Marek Jarnicki

Analytic Continuation of Harmonic Functions

1. INTRODUCTION

In this paper by D we denote an arbitrary fixed, open, connected and not empty subset (a region) of \mathbb{R}^n , $n \geq 2$. It is known that every function h harmonic on D may be continued to a holomorphic function in an open set $\check{D}_h \subset C^n$. It may be asked whether there exists an open connected set $\check{D} \subset C^n$ such that $D \subset \check{D}$ and every harmonic function on D may be continued to a holomorphic (or only to an analytic multivalued) function on \check{D} . It may also be asked whether there exists a maximal set \check{D} with these properties. This set will be called a harmonic envelope of holomorphy (or of analyticity) for D.

From the paper [2] we can deduce the following

Theorem I. For every region $D \subseteq \mathbb{R}^n$ there exists a harmonic envelope of analyticity.

In the paper [3] we can find

Theorem II. For every region $D \subset \mathbb{R}^n$ there exists an open connected set $\widetilde{D} \subset \mathbb{C}^n$ such that every harmonic function on D may be continued to a holomorphic function on \widetilde{D} .

Theorem III. If $B = \{x \in \mathbb{R}^n : |x| < r\}, n \ge 2, r > 0$, then

$$\tilde{B} = \{z = x + iy \in C^n : \lceil |x|^2 + |y|^2 + 2(|x|^2|y|^2 - \langle x, y \rangle^2)^{\frac{1}{2}} \rceil^{\frac{1}{2}} < r\}$$

is the harmonic envelope of holomorphy for B.

In his paper [2] Lelong presented two methods of construction of a harmonic envelope of analyticity. In Section 2 of this paper these two methods are analysed and used for the effective construction of a harmonic envelope of analyticity for the ball and the spatial ring. By different methods the harmonic envelope

of holomorphy of the ball was obtained in [1] and [3]. The paper is closed by Section 3 in which theorems 7 and 8 are proved. Theorem 7 permits the effective construction of the harmonic envelope of analyticity for $D \subset C$, if a harmonic envelope of analyticity is known for some region that is biholomorphically equivalent to D. Theorem 8 permits the construction of a harmonic envelope of holomorphy for the set $D \subset C$ that is biholomorphically equivalent to the unit disc.

Now we present a list of the denotations used in this note.

As usual for $A \subset \mathbb{C}^n$ (or $A \subset \mathbb{R}^n$) by A^0 , \overline{A} , ∂A we denote, respectively, the interior, the closure and the boundary of A. For $U = U^0 \subset \mathbb{R}^n$, by H(U) we denote the set of all harmonic functions on U. For $\Omega = \Omega^0 \subset \mathbb{C}^n$, by $O(\Omega)$ we denote the set of all holomorphic functions on Ω . For arbitrary z, $w \in \mathbb{C}^n$, by $\langle z, w \rangle$ we denote the standard scalar product in \mathbb{C}^n (i.e. $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$) and by |z| the norm induced by the scalar product.

2. LELONG SETS

The whole of this section has been suggested by the ideas contained in Lelong's paper [2]. It has the character of a short report on results relative to the analytic continuation of harmonic functions.

The first part of this section is devoted to generalizations of Lelong's methods of construction of a harmonic envelope of analyticity. The case n=2 plays a special role in this theory, therefore we shall devote most attention to this.

Now, we shall define two sets, which play a fundamental role in the following constructions.

Let
$$F(z) = \sum_{j=1}^{n} z_j^2$$
, $z = (z_1, ..., z_n) \in \mathbb{C}^n$. For $z_0 \in \mathbb{C}^n$, $t_0 \in \mathbb{R}^n$ let $T(z_0) = \{t \in \mathbb{R}^n : F(z_0 - t) = 0\}$, $\Gamma(t_0) = \{z \in \mathbb{C}^n : F(z - t_0) = 0\}$. From these definitions we can directly obtain the following

Lemma 1.

(a) For $z = x + iy \in \mathbb{C}^n : T(z) = \{t \in \mathbb{R}^n : |x - t| = |y|, \langle x = t, y \rangle = 0\};$

(b) for $z = x + iy \in \mathbb{C}^n$: $T(z) = T(\bar{z}), T(x) = \{x\}/\bar{z} = x - iy/\bar{z}$

- (c) in the case $n \ge 2$, for $z = x + iy \in \mathbb{C}^n$, $y \ne 0$ the set T(z) is an (n-2) dimensional sphere with the center x, the radius |y| and T(z) lies in the hyperplane $\{t \in \mathbb{R}^n : \langle x-t, y \rangle = 0\}$;
- (d) in the case n=2, for $z=(z_1,z_2)\in C^2$: $T(z)=\{z+iz_2,\bar{z}_1+i\bar{z}_2\}$ (we identify C and R^2);
 - (e) in the case $n \ge 3$ the set T(z) is connected;
 - (f) for $t \in \mathbb{R}^n$ $\Gamma(t) \cap \mathbb{R}^n = \{t\}, (n = 1 : \Gamma(t) = \{t\});$

- (g) for $z \in \mathbb{C}^n$, $t \in \mathbb{R}^n$ $z \in \Gamma(t) \Leftrightarrow t \in T(z)$;
- (h) for $z = x + iy \in \mathbb{C}^n$, $a \in \mathbb{R}$, $a \neq 0$: $T(x + iy) = x + aT\left(i\frac{y}{a}\right)$;
- (i) if U is an n-dimensional real orthogonal matrix, then T(Uz) = U(T(z)) (we identify U with the mapping of C^n onto C^n).

This lemma (except (i)) will be used many times in the sequel.

Lemma 2. Let A be a subset of R^n such that $\partial A \neq \phi$.

Set
$$\Gamma(A) = \bigcup_{t \in \partial A} \Gamma(t)$$
. Then $\Gamma(A) = \overline{\Gamma(A)}$, $\Gamma(A) \cap \mathbb{R}^n = \partial A \ (n = 1 : \Gamma(A) = \partial A)$.

Proof. The second part of this lemma follows from lemma 1f. We shall prove only that $\Gamma(A) = \overline{\Gamma(A)}$.

Let $\{z_k\}_{k\in\mathbb{N}}\subset\Gamma(A)$, $\lim_{k\to\infty}z_k=z_0$, $z_k\in\Gamma(t_k)$, $t_k\in\partial A$, $k\geqslant 1$. We want to prove that $z_0\in\Gamma(A)$, i.e. there exists $t_0\in\partial A$ such that $z_0\in\Gamma(t_0)$.

There exists a constant M>0 such that $|z_k|\leqslant M,\, k\geqslant 1$. For arbitrary $k,\, l\in N$ we have

$$|t_k-t_1|\leqslant |t_k-z_k|+|z_k-z_1|+|z_1-t_1|\leqslant |t_k-z_k|+|t_1-z_1|+2M$$
, $|t_k-z_k|^2=|t_k-(x_k+iy_k)|^2=|t_k-x_k|^2+|y_k|^2=2|y_k|^2\leqslant 2M^2$.

Hence $|t_k-t_1|\leqslant 2(1+\sqrt{2})M$, k, $l\in N$. Since $\{t_k\}_{k\in N}$ is bounded and ∂A is a closed set then there exists a subsequence $\{t_{k_m}\}_{m\in N}$ and a point $t_0\in \partial A$ such that $\lim_{m\to\infty}t_{k_m}=t_0\cdot S_0$, $0=\lim_{m\to\infty}F(z_{k_m}-t_{k_m})=F(z_0-t_0)$, i.e. $z_0\in \Gamma(t_0)$. The proof is concluded.

Now we give the definition of a Lelong set of the first type.

Let A be a subset of \mathbb{R}^n such that $\partial A \neq \phi$, $A^0 \neq \phi$; by \widetilde{A} we denote the connected component of the set $\mathbb{C}^n \backslash \Gamma(A)$ which contains A^0 (in the case $A = \mathbb{R}^n$ we set $\widetilde{A} = \mathbb{C}^n$).

Since $A^0 \subset R^n \setminus \partial A \subset C^n \setminus \Gamma(A)$ (see lemma 2) then \widetilde{A} is well defined. Since $C^n \setminus \Gamma(A)$ is an open set (see lemma 2) then \widetilde{A} , as a connected component of an open set, is a region in C^n .

For a region $D \subset \mathbb{R}^n$, the region \widetilde{D} is the same as the region constructed by the method given by Lelong in [2].

The definition of the set \widetilde{A} is clear with respect to topological properties but it is not useful in concrete constructions.

Below we give the definition of a Lelong set of the second type (denoted by W(A)); this definition is useful with respect to its constructive properties. It will be proved that for any region $D \subset \mathbb{R}^n$, $n \ge 2 : \widetilde{D} = W(D)$. This will provide a method for effectively constructing the set \widetilde{D} .

First we give the following auxiliary definitions.

Given $B \subset \mathbb{R}^n$, $n \ge 2$, $b \in \mathbb{R}^n$, we say that the sphere T(z) is spherically contractible in B to the point b if and only if there exists a continuous mapping $\gamma: I \to \mathbb{C}^n$ such that $\gamma(0) = z$, $\gamma(1) = b$ and for every $\tau \in I: T(\gamma(\tau)) \subset B$ $(I \stackrel{\text{df}}{=} [0, 1] \subset \mathbb{R})$.

For $A \subseteq \mathbb{R}^n$, $n \geqslant 2$ put

 $W(A) = \{z \in C^n : T(z) \text{ is spherically contractible in } A \text{ to every point } a \in A\}.$ The following lemma gives a certain description of the set W(A).

Lemma 3.

- (a) If $A \subset \mathbb{R}^n$ is arcwise connected then $W(A) = \{z \in \mathbb{C}^n : \exists a \in A \text{ such that } T(z) \text{ is spherically contractible in } A \text{ to a}\}$, W(A) is arcwise connected, $W(A) \cap \mathbb{R}^n = \partial A$ and $\partial A \subset \overline{W(A)} \setminus W(A)$;
 - (b) if n=2 and if A is arcwise connected then $W(A)=\{z\in C^2: T(z)\subset A\}$;
- (e) if A is starlike with respect to $t_0 \in A$ then $W(A) = \{z \in C^n : T(z) \subset A\}$ and W(A) is starlike with respect to t_0 ;
- (d) if $\partial A \neq \phi$, $A^0 \neq \phi$ and A^0 is connected then $\widetilde{A} = W(A^0)$, $\widetilde{A} \cap R^n = A^0$ and $\partial (A^\circ) \subset \partial \widetilde{A}$.

Proof.

- (a) is implied directly by the definition of W(A).
- (b) Let $z=(z_1,z_2)\in C^2$, $T(z)=\{z_1+iz_2,\bar{z}_1+i\bar{z}_2\}\subset A$, $a\in A$ be an arbitrary but fixed point. There exist two continuous mappings $\sigma_i:I\to A$, i=1,2 such that $\sigma_1(0)=z_1+iz_2$, $\sigma_2(0)=\bar{z}_1+i\bar{z}_2$, $\sigma_1(1)=\sigma_2(1)=a$. We define $\gamma:I\to C^2$ by the formula $\gamma=\left(\frac{\sigma_1+\bar{\sigma}_2}{2},\frac{\sigma_1-\bar{\sigma}_2}{2i}\right)$. It is obvious that γ is a continuous mapping, $\gamma(0)=z$, $\gamma(1)=a$ and for every $\tau\in I$ $T(\gamma(\tau))=\{\sigma_1(\tau),\sigma_2(\tau)\}\subset A$.
- (c) Let $z \in \mathbb{C}^n$, $T(z) \subseteq A$. A is starlike with respect to t_0 , therefore A is arcwise connected. It suffices to show that T(z) is spherically contractible in A to the point t_0 . Let $\gamma(\tau) = \tau t_0 + (1-\tau)z$, $\tau \in I$. It is obvious that γ is a continuous mapping of I into \mathbb{C}^n , $\gamma(0) = z$, $\gamma(1) = t_0$ and $T(\gamma(\tau)) = \tau t_0 + (1-\tau)T(z)$, $\tau \in I$ (see lemma 1h). Therefore $T(\gamma(\tau)) \subseteq A$, $\tau \in I$.
- (d) We know that $A^0 \subset W(A^0)$ and $W(A^0)$ is connected. First we shall show that $W(A^0) \cap \Gamma(A) = \phi$. Suppose there exists $z \in W(A^0) \cap \Gamma(A)$, so there exists $t \in \partial A$ such that $t \in T(z)$. Therefore $T(z) \cap \partial A \neq \phi$ and we have a contradiction to the inclusion $T(z) \subset A^0$. Hence $W(A^0) \subset \widetilde{A}$.

We shall prove the opposite inclusion. Let $z \in \widetilde{A}$, $a \in A^0$ be two fixed points and let $\sigma: I \to \widetilde{A}$ be a continuous mapping such that $\sigma(0) = z$, $\sigma(1) = a$. We want to demonstrate that for every $\tau \in I: T(\sigma(\tau)) \subset A^0$ (in particular from this it follows that $z \in W(A^0)$). Let $K = \bigcup_{\tau \in I} T(\sigma(\tau))$. We shall show that K is connected compact set.

K is a bounded set. Let $t_i \in T(\sigma(\tau))$, i = 1, 2; $|t_1 - t_2| \leq |t_1 - \sigma(\tau_1)| + |\sigma(\tau_1) - \sigma(\tau_2)| + |\sigma(\tau_2) - t_2| \leq 2(1 + \sqrt{2}) \max\{|\sigma(\tau)| : \tau \in I\} < +\infty$ (see the proof of lemma 2).

K is a closed set. Let $t_k \in T(\sigma(\tau_k))$, $k \geqslant 1$, $t_0 = \lim t_k$. There exists a subsequence $\{\tau_{k_m}\}_{m \in N}$ and a point $\tau_0 \in I$ such that $\tau_0 = \lim_{m \to \infty} \tau_{k_m}$. Since F and σ are continuous mappings, we have $0 = \lim_{m \to \infty} F(t_{k_m} - \sigma(\tau_{k_m})) = F(t_0 - \sigma(\tau_0))$. So $t_0 \in T(\sigma(\tau_0)) \subset K$.

K is connected. We distinguish two cases.

At first — the case n=2. Let $\sigma=(\sigma_1, \sigma_2)$, $\sigma_i: I \to C$, i=1, 2, $K_1 \stackrel{\mathrm{df}}{=} (\sigma_1 + i\sigma_2)(I)$, $K_2 \stackrel{\mathrm{df}}{=} (\bar{\sigma}_1 + i\bar{\sigma}_2)(I)$. K_1 , K_2 are connected, $a \in K_1 \cap K_2$, $K = K_1 \cup K_2$. Therefore K is connected.

Now we consider the case $n \geqslant 3$. Suppose that $K = K_1 \cup K_2$, $K_1 \cap K_2 = \phi$, $K_i \neq \phi$, $K_i = \overline{K}_i$, i = 1, 2. Let $I_i = \{\tau \in I : T(\sigma(\tau)) \cap K_i \neq \phi\}$, i = 1, 2. It may be checked that $I_i \neq \phi$, i = 1, 2, $I = I_1 \cup I_2$. Since for $\tau_0 \in I$ the set $T(\sigma(\tau_0))$ is connected, then $T(\sigma(\tau_0)) \subset K_1$ or $T(\sigma(\tau_0)) \subset K_2$. So $I_1 \cap I_2 = \phi$. It is easy to prove that $I_i = \overline{I}_i$, i = 1, 2 and we get a contradiction to connectedness of I.

We want to show that $K \subset A^0$. It is obvious that $K \cap \partial A = \phi$, $K \cap A \neq \phi$. Suppose that $K \not\subset A^0$, i.e. $K = (K \cap A^0) \cup (K \cap (R^n \setminus \overline{A}))$ where $(K \cap (R^n \setminus \overline{A})) \neq \phi$. This is contradiction to the connectedness of K. This completes the proof.

Lemma 3 implies the following

Corollary

I. For a region $D \subseteq \mathbb{R}^n$, $n \geqslant 2$:

- (a) $W(D) = \{z \in \mathbb{C}^n : \exists a \in D : T(z) \text{ is spherically contractible in } D \text{ to a} \};$
- (b) in the case n=2 $W(D)=\{z\in \mathbb{C}^2: T(z)\subset D\};$
- (c) $\widetilde{D} = W(D)$, $\widetilde{D} \cap \mathbb{R}^n = D$, $\partial D \subset \partial \widetilde{D} \subset \Gamma(D)$.

II. For $A, B \subseteq \mathbb{R}^n$:

- (a) if $A \cap B = \phi$ then $W(A) \cap W(B) = \phi$;
- (b) if $A \subset B$ and B is arcwise connected then $W(A) \subset W(B)$.

The following Lemma 4 gives a characterization of metrical dependences in the family $\{T(z)\}_{z \in \mathbb{C}^n}$. First we give a known definition of the Hausdorff distance between the sets.

For $A, B \subset C^n$, $A, B \neq \phi$ we define the Hausdorff distance between A and B by the formula

$$\varrho_H(A,B) = \max \{ \sup_{x \in A} \varrho(x,B), \sup_{y \in B} \varrho(y,A) \},$$

where $\varrho(z, C)$ denotes the distance between the point z and the set C.

Lemma 4

- (a) Let z = x + iy, $z' = x' + iy' \in \mathbb{C}^n$, $n \ge 2$, then $\varrho_H(T(z), T(z')) \le |x x'| + |y y'|$;
- (b) let $z \in \mathbb{C}^n$, $t \in \mathbb{R}^n$, there exists $z' \in \mathbb{C}^n$ such that $t \in T(z')$, $|z-z'| = \varrho(t, T(z))$.

Proof

(a) Let $t' = x' + \xi'$, $\xi' \in T(iy')$ be an arbitrary point of T(z'). For the distance between t' and T(z) we have

$$\begin{split} \varrho(t',\,T(z)) &= \min\{|t-t'|: t \in T(z)\} \leqslant |x-x'| + \min\{|\xi-\xi'|: \xi \in T(iy)\} \\ &= |x-x'| + (|y|^2 + |y'|^2 - 2\max\{\langle \xi,\,\xi' \rangle : \xi \in T(iy)\})^{\frac{1}{2}} \,. \end{split}$$

It may easily be proved (by the method of Lagrange factors — see the proof of lemma 8) that

7 — Prace Matematyczne, z. 17

 $\max\{\langle \xi, \xi' \rangle : \xi \in T(iy)\} = \phi(\xi', y)$, where ϕ is a mapping $\mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ given by the formula

$$\phi(x,y) = (|x|^2 + |y|^2 - \langle x, y \rangle^2)^{\frac{1}{2}}, \ x, y \in \mathbb{R}^n \ .$$

Whence we have

$$\varrho(t', T(z)) \leqslant |x-x'| + (|y|^2 + |y'|^2 - 2\phi(\xi', y))^{\frac{1}{2}},$$

therefore

$$\begin{split} \max \left\{ \varrho \big(t', \, T(z) \big) : t' \in T(z') \right\} &\leqslant |x - x'| + \\ &+ \{ |y'|^2 + |y|^2 - 2 \big[|y'|^2 |y|^2 - (\max \{ \langle \xi', y \rangle : \xi' \in T(iy) \} \big)^2 \big]^{\frac{1}{2}} \right\}^{\frac{1}{2}}. \end{split}$$

Analogically, as previously, we can prove that $\max\{\langle \xi',y\rangle:\xi'\in T(iy')\}=$ = $\phi(y,y')$; after the simple calculation we have $\max\{\varrho(t'|T(z)):t'\in T(z')\}\leqslant$ $\leqslant |x-x'|+|y-y'|$.

Because the assumptions of the lemma are symmetric then

$$\varrho_H(T(z), T(z')) \leqslant |x-x'| + |y-y'| \leqslant 2|z-z'|$$
.

(b) There exists $\xi \in T(z)$ such that $|\xi - t| = \varrho(t, T(z))$. We can take $z' = z + \xi - t$. The proof is completed.

Lemma 5.

- (a) Let $A \subset \mathbb{R}^n$, $n \geqslant 2$. If $z \in \overline{W(A)}$ then $T(z) \subset \overline{A}$;
- (b) in the case n=2, if A is arcwise connected and $T(z) \subset \overline{A}$ then $z \in \overline{W(A)}$;
- (c) (see [2]) in the case n=2, for a region $D \subset \mathbb{R}^2$, if $B \subset \partial D$, $\overline{B} = \partial D$ then the set $B^* = \left\{ z = z(\zeta_1, \zeta_2) = \left(\frac{\zeta_1 + \overline{\zeta}_2}{2}, \frac{\zeta_1 \overline{\zeta}_2}{2i} \right) \in C^2 : \zeta_1 \in B, \epsilon B, \zeta_2 \in D \right\}$ is dence in $\partial \widetilde{D}$.

Proof.

- (a) Let $z_0 \in \overline{W(A)}$, $\{z_k\}_{k \in N} \subset W(A)$, $z_0 = \lim_{k \to \infty} z_k$. For every $t \in T(z)$, let $t_k \in T(z_k)$, $k \geqslant 1$ such that $|t t_k| = \varrho(t, T(z_k))$. By lemma 4a $|t t_k| \leqslant \varrho_H(T(z), T(z_k)) \leqslant 2|z z_k|$. Therefore $t = \lim_{k \to \infty} t_k \in \overline{A}$.
- (b) Let $z = (z_1, z_2) \in C^2$, $T(z) = \{z_1 + iz_2, \bar{z}_1 + i\bar{z}_2\} \subset \bar{A}$, $\{\zeta_{1,k}\}_{k \in N}$, $\{\zeta_{2,k}\}_{k \in N} \subset A$, $z_1 + iz_2 = \lim_{k \to \infty} \zeta_{1,k}, \bar{z}_1 + i\bar{z}_2 = \lim_{k \to \infty} \zeta_{2,k}$. It is easy to prove that the points

$$z_k = z_k(\zeta_{1,k}, \zeta_{2,k}) = \left(\frac{\zeta_{1,k} + \overline{\zeta_{2,k}}}{2}, \frac{\zeta_{1,k} - \overline{\zeta_{2,k}}}{2i}\right), \ k \geqslant 1 \ ext{lie in } W(A) \ ext{and } \lim_{k \to \infty} z_k = z.$$

Remark. In the case n=2, for the region $D \nsubseteq R^2$ $\widetilde{cD} = \{z \in C^2 : T(z) \subseteq D, T(z) \cap \partial D \neq \phi\}$.

(c) We already know that for every $z \in B^* : z \in \partial \widetilde{D}$. Take $z = (z_1, z_2) \in \partial \widetilde{D}$, $\varepsilon > 0$ and suppose that $z_1 + iz_2 \in \partial D$. There exist $\xi_1, \xi_2 \in \mathbb{R}^2$ such that $|\xi_1|, |\xi_2| < \frac{\varepsilon}{2}$ and $\zeta_1 = z_1 + iz_2 + \xi_1 \in B$, $\zeta_2 = \overline{z}_1 + i\overline{z}_2 + \xi_2 \in D$. By a simple calculation we

have $|z(\xi_1, \xi_2) - z| = \frac{1}{2}(|\xi_1 + \overline{\xi_2}|^2 + |\xi_1 - \overline{\xi_2}|^2)^{\frac{1}{2}} < \varepsilon$. Therefore B^* is dence in $\partial \widetilde{D}$. This completes the proof.

The following lemma is useful in the construction of the set \widetilde{D} (see proof of Theorem 4).

Lemma 6. [2] Let $\{D_v\}_{v \in M}$ be an upper filtrant family of regions in \mathbb{R}^n , $D = \bigcup_{v \in M} D_v$. Then $\{W(D_v)\}_{v \in M}$ is also an upper filtrant family and $W(D) = \bigcup_{v \in M} W(D_v)$ $(D = \bigcup_{v \in M} \widetilde{D}_v)$.

Proof. From corollary IIb after lemma 3 it follows that $\{W(D_v)_{v \in M} \text{ is an upper filtrant. Now, let } z \in W(D), \ a \in D \text{ be two fixed points. There exists } \gamma: I \to \mathbb{C}^n \text{ which contracts the sphere } T(z) \text{ in } D \text{ to the point } a. \text{ As previously, we can prove that the set } K = \bigcup T(\gamma(\tau)) \text{ is a compact set and that } K \subset D.$

Therefore there exists $\mu \in M$ such that $K \subset D_{\mu}$ i.e. $z \in W(D_{\mu})$. Hence $W(D) \subset \bigcup W(D_{\nu})$. The opposite inclusion is obvious. The proof is concluded.

Below we give two examples of the effective construction of Lelong sets. Let us fix r, r_1, r_2 such that $0 < r < +\infty, 0 \le r_1 < r_2 \le +\infty$. By B we denote the ball with the center zero and the radius r, i.e. $B = \{x \in \mathbb{R}^n : |x| < r\}$. By P we denote the spatial ring in \mathbb{R}^n with the center zero and the radii r_1 and r_2 , i.e. $P = \{x \in \mathbb{R}^n : r_1 < |x| < r_2\}$.

We define two mappings $t_-, t_+ \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ by the formulas

$$t_{-}(x, y) = [|x|^{2} + |y|^{2} - 2(|x|^{2}y^{2} - \langle x, y \rangle^{2})^{\frac{1}{2}}]^{\frac{1}{2}},$$

 $t_{+}(x,y) = [|x|^{2} + |y|^{2} + 2(|x|^{2}|y|^{2} - \langle x, y \rangle^{2})^{\frac{1}{2}}, x, y \in \mathbb{R}^{n}. \text{ For } z = x + iy \text{ we write } \phi(z), t_{-}(z), t_{+}(z) \text{ instead of } \phi(x,y), t_{-}(x,y), t_{+}(x,y).$

Directly from the definition we get

Lemma 7.

- (a) For $z = z + iy \in \mathbb{C}^n$ the vectors x and y are linearly dependent if and only if $t_-(z) = t_+(z) = |z|$;
 - (b) for $z = x + iy \in \mathbb{C}^n$: $\langle x, y \rangle = 0 \Leftrightarrow t(z) = ||x| |y|| \Leftrightarrow t_+(z) = |x| + |y|$;
- (c) in the case n=2, for $z=(z_1,z_2)\in \mathbb{C}^2$, $z_k=x_k+iy_k$, $k=1,2:\phi(z)==|x_1y_2-y_1x_2|$;
- (d) in the case n=3, for $z=x+iy \in C^3$: $\phi(z)=|x\times y|$, where \times denotes the vector product in \mathbb{R}^3 ;
 - (e) in the case n=2, for $z=(z_1,z_2) \in \mathbb{C}^2$:

$$t_{-}(z) = \min\{|z_1 + iz_2|, \, |z_1 - iz_2|\}, \quad t_{+}(z) = \max\{|z_1 + iz_2|, \, |z_1 - iz_2|\}.$$

Lemma 8. For $z \in C^n$, $n \ge 2$

- (a) $T(z) \subseteq B \Leftrightarrow t_+(z) < r;$
- (b) $T(z) \subset P \Leftrightarrow r_1 < t_-(z) \leqslant t_+(z) < r_2$.

Proof. We shall prove only part (b) of this lemma (the proof of part (a) is analogical).

It is obvious that $T(z) \subseteq P \Leftrightarrow \nabla t \in T(z)$: $r_1 < |t| < r_2 \Leftrightarrow \nabla \xi \in T(iy) : r_1 < < |x+\xi| < r_2 \Leftrightarrow$

$$\begin{split} r_1 &< \big(|x|^2 + |y|^2 + 2\min\{\langle x,\, \xi \rangle : \xi \in T(iy)\}\big)^{\frac{1}{2}} \leqslant \\ &\leqslant \big(|x|^2 + |y|^2 + 2\max\{\langle x,\, \xi \rangle : \xi \in T(iy)\}\big)^{\frac{1}{2}} < r_2 \;. \end{split}$$

For $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$ we define the functions

$$L_0(\xi) = \sum_{j=1}^n \, \xi_j x_j \,, \quad L_1(\xi) = \sum_{j=1}^n \, (\xi_j^2 - y_j^2) \,, \quad L_2(\xi) = \sum_{j=1}^n \, \xi_j y_j$$

 $(x=(x_1,...,x_n),\ y=(y_1,...,y_n))$. We want to find the maximal points and the minimal points of the function L_0 on the set $T(iy)=\{\xi\in R^nL_1(\xi)=L_2(\xi)=0\}$. We make use of the method of Lagrange factors. Let $L=L_0+\lambda_1L_1+\lambda_2L_2;$ $\frac{\partial L}{\partial \xi_j}(\xi)=x_j+2\lambda_1\xi_j+\lambda_2y_j,\ j=1,...,n.$ Additionally, suppose that $\phi(x,y)>0$ (i.e. the vectors x and y are linearly independent). In this case a simple reasoning shows that the extremal points must have the form $\xi=ax+\beta y,\ a,\beta\in R$.

Between these points only two lie in T(iy), namely for $a = \varepsilon \frac{|y|^2}{\phi(x,y)}$,

 $\beta = -\varepsilon \frac{\langle x, y \rangle}{\phi(x, y)}$, $\varepsilon \in \{-1, 1\}$. For these α and β we have $\langle x, \xi \rangle = \langle x, \alpha x + \beta y \rangle$ = $\varepsilon \phi(x, y)$, i.e.

 $\min\{\langle x,\xi\rangle:\xi\in T(iy)\}=-\phi(x,y)\,,\,\,\max\{\langle x,\xi\rangle:\xi\in T(iy)\}=\phi(x,y)\,.$

In the case $\phi(x,y)=0$ it is easy to prove that for every $\xi \in T(iy) \langle \xi, x \rangle = 0 = \phi(x,y)$. Therefore $T(z) \subset P \Leftrightarrow r_1 < (|x|^2 + |y|^2 - 2\phi(x,y))^{\frac{1}{2}} \leqslant (|x|^2 + |y|^2 + 2\phi(x,y))^{\frac{1}{2}} \leqslant r_2$. The proof is completed.

The ball is starlike with respect to zero, whence we get the following (see lemma 3c)

Corollary. $\widetilde{B} = \{z \in \mathbb{C}^n : t_+(z) < r\}.$

Lemma 9. For every $z \in \mathbb{C}^n$, if $T(z) \subseteq P$ then there exists $a \in P$ such that T(z) is spherically contractible in P to a.

Proof. We distinguish three cases

- (a) The vectors x and y are linearly dependent;
- (a₁) y = 0 we take a = x and $\gamma(\tau) \equiv x$, $\tau \in I$ as a conractible mapping;
- (a₂) $y \neq 0$, x = 0 we take a = y and $\gamma(\tau) = \tau y + iy \sqrt{1 \tau^2}$, $\tau \in I$ as a mapping which contracts the sphere T(z) in P to the point \bar{a} ;
- (a₃) $x, y \neq 0, x = ay$, it suffices to contract spherically the sphere T(z) in P to the sphere as in (a₂); we can do this by the mapping

$$\beta(\tau) = (1-\tau)x + i\frac{y}{|y|} \{ [1-(1-\tau)^2] |x|^2 + |y|^2 \}^{\frac{1}{2}}, \quad \tau \in I.$$

(b)
$$U(z) \stackrel{\text{df}}{=} \bigcup_{\lambda \in I} T(x+i\lambda y) \subset P$$
 — we take $a = x$ and $\gamma(\tau) = x+i\tau y, \tau \in I$.

(c) The vectors \hat{x} , y are linearly independent and $U(z) \not\subset P$. We define the function $\psi(\lambda) = t_-^2(x+i\lambda y) - r_1^2 = \lambda^2 |y|^2 - 2\lambda \phi(x,y) + |x|^2 - r_2^2$, $\lambda \in I$. Because $T(z) \subseteq P$ we have $\psi(1) > 0$; because $U(z) \not\subset P$ there exists $\lambda_0 \in [0,1)$ such that $\psi(\lambda_0) \leq 0$. The function $\psi(\lambda) = \lambda^2 |y|^2 - 2\lambda \phi(x,y) + |x|^2 - r_1^2$, $\lambda \in \mathbb{R}$ is the quadratic trinomial with $\Delta = \Delta(\psi) = 4(|y|^2 r_1^2 - \langle x, y \rangle^2) \stackrel{\text{df}}{=} 4\Delta_1 \geqslant 0$. Because $\psi(1) > 0$ and $\psi(\lambda_0) \leq 0$ for $\lambda_0 \in [0,1)$ then the greatest root of the equation $\psi(\lambda) = 0$ is less than 1, i.e. $\lambda_+ = \frac{\phi(x,y) + \sqrt{\Delta_1}}{|y|^2} < 1$.

For $\mu=\frac{\langle x,y\rangle}{|y|^2}$ we have $\langle \mu y-x,y\rangle=0$. We shall demonstrate that it is possible to contract the sphere T(z) in P to a sphere as in (a_3) . We can do this, for example, by the mapping $\beta(\tau)=x+\tau(\mu y-x)+iy$, $\tau\in I$. It is easy to obtain that $t_+^2(\beta(\tau))=\frac{(1-\tau)^2}{|y|^2}\phi^2(x,y)\pm 2(1-\tau)\phi(x,y)+\frac{\langle x,y\rangle^2}{|y|^2}+|y|^2$. Whence $t_+(\beta(\tau))< r_2,\ \tau\in I$, therefore $T(\beta(\tau))\subset P$ for every $\tau\in I$ if and only if when $t_-(\beta(\tau))>r_1$ for every $\tau\in I$. Let $\varphi(\tau)=t_-^2(\beta(1-\tau))-r_1^2$, $\tau\in I$. φ as a function of $\tau\in R$ is the quadratic trinomial with $\Delta=\Delta(\varphi)=\frac{\Delta(\psi)}{|y|^4}\phi^2(x,y)$, therefore

 $\Delta(\varphi) \geqslant 0$. The smaller root of the equation $\varphi(\tau) = 0$ is equal to $\frac{|y|^2 - V\Delta_1}{\varphi(x, y)}$ and is greater than 1. This completes the proof.

Corollary. $\widetilde{P} = \{z \in C^n : T(z) \subseteq P\} = \{z \in C^n r_1 < t_-(z) \leqslant t_+(z) < r_2\}.$

3. ANALYTIC CONTINUATION OF HARMONIC FUNCTIONS

All denotations in this section are the same as in Section 2.

From the paper [2] we can deduce the following theorem (see Introduction).

Theorem I. For the region $D \subseteq \mathbb{R}^n$, $n \ge 2$ and for every $h \in H(D)$ there exists an analytic function \widetilde{h} on \widetilde{D} which continues h. Moreover, \widetilde{D} is the maximal region with these properties.

We may consider particular simple cases of this theorem,

Theorem 1. For the spatial ring P the set \widetilde{P} is the harmonic envelope of analyticity.

Theorem 2. In the case n=2, for $h \in H(D)h$ has a holomorphic continuation on \widetilde{D} if and only if there exists $f \in O(D)$ such that h=Ref.

Proof. Suppose that $\widetilde{h} \in \mathfrak{O}(\widetilde{D})$, $\widetilde{h}|_{D} = h$. Let us fix $z_0 \in D$ and set $g(z) = 2 \operatorname{Im} \widetilde{h} \left(\frac{z + \overline{z}_0}{2}, \, \frac{z - \overline{z}_0}{2i} \right)$, $z \in D$.

Since $\widetilde{D} = \{(z_1, z_2) \in C^2 : z_1 + iz_2, \overline{z}_1 + i\overline{z}_2 \in D\}$ (see lemma 3b, d) then the function g is well defined on D. It is obvious that g a function of class $C^{\infty}(D)$ as a function of two real variables and it may be checked that $h_x(z) = g_y(z)$, $h_y(z) = -g_x(z)$, $z \in D$. Therefore $f = h + ig \in \mathcal{O}(D)$.

Now, suppose that h = Ref, $f \in \mathcal{O}(D)$. For $(z_1, z_2) \in \widetilde{D}$ we define $\widetilde{h}(z_1, z_2) = \frac{1}{2}(f(z_1 + iz_2) + \overline{f(\overline{z_1} + i\overline{z_2})})$. The function \widetilde{h} is well defined on \widetilde{D} , \widetilde{h} is a function of class $C^{\infty}(\widetilde{D})$ as a function of four real variables and $\widetilde{h}|_{D} = h$. It may be checked that \widetilde{h} satisfies the Cauchy-Riemann equations in \widetilde{D} . This completes the proof of Theorem 2.

The following three theorems are given by Lelong in [2].

Theorem 3. In the case n=2, for $h \in H(D)$ the analytic continuation \widetilde{h} of h on \widetilde{D} has singlevalued real part and $\operatorname{Re}\widetilde{h}(z_1,z_2)=\frac{1}{2}(h(z_1+iz_2)+h(\overline{z}_1+i\overline{z}_2)),$ $(z_1,z_2)\in\widetilde{D}$.

Theorem 4. In the case n=2 there exists $h_0 \in H(D)$ such that the holomorphic continuation \widetilde{h}_0 of h_0 on \widetilde{D} cannot be continued beyond \widetilde{D} .

Proof. It is known that there exists $B \subset \partial D$ and $f_0 \in O(D)$ such that $\overline{B} = \partial D$ and $\lim_{\epsilon \to \infty} f_0(\zeta) = \infty$ for every $\zeta_0 \in B$. Let $h_0 = Ref_0$. Hence (see Theorem 2)

$$\widetilde{h}_0(z_1, z_2) = \frac{1}{2} \left(f_0(z_1 + iz_2) + f_0(\overline{z_1} + i\overline{z_2}) \right)$$

Let $B^* = \left\{z = z(\zeta_1, \zeta_2) = \left(\frac{\zeta_1 + \overline{\zeta}_2}{2}, \frac{\zeta_1 - \overline{\zeta}_2}{2i}\right) \in C^2 : \zeta_1 \in B, \ \zeta_2 \in D\right\}$. We know that B^* is dense in $\partial \widetilde{D}$ (see lemma 5 c). For every $\zeta_1 \in B$, $\zeta_2 \in D$: $\lim_{\substack{(z_1, z_2) \to z(\zeta_1, \zeta_2) \\ \zeta \to \zeta_1}} \widetilde{h}_0(z_1, z_2) = \frac{1}{2} \left(\lim_{\substack{\zeta \to \zeta_1 \\ \zeta \to \zeta_1}} f_0(\zeta) + \overline{f_0(\zeta_2)}\right) = \infty$. Whence \widetilde{h}_0 cannot be continued beyond \widetilde{D} and the proof is completed.

Theorem 5. In the case $n=2p\geqslant 4$, every function $h\in H(D)$ may be continued to a holomorphic function \widetilde{h} on \widetilde{D} .

Proof. It is known that there exists a sequence $\{D_k\}_{k\in\mathbb{N}}$ of regions in \mathbb{R}^n such that $D_k \subset D_{k+1}$, $\widetilde{D}_k \subset D$, $k \geqslant 1$, $D = \bigcup_{k=1}^{\infty} D_k$, D_k is bounded and ∂D_k is the sum of a finite number of surfaces of class C^1 , $k \geqslant 1$.

Let for $z \in C^n$, $z \neq 0$, $E(z) = \frac{1}{(2-n)\theta_n} (F(z))^{1-\frac{n}{2}}$, where θ_n denotes the area of the unit (n-1) — dimensional sphere in R^n . It is known that for $x \in D_k$, $k \geq 1$, $h(x) = \int\limits_{\partial D_k} \left(h(t) \frac{\partial E(x-t)}{\partial \vec{n}} - E(x-t) \frac{\partial h(t)}{\partial \vec{n}}\right) \sigma_k(dt)$, where σ_k denotes the (n-1) — dimensional Lebesgue measure on ∂D_k , $\{\vec{n}_t\}_{t \in \partial D_k}$ denotes the field of exterior normal vectors to ∂D_k . For $z \in \widetilde{D}_k$ we define

$$\widetilde{h}_{\mathbf{k}}(z) = \int\limits_{z \dot{D}_{\mathbf{k}}} \left(h(t) \frac{\partial E(z-t)}{\partial \vec{n}} - E(z-t) \frac{\partial h(t)}{\partial \vec{n}} \right) \sigma_{\mathbf{k}}(dt) \; .$$

It is easy to prove that $\widetilde{h}_k \in \mathcal{O}(\widetilde{D}_k)$, $\widetilde{h}_k|_{D_k} = h|_{D_k}$, $k \ge 1$. Therefore for $k \le l$ $\widetilde{h}_k = \widetilde{h}_l|_{\widetilde{D}_k}$. As a holomorphic continuation \widetilde{h} of h on \widetilde{D} we can take $\widetilde{h} = \bigcup_{k=1}^{\infty} \widetilde{h}_k$. This completes the proof.

Theorem 6. In the case n=2 $(n=2p+1, p \in N)$ the function $h_0 \in H(P)$ given by formula $h_0(x) = \ln |x| (h_0(x) = |x|^{2-n})$, $x \in P$ cannot be holomorphically continued on \tilde{P} , i.e. \tilde{P} is a harmonic envelope of analyticity but not of holomorphy for P.

Proof. Proof in the case n=2 follows from Theorem 2. In the case n=2 p+1 the function h_0 may be holomorphically continued on \widetilde{P} if and only if the square root \sqrt{F} has holomorphic singlevalued branch on \widetilde{P} . We shall prove that this impossible. Let $r \in (r_1^2, r_2^2)$, $\theta \in R$, $x = \left(\sqrt{r}\cos\frac{\theta}{2}, 0, ..., 0\right)$, $y = \left(\sqrt{r}\sin\frac{\theta}{2}, 0, ..., 0\right)$, z = x + iy. It is easy to check that $t_-(z) = t_+(z) = \sqrt{r}$, therefore $z \in \widetilde{P}$. By a simple calculation we get $F(z) = re^{i\theta}$. Hence $\{z \in C : r_1^2 < |z| < r_2^2\} \subset F(\widetilde{P})$. So F has not a simplevalued branch of the square root in \widetilde{P} . The proof is completed.

Theorem 7. Let D_1 , D_2 be two regions in C, D_1 , $D_2 \not\subseteq C$, $f = u + iv : D_1 \rightarrow D_2$ be a biholomorphic mapping between these regions. By \widetilde{u} , \widetilde{v} we denote the holomorphic continuations of u and v (see Theorem 2). Let $\widetilde{f} = (\widetilde{u}, \widetilde{v}) : \widetilde{D}_1 \rightarrow C^2$. Then $\widetilde{f}(\widetilde{D}_1) = \widetilde{D}_2$ and \widetilde{f} is biholomorphic.

Proof. We know that for $z = (z_1, z_2) \in \widetilde{D}_1$

$$\widetilde{u}(z) = \frac{1}{2} \left(f(z_1 + iz_2) + f(\overline{z_1 + i\overline{z_2}}) \right), \quad \widetilde{v}(z) = \frac{1}{2i} \left(f(z_1 + iz_2) - f(\overline{z_1 + i\overline{z_2}}) \right).$$

Since $T(\widetilde{f}(z)) \subset f(T(z))$, $z \in \widetilde{D}_1$ then $\widetilde{f}(\widetilde{D}_1) \subset \widetilde{D}_2$.

Now, let $w=(w_1,w_2)\in C^2$, $T(w)\subseteq D_2$ (i.e. $w\in\widetilde{D}_2$), $w_1+iw_2=f(\xi_1)$, $w_1+iw_2=f(\xi_2)$, $\xi_1,\,\xi_2\in D_1$. We define $z=(z_1,z_2)\in C^2$ by formulas $z_1=\frac{1}{2}(\xi_1+\bar{\xi}_2)$, $z_2=\frac{1}{2i}(\xi_1-\bar{\xi}_2)$. Hence $T(z)=\{\xi_1,\,\xi_2\}\subseteq D_1$. So $z\in\widetilde{D}_1$, $w=\widetilde{f}(z)\subseteq\widetilde{f}(\widetilde{D}_1)$, i.e, $\widetilde{D}_2\subseteq\widetilde{f}(\widetilde{D}_1)$.

Let $g: D_2 \to D_1$, $g = f^{-1}$ and $\widetilde{g}: \widetilde{D}_2 \to \widetilde{D}_1$ is defined analogically as the function \widetilde{f} . The mappings \widetilde{f} , \widetilde{g} are holomorphic and $\widetilde{f} \circ \widetilde{g}|_{D_2} = id_{D_1}$, $\widetilde{g} \circ \widetilde{f}|_{D_1} = id_{D_1}$. By the principle of identity for holomorphic functions we have $\widetilde{f} \circ \widetilde{g} = id_{\widetilde{D}_2}$, $\widetilde{g} \circ \widetilde{f} = id_{\widetilde{D}_1}$, i.e. $(\widetilde{f})^{-1} = \widetilde{g}$. This completes the proof.

Corollary. If D_1 , D_2 are as in Theorem 7 then if \widetilde{D}_1 is the harmonic envelope of holomorphy for D_1 then \widetilde{D}_2 is the harmonic envelope of holomorphy for D_2 . In particular, we get the following.

Theorem 8. Let $D \subset C$ be a simple connected domain such that ∂D has at least two distinct points. Let $f = u + iv : B_1 \to D$ be the biholomorphic mapping $(B_1$ denotes the unit disc in C). By \widetilde{u} , \widetilde{v} we denote the holomorphic continuations for u and v, f = (u, v). Then $\widetilde{D} = \widetilde{f}(\widetilde{B}_1)$ is the harmonic envelope of holomorphy for D and the mapping $\widetilde{f}: \widetilde{B}_1 \to \widetilde{D}$ is biholomorphic.

REFERENCES

- [1] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (4) (1969), 329-356.
- [2] P. Lelong, Prolongement analytique et singularités complexes des fonctions harmoniques, Bull. Soc. Math. Belgique 7 (1) (1954), 10—23.
- [3] J. Siciak, Holomorphic continuation of harmonic functions, Ann. Pol. Math. XXIX (1974), 67-73.