, the function ¢ o f: Q — K is both 9t-measurable and p-integrable; and

e there exists a vector a € E such that for all ¢ € E*:
(10:1) /chOfdu: ¢(a).

(Since E* separates the points of E, the above a is uniquely determined by ([10:1)).)

If these two conditions hold, we call the above vector a the Pettis integral of f and denote it by [, fdpu. So, if f
is Pettis integrable, then:

voe Bs o [ fw)dnw) = [ 6(fw)duto).

For simplicity, in the above context, we will call a function f: Q — E weakly measurable (or, more precisely, weakly
M-measurable) if ¢ o f is M-measurable for all ¢ € E*.
We begin with a few basic properties of the concepts introduced in Definition [10.1

10.2 Proposition.
For a function f = (f1,..., fn): Q@ = K" where (Q,IM, u) is a measure space (and n > 0 is finite), the following
conditions are equivalent:
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(i) f is Pettis integrable;
(i) f;: Q@ — K is M-measurable and p-integrable (in the ordinary sense) for j =1,...,n.

Moreover, if [ is Pettis integrable, then

/Qfdu:(/ﬂfldu,...,/gfndu)

(proof—ezercise)

10.3 Proposition.
Let (Q,9M) be a measurable space and E a locally convex Ta-space.

(A) For any measure u on M, the set of all Pettis p-integrable functions f: Q — E is a vector space (with
pointwise operations) and the Pettis integral (w.r.t. p) is a linear operator on that space.

(B) For any weakly M-measurable function f: Q — E the set M of all non-negative measures p: MM — [0, o]
such that f is Pettis p-integrable is a cone (in the sense that sy +rv € M for all p,v € M and real scalars
s, > 0) and the function M > p+— fQ fdu € E is additive and positively homogeneous.

(C) Let (A, M) be a measurable space, p: M — [0, 00] a measure and 7: & — A be a measurable function (that is,
77 YH(N) € M for any N € N). Let v: N — [0, 00] stand for the transport of p via T; that is, v(B) e u(r=1(B))
for all B € N. For any weakly measurable function f: A — E, the function f o T is weakly measurable as
well, and f is Pettis v-integrable iff f o T is Pettis p-integrable. Moreover, if f is Pettis integrable, then

/Afdy:/QfOTdu.

(D) For any Pettis p-integrable function f: Q — E (where p: M — [0,00] is a measure) and any continuous
linear operator T: E — F (where F is a locally conver Ty-space) the function T o f is Pettis p-integrable as

well and [, To fdu="T([, fdp).

(proof—ezercise)

10.4 Proposition. (Generalised dominated convergence theorem)
Let (2,90, 1) be a finite measure space and E a locally conver Ta-space. Further, let fn,: Q — E (n > 0) as well
as g: Q — E be Pettis p-integrable. If the vectors fn(w) converge weakly to g(w) for p-almost all w € Q and the

def | oo

set B = J,_; fn(2) is bounded (in the sense of TVS’s), then

fndu—>/gd,u (n — o)
Q Q

i the weak topology.

Proof. Fix ¢ € E*. It follows from our assumptions that the functions ¢ o f,, converge pointwise p-almost everywhere
to ¢ o g and are uniformly bounded (as ¢(B) is bounded in K). So, we infer from the (classical) Lebesgue’s dominated
convergence theorem that lim, o [, ¢ © frndu = [, ¢ © gdp, which the conclusion of the proposition easily follows
from. O

The following simple observation appears to be a key property of the Pettis integral.

10.5 Lemma.
Let (2,90, 1) be a probabilistic space and W be a closed conver set in a locally convex Ta-space E. If u: Q@ — E
is Pettis integrable and u(w) € W for p-almost all w € Q, then fQ udp e W.

50 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

Proof. Let a € E'\ W be arbitrary. It follows from Theorem (p. that there exists a functional ¢ € E* such
that Re ¢(a) < inf Re p(W). Then (¢( [, fdp) =) [oéo fdu # ¢(a), since Rep o f > Red(a) p-almost everywhere
and p(Q) = 1. Consequently, [, fdu # a and we are done. O

10.6 Lemma.
If f: Q = K is weakly 9-measurable where (,9M) is a measurable space and K is a weakly compact set in a
locally convex Th-space, then uwo f: Q — C is M-measurable for any weakly continuous function u: K — C.

Proof. Below we consider K with the topology induced from the weak topology of E. The set A of all weakly continuous
functions u: K — C for which uo f is 9t-measurable is a closed unital subalgebra of C(K,C) such that @ € A for any
u € A. Moreover, A contains E* | K (cf. Theorem [8.6] p.[38) and therefore A separates the points of K. Consequently,
it follows from the Stone-Weierstrass theorem that A = C'(K,C) and we are done. O

10.7 Theorem. (Pettis integrable functions)
Let (2,9, 1) be a probabilistic space and E a locally convex To-space. If f: Q — E is weakly 9M-measurable and
the weak closure K of the convex hull of f(2) is weakly compact, then f is Pettis integrable and fQ fdp e K.

Proof. For further purposes (of this chapter), instead of using only ¢ € E*, we will deal here with the set E of all
weakly continuous affine functions ¢: K — K. For any such ¢ let C consist of all a € K such that ¢(a) = fQ ¢o fdu.
(Note that the last integral exists since ¢ o f is measurable—by Lemma and bounded.) In other words, Cy =

Kn ¢_1({fg ¢ o fdu}). Hence Cy is a weakly compact set. Now fix a finite number of functions ¢1,...,¢, € = and

set Y gef (p1,...,0n): K — K" We infer from Proposition that the function F % Yo f:Q — K" is Pettis

integrable. Moreover, since F'(2) C ¢ (K) and #(K) is both convex and compact (as the image of such a set under a
weakly continuous affine map), an application of Lemma yields that fQ Fdu € ¢¥(K). In particular, there exists a
o1(b

point b € K such that ([, ¢10 fdu,..., [odnofdu) = (1(b),...,dn(D)). Consequently, b € ﬂ;—l:1 Cy,. So, the family

{C4s}pez is centered and we conclude from the weak compactness of K that A def N sez Cy is non-empty. A notice

that ¢(c) = [, ¢ o fdu for any ¢ € A (C K) finishes the proof (recall that = contains all functions of the form ¢ | K
where ¢ € E*, thanks to Theorem p- . O

Direct consequences of the above result follow.

10.8 Corollary.
Let E, (Q,9, 1) and f: Q — E be, respectively, a Banach space, a probabilistic space and a weakly measurable
function. In each of the following cases f is Pettis integrable:

(a) the weak closure of f(2) is weakly compact; or

(b) f is norm bounded and E is reflexive.

Proof. Ttem (a) follows from Theorems and whereas (b) is a direct consequence of Theorems and
823 O

10.9 Corollary.

Let E, (9, 1) and f: Q — E be, respectively, a locally convex Th-space, a probabilistic space and a weakly
measurable function such that the closure K of the convexr hull of f(Q2) is compact. Further, let F be a locally
convez Ty-space and P: K — F a continuous affine function. Then both f and P o f are Pettis p-integrable and

JoPofdu=P(f, fdp).

Proof. Both the sets K and L def P(K) are convex and compact. Consequently, the topologies of these sets (induced

from the given topologies of the entire spaces E and F') coincide with their weak topologies. In particular, K and L
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are weakly compact and P is continuous in the weak topologies of K and L. We infer that Po f is weakly measurable.
Further, it follows from the proof of Theorem that both f and P o f are Pettis p-integrable and

(10:2) o( [ ran)= [ woran

for any continuous affine function ¢¥: K — K (why?). So, for any ¢ € E* (10:2)) holds for ¢ = ¢ o P, which yields
gb(P(fQ fdw) = q&(fﬂ Po fdu). Since the functionals from E* separate the points of E, the conclusion of the result
follows. O

10.10 Corollary.
For every probabilistic Borel measure p on a compact Hausdorff space X and any weakly compact convex set K
in a locally convex Th-space, each weakly continuous function u: X — K is Pettis p-integrable.

(proof—ezercise)

Now we focus on a special context (that is quite useful in functional analysis)—mamely, on Pettis integration on
measures spaces of the form (X, u) where X is a compact Hausdorff space and p is a regular probabilistic Borel
measure on X.

For simplicity, we call a function f: X — E wcce (where X is a compact Th-space and F is locally convex and
Hausdorff) if it is weakly continuous and the weak closure of the convex hull of f(X) is weakly compact. It follows
from Corollary that each wcee function is Pettis p-integrable for any p € Prob,(X) (for the notation, consult
Example p. 42)). We use WC(X, E) to denote the set of all weee functions from X into E.

10.11 Theorem.
Let X and E be, respectively, compact Ts-space and a locally convex Ts-space.

(A) The set WC(X, E) is a linear subspace of the vector space of all weakly continuous functions (from X into
E) and for any p € Prob,(u) the function WC(X,E) > [ — fX fdu € E is linear and has the following
property:

(%) If f1, f2,... € WC(X, E) converge pointwise to g € WC(X, E) and the weak closure of |J;—, fn(X) is
weakly compact, then the vectors fX fn du converge weakly to fX gdp.

(B) For any f € WC(X, E), the function Prob,(X) > u— [, fdu € E is affine and continuous in the weak*
topology of Prob,.(X) and the weak one of E (cf. Example p.[49).

Proof. Ttem (A) is partially a special case of Propositions and and is left to the reader—here we focus only
the continuity postulated in (B). To this end, we fix a net (ps),cy, C Prob,(X) that converges to A € Prob,.(X) in the
weak™® topology of that space (cf. Example p- |42)). To show that then the vectors f « J dus converge weakly to
fX fdA, it is enough to check that lim,ex ¢( [ fdus) = d)(fX fd\) for any ¢ € E* (why?). But this is an immediate
consequence of 7 because ¢ o f € C(X,K). The details are left to the reader. O

10.12 Corollary.
Let K be a compact set in a locally convex To-space and let X stand for the closure of ext(K). Then the function

A: ProbT(X)B,uH/ iddpe K
b

is a continuous (in the weak™ topology of its domain) affine surjection.

Proof. Thanks to Theorem we only need to show that A is surjective (indeed, all the values of A lie in K—by
Lemma and the original topology of K coincides with the weak topology, thanks to the compactness of K).
To this end, observe that f y1id dé, = a for any a € X where J, is a unique probabilistic measure supported on {a}
(defined in Example p.-[f2). So, ext(K) C A(Prob,(X)). Finally, A(Prob, (X)) is a closed compact set contained
in K and therefore it coincides with K, by the Krein-Milman theorem (Theorem p- . O
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10.13 Theorem. (‘Converse’ of the Krein-Milman Theorem) B
Let Z be a subset of a compact convez set K in a locally conver Ty-space E. Then K = conv(Z) iff ext(K) C Z.

Proof. The ‘if’ part of the theorem is a direct consequence of Theorem (p. . To see the ‘only if’ part, set

X %' 7 and consider the function A: Prob,(X) > p+— [ id dp € K. Similarly as presented in the previous proof,

one shows that A is continuous and affine, and X C M def A(Prob,(X)). So, it follows from our assumption (that

K =vconv(Z)) that M = K. In particular, for any b € ext(K) the set F def A=1({b}) is non-empty. We infer from

Proposition (p-|35) that F is a face of Prob,.(X). Being compact convex and non-empty, F has an extreme point
(thanks to Lemma p. [36), say p. Then (again by Proposition [7.20)) p is an extreme point of Prob,(X), which
means that p has the form p = 4, for some a € X. But then b = A(u) = a and, consequently, b € X. O

10.1} Remark.
It follows from Theorem that for any measure p € Prob(K) where K is a compact set in a locally convex
Ts-space, the identity on K is Pettis p-integrable and fK id du belongs to K. The point fK id du is called the
barycenter of p.

11 Riesz representation theorem for C'(K)-spaces

In this chapter X is reserved to denote a non-empty locally compact Hausdorff space, %(X) stands for the o-algebra
of all Borel subsets of X (that is, #(X) is the smallest o-algebra that contains all open subsets of X) and P(Y") (where
Y is an arbitrary set) is used to denote the collection of all subsets of Y.

11.1 Definition. ,
A function f: X — R is compactly supported if the set supp f o 1R\ {0}), called the support of f,is compact.
By C.(X) we will denote the real vector space of all continuous real-valued functions on X that are compactly

supported.

11.2 Remark.

Although locally compact 715 spaces may not be normal, in all such spaces compact sets can be separated by
functions from C,.(X). Namely, if K and L are two disjoint compact subsets of X, then there exists a function
f € Cu(X) such that f | K =0 and f | L = 1. The above property is a direct consequence of the existence of a
one-point compactification of X (which is T4). We will involve this property in this chapter many times.

11.3 Definition.
Let X(X) denote the collection of all compact subsets of X (including the empty set). A content on X is a set
function p: X(X) — R4 such that the following three conditions are fulfilled:

e [(finite) additivity] u(K U L) = u(K) + p(L) for any disjoint sets K, L € K(X);
e [monotonicity] pu(K) < p(L) whenever K, L € X(X) satisfy K C L;
e [subadditivity] pu(K U L) < p(K) + (L) for any K, L € K(X).

A content p on X is said to be regular if for any K € K(X):

w(K) =inf{u(L): LeX(X), KCintL}.
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11.4 Definition.
Let 9 be a o-algebra of subsets of X that contains Z(X) and let p: MM — [0, o0] be a measure. A set A € M is
said to be:

o inner reqular if u(A) =sup{u(K): K € X(X), K C A};
o outer reqular if p(A) = inf{u(U): ACU — open in X};
e reqular if A is both inner and outer regular.
The measure p is called Radon if all the following conditions are satisfied:
o u(K) < oo for any K € K(X);
e each set A € M is outer regular;
e cach open set in X is inner regular.

A non-negative measure on 9 that is finite on compact sets and such that all measurable sets are regular is said
to be regular.

11.5 Definition.
A set function p: P(Y) — [0, cc] is said to be an outer measure if

e p(@) =0; and

o p(A) < p(B) whenever A C B CY; and

o p(UnZ A4n) <300 p(Ay,) for any Ay, Ag,...C Y.
If p is an outer measure, then a set A C Y is p-measurable (in the sense of Carathéodory) if
(11:1) VBCY: p(B)=p(BNA)+p(B\A).

The collection of all p-measurable subsets of Y will be denoted by 9(p).

In this chapter we will use the following classical theorem from measure theory (for a proof, see Chapter .

11.6 Theorem. (Carathéodory theorem on outer measures)
If p: P(Y) — [0,00] is an outer measure, then M(p) is a o-algebra and the restriction of p to M(p) is a measure.

We begin with basic properties of contents and Radon measures.

11.7 Proposition.
Let v be a content on X and let p: K(X) — R be given by u(K) = inf{v(L): L € X(X), K CintL}. Then u is
a reqular content on X such that v < p.

Proof. Tt follows from the monotonicity of v that v < u. It is also clear that p admits only non-negative real values
(why?) and is both monotone and subadditive. So, we only need to show that u is additive and regular. To this end,
fix two disjoint sets K and L from K(X). Then there are two disjoint sets P and @ such that K C int P and L C int Q
(why?). Then for any compact set M C X whose interior contains K U L we obtain v(M) > v(M N(PUQ)) =
v(IMNP)+v(MnNQ) > pu(K)+ p(L) and, consequently, u(K U L) > u(K) + p(L). On the other hand, if K C int R
and L C int S where R, S € X(X), then v(R) + v(S) > v(RNP)+v(SNQ) =v(RN(PUQ)) > (K UL) (as
KULCint(RN(PUQ))). So, u(K) + p(L) > u(K U L), which shows that u is a content.

Finally, for any K € X(X) and € > 0 there is a compact set L such that K C int L and v(L) < pu(K) + e. There
exists M € K(X) such that K C int M and M C int L (why?). Then u(M) < v(L) < u(K) + € and therefore p is
regular. O
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11.8 Proposition.
(A) If p is a Radon measure on X, then p [ X(X) is a reqular content.

(B) If p and X are two Borel measures on X that are Radon and coincide on K(X), then p = A.

Proof. To show (A), we only need to check that the restriction p of p to K(X) is regular. To this end, we fix K € K(X)
and € > 0. It follows from the outer regularity of K that u(U) < u(K) + ¢ for some open set U D K. Then there is a
compact set L C U such that K C int L (why?). We conclude that p(L) < u(U) < p(K) + € and therefore p is regular.

Now we pass to (B). Since each open set U in X is inner regular w.r.t. both p and A, we infer that u(U) = A(U).
Finally, since each Borel set A in X is outer regular w.r.t. both p and A, we conclude that p(A) = A(A4) as well. O

11.9 Proposition.
Let pi: B(X) — [0,00] be a Radon measure. If A € B(X) satisfies p(A) < oo, then A is regular.
In particular, finite Radon measures are reqular.

Proof. Since A is outer regular, there is an open set U D A such that u(U) < oo. Further, since U is locally compact
and Ty and B(U) C #A(X) and the restriction of p to U is Radon (on U), we may and do assume that U = X; that

is, we assume g is finite. Now let W = X U {w} be a one-point compactification of X. (So, W is a compact Hausdorff

space.) We extend p to a finite Borel measure A\: (W) — R4 by the formula \(B) def w(B N W). Observe that

each Borel set in W is inner regular (w.r.t. \). We will now show that each set B € Z(W) is outer regular (so, in
particular, A is Radon). If w ¢ B, we have nothing to do. So, assume w € B and fix € > 0. There exists an open (in
X) set V C X such that BN X C V and u(V) < u(B N X) + e. Further, since U is inner regular (w.r.t. p), there
exists a compact set K C U such that u(U) < pu(K) +e. Then V U (W \ K) is open in W and contains B, and
AVUWNK)) SAV)+AXWN\K) =pu(V)+ U\ K) = p(V) + pU) — w(K) < p(BNX) + 2 = A(B) + 2¢, which
shows that B is outer regular.

Now it follows from the outer regularity of W'\ A that for each € > 0 there is an open (in W) set V'O W \ A4 such
that A(V) < A(W \ A) + . Equivalently (since A is a finite measure!), A\(A) < A(W \ V) + €. So, to finish the proof, it
remains to note that W\ V is compact and contained in A, and hence belongs to K(X). O

11.10 Proposition.
(A) If p is a Radon measure, then so is ru for any real r > 0.
(B) A sum of two Radon (resp. reqular) Borel measures is Radon (resp. reqular) as well.

(C) Let i and A be two Borel non-negative measures such that p is absolutely continuous w.r.t. A and A is Radon
(resp. regular). If

e 1 is finite and A is o-finite; or

e X is o-compact,

then w is Radon (resp. regular) iff p is finite on compact sets.

It is worth noting here that item (C) is false in general (that is, when X is not o-compact and either A is not
o-finite or u is not finite).

Proof of Proposition[I1.10} Item (A) is left as an easy exercise. To show (B), we fix two Radon (resp. regular) Borel
measures p and v on X. It is sufficient to check that A € #(X) is outer (resp. inner) regular w.r.t. g + v provided it
is so w.r.t. both p and v.

First assume A is outer regular w.r.t. u and v. If u(A) + v(A) = oo, we have nothing to do. Thus, we assume that
both p(A) and v(A) are finite. For a fixed € there are two open sets U and V' that contain A and satisfy u(U) < pu(A)+e
and v(U) < v(A)+e. Then UNV is an open superset of A such that w(UNV)+v(UNV) < u(A) +v(A) + 2¢, which
shows that A is outer regular w.r.t. u + v.

Now assume A is inner regular w.r.t. g and v. Fix a real number m such that m < u(A) + v(A). Then there exist
two real numbers p and ¢ such that m = p+ ¢, p < p(A4) and ¢ < v(A). It follows from the inner regularity of A
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(w.r.t. to u and v) that there are two compact sets K and L contained in A such that p < p(K) and ¢ < p(L). Then
K UL e X(X) is compact and m =p+ ¢ < u(K U L)+ v(K UL), and we are done.

Now we pass to (C). We only need to show that if u is finite on compact sets, then it is Radon (resp. regular). As
in the proof of (B), it suffices to show that A € #(X) is outer (resp. inner) regular w.r.t. g if it is so w.r.t. A.

First assume A is inner regular w.r.t. \. Write A = |J;~; A, where A,, € #(X) are of finite measure A. For each
n > 0 there exists a sequence Kfn), Kén), ... C A, of compact sets such that lim,, . )\(K,(,?)) = A(4,,). We infer that

AAN\U_, K%)= 0 (why?) and, consequently, zu(A, \ Ur_, KS) = 0. Then p(A\ Unm K%)= 0 as well and
therefore (U, K,(ff)) = u(A). So, L, def Uiy Uiy K5 s compact, contained in A and lim, o p(Ly) = p(A),
which shows that A is inner regular w.r.t. p.

Now assume A € #(X) is arbitrary (then A is outer regular w.r.t. A). If u(A) = oo, we have nothing to do. Thus,
we assume p(A) < oo and fix € > 0. Notice that A is o-finite (even if we only assume that X is o-compact). So, we can
write A = |, A, where A,, € B(X) satisfy A\(A,) < co. Fix for a moment N > 0. There is a decreasing sequence

Ul(N), Q(N), ... of open sets such that Ay C (7, UM, )\(Ul(N)) < 00 and limy, 0 )\(U,QN)) = AMApy) (why?). Then
ANy, UMY\ Ay) = 0 (why?) and, consequently, p((N0, UMY\ Ay) = 0. So,

(11:2) u(Ay) = u(ﬁ UT(LN))

First assume g is finite. Then (11:2)) implies that
(11:3) i(Ay) = Tim p(U)
n— o0
(why?). We infer that there is an index m > 0 such that pu( ,gnN)) < u(An) + 5% . Setting Vy Lef US| we obtain
Ac Uy Veand p((UnZ; Va) \A) <307 n(Va \ An) < 3071 55 = e. Hence p(U,—; Vi) < pu(A) + ¢, which shows

that A is outer regular w.r.t. u, provided p is finite.
Finally, assume X is o-compact. Then X can be expressed as X = (J,2, K,, where each K,, is compact and

K, Cint K41 (exercise). Then, in the above proof we can set 4,, = AN K,, and (for each N > 0) Ul(N) =int Knq1.
In such a situation, (11:2)) implies that (11:3)) holds as well (why?). So, the argument presented above (below (11:3)))
works perfectly also in that case, which finishes the proof. O

11.1 From a regular content to a Radon measure

The aim of this section is to prove the following

11.11 Theorem. (Extending content to a Radon measure)
Every regular content extends to a unique Radon Borel measure.

The proof will be divided into a few steps. To shorten statements, we fix a regular content p: K(X) — R.. We
use 7 to denote the topology of X (that is, 7 stands for the collection of all open sets in X). We define p’: 7 — [0, 0]
and p*: P(X) — [0, 00] as follows:

P U) Ysup{p(K): KeX(X), KcU} (Uer)

and
pr(A) Yint{)(U): Uer, ACU}  (AcCX).

11.12 Lemma.
The function p* is an outer measure that extends both p and p’'. Moreover,

(11:4) p*(f_j Un) = i_ojp*wn)

for any countable collection {Up}nso of pairwise disjoint open sets.

Proof. Since p is additive (and real-valued), we infer that p(@) = 0. It is clear that p’ is monotone and, consequently,
so is p*. In particular, p* extends p’ and for any compact set K and open set U:

56 (© Piotr Niemiec



FUNCTIONAL ANALYSIS WINTER SEMESTER 2024/25

s KCU = p(K) < p'(U);
e UCK = p'(U) < p(K).

The former property implies that p*(K) > p(K) for any compact set K. On the other hand, for any K € X(X) and
€ > 0 there exists a set L € K(X) such that K C int L and p(L) < p(K)+e. Then p*(K) < p'(int L) < p(L) < p(K)+e,
which shows that p* extends p.

Consider a sequence of open sets V1, V5, ... in X. We will show that
(11:5) p(UVa) <30 ().
n=1 n=1

To this end, fix a compact set K C [J,, V,. It follows from its compactness that K C ngl V,, for some finite

N > 0. There exists a partition of unity (on K) {v,: K — [0,1]}Y_; (consisting of continuous functions on K that

n=1
sum up pointwise on K to 1) such that v, 1((0,1]) C V,, for n = 1,..., N. For such n set L, def v, Y[+, 1]). Ly is

a compact subset of V,, and K = Uﬁ[:l L,, (why?). Since p is subadditive, a simple induction argument shows that
p(K) < 25:1 p(Ly) (L ZnN:1 p*(Vi)). So, p*(K) < 307 p*(Vy). Since K was arbitrary, we get (I1:5).

With the aid of we will easily show that p* is an outer measure. To this end, fix a sequence Ay, Ao, ... of
subsets of X. If Y | p*(A,) = oo, then we have nothing to do. So, assume the last series converges and fix ¢ > 0. For
any n take an open set V,, O A, such that p*(V,) < p*(A,) + . Then U, A, C Up2, Vi, and (thanks to (I1:5))
p(UnZi An) < p (U2 Vi) <3007 05 (V) < e+ 307 p*(A,), which implies that p* is an outer measure.

Finally, assume that Uy, Us, . .. are pairwise disjoint open sets in X . Taking into account , we only need to show
that the right-hand side of is not less than its right-hand side. We may and do assume that p*(J,—, U,) < o0

(in particular, p*(U,) < oo for all n). Fix ¢ > 0 and for each n > 0 take a compact set L, C U, such that

p*(Un) < p(Ln) + 57. Then for each N > 0 the set K ef ngl L,, is compact and contained in V/ 2ef Uo—, Un. So,

p*(V) > p(K). Since the sets L, are pairwise disjoint, we infer from the additivity of p that p(K) = Zi:;l p(Ly).
Thus, letting N — co, we obtain

. o0 oo . c o0 .
PV 2D (L) 2 Y0 W) = 5 = (3o () e,
n=1 n=1 n=1
which finishes the proof. O

Since p* is an outer measure, we may consider the o-algebra 91 = M(p*) introduced in Definition m

11.13 Lemma.
K(X) C .

Proof. Fix K € X(X) and let A be an arbitrary subset of X. Since p* is an outer measure, we have p*(A4) <
p*(ANK)+ p*(A\ K). To prove the reverse inequality, we may assume p*(A4) < oo and fix € > 0. There is an open set
U D A such that p*(U) < p*(A) + . Since U \ K is open (and p* extends p’), there exists a compact set L C U \ K
for which p*(U\ K) < p(L) +¢. Then KN L = & and, consequently, U \ L is an open set containing AN K. Similarly,
there is a compact set M C U \ L satisfying p*(U \ L) < p(M) + ¢. Then the sets L and M are disjoint and therefore
p(LUM) = p(L) + p(M). We conclude that p*(ANK)+ p*(A\K) < p*(U\L)+p*(U\K) < p(M)+ec+p(L)+e=
p(LUM) +2e < p*(U) 4 2¢ < p*(A) + 3¢, and we are done. O

11.14 Lemma.
MO .

Proof. Fix an open set U and an arbitrary set A C X. As in the previous proof, we only need to check that p*(AN
U)+ p*(A\U) < p*(A) provided that p*(A) < oo. To this end, fix ¢ > 0 and take an open set V' O A such that
p*(V) < p*(A)+e. Then also p*(ANU) < p*(VNU) and p*(A\U) < p*(V\U). Since VNU is open, there is a compact
set K C UNYV that satisfies p(UNV) < p*(K) 4 . Note that V\U C V\ K and K = V N K. So, it follows from
Lemmal[l1.13|that p*(ANU)+p*(A\U) < p*(VNU)+p*(V\U) < p(K)+e+p*(V\K) = p*(VNK)+p*(V\K)+e =
p*(V) 4+ e < 0*(A) 4 2¢, which finishes the proof. O

Proof of Theorem [11.11]. We have already established that p* is an outer measure such that 7 C 9t(p*). So, it follows
from Theorem that B(X) C M(p*) and that p e p* | B(X) is a measure. Further, Lemma [11.12|implies that y
extends p. In particular, p is finite on compact sets. Other axioms of a Radon measure follow from the very definition

of p*, whereas uniqueness of u follows from Proposition [I1.8| O
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11.2 From non-negative linear functionals to Radon measures

11.15 Definition.
A linear functional L: C.(X) — R is said to be non-negative if L(f) > 0 for all non-negative f € C.(X).
Equivalently, L is non-negative if L(f) < L(g) whenever f,g € C.(X) satisfy f < g.

11.16 Example.

Let p be a Borel non-negative measure on X that is finite on compact sets. Then the assignment f — [ v fdu
correctly defines a non-negative linear functional on C.(X). The aim of this section is to show that there are no
other non-negative linear functionals on C.(X).

11.17 Proposition.
If X is compact, then each non-negative linear functional on C(X) is automatically continuous.

Proof. Let L: C(X) — R be linear and non-negative. Denoting by j: X — R the function constantly equal to 1, we
have:

=g <r<lfll-5 (f € CX)).
So, —[IfIIL(5) < L(f) < [[fIIL(4) and, consequently, ||L|| = L(j)- O

The main goal of this section is to prove the following classical result from functional analysis.

11.18 Theorem. (Riesz representation theorem for positive functionals)
For any non-negative linear functional L: C.(X) — R there exists a unique Radon measure pi: B(X) — [0, ]
such that

(11:6) Mﬁ=Af® (f € Cu(X)).

As in the previous section, we divide the proof into a few steps.

11.19 Lemma.
Let y and v be two Radon Borel measures on X . If

AfM:Afw

for all non-negative f € Co(X), then p=v.

Proof. Fix a compact set K and a Radon measure A on X. Denote by F the collection of all compactly supported
continuous functions f: X — [0, 1] that are constantly equal to 1 on K. Observe that A\(K) < fX fdX forany f e F.
So,
(11:7) AK) < inf{/ fdx: fe :r}.

X

On the other hand, for each € > 0 there exists an open set U D K such that A(U) < A(K) + €. Next, there is f € F
that vanishes outside U (why?). Then [, fdA < A(U) < A(K) 4 e. This argument, combined with (11:7), yields

AEK) = inf{/ fd\: fe 3"}.
X
So, we conclude that 4 and v coincide on X(X) and hence p = v, by Proposition [I1.8] O
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To shorten statements, from now on to the end of this section we fix a non-negative linear functional L: C.(X) — R.
For each K € X(X) we denote by F(K) the set of all functions f: X — [0, 1] from C.(X) that are constantly equal
to 1 on K. Further, we define p: X(X) — R by

(11:8) p(K) =inf{L(f): feF(K)}.

11.20 Lemma.
The function p is a regular content.

Proof. Tt follows from the non-negativity of L that p is non-negative. Since F(K) C F(M) for any K, M € K(X)
such that K D M, we conclude that p is monotone. Further, if K, M € X(X) are arbitrary and f € F(K) and

g € F(M), then h def min(f + g,1) belongs to F(K U M) and therefore p(K U M) < L(h) < L(f + g) = L(f) + L(g).
Now passing to infima on the right-hand side of this inequality gives us subadditivity of p. Finally, if K and M
are disjoint, there are two functions v € F(K) and v € F(M) such that v -v = 0 (why?), which implies that
u+v < 1. So, if f € F(K U M) is arbitrary, then fu € F(K), fv € F(M) and f(u + v) < f. Consequently,
p(K) + p(M) < L(fu) + L(fv) = L(f(u+v)) < L(f). Passing to infimum on the right-hand side of this inequality
yields p(K) + p(M) < p(K U M), and we are done.

Now to show that p is regular, we fix K € X(X) and £ > 0. There exists f € F(K) such that L(f) < p(K) + ¢.

Choose r > 1 such that rL(f) < L(f) + € and consider g &ef min(rf,1) and M &f g 1({1}). Observe that M is

a compact set such that K C int M (why?) and g € F(M), which implies that p(M) < L(g) < L(rf) = rL(f) <
L(f)+e < p(K) + 2¢, and we are done. O

Having the above result, we apply Theorem [TI.11] to get a Radon measure p on X that extends p. We will now
show that (11:6) holds. The main part of the proof is contained in the following

11.21 Lemma.
Jx f(z)du(z) < L(f) for any non-negative f € Co(X).

Proof. We may and do assume that f # 0. Set K Lef supp f and C' = 2||fllso, and fix £ > 0. Observe that there are
only countably many values 7 > 0 for which p(f~1({r})) > 0 (why?). So, we infer that there are a finite number of

reals 0 =7y <7y < ...<ry < C such that f(X) C [0,7n], 7 — 71 < € and p(f~1({rr})) = 0 for any k > 0. Set

U & F7H((ri15m0)) (k= 1,0, N) and V UL, U, and note that:

e V C K; and

e all the sets Uy are open and pairwise disjoint; and

® fxfdﬂzfvfdﬂ-
In particular, u(Ur) < oo and therefore there exist a compact set My C Uy such that p(Ur) < p(Mg) + & and
gr € F(My) that vanishes outside Uy (why?). Set h def Zivzl rg—19x. Note that h < f (why?) and, consequently,

L(h) < L(f). Moreover, u(My) = p(My) < L(gx). On the other hand, setting @ Lef Uivzl My, we obtain u(V\Q) <e
and for any x € @ there is a unique k € {1,..., N} satisfying € Myp—then f(z) < rp < e+ rp1 < €+ h(z)
(exercise). Hence:

N
/deu/vfdu/Qfdu+ V\Qfdué/Q(é?Jrh)dquCu(V\Q)Séu(Q)Jr;rk_lu(MkHCE
N
<e(u(K) +C)+ > re1L(gr) = e(u(K) + C) + L(h) < e(u(K) + C) + L(f),
k=1

which finishes the proof. O

Proof of Theorem[11.18] Uniqueness of u follows from Lemma [11.19] To establish its existence, we continue the nota-
tion introduced in this section. So, we have a Radon measure p on X such that

(11:9) wW(K) =inf{L(f): feFK)} (K eX(X)).
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To show ([L1:0)), it suffices to verify that [, fdu < L(f) for any f € Cc(X) (because then we may apply this inequality
to both f and —f to get the equality). To this end, we fix f € C’C(X) and € > 0. Since L is homogeneous, we

may and do assume that ||f|lcc < 1. Set K &ef supp f. We infer from ) that there exists g € F(K) such that
L(g) < u(K) + €. Notice that then f+ ¢ >0 (as |f| < 1) and u(K) < fX gdu So, it follows from Lemma 1| that
Jx(f+9)dp < L(f + g), which yields

/fdu /f+g)du /ngugww)—u(ff)=L<f>+L<g>—u<K><L<f>+s,

and the proof is finished. O

11.3 Signed and complex-valued measures

11.22 Definition.

A set function p: 9 — K (where 90 is a o-algebra of subsets of V) is said to be a scalar measure if p(|J;—, An) =
Yoo 1 i(Ay) for any sequence Ay, As, . .. of pairwise disjoint sets from 9. When K = R, a scalar measure is called

signed; and when K = C, one speaks about compler measures.
The variation of a scalar measure p is a set function |u|: 9 — [0, co] given by

o0
lu(A)| def sup{z B,)|: Bi,Ba,... € M are pairwise disjoint and contained in A} (A eMm).

The quantity |u|(Y) is called the total variation of .

11.23 Theorem.
The variation of a scalar measure is a finite measure.

We divide the proof of the above result into separate lemmas. Since each signed measure is complex as well, without
loss of generality, we may assume that K = C. For simplicity, we fix a complex measure u defined of a o-algebra 9t of
subsets of Y.

11.24 Lemma.
The variation of p is a measure.

Proof. Let Ay, Ag, ... be pairwise disjoint sets from 9)1. Observe that if Cy,Cy,... € 9 are pairwise disjoint subsets
of U2, Ay, then Cy (N A1,Cx () As,... (for each k > 0) are pairwise disjoint as well and their union coincides with
Cy. So, we conclude that p(Cy) = Y07 | u(Cr () Ar). At the same time, C1 N A,,, C2N A, ... are pairwise disjoint and
contained in A,, (separately for each n). Thus, it follows that

ZWC‘H_Z‘ZMC‘kﬁA ZZ (Ck N Ay) ZZ (Cen 4 <3 |ul(A
k=1n=1 n=1k=1 n=1

k=1 n=1

Passing to the supremum on the very left-hand side of the above inequality, we obtain |u|(Ur—; An) < Y oory |1l (An).
On the other hand, if N > 0 is arbitrarily fixed and for each n € {1,..., N}, BYL), Bén), ... € M are pairwise disjoint
and contained in A,, then all the sets B,(ff ) (where n < N and m > O) are pairwise disjoint subsets of (Jo—, 4,
(and there are countably many of them). Consequently, Zn OO0, |,u( )|) < |pl(Up—; Ay). Again, passing to the

supremum in each of the summands of the left-hand side of the last mequahty7 we obtain anl l|(An) < pl(Uney An).
Now letting N — oo, we obtain Y~ |u[(A4,) < |u[(U,Z, An), which shows that |u| is a measure. O

Now we pass to the most intriguing part of Theorem [11.23[—that is, we will show that |u|(Y) < co. The next result
is a crucial step.
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11.25 Lemma.
For any A € M, |u|(A) < 4v2sup{|u(B)|: Be€M, B C A}.

Proof. For simplicity, denote by ¢1, ¢o, ¢3,p4: C — R four R-linear functionals given by ¢1(2) = —¢d2(2) 2 Re > and
@3(2) = —pa(z)  Imz. Fork =1,2,3,4set I, {z € C: ¢r(2) > max(|Rez|,|Im z|)}. Note that C = U2:1 Ii.. Now

take a sequence By, By, ... € 9 of pairwise disjoint subsets of A and set Ji %' {neN: u(B,) € L} \?;& J; (Jo def o)
and Dy, ' U,cj, Ba (k = 1,2,3,4). Then Dy € M, pu(Dy) = Xy ilBn) (Xpey & 0) and N = [[1_ Ji. In
particular,

S (u(Dr)) = Y di(u(B)).

neJy

It folows from the very definition of the sets I} and Jj, that for each k = 1,2,3,4 and n € Ji, |u(Bn)| < vV2¢r(By).
Consequently,

) 4 4 4
Do luBII=D > B <V2Y D kln(Ba) = V2 dul(u(Dy))
n=0 k=1neJy k=1neJy k=1
< 4V2sup{|u(C)|: C €M, C c A}.
Passing to the supremum on the left-hand side of the above inequality concludes the proof. O

11.26 Lemma.
If A € M satisfies |u|(A) = oo, then there exists B € M such that B C A, |p[(B) = oo and |pu(A\ B)| > 1.

Proof. 1t follows from Lemma [I1.25| that sup{|u(C)|: C € M, C C A} = co. So, there is D € M contained in A such
that [u(D)| = [u(A)[+1. Then [u(A\D)| = |u(A) — p(D)| = |u(D)] = |n(A)| = 1 and [p|(D) +[p|(A\D) = [p|(A) = oo
(thanks to Lemma |11.24). So, there is B € {D, A\ D} that satisfies ||(B) = co. Then automatically |u(A\ B)| > 1,
by the above estimations. O

Proof of Theorem[11.23] It follows from Lemma [11.24] that |u| is a measure. To convince oneself that it is finite, we

argue by a contradiction and apply infinitely many times Lemma [11.26} if |u](Y) = oo, then starting from Ag def Y,
for each n > 0 we find A4,, € M such that 4,, C A,,_1, |u(4,)| = oo and

(11:10) H(Ba)| = 1

where B, def A,—1\ A, Note that then the sets By, B, ... are pairwise disjoint. So, u({J.—, Bn) = >, #(By) and,
consequently, lim,,_,~ p(By) = 0, which contradicts (11:10]) and finishes the proof. O

11.27 Proposition.

(A) Each complex measure p has a unique representation in the form pu = uy + ius where py and pg are two
signed measures.

(B) Each signed measure is the difference of two finite non-negative measures.

(C) The set of all scalar messures on a fized o-algebra is a vector space and the total variation is a norm on this
space.

Proof. Part (A) trivially follows from the property that if x4 is a complex measure, then fi is a complex measure as
well where fi(A) = p(A); and 22 and ESE are signed measures.
Further, for each scalar measure p on 9t and any A € 9, one has |u(A)| < |u|(A). It folows that if u is signed,

then both py def 3(lpl + p) and p def +(|u| — p) are non-negative measures, which easily implies (B). Finally, it is
clear that a linear combination of two scalar measure is a scalar measure as well. We leave it as an exercise that the
assignment p — |p|(Y) defines a norm. O
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11.28 Definition.
Let M(91, K) be the vector space of all scalar measures on 9t (with values in K), equipped with the norm of total
variation.

If 1 is a signed measure on M and f: Y — K is bounded and 9-measurable, we define the integral of f w.r.t.

pas [y fdu def Jy fduy — [y fdu_ (cf. the proof of Proposition |11.27). It is easy to check that this integral is

bilinear as a function in two variables f and pu.

11.29 Theorem.
For any o-algebra M, M(9M,K) is a Banach space.

(proof—ezercise)

11.30 Theorem.
For any € M(OM, K) there exists an M-measurable function u:Y — K such that [u| =1 and p(A) = [, ud|y|
for any A € M. Moreover, for such u and any bounded M-measurable function f: Y — K:

e [ s e

Proof. For simplicity, set A def |-

Firt assume p is signed. Observe that then both py and p_ (see the proof of Proposition are absolutely
continuous w.r.t. A. So, it follows from the classical Radon-Nikodym theorem that py(A) = fA u4+ dX for some non-
negative A-integrable functions u; and w_. Then

(11:12) u(A):/AudA (A em)

where u %' Uy — U_.

Now assume p is a complex measure. Fix for a moment A € 9t such that A\(A) = 0. Then for any B € 9t contained
in A we also have |p(B)| = 0 and therefore Re u(B) = 0 and Im u(B) = 0. So, both Re yt and Im g vanish at any
set contained in A, which implies that |Re u|(A) = |Im pu|(A) = 0. In other words, | Re x| and | Im p| are absolutely
continuous w.r.t. A. Another usage of the Radon-Nikodym theorem gives us two non-negative \-integrable functions
g1 and gy such that |Repu|(A) = [, g1 dX and, similarly, |Im u|(A) = [, g2 dA. It folows from the first part of the
proof that Reu(A) = [,v1d|Rep| and Imu(A) = [, vod|Im p| for some real-valued integrable (w.r.t. respective
non-negative measures) functions v; and vy. Combining all these properties together and using standard techniques

of the classical measure theory, we infer that (11:12]) holds for u def v1g1 + iv2go.
Now assume ([11:12)) holds (and the field is arbitrary). Take any set A € 9t such that A(A) > 0. It follows from the

last cited formula that ﬁ| JyudA = % < 1. Consequently, |u] <1 M-a.e. (exercise). So, changing v on a measure
zero set, we may and do assume that |u] < 1. Now fix A € 9 and take any sequence By, B, ... € 91 of pairwise disjoint

subsets of A. Then 377 [u(Bn)| = 2200 | 5, wdA <3207, [ [uldA = [ 5 [uldX < [, |[u[dA. Passing to the
supremum on the very left-hand side of this inequality, we obtain A(A) < [, |u|dA. In particular, this last inequality
is valid for A = Z & {z: |u(x)|] < 1}, from which it follows that A\(Z) = 0. So, |u| = 1 M-a.e. So, we may and do

assume that |u(z)| =1 for all .
The additional claim of the theorem is left to the reader. O

11.31 Example.
We leave as an exercise that if A is an arbitrary non-negative measure (not necessarily finite), f is a scalar-valued
A-integrable function and g is given by pu(A) = [, fdA, then [u|(A) = [, |f]dA.

Now let’s get back to the context of locally compact spaces and regular measures.
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11.32 Definition.
A scalar measure defined on all Borel sets of X is said to be regular if so is its variation. The set of all regular scalar
measures defined on Z(X) is denoted by M, (X,K). (When K = R, we also write M, (X) instead of M, (X,R).)

11.33 Proposition.
(A) The space M,.(X,K) is a closed vector subspace of M(#A(X),K).

(B) For any p € M,.(X,K) the function L: Co(X,K) > f — [ fdu € K is a bounded linear functional such that
LI} < Nlpell-

Proof. Tt follows from item (B) of Proposition [11.10| that the sum of two non-negative regular measures is regular as

well. So, if 4 and v belong to M, (X,K) and = and y are arbitrary scalars, then A & || - |u] + |y| - |v| is a regular
measure on X . Moreover, since |zu(A)+yv(A)| < A(A) for any Borel set A, we conclude that also |zu+yv|(A) < A(A).
In particular, |xp + yv| is absolutely continuous w.r.t. A\. Now item (C) of Proposition implies that |xu + yv| is
regular and hence zp + yv € M,.(X,K). To show that this last space is closed in the Banach space of all scalar Borel

measures on X, it is sufficient to check that if (p,),-, is a sequence of regular measures such that > 2 ||un || < oo,

then the measure Y ° | i, is regular as well. Since p e >0 1 gl is a finite measure and | Y 7 | pn| < p, it is

sufficient to verify that p is regular (by the same argument as used above). Note that each of |u,]| is regular. Thus, for
any Borel set A C X and each € > 0 and n > 0 there are a compact set K,, C A and an open set U,, D A such that
[in|(Un \ Kn) < 5= Then P((ﬂnN=1 Un)\ (UnN=1 Kn)) < 22;1 b | (Un \ Kn) + ZZO:NH | (X) < e+ Z?:N.H [[pnll,
which implies that p is regular.

Now we pass to (B). It is clear that L is linear. It follows from Theorem that there is a Borel function
u: X — K such that |u| = 1 and (with Y = X)) holds for all f € Co(X,K). So, [L(f)| < [y [fuld]p| <

[floo |/ (X) =[]l - [ f]l; and we are done. H
The next result will play an important role in the proof that actually ||L|| = ||g|| in item (B) of the above
proposition.

11.34 Proposition.
Let 1 € M.(X) be a non-negative measure. Then C.(X,K) is a dense subspace of L*(u, K).

Proof. Tt is clear that the norm closure V of C.(X,K) is a linear subspace of L'(X,K). It is also well-known that
the linear span of the set of all characteristic functions of Borel subsets of X is dense in L'(X,K). So, it is sufficient
to show that for any Borel set A, its characteristic function y 4 belongs to V. Since A is inner regular, we infer that
X4 can be approximated (in the L'-norm) by the characteristic functions of compact sets. Therefore, we may and
do assume that A is compact. But then the argument used in the proof of Lemma shows that ;(A) can be
approximated by the integrals of the form f + fdp where f € C.(X) takes values in [0, 1] and is constantly equal to 1
on A. A remark that ||f — xall1 = [y fdu — u(A) for each such f finishes the proof. O

11.4 From bounded linear functionals to scalar regular measures

The aim of this section is to prove the following

11.35 Theorem. (Riesz representation theorem for bounded functionals)
Let E stand for one of C.(X,K) or Co(X,K). For any bounded linear functional ¢ on E there is a unique
€ M. (X,K) such that

(11:13) ¢(f):/xfdu (f€E).

Moreover, ||¢]| = ||pl|. In particular, the dual E* of E is linearly isometric to M, (X, K).
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As usual, we precede the proof of the above result by auxiliary results. The main idea of the proof consists of
expressing a bounded linear functional on C.(X) as the difference of two non-negative bounded linear functionals.
To establish this property, we fix a bounded linear functional L: C.(X) — R and for each non-negative function
f € Ce(X) we define M (f) as follows:

M(f) = sup{L(u): u € Ce(X), [u| < f} € (=00, 00].

Note that at this stage of proof, M is defined only on non-negative functions.

11.36 Lemma.
M has all the following properties (everywhere below f,g € C.(X) are non-negative):

(a) 0< M(f) <L) - | flloos
(b) M(rf)=rM(f) for any scalar r > 0;
() M(f+g)=M(f)+M(g).

Proof. To show (a), observe that M (f) > |L(f)| and |L(u)| < |L|| - |ulloo < 1L - || flloo Whenever u € C.(X) satisfies
lu] < f. Hence M(f) < ||L]| - || f|lcc, which yields (a).

Now we pass to (c). First observe that if v, w € C.(X) satisty |v| < f and |w| < g, then |v + w| < f + ¢g and hence
L(v)+L(w) = L(v+w) < M(f+g). Passing to suprema over all respective v and w, we obtain M (f)+M (g) < M(f+g).
On the other hand, if u € C.(X) is such that |u| < f + g, then the functions v, w: X — R given by

(@) def %u(m) if u(z) #0 and w(z) def %u(x) if u(z) #0
0 if u(z) =0 0 if u(z) =0

are well defined and continuous (and compactly supported). (Indeed, if lim,ex 2, = x are such that u(z,) # 0 and
u(z) = 0, then max(|v(xy)|, |[w(zs)|) < |u(zs)| = |u(z)] =0 =v(x) = w(x).) Moreover, |v] < f, |w| < g and v+w = u.
Hence L(u) = L(v) + L(w) < M(f) + M(g), which implies that M (f + g) < M(f) + M(g) and completes the proof
of (c). Part (b) is left to the reader. O

11.37 Lemma.
|M(f) = M(g)| < LIl - If = gl for any non-negative f,g € Ce(X).

Proof. First assume that f - g = 0. Note that then ||f — g|lcc = max(]|flco, ||¢]|cc)- S0, in this case it is sufficient to
show that M(f) — M(g) < || L] - max(]| f]lcos ||g]lcc). But this inequality is an immediate consequence of part (a) of
Lemma [[T.36, as M(f) = M(g) < M(f) < [IL] - [ ]l

Now consider a general case and set h et min(f,g) € C.(X). Note that each of the functions h, f — h and
g — h is non-negative, and (f — h)(g — h) = 0. Hence, we may apply the first part of the proof to f — h and g — h.
Further, it follows from part (¢) of Lemma that M(f) = M(h) + M(f — h) and M(g) = M(h) + M (g — h). So,
[M(f) = M(g)| = [M(f = h) = M(g = h)| < [ILI| - [[(f = h) = (9 = P)]|c, and we are done. 0

11.38 Lemma.
M extends to a non-negative bounded linear functional P: C.(X) — R such that |L(f)| < P(|f|) for any f €
C.(X).

Proof. We have already shown that M is additive and positively homogeneous, which implies (as each function from
C.(X) may be expressed as the difference of two non-negative functions from that space) that M extends uniquely
to a linear functional P: C.(X) — R, by the rule P(f — g) = M(f) — M(g) where f,g € C.(X) are non-negative.
(If f—g=f =g then f+g" =g+ f" and therefore M(f) + M(g') = M(f +4g') = M(g+ f') = M(g) + M(f'),
so M(f)—M(g) = M(f") — M(g").) Since M takes only non-negative values, it follows that P is non-negative. And
boundedness of P follows from Lemma Finally, we infer from the definition of M that L(+f) < M(|f]) for any
[ € Ce(X), and thus |L(f)] < P(|f]). O
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11.39 Lemma.
If 1 is a Radon measure on X such that the linear functional L: Co(X) 3 f— [y fdp € R is bounded, then u is
finite.

Proof. Let K be an arbitrary compact subset of X. Then there exists a non-negative function f € C.(X) that is
constantly equal to 1 on K and whose norm is 1. Consequently, pu(K) < fX fdu=L(f) <|L|. Now since X is open,
it is inner regular and therefore pu(X) = sup{p(K): K € K(X)} < |/ L] O

11.40 Lemma.
Let E denote one of the spaces Co(X,K) or C.(X,K). For any bounded linear functional ¢: E — K there exists
a unique measure 1 € M, (X, K) such that (11:13) holds.

Proof. First assume E = C.(X) (so, K =R). It follows from Lemma [11.38| that there exists a non-negative bounded
linear functional ¢: C.(X) — R such that |¢(f)] < ¥(|f|) for any f € C.(X). Note that then both ¢ + ¢ and
¢ are bounded and non-negative. So, we infer from Theorem that both these functionals have an integral

form w.r.t. some Radon measures, say pu and v (respectively). Now an application of Lemma [11.39] yields that u

and v are finite. Consequently, they are regular, by Proposition Hence p def u — v belongs to M,.(X) and

o(f) = W+o)(f)—v(f) = [y fdu— [y fdv = [y fdp, which finishes the proof that the measure exists in this case.

Now assume E = Cy(X) (so, still K = R). Then the restriction of ¢ to C.(X) is a bounded linear functional as
well and we conclude from the first part of the proof that there exists u € M, (X) such that ¢(f) = L(f) for any
J € Ce(X) where L: Co(X) > f — [ fdu € R. Now since both L and ¢ are continuous and C,(X) is dense in Cy(X),
we conclude that ¢ = L.

Now assume that K = C and E is arbitrary. Denote by F' the real part of E (that is, F' consists of all functions from
E that are real-valued) and note that both the functions p1: F' > f+— Re¢(f) e Rand po: F 3 f — Im¢(f) € R are
bounded linear functionals on F. Hence it follows from the previous parts of the proof that p;(f) = [ « [ dv; for some

v; € M,(X) (j =1,2). Then ) i belongs to M, (X, C) and for any f € F we obtain ¢(f) = p1(f) +ip2(f) =
Jx fdvi+i [y fdve = [ fdu. Finally, since any function from E is of the form u + iv where u,v € F, we conclude
that holds for any f € E.

It remains to show that x is unique. Since the assignment M, (X,K) 3 p+— ¢, € E* (where ¢,,: E> f — fX fdue
K) is linear, it is sufficient to show that its kernel is trivial. To this end, we assume ¢, = 0 for some p € M, (X, K),
and take a Borel function u: X — K such that |u| = 1 and holds for all f € E (cf. Theorem [11.30). Then
@ € L*(Ju|,K) and we infer from Proposition that there exist functions fi, fa,... € E that converge (in the
L'-norm) to @. Consequently, || fnu—1{|1 = ||(fn — @)ully = [|fn —@l1 = 0 (n = 00) and hence lim,, o [y faud|p| =
Jx 1d|p| = |u|(X). On the other hand, [y foud|p| = [y fndp = ¢(fn) = 0. So, |u/(X) = 0 and we are done. O

and Proposition it remains to check that | L] > ||u||. To this end, we again make use of Theorem

there exists a Borel function u: X — K such that [u| = 1 and L(f) = [, fudu for each f € E where p = |v].
Our task is to show that |[|[L]] > wu(X). It follows from Proposition that there exist functions fi, fa,... € FE
such that lim,,_,o || fn — @|l1 = 0 (cf. the last part of the proof of the previous result). Passing to a subsequence, we
may and do assume that Y7, [|f, — @]l < oco. We infer from the Lebesgue’s monotone convergence theorem that
Jx oy [ fn—aldp =307 [ [fn — 1] dp (< 00) and therefore the series Y7, | fn(2) — u(x)| converges for p-almost
all x € X. In particular, lim, o fn(2) = @(x) for g-almost all x € X as well. Now consider a function r: K — By
given by

Proof of Theorem[11.35 Fix a measure v € M,.(X,K) and set L: E > f — fX fdv € K. Thanks to Lemma [11.40
11.30} So,

x iflz| <1

|z

and note that r is a continuous retraction. Hence, lim, . (r o f,)(z) = r(a(z)) = a(z) for p-almost all z € X.
Moreover, |(r o fn)u] < 1 for each n, and constant functions are p-integrable. So, we conclude from the Lebesgue’s
dominated convergence theorem that lim,,_, fX(r o fp)udu = fX @-udp = p(X). On the other hand, ro f, € E
(because r(0) = 0) and thus | [y (ro fo)udu| =|L(ro fu)| < ||| - [|r o falle < || L], which finishes the proof. O

12 Haar measure
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12.1 Definition.
A topological group is a group (G, ) endowed with a Hausdorff topology such that the function G x G 3 (x,y) —
z~ly € G is continuous.

For any subsets A and B of a group (G, -) we will use A~! to denote the set {a~': a € A}, and A- B will
stand for {ab: a € A, b € B}. If A is finite, we will denote by | 4| its cardinality.

12.2 Definition.
A non-negative Borel measure p on a topological group G is said to be left-invariant (resp. right-invariant) if
1w(gA) = u(A) (resp. u(Ag) = u(A)) for each Borel set A C G and any g € G. If i is both left and right-invariant,
it is called invariant.

A Haar measure on a locally compact group is a left-invariant Radon Borel measure.

The aim of this chapter is to present von Neumann’s proof of the following result.

12.3 Theorem. (Haar measure theorem for compact groups)
A compact topological group has a unique probabilistic Haar measure. Moreover, this measure is right-invariant as
well.

We divide the proof of the above result into a series of steps. To shorten statements, from now on to the end of
this chapter G is reserved to denote a compact topological group (with multiplicative notation).

12.4 Definition.

Let f € C(G). We denote by m(f), M(f) and D(f), respectively, min f(G), max f(G) and M(f) — m(f). For

any a € G the functions f,, f* € C(G) are defined as f,(x) def f(az) and f*(x) def f(za). Finally, for any tuple

n=(m,...,n) € G, L(n, f) and R(n, f) are functions from C(G) defined as follows:

d Pl n] d P 1 In]
S 2 e and Nt
[n] £ [n] £
where |7 &f L(n, f) and R(n, f) are called (resp.) left average and right average of f along 7. For simplicity,
we set n! def (it ..., ny ") and for any tuple € = (£y,...,&,) € G™,

def nm
nNx& = (77151,---,771€m,~--,Tlnfly-uﬂ)nﬁm) (GG )

12.5 Proposition.
Let f € C(G) and n and £ be arbitrary tuples of elements of G. Then m(f) < m(L(n, f)), M(L(n, f)) < M(f),
D(L(n, £)) < D(f) and L(n, L(&, £)) = L(€ *n, f). Analogous inequalities hold for R(n, ), and R(n, R(, f)) =

R(n*¢, f).

(proof—ezercise)

12.6 Lemma.
If f € C(G) is non-constant, then there exist tuples n and £ of elements of G such that D(L(n, f)) < D(f) and

D(R(¢, f)) < D(f)-

Proof. We will give a proof only for the left average (for the right one the proof goes analogously). Since m(f) < M(f),
there exist an open non-empty set U C G and a real number r € (m(f), M(f)) such that f(U) C [m(f),r]. It follows
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from the compactness of G that G = A~ . U for some finite non-empty set A C G. Arrange all elements of A into
a tuple 1. Then m(f) < m(L(n, f)) (by Proposition [12.5). To show that M(L(n, f)) < M(f), fix any € G. There
exists a € A such that € a='U. Consequently, ax € U and therefore f(az) < 7. So, L(n, f)(z) < 77 + (1 — 1) M(f)
for any « € G, which implies that M (L(n, f)) < M(f) and D(L(n, f)) < D(f) as well. O

12.7 Lemma.
For any f € C(G) the functions

Goaw f, € C(G) and Goaw— f*e€C(G)

are continuous.

Proof. Tt is sufficient to show that ®: G' > a — f, € C(G) is continuous. To this end, take any net (a,),cy, C G that
converges to b € G. For any o € 3 there exists ¢, € G such that || fo, — folloo = |fa, (¢o)— fo(cs)| (= |flasco)— f(bcs)]).
If || fa, — follo 7 0 (o € X), then after passing to a subnet we may and do assume that |f(a,c,) — f(bey)| > € for
some fixed € > 0 and all ¢. Passing again to a subnet, we may and do assume that lim,ecxnc, = d € G. But then
limyes ay¢s = bd and lim,ex, be, = bd, and therefore | f(asco) — f(bcy)| — 0 (o € ), which leads to a contradiction,
and finishes the proof. O

12.8 Definition.

For any f € C(G) we denote by Ay(f) (resp. A, (f)) the closed convex hull of the set of all f, (resp. of all f*)
where a runs over all elements of G.

12.9 Lemma.
For any f € C(G) the sets Ao(f) and A.(f) are compact.

Proof. Just apply Lemma [12.7] _ 7| and Theorem [8.20) m . O

12.10 Lemma.
Forany f € C(G) and g € Ai(f), De(g) C Au(f) (and, similarly, Aq(g) C Ay (f) for all g € A(f)). In particular,
L(n,g) € Ay(f) for each such g and all tuples n of elements of G.

Proof. Denote by K the set of all f, with a € G, and for each z € G let ®,: C(G) — C
g ga- Then @, is a linear isometry and @,(K) = K. So, we infer that ®,(A.(f)) = Au(f
of the lemma follows. Since L(n, g) € Ay(g), also the second claim is true. A proof for A, (

(G) stand for the operator
) as well. So, the first claim
f) goes analogously. O

12.11 Lemma.
For any f € C(G) each of A¢(f) and A,(f) contains a constant function.

Proof. As usual, we will give a proof only for Ay(f). Note that D: C(G) — R is a continuous function. So, we conclude
from Lemma that there exists g € Ay(f) such that D(g) is the least value of D on A,(f). If g was non-constant,
we would infer from Lemma that D(L(n,g)) < D(g) for some tuple n. But this is impossible as L(n, g) € Ay(f)

O

(by Lemma [12.10]), and we are done.

12.12 Lemma.
For any f € C(G) each of the sets Ay(f) and A, (f) contains a unique constant function and both these functions
coincide.
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Proof. Thanks to the previous lemma, it is sufficient to show that if & € Ay(f) and S € A.(f) are constant, then
a = 8. To this end, first observe that since convex (finite) combinations of functions of the form f, (a € G) with
rational coefficients form a dense subset of Ay(f), it follows that all functions of the form L(, f) (where 1 runs over all
tuples of elements of G) form a dense set in Ay(f). Analogously, functions of the form R(7, f) are dense in A,.(f). So,
for arbitrary € > 0, there exist two tuples n and £ such that ||L(n, f) — o]l < € and ||R(E, f) — Blleo < €. Equivalently,
for each x € G:

o ase
Z‘i‘l F(@p)
—& S = I€] - B S €
(above we identify o and 8 with their unique values). Now we substitute z§, (with p=1,...,|¢]) for z in the former
(double) inequality and ngx (with & = 1,...,|n|) for x in the latter one, and then we sum up these inequalities

(separately) to obtain:

—elg) < T, B feS) jeja < e

Sy fnkagp)
—eln| < Sy, 2o I 5 < ey

Finally, we divide the former of the above inequalities by |£| and the latter by |n| to get | HE \77\ Z|§| 1 Zlnl (mexép) —

al < e and | HE \77\ Zm 1 Zlnl (mexp) — B| < . Therefore |a — S| < 2¢. A notice that € was arbitrarily small finishes
the proof. ]

The above result enables us to introduce

12.13 Definition.
For any f € C(G) a unique real number « such that o € Ay(f) (or, equivalently, such that a € A,.(f)) is denoted
by A(f) and called the mean of f. In this way we have obtained a function A: G — R.

12.14 Corollary.
For any f € C(G) and g € Au(f) UA(f), Alg) = A(f).

Proof. The assertion easily follows from Lemmas |12.12] and [12.10| (Indeed, A(g) € Ap(g) C A,(f) where p is a
respective index among ¢ and 7r.) O

12.15 Proposition.
If G admits a regular probabilistic Borel measure p that is left or right-invariant, then

(12:1) Mﬁ=Lf@ (f € C(@)).

In particular, a probabilistic Haar measure on G (if it only exists) is unique.

Proof. By symmetry, it is enough to show the assertion for left-invariant measures u. Fix a € G and denote H: G 3
x — az € G. Note that h is a homeomorphism that preserves the measure p. So, it follows from the transport measure
theorem that [, fohdu = [ fdpu for any f € C(G). In other words, [, fodp = [ fdp for any a € G. Thus, f, € W

where
Wdef{ € 0(G): /ngu:/gfdu}.

Since W is a closed convex set in C(G), we conclude that Ay(f) € W. In particular, A(f) € W, which yields ((12:1)
(as p is probabilistic).

Finally, as each regular measure is uniquely determined by its integral functional on C(G), the additional claim
follows. O

12.16 Lemma.
A is a non-negative linear functional on G such that A(1) = 1.
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Proof. 1t is clear that Ay(a) = {a} for every constant function o € C(G). Therefore A(1) = 1. It is also easily seen
that Ag(tf) = tAe(f) for any scalar ¢t and each f € C(G), which yields A(tf) = tA(f). Further, if f > 0, then f, >0
for all @ € G and hence Ay(f) consists only of non-negative functions, which implies that A(f) > 0. So, it remains
to show that A is additive. To this end, we fix f,g € C(G) and € > 0. The proof of Lemma shows that the
functions L(n, f) are dense in Ay(f). So, there is a tuple n such that |L(n, f) — A(f)]lc < €. Now Lemma
and Corollary imply that A(L(n,g)) = A(g). So, for the same reason as given above, there exists a tuple £
satisfying ||L(&, L(n,9)) — A(9)||c < . Since L(§,¢) = ¢ for any constant ¢, and L(&,-) is a linear operator of norm

1, we conclude that |[L(£, L(n, f)) — A(f)||lo < € as well. Recalling that L(¢, L(n, f)) = L(n =&, f) (and, similarly,

L(& L(n.g)) = L(n * €, g)), we obtain |L(n ¢, f) + L(n *&,9) — A(f) = Alg)llec < 2e. But L(n* &, f) + L(n* &, 9) =
L(n=*&, f+g) € Ao(f + g). This shows that A(f) + A(g) € Ay(f + ¢g) and the uniqueness of A(f + g) completes the
proof. O

We are now ready to give

Proof of Theorem[12.3] Let A be as specified in Definition [I2.13] We infer from Lemma[I2.16| that A is a non-negative
linear functional. So, it is bounded (thanks to Proposition . It follows from Theorem m 8 that there exists a
regular probabilistic Borel measure p on G such that A(f) = fodﬂ for all f € C(G) (u is probabilistic because
A(1) = 1). We claim that p is both left and right-invariant. To convince oneself of that, fix ¢ € G and consider a
homeomorphiam h: G 3 x — ax € G (to check that u is right-invariant, one considers h: G 3 x — za € G instead).
It is readily seen that the transport v of p via h (that is, v(A) = u(h=1(A)) for any A € B(G)) is regular as well.
So, pu and v coincide iff their integral functionals do so. But for f € C(G), [, fdv = [, fohdu = [, fodp =
A(fa) = A(f) = [ fdp (where the equality A(f,) = A(f) is covered by Corollary [12.14). So, v = p and hence
w(aB) = v(aB) = u(h~'(aB)) = u(B) for any Borel set B C G. Equivalently, p is a Haar measure.

Uniqueness of u follows from Proposition [12.15 O

12.17 Remark.
Because of the uniqueness of the Haar measure, it is a standard convention to write fG f(z)dx to denote the
integral w.r.t. the probabilistic Haar measure of G.

13 Three fixed point theorems

Recall that a fized point of a function f: X — X is any point « € X for which f(z) = x. This chapter is devoted
to two classical theorems from functional analysis about fixed point theorems of families of affine transformations of
compact convex sets and to an infinite-dimensional version of the Brouwer’s fixed point theorem. (Recall that a function
u: X — Y defined between two convex sets in real vector spaces is said to be affine if u((1 —t)x +ty) = (1 —t)x +ty
for all z,y € X and each scalar ¢t € (0,1).)

13.1 Theorem. (Markov-Kakutani fixed point theorem)

Let K be a non-empty set in a ToVS that is both compact and convex. Any collection of pairwise commuting
continuous affine transformations of K has a common fized point. More precisely, if Ts: K — K (s € S) is affine
and continuous and Ts o Ty = Ty o T for any s,t € S, then there exists a € K such that Ts(a) = a for each s € S.

Proof. The main step of the proof is to show that a single continuous affine transformation A: K — K has a fixed
point. To this end, we fix arbitrary b € K and for n > 0 set 2, = 1 LSy AF(b) (where A°(b) = b and A™ denotes the
nth iteration power of A). Since K is convex, we conclude that SUn € K for all n and it follows from the compactness
of K that lim,ex #,(») = a for some subnet of (z),—; and a € K. We claim that A(a) = a. Indeed, since A is
continuous, we infer that A(a) = lim,ex A(7,(s)). So, it is sufficient to check that

(13:1) lim ¢, =0
cEX

where c, def A(x,,(g)) - xl,(g) But since A is affine, it follows that A(z,(¢)) — Ty(0) = AT (B)—b and AY(@)*+1(p) —b

v(o)
belongs to the set L K- K, whereas lim, ¢y ( o) = = 0 (why?). Finally, the compactness of L implies that L is
bounded (in the TVS sense) and therefore (I3:1)) holds (why?).
Now we pass to the general case of a commuting collection of affine transformations (from now on we assume that
S # @). For each index s € S denote by F the set of all fixed points of Ts. It follows from the first part of the proof
that Fy # @ for all s € S. Moreover, it is straightforward that this set is both closed (from continuity of T) and
convex (as Ty is affine). To conclude the proof, we only need to check that (), g Fs # . Since all F are closed sets in
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a compact space, it is enough to show that (1 _; F§ is non-empty for each finite non-empty set J C S. We prove this
property by induction on the size of J. When J is a singleton, we have nothing to do. Now assume that the intersection

under consideration is non-empty whenever the size of the set of indices is less than n > 1 and consider arbitrary set

J C S having exactly n elements. Choose arbitrary ¢t € J and set W def Nsc NG F. It follows from the induction

hypothesis that W is non-empty. It is also convex and compact. Moreover, T3(W) C W, because T; commutes with
all Ts. (Indeed, if z € W and s € J € \{t}, then T,(T;(z)) = Ty(Ts(z)) = Ti(x), which shows that Ti(x) € Fs.) So, it
follows from the first part of the proof that there exists z € W such that T;(z) = z. Then z € W N F, =), ; Fs, and
we are done. O

seJ

As immediate consequences of the above result, one obtains the following two classical results.

13.2 Corollary. (Abelian semigroups are amenable)
For any non-empty Abelian semigroup (S,+) there exists a bounded linear functional A: o (S,R) — R with all
the following properties:

o A(f) > 0 whenever f € Lo (S,R) takes only non-negative values;
e A(1) =1 where 1 is the function on S that is constantly equal to 1 (in particular, |A]| =1);
o A(fs) = A(f) for any [ € Lo (S,R) and each s € S where fo: S>x+— f(s+2x) €R.

Proof. Let K consist of all bounded linear functionals ¢ on F = (S,R) such that ||¢|| <1 and ¢(1) = 1. We equip

K with the weak* topology (more precisely, with the topology induced from the weak* topology of E*). Observe that:

e K is convex and weak* closed in Bg-; in particular, K is a compact subset (by the Banach-Alaoglu theorem) of
a locally convex space (namely, of E*);

e K is non-empty (as it contains evaluation functionals).

Further, for each s € S'let Ly: E> f— f, € E and T & L%: E* — E*. Note that Ls(1) =1 and ||Ls|| < 1. Hence

Ts(K) C K. Moreover, since S is Abelian, it follows that all Ly commute. Consequently, all T commute as well. Since
Ts is an operator adjoint to some bounded linear operator, Ts is weak* continuous. Now it follows from Theorem [13.1
that there is A € K such that T5(A) = A for all s € K. It remains to check that A is a non-negative functional. But
this is a property of all members of K. Indeed, if ¢ € K and f € Bg is non-negative, then 1 — f € By and therefore
(1 — f) <1 (as ||¢|| < 1) or, equivalently, ¢(f) > 0, and we are done. O

13.3 Corollary. (Generalised Krylov—Bogolyubov Theorem)

Let X be a non-empty compact Hausdorff space and us: X — X (s € S # &) be a collection of pairwise
commuting continuous transformations of X. Then there exists u € Prob,.(X) that is invariant for all us; that is:
w(ugt(A)) = u(A) for any s € S and each Borel set A C X.

Proof. This time let £ %' C(X,R) and for each s € S let M,: E > f — fou, € E. Note that M,(1) = 1 (where 1

stands for the function on X that is constantly equal to 1), || M| = 1 and all M, commute. As in the previous proof,
we conclude that all the operators M commute, are weak™ continuous and leave the set @ f {¢ € Bg-: ¢(1) =1}
invariant (that is, M(Q) C Q). Arguing in a similar way as therein, we infer that @Q is weak* compact, convex and
non-empty. So, all M} have a common fixed point in (). But, it follows from the Riesz representation theorem for
C(K)-spaces that Q = Prob,(X). So, there is y € Prob,(X) such that M} (¢,) = ¢, where ¢,,: E> f [, fdueR.
To finish the proof, we fix s € S and denote by v the transport of u via us (that is, v(B) = p(u;(B)) for all Borel
sets B). It remains to check that v = u. To this end, note that v € Prob,(X) (indeed, if B € #(X), € > 0 are
K € X(X) are such that K C u;'(B) and p(u;*(B) \ K) < ¢, then L f us(K) is a compact subset of B such
that K C uz!(L) C u;!(B) and therefore v(B \ L) < ¢ as well). So, these two measures coincide iff their integral
functionals do so. But for f € F we have

/fdz/:/ fousdu=¢u<fous>=¢N<Ms<f>>:<¢qus><f>=(M:<¢u>><f>=¢u<f>=/ fdn,
X X X

and we are done. O

The next result is attributed to Kakutani by Rudin. (Below eg stands for the neutral element of G.)
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13.4 Theorem. (Kakutani fixed point theorem)

Let G be a compact group and K a non-empty set in a locally convex Hausdorff space that is both compact and
convez. If g — T} is a function that assigns to each element g € G a continuous affine transformation Ty of K in
a way such that the function G 3 g — Ty(x) € K is continuous for each v € X, Typ, = Ty 0Ty, for all g,h € G
and T, 1is the identity map on K, then there exists a € K such that Ty(a) = a for all a € K.

Proof. Fix b€ K and set u: G 2 g — T,(b) € K. It follows from the assumptions that u is continuous. Now it follows
from Corollary (p. that u is Pettis integrable w.r.t. the Haar measure of G and that

(13:2) Tg(/Gu(az)dx) :/G(Tgou)(:r) dz  (g€q).

(Why?) Denote by A the Haar measure on G and by a the Pettis integral [, ¢ u(x) dz, recall that a € K and observe
that (Tgou)(x) = (Ty o Ty)(b) = Tye(b) = u(gx) = (uo Ly)(x) where Ly: G 3 h — gh € G. Since X is left-invariant, it
follows from item (C) of Proposition (p. that [, uoLyd\ = [,ud) (= a). Consequently, Ty(a) = a for each
g € G (thanks to (13:2))), and we are done. O

13.5 Remark.

The proof presented above shows that the above result is a direct consequence of the Haar measure theorem for
compact groups. Actually, the Kakutani fixed point theorem (in a version formulated above) is equivalent to the
existence of the Haar measure on a compact group G. Indeed, if we assume the former result, then we may apply
this theorem with the following settings: K def Prob,(G) (equipped with the weak* topology) and for g € G,
T,: K — K is the restriction to K of the adjoint operator to My: C(G,R) > f — fo L, € C(G,R) where
Ly: G3ax— gr € G. Then a common fixed point for all Ty is a (probabilistic) Haar measure on G. We leave the
details to interested readers.

13.6 Remark.
There is also known a more ‘intrinsic’ version of Theorem It has the following form:

Each equicontinuous transformation group G consisting of affine transformations of a non-empty con-
vex compact subset K of a Hausdorff locally convexr space E has a common fixed point.

Equicontinuity appearing above means that for any 0-neighbourhood U of E there exists a 0-neighbourhood V
such that for all x,y € K satisfying 2 —y € V one has g(x) — g(y) € U for all g € G. Under the above assumptions,
one proves that the closure H of G (in the compact-open topology of C(K, K)) is a compact transformation
group (thanks to a certain version of the Ascoli theorem) consisting of affine transformations and then applies
Theorem [[3.4] to H.

The next result in the version formulated below was proved by Morris and Noussair in the 70’ of the 20th century.

13.7 Theorem. (Schauder—Tychonoff fixed point theorem)
Let C be a convex non-empty set in a Hausdorff locally convex space E and let f: C — C be a continuous function
such that the closure of f(C) is compact and contained in C. Then f has a fized point.

We precede the proof of the above result by two auxiliary lemmas. To understand some of arguments, we recall
the notion of a (convex) simplex and its triangulation.

13.8 Definition.
A simplez S in a real vector space V is the convex hull of any finite set F of the form {ao,...,an} C V where
N > 0, and the vectors a; —ay, - . ., ay —ag are linearly independent unless N > 0. The points of F' and the number
N appearing here are uniquely determined by S and are called, respectively, the vertices and the dimension of S.
We use vert(S) and dim S to denote these two invariants of S.

A triangulation of a convex set C' in V is a finite collection {Si,...,S,} of simplices such that C' = J}_; Sk
and for all distinct j and k from {1,...,p} all the following conditions are fulfilled:
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e dim S; = dim Si;
e S; NSy coincides with the convex hull of vert(S;) N vert(Sk).

(We underline here that not every convex set admits a triangulation, even if it is a compact set in a finite-
dimensional vector space.)

13.9 Lemma.
Let S be the convex hull of a finite non-empty set in a ToVS E. Below S is equipped with the topology induced
from the topology of E.

(A) S is a compact metrisable space.

(B) For any open cover U of S there is a triangulation T of S that refines U; that is, for any T € T there is
Uecl such that T C U.

(C) For every triangulation {T4,...,T,} of S each function u: \Ji_, vert(Ty) — S extends to a continuous
function v: S — S that is affine on each of Ty,.

(D) Any continuous function from S into S has a fized point.

Proof. Part (A) follows from Theorem (p.[5). Part (B) is a consequence of (A) and a well-known property that
there exist triangulations consisting of simplices whose diameters are arbitrarily small. (Indeed, fixing a norm on lin(5),
we take a Lebesgue’s constant r for i, and then a triangulation of S whose all members have diameter less than r
witnesses (B).) To show (C), observe that for each simplex T and any of its points x there exists a unique function
al's vert(T) — [0,1] whose all values sum up to 1 and = = > wevert(T) al(w)w. We define v: S — S as follows: if

x € Ty, then v(z) def 2 wevert(Ty) alk(w)u(w). Note that v is affine on T and v(z) is independent of the choice of

k (here we use the third property of a triangulation). In particular, v is well defined and hence it is continuous, and
extends u. Finally, part (D) is covered by a classical fixed point theorem due to Brouwer. O

13.10 Lemma.
For any open cover U of a compact Hausdorff space X there exists a finite open cover V of X that is a star-
refinement of U; that is, for each V' € V there exists U € U such that W C U for all W €V satisfying VW # &.

Proof. Without loss of generality, we may and do assume that U/ is finite, say U = {Uy,...,Un} (where Uy are all
different). There are continuous functions wuy, . ..,uy: X — [0,1] such that u; ' ((0,1]) C Uy, for each k and

N
(13:3) > uj=1
j=1

Define d: X x X — Ry by d(z,y) Lef Zgzl |ug(z) — ur(y)| and note that d is continuous and satisfies the triangle
inequality. For any « € X let W, consist of all y € X for which d(z,y) < ﬁ The sets W, form an open cover

of X. Fix z € X. It follows from (I3:3) that there exists an index K € {1,...,N} such that ug(z) > +. Now

assume W, N W, # @ and take any z from this intersection. Then d(z,y) < d(z,z) + d(z,y) < =. In particular,
lug () —uk (y)| < %, which implies that ug (y) > 0 and, consequently, y € Uk. So, to finish the proof it remains to
define V as an arbitrary finite subcover of {W,},cx. O

Proof of Theorem[13.7. Suppose f has no fixed points. In particular, for each € C there are two open disjoint
neighbourhoods W2 and W} of z and f(x), respectively. Then f~1(W}) N WY is a neighbourhood of x. Since E is
locally convex and C'is convex, there exists a convex set C, that contains x and is both open in the topology of C
and contained in f~1(W}1) N W2. In particular, C,, C W2 and f(C,) C W}, which yields that

(13:4) fC)NCy =02 (x € C).

Denote by @ the closure of f(C). By assumptions, @ is compact and thus (thanks to Lemma [13.10) there exists a
finite cover {Uq,...,Un} of @ (consisting of subsets of @) that are open in Q) that is a star-refinement of {C, NQ}.cx-
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Set Vj def f7HU;) for j =1,...,N. The sets Vi,...,Vx form an open (in C) cover of C. Without loss of generality,
we may and do assume that Vl, ..., V, are all non-empty and V; = @ for all j > p (where p € {1,..., N} is chosen
appropriately). Now for any k = 1,...,p take arbitrary z; € f(Vi) (C Ux) and denote by S the closed convex hull

of {z1,...,zp}. Since C is convex, we infer that S C C and, consequently, S C U£:1 Vi. An application of part
(B) of Lemma yields a triangulation {T3,...,Ty} of S such that T C V,; for each j = 1,...,¢q (and some
n:{1,...,q} = {1,...,p}). Now we define u: ngl vert(T;) — S as follows: for each w from the domain of u there

is an index {(w) € {1,...,q} such that w € T¢(,) (e.g., one may define {(w) as the least index with this property),

and then u(w) 2ef Tp(e(w))- We conclude from part (C) of the last cited lemma that u extends to a continuous function
v: S — S that is affine on each of T;. We will now prove that

(%) for any z € S there exists y € C such that {f(2),v(z)} C Cy.

To this end, take j such that z € T}. Then

(13:5) f(2) € f(T5) € F(Vyy) € Uy

Since {Ui,...,Up} is a star-refinement of {C,: x € C}, there exists y € C satisfying:

(13:6) U{US: se{l,...,p}, UsNUyy) # 2} C .

In particular, f(z) € Cy, by (13:5)). So, to conclude (%), it remains to check that v(z) € C,. Since z is a convex
combination of vectors from vert(7};) and v is affine on T}, and C,, is convex, it is enough to show that v(vert(Tj)) C Cy.
To this end, fix an arbitraty vector w from vert(7}). Then f(w) € f(T}) C Uyyy (as w € Tj, cf. - On the
other hand, w € T¢(,) and hence (similarly) f(w) € Uy e(w)), which shows that Uy ewy) N Uys) # @. Consequently,
U (e(w)) C Cy, thanks to (I3:6). But v(w) = u(w) = y(e(w)) € Un(e(w)), and the proof of (x) is ﬁmshed

Finally, we use part (D) of Lemma to obtain a point z € S such that v(z) = z. Then there exists y € C such
that both f(z) and v(z) belong to Cy, (by (%)). In particular, z € C,, and hence f(z) € f(Cy). So, f(z) € f(Cy)NCy,
which is contradictory to O

14 Appendix: proof of Carathéodory and Radon-Nikodym theorems

For the sake of completeness of for the reader’s convenience, below we present the proof of Theorem p. p4| (and
after that we will present a short proof of the Radon-Nikodym theorem which involves Riesz representation theorem for
Hilbert spaces). Everywhere below p: P(Y) — [0, o] is a fixed outer measure. Recall that 9t(p) denotes the collection
of all p-measurable sets; that is, DM(p) consists of all sets A C Y such that p(B) = p(BNA)+p(B\ A) forall BCY.

Our aim is to show that 9 % M(p) is a o-algebra and that the restriction p of p to 91 is a measure. Note that & € 9
and p(@) = 0. It is also straightforward that

(14:1) Y\AeMn (Aem.

14.1 Lemma.
If A, B € N, then both AU B and AN B belong to N as well.

Proof. Thanks to , it is sufficient to show that AN B € Y. To this end, take any C C Y. Since A € N, we infer
that p(C) = p(CNA)+ p(C\ A) and p(C\ (ANB)) =p(CNA\(ANB))+p(C\ A) =p(CNA\B)+p(C\ A).
Similarly, p-measurability of B yields that p(CNA) = p(CNANB)+p(CNA\B). So, p(C) =p(CNA)+p(C\A) =
p(CN(ANB))+p(CNA\B)+p(C\A) =p(CN(ANB))+ p(C\ (AN B)), and we are done. O

14.2 Lemma.
If Ay, ..., A, are pairwise disjoint sets from M, then p(Ui_,(ENAg)) =Y p_, p(EN Ay) for each ECY.

Proof. Thanks to the previous lemma and a simple induction argument, it suffices to consider the case when n = 2.
And to verify that case, just apply p-measurability of A; to the set C = E N (4; U As). O

Proof of Theorem[I1.6] It follows from and Lemma_that M is an algebra of subsets of Y (as @ € 91). Note
that for any sets Al,A2,.. € N, setting Bo f & and B, def A, \Uk o Br for n > 0, we have that By, By, ... are
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pairwise disjoint, all these sets belong to 9% and satisfy | J,~; By, = [, —; An. So, it remains to check that D Lef U, Bn
belongs to 91 and

(14:2) p(D) =" u(Bn).

To this end, take any set C' C Y and note that the inequality p(C) < p(C N D)+ p(C\ D) is fulfilled, as p is an outer
measure. To show the reverse one, first assume that Y., p(C'N By) = co. Then it follows from Lemma that
p(C) > S r_, p(C N By) — oo (n — 00), which implies the expected inequality. Now we assume that > ,_, p(C N
By) < oo. For a fixed € > 0 there is n > 0 such that 7 ., p(C N By) < e. Then Lemma yields that
p(C) = p(C N (Up—y Br)) + p(C\ (Up—; Bx)) and therefore (since p is an outer measure) p(C' N D) + p(C' \ D) <
P(C N (Upzy Br)) + i1 P(C N Bi) + p(C\ (Uy—y Br)) < p(C) + &, which also gives the expected inequality.
Finally, to prove , we only need to show that the left-hand side expression is not less than the right-hand
one. But this simply follows from Lemma as w(D) > p(Up_y Br) = Yop—q 1(Br) = > pe; #(Bk) as n — oo, and
we are done. O

14.3 Theorem. (Radon-Nikodym theorem)

If u and v are two o-finite measures defined on a common o-algebra M (of subsets of Y ) and v is absolutely
continuous w.r.t. p (that is, if v(A) = 0 for all A € M such that u(A) = 0), then there exists an M-measurable
function u:'Y — Ry satisfying

(14:3) v(A) = /Aud,u (Aem).

The above function u is unique up to p-almost everywhere equality.

Once again, we divide the proof of the above result into a few steps. Everywhere below Y, 9t and i are as specified
above.

14.4 Lemma.
(A) For any M-measurable function u:'Y — Ry the set function v defined by (14:3)) is a o-finite measure on 9.

(B) Ifu,v: Y — Ry are two M-measurable functions such that [, wdp = [, vdp for any A € M, then u(zx) =
v(x) for p-almost all z € Y.

Proof. Express Y as the union of an increasing sequence Aj, Aa, ... of measurable sets satisfying p(A4,) < oo for all n.

To show (A), we only need to show that v is o-finite (thanks to the Lebesgue’s monotone convergence theorem). To

this end, set B,, def {z € A,: u(z) < n} and note that B, € M, v(B,) < nu(A,) < oo and Y = J,2 | B,. To verify

(B), it is enough to show that u(Z) = 0 where Z o {r € Ay: u(z) < g <wv(z)}, where n > 0 and ¢ € QN (0, 0)
are arbitrarily fixed. Note that then fZ udy < oo and therefore fZ vdr < oo as well. So, v — u is positive on Z and
J,(v —w)dp = 0, which implies that (Z) = 0, and we are done. O

14.5 Lemma.
For any o-finite measure v on M there exists an M-measuradle function w: Y — (0,00) such that fY wdr < co.

Proof. As in the previous proof, express Y as the union of a sequence A;, A, . .. of measurable sets satisfying v(4,,) <

oo for all n. Now define w by w(z) =5, % where x g stands for the characteristic function of a set B € 9.

Note that w(Y) C (0,00) (why?) and [, wdv =7, % < 0. O
14.6 Lemma.

Assume u(Y) < oo and v is a non-negative measure on MM such that v < p. Then there exists an M-measurable
function q: Y — [0,1] such that

(14:4) v(A) = /Aqdu (Aem).
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def

Proof. Set H'= L*(u1,R) and recall that H is a Hilbert space. Note that:

e for any M-measurable function f: Y = R, [, |f|dv < [, |f|dy; and

o if f,g: Y — R are M-measurable, u-integrable and equal p-almost everywhere, then they are v-integrable and
equal v-almost everywhere as well, and thus fy fdv= fy gdv.

These two remarks imply that the assingment f — [, f dv correctly defines a function L from H into R (recall that
H C L'(p) as p is finite). Clearly, L is linear. Moreover, L is bounded, because |L(f)| < [, |fldv < [ |f]dp <
V)| £l where the last inequality follows from the Schwarz inequality. We infer from Theorem (p. that
there exists an 9t-measurable function ¢: ¥ — R from H for which L(f) = (f,q)u (for any f € H). Substituting
f = xa where A € 9 (this f belongs to H), we obtain . So, it remains to check that ¢(z) € [0,1] for p-almost
all z € Y. To this end, substitute for A in the last cited formula f~1((—o0,0)) and f~1((1,00)) to conclude that these
two sets have p-measure zero (since 0 < v(A4) < p(A) for all A). O

14.7 Lemma.
If v and p are finite and v is absolutely continuous w.r.t. u, then there exists 9M-measurable u: Y — Ry for which

(14:3) holds.

Proof. Set A def 1+ v and observe that 4 < A\ < p as well as v < \. So, we conclude from Lemma that there are
two 9-measurable functions p,q: Y — R, for which

(14:5) M(A):/Apd)\

and v(A) = [, qdX (for any A € 9M). Set Z %ef p~1({0}) and note that pu(Z) = 0 (by (14:5))). Consequently, also
A(Z) = 0 and hence we may and do assume that p assumes only positive values. Now set v def % and u & qu and note

that [, vdu = [, vpdX = A(A) (again by (14:5)). So, we conclude that [, fdX = [, fvdu for any DM-measurable
f:Y = Ry (and each A € 90). Consequently, v(A) = [, qd\ = [, qudp = [, udp, and we are done. O

Proof of Theorem[14.3]. It follows from Lemma that there are two 9t-measurable functions p,q: Y — (0, 00) such
that [, pdv < oo and [, gdu < oco. Define v/, pi/: MM — Ry by v/(A) < [4pdp and p/(A) <f J4 adp, and note that
VvV < vand p < ' (as p and g attain only positive values). In particular, v’ < p/, and we infer from Lemma that

V'(A) = [ 4, wdy for some 9M-measurable function w: Y — Ry. Arguing as presented in the proof of the last cited

lemma, we obtain v(A) = [, 1dv = [, Ldu' = N “4 dp. Thus, it is enough to set u def 2% to get (L4:3). Uniqueness

of u follows from Lemma m O
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FIRST (PRELIMINARY) PART OF THE EXAM

Topics for the test as part of the first part of the exam (in addition to the terms listed below, the ability
to provide simple examples related to these topics and concepts is required):

e (definitions) convex, symmetric, balanced and absolutely convex sets
e (definition) topological vector space
e (definitions) operator norm and the dual Banach space
definitions) spaces £, co, ¢, C(K), Co(X), LP(X) (chapter [3)
definition) scalar product

definition) Hilbert space (4.5)

definitions) orthogonal vectors and sets; orthogonal complement
definition) orthogonal projection

definitions) adjoint, selfadjoint, unitary, normal operator
definitions) orthogonal and orthonormal system and basis
definition) Hilbert space dimension

definition) sublinear functional

definition) canonical embedding into the bidual

definition) reflexive Banach space (5.17))

definition) Banach limit

definitions) annihilator and preannihilator

definitions) invariant metric, a value, balanced and monotone value
definition) F-space

definition) locally convex space

definition) Minkowski functional

definition) separating collection of semi-norms ([7.5))

definition) bounded set in a TVS

definitions) extreme point; closed convex hull

definitions) dual pair and its topologies

definitions) weak and weak™ topologies ([8.5)

definitions) polar, prepolar and bipolar

definition) adjoint operator between Banach spaces
definitions) compactly supported functions; C.(X) (11.1])
definitions) Radon and regular (Borel) measures
definitions) scalar measure, variation and total variation
definitions) regular scalar measure

definitions) Banach space of scalar measures and its norm

statement) separation axioms in TVS’s (item (D) of [2.4))

statement) quotient of TVS’s and quotient operators (items (D) and (F) of [2.6)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

statement) quotient of a normed vector space ([2.8])
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statement) continuity of a linear operator between NVS’s ([2.9)
statement) finite-dimensional TVS’s

statement) finite-dimensional subspaces (|2

statement) continuity of finite-dimensional operators (2
statement) locally compact TVS’s

defining a TVS by a neighbourhood basis

Schwarz inequality (4.3

statement
statement
statement) norm induced by a scalar product .

statement) parallelogram identity (4.6] .

statement) polarization identities

statement) Jordan-von Neumann theorem

statement) best approximation in Hilbert spaces
statement) Pythagorean equation (item (d) of [4.13] -

statement) best approximation in a linear subspace (4
statement) properties of orthogonal projections (4.16|)

statement) othogonal decomposition (4

statement) Riesz representation theorem for Hilbert spaces

statement) Bessel’s inequality (item (OS4) of [1.28)

statement) uniqueness of Hilbert spaces

statement) properties of orthonormal systems
statement) steps of Gram-Schmidt process
statement) Uniform Boundedness Principle (5
statement) Banach-Steinhaus Theorem

statement) Isomorphism Theorems and
statement) Open Mapping Theorems and [6.8] .
statement) Closed Graph Theorems ﬂ 5.5| and
statement) abstract Hahn-Banach Theorem
statement) classical Hahn-Banach Theorem
statement) norm extraction theorem

statement) property of the canonical embedding into the bidual
statement) criterion for a boundedness of a set -
statement) Hilbert spaces and reflexivity

statement) theorem on Banach limits (5.22])

statement) the dual of a subspace and of a quotient (5.26] -

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
e (statement) Parseval’s identity (item (OB2) of-
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(statement) metrisability of TVS’s
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
statement) formula for the Hilbert space dimension
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

statement) quotient value .
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statement) properties of Minkowski functionals

statement) defining a locally convex topology by semi-norms

statement) metrisability of locally convex spaces

statement) extending continuous linear functionals in locally convex spaces
statement) Kolmogorov theorem

statement) separation of open sets

statement) separation of closed sets ((7.16))

statement) Krein-Milman theorem

statement) continuous linear functionals on dual pairs (|8.4))

statement) weakly closed convex sets (8.7)

statement) bipolar theorem (8.10)

statement) Mazur’s theorem

statement) Banach-Alaoglu Theorem

statement) weak™ metrisability of the closed unit ball

statement) Banach-Mazur theorem

statement) Goldstine’s theorem

statement) characterisation of reflexivity

statement) characterisation of adjoint operators between Banach spaces (|8.28)
statement) Krein-Smulian theorem on weak™ topology

statement) Eberlein theorem (first sentence of

statement) Krein-Smulian theorem on weak topology

statement) Riesz representation theorem for positive functionals

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
e (statement) boundedness of weak or weak* convergent sequences
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

statement) Riesz representation theorem for bounded functionals ((11.35|)
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SECOND (MAIN) PART OF THE EXAM

Topics for a grade of 4.0

A1 (statement and proof) Finite-dimensional TVS’s

A2 (statement and proof) Locally compact TVS’s ([2.16])
statement and proof) Schwarz inequality

statement and proof) Uniform Boundedness Principle ([5.1)
statement and proof) Banach-Steinhaus Theorem

)
( )
( )
( )
( )

A6 (statement and proof) Weakly closed convex sets
(statement and proof) Separation of closed sets
(statement and proof) Banach-Alaoglu Theorem
(statement and proof) Characterisation of reflexivity
( )

A10 (statement and proof) Characterisation of adjoint operators between Banach spaces ([8.28))

Topics for a grade of 5.0
B1 (statement and proof) Best approximation in Hilbert spaces (4.10))

B2 (statement and proof) Best approximation in a linear subspace (|4.14])

B3 (statement and proof) Riesz representation theorem for Hilbert spaces (4.19))

B4 (statement and proof) Open Mapping Theorem

B5 (statement and proof) Abstract Hahn-Banach Theorem (5.9))

)

)

)

)

)

B6 (statement and proof) Classical Hahn-Banach Theorem
)

)

)

)

B7 (statement and proof) Metrisability of TVS’s (6.3))

B8 (statement and proof) Weak* metrisability of the closed unit ball (8.18))

B9

(
(
(
(
(
(
(
(
(statement and proof) Separation of open sets
(

B10 (statement and proof) Krein-Milman theorem ([7.22))
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