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Analytic Continuation of Harmonic Functions

1. INTRODUCTION .

In this paper by D we denote an arbitrary fixed, open, connected and not
empty subset (a region) of R", n > 2. It is known that every function » harmonic
on D may be continued to a holomorphic function in an open set D, C C™
It may be asked whether there exists an open connected set D C C™ such that
D C D and every harmonie function on D may be continued to a holomorphic
(or only to an analytic multivalued) function on D. It may also be asked whether
there exists a maximal set D with these properties. This set will be called
a harmonic envelope of holomorphy (or of analyticity) for D.

From the paper [2] we can deduce the following

Theorem I. For every region D C R® there exists a harmonic envelope of
analyticity.

In the paper [3] we can find
_ Theorem II For every region D C R" there exists an open connected set
D C C™ such that every harmonic function on D may be continued to a holo-
morphic funetion on D.

Theorem III. If B= {x e R™:|x| <7}, mn > 2, r > 0, then
B={o=o+iy e C": [+ lyP+2 (|2l lylP— <z, >0 < 1}

is the harmonic envelope of holomorphy for B.

In his paper [2] Lelong presented two methods of construction of a harmonic
envelope of analyticity. In Section 2 of this paper these two methods are analysed
and used for the effective construction of a harmonic envelope of analyticity
for the ball and the spatial ring. By different methods the harmonic envelope
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of holomorphy of the ball was obtained in [1] and [3]. The paper is closed by
Section 3 in which theorems 7 and 8 are proved. Theorem 7 permits the effective
construction of the harmonic envelope of analyticity for D C C, if a harmonic
envelope of analyticity is known for some region that is biholomorphically equi-
valent to D. Theorem 8 permits the construction of a harmonic envelope of
holomorphy for the set D C C that is biholomorphically equivalent to the unit
dise.

Now we present a list of the denotations used in this note.

As usual for ACC" (or ACR") by A°, 4,24 we denote, respectively, the
interior, the closure and the boundary of A. For U= U°CR", by H(U) we
denote the set of all harmonic functions on U. For Q = 2*C C", by 0(Q) we
denote the set of all holomorphic functions on £2. For arbitrary z,w e« C",

n
by (2, w) we denote the standard scalar product in C™ (i.e. (2, w)> = > 2;%))
=1

and by [2| the norm induced by the scalar product.

2. LELONG SETS

The whole of this section has been suggested by the ideas contained in Le-
long’s paper [2]. It has the character of a short report on results relative to the
analytic continuation of harmonie funetions.

The first part of this section is devoted to genera.hza.tlons of Lelong s methods
of construction of a harmonic envelope of analyticity. The case n = 2 plays
a special role in this theory, therefore we shall devote most attention to this.

Now, we shall define two sets, which play a fundamental role in the following
constructions.

Let F(2 Zz,, 2= (2, ., 2n) €C" For 2,eC" t,eR" let T(z,)=

={teR": F(z,,—t = 0}, I'(ty)) = {# ¢ C" : F(2—1,) = 0}.
From these definitions we can directly obtain the following

Lemma 1.

{a) For z=a+iy e C*: T(2) = {te R": la—1t| = |y|, <@ = t, y)> = 0};

(b) for 2= a4y e C*: T'(2) = T(2), T(v) = {x}/Z = z—y/;

(¢) in the case n = 2, for 2 = x4iy ¢ C*, y # 0 the set T(2) is an (n—2)
dimensional sphere with the center x, the radius |y| and T (2) lies in the hyper-
plane {t e R": (z—1t,y> = 0};

(d) in the case n = 2, for 2 = (2,, 2,) e C*: T(2) = {# + 12y, 2, + 1%} (we iden-
tify C and R?);

(e) in the case » > 3 the set T'(z) is connected;

(f) for teR* I'(t) ~R" = {t}, (n =1 : I'(t) = {t});
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(g) for 2e C*"te R zel'(l)>1e T'(2);
(h) for z=a+weC*,aeR,a£0:T(xt+iy)= w-}—aT(i%);

(i) if U is an n-dimensional real orthogonal matrix, then T(Uz)= U(T'(2)}
(we identify U with the mapping of C" onto C"). ~

This lemma (except (i)) will be used many times in the sequel.

Lemma 2. Let 4 be a subset of R* such that 04 # ¢.

Set I'(4) =:U I'(t). Then I'(A) = I'(A), '(A) ~ R* =04 (n=1:I'(4)=2A4).

€34

Proof. The second part of this lemma follows from lemma 1f. We shall
prove only that I'(4) = f’(-A_) :

Let {zx},enC I'(4), limzk = 2y, 2k € I'(lx), s €04, k > 1. We want to prove

that 2z, e I'(4), i.e. there exists 7, ¢ @A such that z, eI‘(to)
There exists a constant M > 0 such that |¢:| < M,k > 1. For arbitrary
k,leN we have

[te—1,| < Jte— 2| + [2e— 2|+ |on— b < [te— 2|+ [h— 2| +2M,
[te—2x* = lte— (@t ) 2 = lte— @x2+ [yxl* = 2 |yel® < 2.

Hence {ti—1t,] < 2{1+y2)M, &k, 1 e N. Since {tx}.y is bounded and 84 is a closed
set then there exists a subsequence {tr,}m.y and a point {, 04 such that
lim g, = £,y 0 = lim F(2kp— tk,) = F(2—1y), i.e. 2o ¢€I'(t). The proof is

m—+00 M—0

concluded.

Now we give the definition of a Lelong set of the first type.

Let A be a subset of R® such that 4 « ¢, A° # ¢; by 4 we denote the con-
nected component of the set C"\I'(4) which contams A® (in the case A = R"
we get A = C").

Since A°C R™\9A C C™\I'(4) (see lemma 2) then A is well defined. Since .
C\I'(4) is an open set (see lemma 2) then 4, as a connected component of
an open set, is a region in C™.

For a region D C R", the region D is the same as the region constructed by
the method given by Lelong in [2].

The definition of the set 4 is clear with respect to topological properties but
it is not useful in concrete constructions.

Below we give the definition of a Lelong set of the second type (denoted
by W(A)); this definition is useful with respect to its constructive properties.
Tt will be proved that for any region DCR"* n>2: D = W(D). This will
provide a method for effectively constructing the set D.

First we give the following auxiliary definitions.

Given BC R", n > 2, b ¢ R", we say that the sphere T'(2) is spherically con-
tractible in B to the pomt b if and only if there exists a continuous mapping
y: I—»C" such that y(0)=12, y(1)=2> and for every 7vel: T(y(r))CB

(I Z[0,11CR).




96

For ACR", n>2 put
W(Ad)= {z¢ C" T () is spherically contractible in 4 to every point a e A}.
The following lemma gives'a certain description of the set W(A).

Lemma 3.

(a) If ACR" is arcwise connected then W(A4)= {zeC": Ha e A such
that T'(2) is spherically contractible in A to a}, W(4) is arcwise connected,
W(4) "R* =04 and 04 C W(AN\W(A);

(b) if n =2 and if 4 is arcwise connected then W(4) = {z e C?: T(2) C A};

(¢) if A is starlike with respect to #, ¢ A then W(4)= {ze C™: T(2)C A}
and W(4) is starlike with respect to i,;

(d) if 24 + ¢, A® +# ¢ and A° is connected then 4 = W(A4%), 4 ~ R* = A°
and 8(A°) CoA.

Proof.

(a) is implied directly by the definition of W(4).

(b) Let z= (21, 2,) € C% T'(z) = {¢,}12,,%+1i%} C A, a e A be an arbitrary
but fixed point. There exist two continuous mappings o : I —A,1=1,2 such
that 6,(0) = 2,+ iz, 0,(0) = Z, 112, 0,(1) = 05(1) = a. We define y : I—>C2 by
0,40, 0;—

2 7 9
7(0) =2, (1) = a and for every z eI T(y(r)) = {o)(v), 0a(r)} C 4.

(c) Let ze C™, T(2) C A. A is starlike with respeet to ¢,, therefore A is are-
wise connected. It suffices to show that 7T(z) is spherically contractible in A to
the point #,. Let y(z) = 7ty+(1—7)2, v € I. It is obvious that y is a continuous
mapping of I into C", y(0)=72, y(1)=1, and T(y r)}— e+ (Ll—7)T(2),v el
(see lemma 1h). Therefore T(y(z))C 4, 7 ¢ L.

(d) We know that A°C W (A4’ and W(4° is connected. First we shall
show that W(A°) ~ I'(4) = ¢. Suppose there exists ze W(4°) A I'(4), so there
exists ¢ ¢ 94 such that t e T(z). Therefore T(z) ~ 94 # ¢ and we have a con-
tradiction to the inclusion 7'(2) C A°. Hence W(A4°) C A.

‘We shall prove the opposite inclusion. Let 2z ¢ 4, a ¢ A° be two fixed pomts
and let o : I—»4 be a continuous mapping such that ¢(0) =z, (1) = a. We
want to demonstrate that for every v eI : T'(o(r)) C A° (in particular from this
it follows that z¢ W(A%). Let K = |J T (¢(z)). We shall show that K is connected

: tel

compact set.

K i3 a bounded set. Let #; ¢ T'(o(7)), ¢ = 1, 2; —4l < h—o(r)]+ o (z)—
—0(%) |+ lo(m)—1s| <2(14+y2)max{|o(r)| :7 eI} < 4 oo (see the proof of lem-
ma 2).

K is a closed set. Let tx € T(o(wk)), k> 1, t, = lim #x. There exists a sub-
sequence {Tr,}n, .y and a point z, € I such that ¢, = lim r;c,,, Since F and o are

the formula y = ) It is obvious that y is a continuous mapping,

continuous mappings, we have 0= hm F(tkm— o‘('rkm)) F(ty—o(z)). So
ty € T(0(z)) C K.
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K is connected. We distinguish two cases.

At first — the case n = 2. Let 0 = (0y,0,), 04 : I>C,1=1,2, K1 (cr,+
+i0,) (1), K, = (o‘l—{—w,)(l) K,, K, are connected, a e K, n K,, K = K, v K,.
Therefore K is connected.

Now we congider the case n > 3. Suppose thaﬁb K=K, vk, K nK,=¢,
K1$¢,K¢ Kz,z—l 2. Let I, = {TGI T(U(T)}ﬁK(;&qB},%—l 2. Itmay
be checked that Iy # ¢, 4 = 1,2, I = I, I,. Since for 7, € I the set .’I’(cr(-r,,)) is
connected, then T(a(r“))CKl or T(o(%))CK,. 8o I, nI,= ¢. It is easy to
prove that I; = I;, i = 1,2 and we get a contradiction to connectedness of I.

We want_to show that K C A° 1t is obvious that K n0A = ¢, K n A # ¢.
Suppose that K ¢ A% i.e. K = (K n A°) v (K ~ (R™\ 4)) where (K ~ (E™\ 4)) # ¢.
This is contradiction to the connectedness of K. This completes the proof.

Lemma 3 implies the following

Corollary

I. For a region DCR", n > 2:

(a) W(D)={2¢<C":HaeD: T(z) is spherically contractible in D to a};

(b) in the case n =2 W(D)={ze C*: T(2) C D};

(¢) D= W(D), D~ R'= D, o9D'C3D C (D).

II. For A, BCR":

(a) if A ~B=¢ then W(4A) ~ W(B) = ¢;

(b) if AC B and B is arcwise connected then W(A)C W(B).

The following Lemma 4 gives a characterization of metrical dependences in
the family {T'(2)},.cs. First we give a known definition of the Hausdorff dls-
tance between the sets.

For 4,BCC", A, B + ¢ we define the Hausdorff distance between Aand B
by the formula,

en(4, B) = m&X{SuP e(z, B), sup e(y,4)},

where g(2, C) denotes the distance between the point z and the set C’
Lemma 4
(a) Let z2 = o4-1ty, 2’ = o' -1y’ eC" n > 2, then g4(T(2), T(2)) < lo—2'|+

+ly—9y'l;
(b) let zeC" teR", there exists 2’ ¢ C" such that teT(2'), |2—2'|=

= oft, T(Z)).

Proof

(a) Lett' = a'-&', & € T(iy’) be an arbitrary point of 7'(2’). For the distance
between ¢’ and T(z) we have

olt, T(2)) = min{li—7'| : t ¢ T(@)} < lo—a’'| -+ min{|E— &' : & € T(iy)}
= lo—a'|+ (gl ly'P— 2max (<&, &) : £ « T(iy)})} .

It may easily be proved (by the method of Lagrange factors — see the proof
of lemma 8) that

7 — Prace Matematyczne, z, 17
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max {<&, &> : £ e T(iy)} = (&, ), where ¢ is a mapping E"x E"—[0, + o)
given by the formula
Pz, y) = (lz]*+ ly P— <=, y>2)*7 z,yeR.

‘Whence we have

olt’, T(2)) < lo—'|+(lyP-+ly' P—26(¢, ),
therefore
max {p(t', T(2)) : t' e T(2')} < le—2'| +
+{ly'P-+lyi—2[lv’ P lyf*— (max {<&, y> : & « T(iy)}P]HH .
Analogieally, as previously, we can prove that max{(&,y)>: & ¢ T(iy')} =
= ¢(y,y'); after the simple calculation we have max{g(t’ T(2)):t e T(2')} <
< le— o' |+ ly—o').
Because the assumptions of the lemma are symmetric then
enlT(2), T(2") < lo—a'| 4+ ly—y'| <2|z—2] .
(b) There exists &e T(z) such that [6—t|= elt, T(z)). We can take
¢ = z+ &—t. The proof is completed.
Lemma b.
(a) Let ACR" n>2. If 2¢e W(A) then T(2)C 4;

(b) in the case n = 2, if A is arcwise connected and T'(z) C A then z e W(4);
(c) (see [2]) in the case n= 2, for a region DC R, if BCaD, B=2aD then

the set B* = {z =2, &) = (51-;4'2’ E%fz) eC?:l,eB,eB, L, eD} is dence
in 0.

Proof. ' :

(a) Let 2z, e W(A), {&}eenC W(A), 2 =limz;. For every te T(z), let

k—oo
tx e T(2zx), k>1 such that [I—t| = eft, T(zk)). By lemma 4a [I—ix <
< ea(T(2), T(2x)) < 2|2—2|. Therefore ¢ = lim#c ¢ 4.

k—+c0 v

(b) Let 2= (2, 2,) € C% T(2) = {&,+ 12, 5 +19%} C 4, {{iadeens {LoatuenC 4y

2tz =1me ;,%+i%=1m{,. It is easy to prove that the points
koo Koo
2r = 26(Cy ey Con) = (c‘-";rg"‘, C"k;f””‘ ), k1 lie in W(A) and limz = 2.
k—oo

Remark. In the case n = 2, for the region DER? éD = {¢ ¢ C?: T(2) C D,
T(2) oD + ¢} . -

(¢) We already know that for every zeB*:z €0D. Take z= (2, 2,) ¢ 0D,
e> 0 and suppose that 2,4 iz, e 0D. There exist &, £, ¢ R? such that |§], |&] <

< —S and &, = 2, +i2,+ & € B, {, = %+ 1%+ & ¢ D. By a simple calculation we
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have Jz(&;, &)— 2| = 3(|&+ &l*+ |&,—&[*)} < &. Therefore B* is dence in 2D.
This completes the proof.

The following lemma is useful in the construction of the set D (see proof of
Theorem 4).

Lemma 6. [2] Let {D,}, s be an upper filtrant family of regions in R",
= U D,. Then {W(D,)}ycar is also an upper filtrant family and W(D) =

veM

=U WD, (D=UD,).

veM veM
Proof. From corollary ITb after lemma 3 it follows that {W(D,}, s i8 an
upper filtrant. Now, let z ¢ W(D), a e D be two fixed points. There exists
y : I—C™ which contracts the sphere T'(z) in D to the point a. As previously,
we can prove that the set K = |J T(y(v)) is & compact set and that K C D.

zel

Therefore there exists u e M such that K C D, i.e. z¢ W(D,). Hence W(D)C

C |J W(D,). The opposite inclusion is obvious. The proof is concluded.
veM

Below we give two examples of the effective construction of Lelong sets.

Let us fix 7,7, 7, such that 0 <7< 4 00,0 <1y <1< +oco. By B we
denote the ball with the center zero and the radius r, i.e. B= {w ¢ R* : || < r}.
By P we denote the spatial ring in R® with the center zero and the radii r,
and 7, iL.e. P={weR":r < |@| < 1y}.

We define two mappings {_, !, R* X R"—[0, +o0) by the formulas

t_(2,y) = [0l + lyP— 2 (laly*— <o, >3 HE,

by (e, y) = [2P+ ly P+ 2(joP ly 12— <z, )2, @,y « R*. For z=a+1y
we write ¢(2),1_(2), t,(2) instead of ¢(x, y), t_(,y), t.(z,¥).
Directly from the definition we get

Lemma 7.

(a) For 2 = 2z iy « C™ the vectors & and y are linearly dependent if and only
if 1_(2)=t,.(2) = |2|;

(b) for z=a4iy e C": (&, y¥> = 0 = 1(2) = ||z]— |y}| < t,(2) = |z|+ ly];

(¢) in the case n = 2, for 2= (2;, 2,) € C% 2x = Tx+Ye, k=1,2: ¢(2) =
= |&yYs— Yael;

(d) in the case n = 3, for 2= w41y e C3: ¢(2) = | X y|, where X denotes
the vector product in RS;

(e) in the case n =2, for 2z = (2,, 2,) ¢ C*:

i_(2) = min{|z+iz,), [es—iz,|} ,  1,(2) = max {|e,+ iz, lar— 2} .

Lemma 8. For ze¢ C*, n > 2
(a) T(z)CB <t (2)<T;
b) TRICPeon<i_(2)<t(2)<Try.

Proof. We shall prove only part (b) of this lemma (the proof of part (a) is
analogical).

T
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It iz obvious that T()CP < VieT(e)in<il|<r,<eVEeT(iy):n<
< |z+é]<rye
1 < (joP+ yP+2min{{e, & : £ T(i)}E <
<(l=+lyI*+-2max {(z, &y : Ee Tyt <7,

For & = (&, ..., &) e R* we define the funetions

L) = Y &y, L&) = D (8—9D), L= ) &y,

i=1 i=1 i=1

(w = Dy eeey Bn)y Y= Y1y oory ?/n))- We vc;ant to find the maximal points and the
minimal points of the function L, on the set T'(iy) = {£ ¢ R"L,(&) = L,(£) = 0}.
We make use of the method of Lagrange factors. Let L = Ly-+ AL, 2,L,;

oL . .
5-5—(5) = &3+ 24&+ Ay, j = 1,..,n. Additionally, suppose that ¢(z,y)> 0
i

(i.e. the vectors x and y are linearly independent). In this case a simple reasoning
shows that the extremal points must have the form &= az+ By, a,BeR.

. 2
Between these points only two lie in T(iy), namely for a= e-l—:-y~]—'~»,
¢z, 9)
g= —s%), e e {—1,1}. For these ¢ and # we have (z, £) = (z, ax+ fy)
, .
= ep(,y), i.e.

min {<z, &) : & e T(iy)} = — (@, y), max{{z, &) : £ T(iy)} = ¢p(z, y).

In the case ¢(z, y) = 0 it is easy to prove that for every & e T(iy) <&, 2> =
= 0 = ¢(x, y). Therefore T(2) C P <> r; < (l2i*+ |y*—2¢(z ,y))* (lel+ ly 2+
+2¢(z, y))*< 7,. The proof is completed.

The ball is starlike with respect to zero, whence we get the following (see
lemma 3c¢)

Corollary. B {z eC":t (2)< 1}

Lemma 9. For every z e C*, if T(2) C P then there exists a ¢ P such that T(z)
is spherically contractible in P to a.

Proof. We distinguish three cases
(a) The vectors x and y are linearly dependent;
(24) ¥y =0 —we take a =2 and y(v) = &, v« I as a conractible mapping;
(a) ¥ # 0, = 0 — we take a = y and y(r)=-cy+iy}/i—::c—2, 7 eI a8 a mapping
which contracts the sphere T'(z) in P to the point 4;
(ag) z,y # 0, x = ay, it suffices to contract spherically the sphere T'(z) in P to
' the sphere as in (a,); we can do this by the mapping

B(z) = (l—r)w-l-il—%{[l—(l—r)ﬂ] sy, Tel.



101

(b) U(z)—-U.’l’(m—l-My)CP — we take a=a and y(r) = otiry,v el

(c) The vectors @, y are linearly independent and U(z) ¢ P. We define the func-

tion y(d)= t2 (w+idy)—ri = Bly|*—24p(z, y)+ |z]2—72, Ael. Because
T'(z) C P we have ¢(1)> 0; because U(z) ¢ P there exists A, ¢ [0, 1) such that
v(%) < 0. The function ¢ (1) = A2|y{*— 21¢(x, y)+ |[#]*— 2%, 1 ¢ R is the quadratic
trinomial with 4 = A(y) = 4(lyPri— (@, 4>?) = 44, > 0. Because p(1)> 0 and
v(40) < 0 for 4, € [0, 1) then the greatest root of the equation (1) = 0 is less

A
than 1, ie. 1, M <1.
ly?
F @, y> .
or p= i we have {uy—x,y)> = 0. We shall demonstrate that it

is possible to contract the sphere T'(2) in P to a sphere as in (a,). We can do this,

for example, by the mapping B(r) = a+v(uy— )+ iy, v e I. It is easy to obtain
- (1— N2

that #{p(r) = P L #4e, ») + 20— n)ga, y) + 1,1y2 + |yl Whenee

t.(B(z) )< 7y5 7 € I, therefore T(B(7))C P for every veI if and only if when

t_(B(v)) > r, for every vel. Let ¢(1) = 2 (B(1—7))—12, ¢ I. ¢ as a function

4
of reR is the quadratic trinomial with 4 = A(g) = J('lf)
y

A(p) = 0. The smaller root of the equation ¢(z) = 0 is equal to

¢¥x, y), therefore

lyp—Va,

sy

is greater than 1. This completes the proof.
Corollary. P={zeC": T(2) C P} = {2 e C™, < 1_(2) < t,(2) < ra}.

3. ANALYTIC CONTINUATION OF HARMONIC FUNCTIONS

All denotations in this section are the same as in Section 2.

From the paper [2] we can deduce the following theorem (see Introduction),

Theorem I. For the reglon DCRY n>= 2 and for every he H(D) there
exists an analytic function 7 on D which conmnues h. Moreover, ) is the maximal
region with these properties.

We may consider particular simple cases of this theorem.

Theorem 1. For the spatial ring P the set P is the harmonic envelope of
analyticity.

Theorem 2. In the case n = 2, for h ¢ H(D)h has a holomorphic continua-
tion on D if and only if there ex1sts f€O(D) such that h = Ref.

Proof. Suppose that % e O(D), %/, =~h. Let us fix 2eD and set

2z, 2—Z
g(z)_ZImh( 3 °, Y 0), zeD.
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Since D = {(z,, 2,) € C%: 2,4+ 12y, %+ 4%, ¢ D} (see lemma 3b,d) then the
function ¢ is well defined on D. It is obvious that ¢ a function of class C*(D) as
a function of two real variables and it may be checked that h.(z) = gy(2),
hy(2) = — g(2), 2 € D. Therefore f = h{ig ¢ O(D).

Now, suppose that h = Ref, fe O(D). For (2, 2,) ¢ D we define k(z,, 2,) =
= }{f (& +12,) +f (2, 1Z,)). The function 7 is well defined on D, ¥ is a function
of class C*(D) as a function of four real variables and o p = h.It may be checked
that % satisfies the Cauchy-Riemann equations in D. This completes the proof
of Theorem 2.

The following three theorems are given by Lelong in [2].

Theorem 3.Inthecasen = 2,forhe H (D) the analytic continuation % of &
on D has singlevalued real part and Reh(z, 2) = b2+ iz)+ b (7 +13)),
(%1, 2,) € b.

Theorem 4. In the case n = 2 there exists h, e H (D) such that the holo-
morphic continuation %, of k, on D cannot be continued beyond D.

Proof. It is known that there exists B CaD and f, <O (D) such that B= 2D

and limfy({) = oo for every {, ¢ B. Let h, = Ref,. Hence (see Theorem 2)
o

Fio(#1, 22) = ¥ folen+120) + folZ +92))

Let B* = {z = 2(&y, &) = (gl—;té

B* is dense in 2D (see lemma 5¢). For every 5, e B, [,e D: lim io(zl, 2,) =
(zL28>2(CLlD)
(lunfo(c +fol&s) )-— co. Whence %, cannot be continued beyond . and the

) b 2@%) C?:feB, e D}. We know that

proof 1s completed.

Theorem 5. In the case n = 2p > 4, every function & ¢ H(D) may be con-
tinued to a holomorphic function % on D.

Proof. It is known that there exists a sequence {Dy};.n of regions in R"

such that D C Dy, DeC D, k= 1, D = \J Dy, Di is bounded and @Dy is the
k=1
sum of a finite number of surfaeces of class €, k> 1

n

1 .
Let for 2z C" 2 £ 0, E(z —(F(z) ' 2, where 6, denotes the area
) = )

of the unit (n— 1) — dimensional Sphere in R®. It is known that forx ¢ Dy, k > 1,

oF
h(z) — [(h(t)—%—lﬂ( _y 2

3Dk
dimensional Lebesgue measure on 31),;, {Ne}resp, denotes the field of exterior
normal vectors to ¢Dg. For z e Dr we define

)Ug(di), where or denotes the (n—1) —

haz) = ; (h(t)aﬂ(i——E( —t)?—(z)a:(dt)

she
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It is easy to prove that hyeO(Dx), Aylp, = hlp,, k>1. Therefore for

k <1 hy= 4|5, - As a holomorphic continuation % of  on D we can take & = | %,.
k=1
This completes the proof.

Theorem 6. In the case n =2 (n= 2p-+1, p « N) the function %, ¢ H(P)
given by formula ho(w) In|z| (he(x) = |2|*~™), © ¢ P cannot be holomorphically
continued on P, i.e. P is a harmonic envelope of analyticity but not of holo-
morphy for P.

Proof. Proof in the case n = 2 follows from Theorem 2, In the casen = 2p+1
the function k, may be holomorphically continued on P if and only if the square
root VF has holomorphic singlevalued branech on P. We shall prove that this

0 - . 0
impossible. Let r ¢ (r2, r2), 0 R, 2 = (;/Fcos—, 0,.. 0) Y= ( rsin— 0, ..., 0),

# = x4 iy. It is easy to check that {_(2) =1,(2) = f 7, therefore z ¢ P. By a simple
calculation we get F(z) = re®, Hence {ze C:r:< lal< 2} CF(P). So F has
not a simplevalued branch of the square root in P. The proof is completed.

Theorem 7. Let .D,, D, be two regionsin C, D,, D, £ C, f = u-+1iv : D;—D,
be a biholomorphic mapping between these regions. By %, we denote the
holomorphic continuations of # and v (see Theorem 2). Let f = (%,0): D,—cC.
Then f(D,) = D, and ¥ is biholomorphiec.

Proof. We know that for z = (2,, 2,) € D,

~ 1 e ~ —
u(z) = ) (f(z1‘|"izz) +f(z+ 7;52)) y  v(2)= 2_];L(f(zl+ izel"fﬁx"""@)) .

Since T(7(2)) C f(T(2)), z € D, then 7(D,) C D,.

Now, let w = (w;, w,) € C2, T(w)C D, (i.e. weD,), w,+iw,=f(&), wi+
F-dw, = f(&,), &, & € D;. We define z = (2, #,) €« C? by formulas 2, = $(&,+ &),
2= 512(61—52)« Hence T(2)= {£,&}C Dy 80 e Dy, w=F(2)CT(D), ie
ﬁs C T D). '

Let g : D,— Dy, g = f—1 and g : D,—D, is defined analoglcally ag the funec-
tion f. The mappings [, § are holomorphic and o g|,, = idp,, § ° f! p, = tdp,.
By the principle of identity for holomorphic functions we have fog= idp,,
g of=1idy,, i.e. (f)1=g. This completes the proof.

Corollary. If D,, D, are as in Theorem 7 then if D, is the harmonic envelope
of holomorphy for D, then J), is the harmonic envelope of holomorphy for D,.

In particular, we get the following.

Theorem 8. Let D C C be a simple connected domain such that oD has
at least two distinet points. Let f = u-iv : B;—D be the biholomorphic map-
ping (B, denotes the unit disc in C). By %, © we denote the holomorphic continua-
tions for u and v, f = (, v). Then D = F(B)) is the harmonic envelope of holo-
morphy for D and the mapping f: B;—D is biholomorphic.
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