Marek Jarnicki

Analytic Continuation of Pluriharmonic Functions

ABSTRACT

In this paper we shall present a construction of the pluriharmonic envelope of analyticity and of holomorphy for a region in \mathbb{R}^{2n} . We shall prove that this envelope is "invariant" with respect to biholomorphic transformations of the region. We shall also construct the polyharmonic envelope of analyticity and of holomorphy for a polycylindrical region.

INTRODUCTION

Let U be an open set in \mathbb{R}^n ; by A(U) we denote the space of all real analytic functions of n real variables on U.

Let Ω be open in C^n ; by $\mathcal{O}(\Omega)$ we denote the space of all holomorphic functions on Ω .

By \mathcal{O}_n we denote the sheaf of germs of holomorphic functions on \mathbb{C}^n , and by π_n the natural projection $\mathcal{O}_n \to \mathbb{C}^n$.

Every region (i.e. a non-empty, open and connected set) in \mathcal{O}_n will be called an analytic function.

An analytic function $F \subset \mathcal{O}_n$ will be called arbitrarily continuable if:

(*) $\forall z \in \pi_n(F)$, $\forall F_z \in \pi_n^{-1}(z) \cap F$ and for every continuous mapping γ : I = [0, 1] $\to \pi_n(F)$ such that $\gamma(0) = z$, there exists a continuous mapping $\hat{\gamma}$: $I \to F$ such that $\hat{\gamma}(0) = F_z$ and $\pi_n \circ \hat{\gamma} = \gamma$.

It is known that (*) is equivalent to

(**) $\forall z \in \pi_n(F)$, $\forall F_z \in \pi_n^{-1}(z) \cap F$, $\forall \varphi \in F_z$: φ may be holomorphically extended on every polydisc $P(z; r) \subset \pi_n(F)$.

Fix a region D in \mathbb{R}^n , $n \ge 2$, and a vector subspace S in A(D). We consider the two following problems:

- (A) Whether there exists a set Ω in C^n such that:
- (A1) Ω is a connected domain of holomorphy containing D;
- (A2) for every $f \in S$ there exists an arbitrarily continuable analytic function F over Ω (i.e. $\pi_n(F) = \Omega$) such that $\forall x \in D$ the germ f_x belongs to F;

(A3) there exists a function $f_0 \in S$ such that its continuation F_0 (in the sense of (A2)) has the following property:

 $\forall z \in \Omega$, $\forall (F_0)_z \in \pi_n^{-1}(z) \cap F_0$, $\forall \varphi_z \in (F_0) : \varphi$ cannot be holomorphically extended on any polydisc P(z; R) if $P(z; R) \setminus \Omega \neq \emptyset$.

- (H) Whether there exists a set Ω in C^n such that:
- (H1) Ω satisfies (A1);
- (H2) $\forall f \in S \exists \tilde{f} \in \mathcal{O}(\Omega) : \tilde{f}|_{D} = f;$
- (H3) there exists $f_0 \in S$ such that its holomorphic continuation \tilde{f}_0 on Ω cannot be holomorphically continued beyond Ω .

Remarks. The function F in (A2) is uniquely determined by f.

The solution of (A) is uniquely determined by D and S, so if Ω satisfies (A), we write $\Omega = D_S^A$ and we call D_S^A the S — envelope of analyticity for D.

Similarly, the solution of (H) is uniquely determined by D and S, we write $\Omega = D_S^H$ and we call D_S^H the S — envelope of holomorphy for D.

If (H) has the solution, then (A) has the solution and $D_S^A = D_S^H$.

If (A) has a solution which satisfies (H2), then (H) has the solution and $D_S^H = D_S^A$.

If (A) has a solution which is homotopically simply connected, then D_S^A satisfies (H2).

If Ω satisfies (A1), (A2) and (H3) then $\Omega = D_S^A$.

It is possible to show that for S = A(D) the problem (A) has not any solution. On the other hand, if S is too small (for example, if $S = R[x_1, ..., x_n]|_D$), then (H) has the only solution $D_S^H = C^n$; this case is not interesting.

We shall present some solutions of (A) and (H) for particular cases of S.

1° S = H(D) — the space of all real harmonic functions on D. P. Lelong proved that here the answer to the problem (A) is always positive and that in the case $n = 2p \ge 4$, $p \in N$, the answer to the problem (H) is also positive. More exactly we have

Lelong's theorem [4]. Given $z = (z_1, ..., z_n) \in \mathbb{C}^n$, put

$$T(z) = \left\{ t = (t_1, \dots, t_n) \in \mathbb{R}^n : \sum_{j=1}^n (t_j - z_j)^2 = 0 \right\}.$$

Set $\tilde{D} = \{z \in C^n : \exists a \in D, \exists \gamma : I \rightarrow C^n \text{ such that } \gamma \text{ is continuous, } \gamma(0) = a, \gamma(1) = z \text{ and } \forall \tau \in I : T(\gamma(\tau)) \subset D\}.$

Then $\tilde{D} = D_{H(D)}^{A}$ and in the case $n = 2p \ge 4$: $\tilde{D} = D_{H(D)}^{H}$ (see [4], theorems 2, 4 and 6). Note that in the cases n = 2 and n = 2p + 1, $p \in N$, there exist examples of regions D for which \tilde{D} is not any solution of (H) (see [4], p. 15, also [2] theorem 6).

 2° $S = H_L(D)$ — the space of all solutions of a linear elliptic differential operator L with constant coefficients. C. O. Kiselman in [3] proved that for every convex region D there exists a maximal convex region Ω in C^n which satisfies (H1) and (H2).

In Section 1 of this paper we answer the problems (A) and (H) for a region $D \subset \mathbb{R}^{2n}$ and for S = PH(D) — the space of all pluriharmonic functions on D. This will be an extension of Lelong's theorem and of theorems 2, 3, 4, 7 from [2] (see also [4], p. 17). In Section 2 we consider the problems (A) and (H) for the space $H_a(D)$ consisting of all polyharmonic functions of the given type on a polycylindrical region D.

1. ANALYTIC CONTINUATION OF PLURIHARMONIC FUNCTIONS

In this section D denotes a region in R^{2n} . For $z \in C^k$ and the positive numbers $r_1, ..., r_k$, by $P(z; r_1, ..., r_k)$ we denote the polydisc in C^k with the center z and the radii $r_1, ..., r_k$. If $r_1 = ... = r_k = r$ we write P(z; r; k) instead of P(z; r, ..., r).

For $z = (z_1, z_2, ..., z_{2n-1}, z_{2n}) \in \mathbb{C}^{2n}$ set

(1)
$$\phi(z) \stackrel{\text{df}}{=} (z_1 + iz_2, ..., z_{2n-1} + iz_{2n}) \in \mathbb{C}^n.$$

Let

(2)
$$\widehat{D} = \{z \in C^{2n}: \phi(z), \phi(\overline{z}) \in D\};$$

we identify R^{2n} with C^n .

Remarks. \widehat{D} is a region in C^{2n} symmetric with respect to the mapping $C^{2n} \ni z \to \overline{z} \in C^{2n}$, $\widehat{D} \cap R^{2n} = D$; we identify $R^{2n} \times \{0\} \subset C^{2n}$ with C^n .

D is starlike with respect to $\xi \in D$ if and only if \hat{D} is starlike with respect to ξ .

D is convex if and only if \hat{D} is convex.

D is homotopically simply connected if and only if \hat{D} is homotopically simply connected.

The following theorem (analogical to Lelong's theorem) plays the fundamental role in our considerations.

Theorem 1. \hat{D} satisfies (A2) for S = PH(D), moreover for every $f \in PH(D)$ the analytic arbitrarily continuable continuation F of f over \hat{D} has the single-valued real part on \hat{D} and

(3)
$$Re F(z) = \frac{1}{2} \left\{ f(\phi(z)) + f(\phi(\overline{z})) \right\}, z \in \widehat{D}.$$

Proof. Let $f \in PH(D)$ be fixed. Locally in D, f is the real part of a holomorphic function, so there exists an analytic arbitrarily continuable function $G \subset \mathcal{O}_n$ over D such that f = ReG.

We shall give a construction of the continuation of f over \widehat{D} . Let $z \in \widehat{D}$, take $G_{\Phi(z)} \in \pi_n^{-1}(\phi(z)) \cap G$ and $G_{\Phi(\overline{z})} \in \pi_n^{-1}(\phi(\overline{z})) \cap G$. Let $\varphi \in G_{\Phi(z)}$, $\varphi \in \mathcal{O}(P(\phi(z); \varrho; n))$, $P(\phi(z); \varrho; n) \subset D$, $\psi \in \mathcal{O}(P(\phi(\overline{z}); \varrho; n))$, $P(\phi(\overline{z}); \varrho; n) \subset D$. Set

(4)
$$\lambda(w) = \frac{1}{2} \left(\varphi(\phi(w)) + \overline{\psi(\phi(\overline{w}))} \right), w \in P(z; \frac{1}{2}\varrho; 2n).$$

 $P(z; \frac{1}{2}\varrho; 2n) \subset \hat{D}$, so λ is well defined and $\lambda \in \mathcal{O}(P(z; \frac{1}{2}\varrho; 2n))$. We take the germ λ_w of λ at $w \in P(z; \frac{1}{2}\varrho; 2n)$. Now we change, if possible, $w \in P(z; \frac{1}{2}\varrho; 2n)$, $G_{\Phi(z)} \in \pi_n^{-1}(\phi(z)) \cap G$. $G_{\Phi(z)} \in \pi_n^{-1}(\phi(\bar{z})) \cap G$ and $z \in \hat{D}$. The set of all germs of the type λ_w , obtained in this way, we denote by F. It is obvious that F is an arbitrarily continuable analytic function over \hat{D} which extends f. Since f = ReG, (4) implies (3). This completes the proof.

The mapping $C^n \in z \rightarrow (\phi(z), \phi(\bar{z})) \in C^n \times C^n$ is a homeomorphism and its inverse mapping Λ is given by the formula

(5)
$$C^n \times C^n \ni (\xi = (\xi_1, ..., \xi_n), \eta = (\eta_1, ..., \eta_n)) \rightarrow \left(\frac{\xi_1 + \bar{\eta}_1}{2}, \frac{\xi_1 - \bar{\eta}_1}{2i}, ..., \frac{\xi_n + \bar{\eta}_n}{2}, \frac{\xi_n - \bar{\eta}_n}{2i}\right) \in C^{2n}$$
.

Analogically to Theorem 2 in [2], we can prove the following

Lemma 1. A function $h \in PH(D)$ has a holomorphic continuation \hat{h} on \hat{D} if and only if there exists $f \in \mathcal{O}(D)$ such that h = Ref, moreover:

(6)
$$f(\xi) = h(\xi) + i(2Im\hat{h}(\Lambda(\xi, \eta)) + \text{const.}), \ \xi \in D; \ \eta \in D \text{ fixed };$$

(7)
$$\hat{h}(z) = \frac{1}{2} \left(f(\phi(z)) + \overline{f(\phi(\bar{z}))} \right), z \in \hat{D}.$$

Proposition 1. If D is homotopically simply connected then \hat{D} satisfies (H2) for S = PH(D).

Proof. If D is homotopically simply connected then every function from PH(D) is the real part of a holomorphic function from O(D), so we can use Lemma 1.

The following theorem is analogous to Theorem 7 in [2].

Theorem 2. Let D, G be regions in C^n , $f = (f_1, ..., f_n)$: $D \to G$ be biholomorphic; $f_k = u_k + iv_k$, \hat{u}_k , \hat{v}_k denote the corresponding holomorphic continuations of u_k and v_k on \hat{D} , k = 1, ..., n; $\hat{f} \stackrel{\text{df}}{=} (\hat{u}_1, \hat{v}_1, ..., \hat{u}_n, \hat{v}_n)$: $\hat{D} \to C^{2n}$. Then $\hat{f}(\hat{D}) = \hat{G}$ and \hat{f} : $\hat{D} \to \hat{G}$ is biholomorphic.

Proof. The proof is analogical as in the case n = 1.

By Lemma 1:

$$\hat{u}_k(z) = \frac{1}{2} \left(f_k(\phi(z)) + \overline{f_k(\phi(\overline{z}))} \right),$$

$$\hat{v}_k(z) = \frac{1}{2i} \left(f_k(\phi(z)) - \overline{f_k(\phi(\overline{z}))} \right), \ z \in \hat{D}, \quad k = 1, ..., n.$$

Set, for $z \in C^{2n}$,

(8)
$$\widehat{T}(z) = \{\phi(z), \phi(\overline{z})\}.$$

It is easy to show that for every $z \in \widehat{D}$ $\widehat{T}(\widehat{f}(z)) = f(\widehat{T}(z))$, so $\widehat{f}(\widehat{D}) \subset \widehat{G}$.

Now, let $w \in \widehat{G}$ be fixed. There exist $\xi, \eta \in D$ such that $\phi(w) = f(\xi)$, $\phi(\overline{w}) = f(\eta)$, so $w = \widehat{f}(A(\xi, \eta))$, (see (5)), hence $\widehat{G} \subset \widehat{f}(\widehat{D})$.

For the mapping $g = f^{-1}$: $G \rightarrow D$ we construct \hat{g} (in the same way as \hat{f} for f). Then \hat{f} , \hat{g} are holomorphic, $(\hat{f} \circ \hat{g})|_{G} = id_{G}$, $(\hat{g} \circ \hat{f})|_{D} = id_{D}$, so $\hat{g} = (\hat{f})^{-1}$. This completes the proof.

Corollary 1. Let D, G, f be as in Theorem 2. Then \widehat{D} satisfies (H2) if and only if \widehat{G} satisfies (H2).

If \hat{D} satisfies (H2), \hat{D} need not satisfy (H3). For example, if we take $D = \Omega \setminus K$ such that:

- (a) Ω is a region in C^n ,
- (b) $K \subset \Omega$, K is a non-empty compact set,
- (c) D is homotopically simply connected, then $\hat{\Omega}$ satisfies (H2) for PH(D) but $\hat{D} \nsubseteq \hat{\Omega}$.

Now we shall discuss situations when \hat{D} is the solution of (A) or (H).

Theorem 3. If D is a domain of holomorphy in C^n then \widehat{D} is the solution of (A). Proof. By Theorem 1 it suffices to show that \widehat{D} satisfies (H3).

Let $f \in \mathcal{O}(D)$ be a function which cannot be holomorphically continued beyond D. Let \hat{h} be given by the formula (7). It suffices to show that \hat{h} cannot be holomorphically continued beyond \hat{D} .

Suppose that there exist $z \in \widehat{D}$, r > 0 and $\varphi \in \mathcal{O}(P(z; r; 2n))$ such that $P(z; r; 2n) \setminus \widehat{D} \neq \varphi$ and φ is equal to \widehat{h} in a neighbourhood of z. It is easy to prove that $\varphi(P(z; r; 2n)) = P(\varphi(z); 2r; n)$, $\psi(P(z; r; 2n)) = P(\varphi(\overline{z}); 2r; n)$, where $\psi(z) = \varphi(\overline{z})$, $z \in C^{2n}$. We have $P(\varphi(z); 2r; n) \setminus D \neq \varphi$ or $P(\varphi(\overline{z}); 2r; n) \setminus D \neq \varphi$; suppose, for example, that $P(\varphi(z); 2r; n) \setminus D \neq \varphi$.

Set $g(\xi) = 2\varphi(\Lambda(\xi, \phi(\overline{z}))) - f(\phi(\overline{z}))$, $\xi \in P(\phi(z); 2r; n)$. g is well defined, $g \in \mathcal{O}(P(\phi(z); 2r; n))$ and g is equal to f in a neighbourhood of $\phi(z)$. Since f cannot be continued beyond D, this gives a contradiction. This completes the proof.

Conversely, we have

Theorem 4. If \hat{D} satisfies (A1) then D is a domain of holomorphy.

Proof. We shall use the following well known theorem (see [1], Theorem 2.5.14): Let Ω and Ω' be holomorphy domains in C^n and in C^m , respectively, and let u be a holomorphic map of Ω into C^m . Then $\Omega_u = \{z \in \Omega : u(z) \in \Omega'\}$ is a domain of holomorphy.

In our situation we set, for fixed $\eta \in D$, m = 2n, $\Omega = C^n$, $\Omega' = \hat{D}$, $u(\xi) = \Lambda(\xi, \eta)$, $\xi \in C^n$. Then $\Omega_u = D$, so D is a domain of holomorphy. The proof is completed.

Note that if we put $\Omega = C^{2n}$, $\Omega' = D \times D^*$, $u(z) = (\phi(z), \overline{\phi(\overline{z})})$, $z \in C^{2n}$, where $D^* = \{\xi \in C^n : \xi \in D\}$, then from the assumption that D is a domain of holomorphy, we may deduce that \widehat{D} is a domain of holomorphy. Hence the essential meaning of Theorem 3 is such that \widehat{D} is a domain of holomorphy with respect to the space of all holomorphic functions in \widehat{D} which are the continuations of functions from PH(D).

Theorems 1, 3 and 4 imply

Corollary 2. \hat{D} is the solution of (A) if and only if D is a domain of holomorphy. Corollary 3. \hat{D} is the solution of (H) if and only if D is a domain of holomorphy and

(R)
$$\forall h \in PH(D) \exists f \in \mathcal{O}(D) \colon h = Ref.$$

Corollary 4. If D is not any domain of holomorphy, D satisfies (R) and the envelope of holomorphy Ω of D is univalent, then $\hat{\Omega}$ is the solution of (H) for PH(D).

Directly from the definitions of T (see Lelong's theorem) and — of \hat{T} (see (8)) we have:

(9)
$$\hat{T}(z) \subset T(z_1, z_2) \times ... \times T(z_{2n-1}, z_{2n}) \subset T(z), \ z = (z_1, z_2, ..., z_{2n-1}, z_{2n}) \in \mathbb{C}^{2n}$$

Whence $\tilde{D} \subset \hat{D}$ (more exactly $-\{z \in C^{2n}: T(z) \subset D\} \subset \hat{D}$) and for $D = D_1 \times ... \times D_n$, $D_i - 1 = 0$ a region in C, i = 1, ..., n, $\hat{D} = \tilde{D}_1 \times ... \times \tilde{D}_n$ (in the case n = 1: $\hat{D} = \tilde{D}$).

Below we shall give an example of a situation when $\tilde{D} \nsubseteq \hat{D}$. Let $D = B = \{ \xi \in \mathbb{R}^{2n} : |\xi| < r \}$

the ball in \mathbb{R}^{2n} , $n \ge 2$. It is possible to show that $\widetilde{B} = \{z \in \mathbb{C}^{2n} : t(z) < r\}$, where for $z = x + iy \in \mathbb{C}^{2n}$: $t(z) = (|x|^2 + |y|^2 + 2\sqrt{|x|^2|y|^2 - \langle x, y \rangle^2})^{1/2}$, see [3], [5] also [2]. Let $\theta \in (2, 2\sqrt{2})$, $z = \frac{r}{\theta}$ ((1, 1, 0, ..., 0) + i(0, 0, 1, 1, 0, ..., 0)). It is easy to check $z \in \widehat{B} \setminus \widetilde{B}$.

^{4 -} Prace matematyczne z. 18

2. ANALYTIC CONTINUATION OF POLYHARMONIC FUNCTIONS

Fix $k \in \mathbb{N}$, $\alpha = (\alpha_1, ..., \alpha_k) \in \mathbb{N}^k$ and let Ω be an open set in $\mathbb{R}^{|\alpha|} = \mathbb{R}^{\alpha_1} \times ... \times \mathbb{R}^{\alpha_k}$. The function $u: \Omega \to \mathbb{R}$ is called α -polyharmonic if for every $a = (a_1, ..., a_k) \in \Omega$ the function $x_i \to u(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_k)$ is harmonic in a neighbourhood of a_i , i = 1, ..., k.

By $H_{\sigma}(\Omega)$ we denote the space of all α -polyharmonic functions on Ω .

We consider the problems (A) and (H) for $S = H_{\alpha}(D)$, where $D = D_1 \times ... \times D_k$, D_i is a region in \mathbb{R}^{α_i} , i = 1, ..., k.

First, note that in this case we can reduce the problem to the case $\alpha_i \ge 2$, i = 1, ..., k. Further we always make this assumption.

The main result of this section is the following

Theorem 5. The set $\tilde{D}_1 \times ... \times \tilde{D}_k$ is the α -polyharmonic envelope of analyticity for D. Moreover, if $\alpha_i = 2p_i \ge 4$, $p_i \in \mathbb{N}$, i = 1, ..., k, then $\tilde{D}_1 \times ... \times \tilde{D}_k$ is the α -polyharmonic envelope of holomorphy for D.

Proof. Obviously $\tilde{D}_1 \times ... \times \tilde{D}_k$ is a domain of holomorphy, so (A1) = (H1) is satisfied. By iteration of the classical integral representation with the Newton kernel for harmonic functions we obtain an integral representation for α -polyharmonic functions; more exactly we get the following

Lemma 2. Let E_i denote the Newton kernel in \mathbf{R}^{α_i} . Set $E(x) = E_1(x_1) \dots E_k(x_k)$, $x = (x_1, \dots, x_k) \in \mathbf{R}^{|\alpha|}$, $x_i \neq 0$, $i = 1, \dots, k$. Let G_i be a region in \mathbf{R}^{α_i} such that $\overline{G}_i \subset D_i$, ∂G_i is the union of a finite number of surfaces of class C^1 , $i = 1, \dots, k$. Let $f \in H_{\alpha}(D)$. Then, for every $x = (x_1, \dots, x_k) \in G_1 \times \dots \times G_k$:

$$f(x) = \int_{\partial G_1} \dots \int_{\partial G_k} W_{\alpha}(f, x, t_1, \dots, t_k) \sigma_1(dt_1) \dots \sigma_k(dt_k),$$

where σ_i denotes the (α_i-1) — dimensional Lebesgue measure on ∂G_i , i=1,...,k;

 $W_a(f, x_1, ..., x_k, t_1, ..., t_k)$

$$= \sum_{I,J} (-1)^{p} \frac{\partial^{r} E(x_{1}-t_{1}, ..., x_{k}-t_{k})}{\partial \vec{n}_{t_{j_{1}}}, ..., \partial \vec{n}_{t_{j_{r}}}} \frac{\partial^{p} f(t_{1}, ..., t_{k})}{\partial \vec{n}_{t_{l_{1}}}, ..., \partial \vec{n}_{t_{l_{p}}}^{r}},$$

where $I = (i_1, ..., i_r)$, $J = (j_1, ..., j_p)$, $I \cap J = \phi$, p+r = k, $\{\vec{n}_{t_i}\}_{t_i \in \partial G_i}$ denotes the field of exterior normal vectors to ∂G_i , i = 1, ..., k.

Having this representation, in the proof that every α -polyharmonic function on D may be continued to arbitrarily continuable analytic (or, in the case $\alpha_i = 2p_i \geqslant 4$, i = 1, ..., k, to holomorphic) function on $\widetilde{D}_1 \times ... \times \widetilde{D}_k$, we can apply (with only formal changes) the method of [4]. Hence $\widetilde{D}_1 \times ... \times \widetilde{D}_k$ satisfies (A2) (or -(H2)).

Let $f_i \in H(D_i)$ satisfy (A3) for $S_i = H(D_i)$, i = 1, ..., k. Then the function $f(x) = f_1(x_1), ..., f_k(x_k)$, $x = (x_1, ..., x_k) \in D$, is α -polyharmonic on D. Let $F_i \subset \mathcal{O}_{\alpha_i}$ be an arbitrarily continuable continuation of f_i over \tilde{D}_i , i = 1, ..., k; let $z = (z_1, ..., z_k) \in \tilde{D}_1 \times ... \times \tilde{D}_k$, $(F_i)_{z_i} \in \pi_{\alpha_i}^{-1}(z_i) \cap F_i$, $\varphi_i \in (F_i)_{z_i}$, $\varphi_i \in \mathcal{O}(U_i)$, $z_i \in U_i = U_i^0 \subset \tilde{D}_i$, i = 1, ..., k. Set $\varphi(w) = \varphi_1(w_1) ... \varphi_k(w_k)$, $w = (w_1, ..., w_k) \in U = U_1 \times ... \times U_k$; $\varphi \in \mathcal{O}(U)$. We take the germ φ_w of φ at w. Now we change $w \in U$, $(F_i)_{z_i} \in \pi_{\alpha_i}^{-1}(z_i) \cap F_i$ and $z \in \tilde{D}_1 \times ... \times \tilde{D}_k$.

The set of all the germs, obtained in this way, we denote by F. Obviously, F is an arbitrarily continuable continuation of f over $D_1 \times ... \times D_k$, which satisfies (A3) for $S = H_a(D)$. In the case $\alpha_i = 2p_i \ge 4$, the proof of (H3) is analogical. The proof is completed.

Corollary 5. If $\alpha_1 = \ldots = \alpha_k = 2$, then $D_{H_{\alpha}(D)}^A = \widetilde{D}_1 \times \ldots \times \widetilde{D}_k = \widehat{D} = D_{PH(D)}^A$; if, moreover, D_i is simply connected, $i = 1, \ldots, k$, then $D_{H_{\alpha}(D)}^H = \widetilde{D}_1 \times \ldots \times \widetilde{D}_k = \widehat{D} = D_{PH(D)}^A$. Note that if $k \ge 2$ then $PH(D) \not\subseteq H_{\alpha}(D)$.

It is easy to show that for $z=(z_1,\ldots,z_k)\in C^{|\alpha|}$: $T(z_1)\times\ldots\times T(z_k)\subset T(z)$, so $\tilde{D}\subset \tilde{D}_1\times\ldots\times \tilde{D}_k$. Below, we shall give an example of a situation when $\tilde{D}\nsubseteq \tilde{D}_1\times\ldots\times \tilde{D}_k$. Let $k=\alpha_1=\alpha_2=2$, let D_0 be a region in C such that $1+i,\ -1+i,\ -1-i,\ 1-i\in D_0$, but $1\notin D_0$. Set $D=D_0\times D_0$. Then the point $z=(i,\ -i,\ -i,\ -i)$ belongs to $\tilde{D}_0\times \tilde{D}_0$ but $z\notin \tilde{D}$ because the point $t=\left(\frac{1+\sqrt{5}}{2},\ \frac{-1+\sqrt{5}}{2},\ 1,0\right)\in T(z)$.

Theorem 5 implies the following

Proposition 2. In the general case, if D is only a region in $\mathbb{R}^{|\alpha|}$ (not necessarily polycylindrical) and $\alpha_i \ge 2$, i = 1, ..., k, then the set $\bigcup_{D_1 \times ... \times D_k \in D} \widetilde{D}_1 \times ... \times \widetilde{D}_k$, where D_i is a convex region in \mathbb{R}^{α_i} , is the region in $\mathbb{C}^{|\alpha|}$ containing D and satisfying (H2) for $H_{\alpha}(D)$.

REFERENCES

- [1] L. Hörmander, An introduction to complex analysis in several variables, North-Holland Publishing Company, vol. 7 (1973).
- [2] M. Jarnicki, Analytic continuation of harmonic function, Zeszyty Naukowe UJ, Prace Matematyczne, zeszyt 17 (1975), 93-104.
- [3] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (4), (1969), 329—356.
- [4] P. Lelong, Prolongement analytique et singularités complexes de fonctions harmoniques, Bull. Soc. Math. Belgique, 7 (1), (1954), 10-23.
- [5] J. Siciak, Holomorphic continuation of harmonic functions, Ann. Pol. Math. XXIX (1974), 67-73.