Marek Jarnicki

Analytic Continuation of Pluriharmonic Functions

ABSTRACT

In this paper we shall present a construction of the pluriharmonic envelope of analyticity and of holomorphy for a region in \(\mathbb{R}^{2n} \). We shall prove that this envelope is "invariant" with respect to biholomorphic transformations of the region. We shall also construct the polyharmonic envelope of analyticity and of holomorphy for a polycylindrical region.

INTRODUCTION

Let \(U \) be an open set in \(\mathbb{R}^n \); by \(A(U) \) we denote the space of all real analytic functions of \(n \) real variables on \(U \).

Let \(\Omega \) be open in \(\mathbb{C}^n \); by \(\mathcal{O}(\Omega) \) we denote the space of all holomorphic functions on \(\Omega \).

By \(\mathcal{O}_n \) we denote the sheaf of germs of holomorphic functions on \(\mathbb{C}^n \), and by \(\pi_n \) the natural projection \(\mathcal{O}_n \rightarrow \mathbb{C}^n \).

Every region (i.e. a non-empty, open and connected set) in \(\mathcal{O}_n \) will be called an analytic function.

An analytic function \(F \subset \mathcal{O}_n \) will be called arbitrarily continuable if:

\[(\ast) \ \forall z \in \pi_n(F), \ \forall F_z \in \pi^{-1}_n(z) \cap F \ \text{and} \ \text{for every continuous mapping} \ \gamma: I = [0, 1] \rightarrow \pi_n(F) \ \text{such that} \ \gamma(0) = z, \ \text{there exists a continuous mapping} \ \hat{\gamma}: I \rightarrow F \ \text{such that} \ \hat{\gamma}(0) = F_z \ \text{and} \ \pi_n \circ \hat{\gamma} = \gamma.\]

It is known that \((\ast)\) is equivalent to

\[(\ast\ast) \ \forall z \in \pi_n(F), \ \forall F_z \in \pi^{-1}_n(z) \cap F, \ \forall \varphi \in F_z: \ \varphi \ \text{may be holomorphically extended on every polydisc} \ P(z; r) \subset \pi_n(F). \]

Fix a region \(D \) in \(\mathbb{R}^n, n \geq 2 \), and a vector subspace \(S \) in \(A(D) \). We consider the two following problems:

\[(A) \ \text{Whether there exists a set} \ \Omega \ \text{in} \ \mathbb{C}^n \ \text{such that:}

(\text{A1}) \ \Omega \ \text{is a connected domain of holomorphy containing} \ D; \]

\[(A2) \ \text{for every} \ f \in S \ \text{there exists an arbitrarily continuable analytic function} \ F \ \text{over} \ \Omega \ \text{(i.e.} \ \pi_n(F) = \Omega) \ \text{such that} \ \forall x \in D \ \text{the germ} \ f_x \ \text{belongs to} \ F;\]
there exists a function \(f_0 \in S \) such that its continuation \(F_0 \) (in the sense of (A2)) has the following property:

\[
\forall z \in \Omega, \; \forall (F_0)_z \in \pi^{-1}(z) \cap F_0, \; \forall \varphi \in (F_0) : \varphi \text{ cannot be holomorphically extended on any polydisc } P(z; R) \text{ if } P(z; R) \cap \Omega \neq \emptyset.
\]

(H) Whether there exists a set \(\Omega \) in \(C^n \) such that:

(H1) \(\Omega \) satisfies (A1);

(H2) \(\forall f \in S \exists \hat{f} \in \Theta(\Omega) : \hat{f}|_\partial = f \);

(H3) there exists \(f_0 \in S \) such that its holomorphic continuation \(\hat{f}_0 \) on \(\Omega \) cannot be holomorphically continued beyond \(\Omega \).

Remarks. The function \(F \) in (A2) is uniquely determined by \(f \).

The solution of (A) is uniquely determined by \(D \) and \(S \), so if \(\Omega \) satisfies (A), we write \(\Omega = D^A_S \) and we call \(D^A_S \) the \(S \) — envelope of analyticity for \(D \).

Similarly, the solution of (H) is uniquely determined by \(D \) and \(S \), we write \(\Omega = D^H_S \) and we call \(D^H_S \) the \(S \) — envelope of holomorphy for \(D \).

If (H) has the solution, then (A) has the solution and \(D^A_S = D^H_S \).

If (A) has a solution which satisfies (H2), then (H) has the solution and \(D^H_S = D^A_S \).

If (A) has a solution which is homotopically simply connected, then \(D^A_S \) satisfies (H2).

If \(\Omega \) satisfies (A1), (A2) and (H3) then \(\Omega = D^A_S \).

It is possible to show that for \(S = A(D) \) the problem (A) has not any solution. On the other hand, if \(S \) is too small (for example, if \(S = R[x_1, ..., x_n]|_\partial \)), then (H) has the only solution \(D^H_S = C^n \); this case is not interesting.

We shall present some solutions of (A) and (H) for particular cases of \(S \).

1° \(S = H(D) \) — the space of all real harmonic functions on \(D \). P. Lelong proved that here the answer to the problem (A) is always positive and that in the case \(n = 2p \geq 4 \), \(p \in N \), the answer to the problem (H) is also positive. More exactly we have

Lelong’s theorem [4]. Given \(z = (z_1, ..., z_n) \in C^n \), put

\[
T(z) = \{ t = (t_1, ..., t_n) \in R^n : \sum_{j=1}^{n} (t_j - z_j)^2 = 0 \}.
\]

Set \(D = \{ z \in C^n : \exists a \in D, \exists \gamma : I \rightarrow C^n \text{ such that } \gamma \text{ is continuous, } \gamma(0) = a, \gamma(1) = z \text{ and } \forall \tau \in I : T(\gamma(\tau)) \subset D \} \).

Then \(D = D^A(D) \) and in the case \(n = 2p \geq 4 \) \(D = D^H_{H(D)} \) (see [4], theorems 2, 4 and 6).

Note that in the cases \(n = 2 \) and \(n = 2p + 1, p \in N \), there exist examples of regions \(D \) for which \(D \) is not any solution of (H) (see [4], p. 15, also [2] theorem 6).

2° \(S = H_L(D) \) — the space of all solutions of a linear elliptic differential operator \(L \) with constant coefficients. C. O. Kiselman in [3] proved that for every convex region \(D \) there exists a maximal convex region \(\Omega \) in \(C^n \) which satisfies (H1) and (H2).

In Section 1 of this paper we answer the problems (A) and (H) for a region \(D \subset R^{2n} \) and for \(S = PH(D) \) — the space of all pluriharmonic functions on \(D \). This will be an extension of Lelong’s theorem and of theorems 2, 3, 4, 7 from [2] (see also [4], p. 17). In Section 2 we consider the problems (A) and (H) for the space \(H_0(D) \) consisting of all polyharmonic functions of the given type on a polycylindrical region \(D \).
1. ANALYTIC CONTINUATION OF PLURIHARMONIC FUNCTIONS

In this section D denotes a region in \mathbb{R}^{2n}. For $z \in C^k$ and the positive numbers r_1, \ldots, r_k, by $P(z; r_1, \ldots, r_k)$ we denote the polydisc in C^k with the center z and the radii r_1, \ldots, r_k. If $r_1 = \ldots = r_k = r$ we write $P(z; r; k)$ instead of $P(z; r, \ldots, r)$.

For $z = (z_1, z_2, \ldots, z_{2n-1}, z_{2n}) \in C^{2n}$ set

$$
\phi(z) \overset{\text{def}}{=} (z_1 + iz_2, \ldots, z_{2n-1} + iz_{2n}) \in C^n.
$$

Let

$$
\hat{D} = \{z \in C^{2n}: \phi(z), \phi(\bar{z}) \in D\};
$$

we identify R^{2n} with C^n.

Remarks. \hat{D} is a region in C^{2n} symmetric with respect to the mapping $C^{2n} \ni z \mapsto \bar{z} \in C^{2n}$, $\hat{D} \cap R^{2n} = D$; we identify $R^{2n} \times \{0\} \subset C^{2n}$ with C^n.

D is starlike with respect to $\xi \in D$ if and only if \hat{D} is starlike with respect to ξ.

D is convex if and only if \hat{D} is convex.

D is homotopically simply connected if and only if \hat{D} is homotopically simply connected.

The following theorem (analogical to Lelong's theorem) plays the fundamental role in our considerations.

Theorem 1. \hat{D} satisfies $(A2)$ for $S = PH(D)$, moreover for every $f \in PH(D)$ the analytic arbitrarily continuable continuation F of f over \hat{D} has the single-valued real part on \hat{D} and

$$
\text{Re} F(z) = \frac{1}{2} \{f(\phi(z)) + f(\phi(\bar{z}))\}, z \in \hat{D}.
$$

Proof. Let $f \in PH(D)$ be fixed. Locally in D, f is the real part of a holomorphic function, so there exists an analytic arbitrarily continuable function $G \subset \theta_n$ over D such that $f = \text{Re} G$.

We shall give a construction of the continuation of f over \hat{D}. Let $z \in \hat{D}$, take $G_\phi(z) \in \pi_n^{-1}(\phi(z)) \cap G$ and $G_\phi(\bar{z}) \in \pi_n^{-1}(\phi(\bar{z})) \cap G$. Let $\varphi \in G_\phi(z)$, $\varphi \in \partial P(\phi(z); q; n)$, $P(\phi(z); q; n) \subset D$, $\psi \in G_\phi(\bar{z})$, $\psi \in \partial P(\phi(\bar{z}); q; n)$, $P(\phi(\bar{z}); q; n) \subset D$. Set

$$
\lambda(w) = \frac{1}{2} \{\varphi(\phi(w)) + \overline{\psi(\phi(w))}\}, w \in P(z; 1/q; 2n).
$$

$P(z; 1/q; 2n) \subset \hat{D}$, so λ is well defined and $\lambda \in \partial P(z; 1/q; 2n))$. We take the germ λ_w of λ at $w \in P(z; 1/q; 2n)$. Now we change, if possible, $w \in P(z; 1/q; 2n)$, $G_\phi(z) \in \pi_n^{-1}(\phi(z)) \cap G$, $G_\phi(\bar{z}) \in \pi_n^{-1}(\phi(\bar{z})) \cap G$ and $z \in \hat{D}$. The set of all germs of the type λ_w, obtained in this way, we denote by F. It is obvious that F is an arbitrarily continuable analytic function over \hat{D} which extends f. Since $f = \text{Re} G$, (4) implies (3). This completes the proof.

The mapping $C^n \ni z \rightarrow (\phi(z), \phi(\bar{z})) \in C^n \times C^n$ is a homeomorphism and its inverse mapping Λ is given by the formula

$$
C^n \times C^n \ni (\xi = (\xi_1, \ldots, \xi_n), \eta = (\eta_1, \ldots, \eta_n)) \mapsto
\left(\frac{\xi_1 + \bar{\eta}_1}{2}, \frac{\xi_1 - \bar{\eta}_1}{2i}, \ldots, \frac{\xi_n + \bar{\eta}_n}{2}, \frac{\xi_n - \bar{\eta}_n}{2i}\right) \in C^{2n}.
$$
Analogously to Theorem 2 in [2], we can prove the following.

Lemma 1. A function \(h \in \mathcal{D}(D) \) has a holomorphic continuation \(\hat{h} \) on \(\hat{D} \) if and only if there exists \(f \in \mathcal{D}(D) \) such that \(h = \text{Re} f \), moreover:

\[
(6) \quad f(\xi) = h(\xi) + i(2\text{Im} \hat{h}(A(\xi, \eta)) + \text{const.}), \quad \xi \in D; \quad \eta \in D \text{ fixed};
\]

\[
(7) \quad \hat{h}(z) = \frac{1}{2} \left(f(\phi(z)) + \overline{f(\phi(\bar{z}))} \right), \quad z \in \hat{D}.
\]

Proposition 1. If \(D \) is homotopically simply connected then \(\hat{D} \) satisfies (H2) for \(\hat{S} = \mathcal{D}(D) \).

Proof. If \(D \) is homotopically simply connected then every function from \(\mathcal{D}(D) \) is the real part of a holomorphic function from \(\mathcal{D}(D) \), so we can use Lemma 1.

The following theorem is analogous to Theorem 7 in [2].

Theorem 2. Let \(D, \ G \) be regions in \(\mathbb{C}^n \), \(f = (f_1, \ldots, f_n) : D \to G \) be biholomorphic; \(f_k = u_k + iv_k \), \(u_k, v_k \) denote the corresponding holomorphic continuations of \(u_k \) and \(v_k \) on \(\hat{D} \), \(k = 1, \ldots, n \); \(\hat{f} \) defines \(\hat{u}_k, \hat{v}_k, \hat{u}_k, \hat{v}_k : \hat{D} \to \mathbb{C}^{2n} \). Then \(\hat{f}(\hat{D}) = \hat{G} \) and \(\hat{f} : \hat{D} \to \hat{G} \) is biholomorphic.

Proof. The proof is analogous as in the case \(n = 1 \).

By Lemma 1:

\[
\hat{u}_k(z) = \frac{1}{2i} \left(f_k(\phi(z)) + \overline{f_k(\phi(\bar{z}))} \right), \quad z \in \hat{D}, \quad k = 1, \ldots, n.
\]

Set, for \(z \in \mathbb{C}^{2n} \),

\[
(8) \quad \hat{\mathcal{T}}(z) = \{ \phi(z), \phi(\bar{z}) \}.
\]

It is easy to show that for every \(z \in \hat{D} \), \(\hat{\mathcal{T}}(\hat{f}(z)) = f(\hat{\mathcal{T}}(z)) \), so \(\hat{f}(\hat{D}) \subset \hat{G} \).

Now, let \(w \in \hat{G} \) be fixed. There exist \(\xi, \eta \in D \) such that \(\phi(w) = f(\xi), \phi(\bar{w}) = f(\eta) \), so \(w = \hat{f}(A(\xi, \eta)), \) (see (5)), hence \(\hat{G} \subset \hat{f}(\hat{D}) \).

For the mapping \(g = \hat{f}^{-1} : \hat{D} \to D \) we construct \(\hat{g} \) (in the same way as \(\hat{f} \) for \(f \)). Then \(\hat{f}, \hat{g} \) are holomorphic, \(\hat{f} \circ \hat{g} = \text{id}_D, \hat{g} \circ \hat{f} = \text{id}_\hat{D} \), so \(\hat{g} = (\hat{f})^{-1} \). This completes the proof.

Corollary 1. Let \(\hat{D}, \ G, \ f \) be as in Theorem 2. Then \(\hat{D} \) satisfies (H2) if and only if \(\hat{G} \) satisfies (H2).

If \(\hat{D} \) satisfies (H2), \(\hat{D} \) need not satisfy (H3). For example, if we take \(D = \Omega \setminus K \) such that:

(a) \(\Omega \) is a region in \(\mathbb{C}^n \),
(b) \(K \subset \Omega, \ K \) is a non-empty compact set,
(c) \(D \) is homotopically simply connected, then \(\hat{D} \) satisfies (H2) for \(\mathcal{D}(D) \) but \(\hat{D} \not\subset \hat{\Omega} \).

Now we shall discuss situations when \(\hat{D} \) is the solution of (A) or (H).

Theorem 3. If \(D \) is a domain of holomorphy in \(\mathbb{C}^n \) then \(\hat{D} \) is the solution of (A).

Proof. By Theorem 1 it suffices to show that \(\hat{D} \) satisfies (H3).
Let \(f \in \Phi(D) \) be a function which cannot be holomorphically continued beyond \(D \). Let \(\bar{h} \) be given by the formula (7). It suffices to show that \(\bar{h} \) cannot be holomorphically continued beyond \(\bar{D} \).

Suppose that there exist \(z \in \bar{D}, r > 0 \) and \(\varphi \in \Phi(P(z; r; 2n)) \) such that \(P(z; r; 2n) \not\equiv \phi \) and \(\varphi \) is equal to \(\bar{h} \) in a neighbourhood of \(z \). It is easy to prove that \(\phi(P(z; r; 2n)) = P(\phi(z); 2r; n), \psi(P(z; r; 2n)) = P(\psi(z); 2r; n), \) where \(\psi(z) = \phi(z) \), \(z \in C^{2n} \). We have \(P(\phi(z); 2r; n) \not\equiv \phi \) or \(P(\psi(z); 2r; n) \not\equiv \phi \); suppose, for example, that \(P(\phi(z); 2r; n) \not\equiv \phi \).

Set \(g(\xi) = 2\varphi(\Lambda(\xi, \phi(z))) - f(\phi(z)), \xi \in P(\phi(z); 2r; n) \). \(g \) is well defined, \(g \in \Phi(P(\phi(z); 2r; n)) \) and \(g \) is equal to \(f \) in a neighbourhood of \(\phi(z) \). Since \(f \) cannot be continued beyond \(D \), this gives a contradiction. This completes the proof.

Conversely, we have

Theorem 4. If \(\bar{D} \) satisfies (A) then \(D \) is a domain of holomorphy.

Proof. We shall use the following well known theorem (see [1], Theorem 2.5.14):

Let \(\Omega \) and \(\Omega' \) be holomorphy domains in \(\mathbb{C}^m \) and in \(\mathbb{C}^n \), respectively, and let \(u \) be a holomorphic map of \(\Omega \) into \(\mathbb{C}^n \). Then \(\Omega_u = \{ \xi \in \Omega: u(\xi) \in \Omega' \} \) is a domain of holomorphy.

In our situation we set, for fixed \(\eta \in D, m = 2n, \Omega = \mathbb{C}^n, \Omega' = \bar{D}, u(\xi) = \Lambda(\xi, \eta), \xi \in \mathbb{C}^n \). Then \(\Omega_u = D, \) so \(D \) is a domain of holomorphy. The proof is completed.

Note that if we put \(\Omega = \mathbb{C}^{2n}, \Omega' = \mathbb{C} \times \mathbb{C}, u(z) = (\phi(z), \phi(\xi)), z \in C^{2n} \), where \(D^* = \{ \xi \in \mathbb{C}^n: \xi \in D \} \), then from the assumption that \(D \) is a domain of holomorphy, we may deduce that \(\bar{D} \) is a domain of holomorphy. Hence the essential meaning of Theorem 3 is such that \(\bar{D} \) is a domain of holomorphy with respect to the space of all holomorphic functions in \(D \) which are the continuations of functions from \(PH(D) \).

Theorems 1, 3 and 4 imply

Corollary 2. \(\bar{D} \) is the solution of (A) if and only if \(D \) is a domain of holomorphy.

Corollary 3. \(\bar{D} \) is the solution of (H) if and only if \(D \) is a domain of holomorphy and

\[
\forall h \in PH(D) \exists \eta \in \Phi(D): h = Re f.
\]

Corollary 4. If \(D \) is not any domain of holomorphy, \(D \) satisfies (R) and the envelope of holomorphy \(\Omega \) of \(D \) is univalent, then \(\bar{D} \) is the solution of (H) for \(PH(D) \).

Directly from the definitions of \(T \) (see Lelong's theorem) and — of \(\bar{T} \) (see (8)) we have:

\[
T(z) \sqsubset T(z_1, z_2)^{n-1} \times T(z_{2n-1}, z_{2n}) \subset \bar{T}(z), \ z = (z_1, z_2, ..., z_{2n-1}, z_{2n}) \in \mathbb{C}^{2n}.
\]

Whence \(\bar{D} \subset \bar{D} \) (more exactly — \(\{ \xi \in \mathbb{C}^{2n}: T(z) \subset \bar{D} \} \subset \bar{D} \) and for \(D = D_1 \times \ldots \times D_n, D_i — \)

a region in \(\mathbb{C}, i = 1, ..., n, \bar{D} = \bar{D}_1 \times \ldots \times \bar{D}_n \) (in the case \(n = 1: \bar{D} = \bar{D} \)).

Below we shall give an example of a situation when \(\bar{D} \not\subset \bar{D} \). Let \(D = B = \{ \xi \in \mathbb{R}^{2n}: |\xi| < r \} — \)

the ball in \(\mathbb{R}^{2n}, n \geq 2 \). It is possible to show that \(\bar{B} = \{ z \in \mathbb{C}^{2n}: t(z) < r \} \), where for \(z = x + iy \in \mathbb{C}^{2n} \): \(t(z) = (|x|^2 + |y|^2 + 2 \sqrt{|x|^2|y|^2 - \langle x, y \rangle^2})^{1/2} \), see [3], [5] also [2]. Let \(\theta \in (2, 2 \sqrt{2}), z = \frac{r}{\theta} ((1, 1, 0, ..., 0) + i(0, 0, 1, 1, 0, ..., 0)) \). It is easy to check \(z \in \bar{B} \).
2. ANALYTIC CONTINUATION OF POLYHARMONIC FUNCTIONS

Fix \(k \in \mathbb{N} \), \(\alpha = (\alpha_1, \ldots, \alpha_k) \in \mathbb{N}^k \) and let \(\Omega \) be an open set in \(\mathbb{R}^|\alpha| = \mathbb{R}^{\alpha_1} \times \cdots \times \mathbb{R}^{\alpha_k} \).

The function \(u : \Omega \to \mathbb{R} \) is called \(\alpha \)-polyharmonic if for every \(a = (a_1, \ldots, a_k) \in \Omega \) the function \(x_i \mapsto u(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_k) \) is harmonic in a neighbourhood of \(a_i \), \(i = 1, \ldots, k \).

By \(H_\alpha(\Omega) \) we denote the space of all \(\alpha \)-polyharmonic functions on \(\Omega \).

We consider the problems \((A)\) and \((H)\) for \(S = H_\alpha(D) \), where \(D = D_1 \times \cdots \times D_k \), \(D_i \) is a region in \(\mathbb{R}^{\alpha_i} \), \(i = 1, \ldots, k \).

First, note that in this case we can reduce the problem to the case \(\alpha_i \geq 2 \), \(i = 1, \ldots, k \).

Further we always make this assumption.

The main result of this section is the following

Theorem 5. The set \(\overline{D}_1 \times \cdots \times \overline{D}_k \) is the \(\alpha \)-polyharmonic envelope of analyticity for \(D \).

Moreover, if \(\alpha_i = 2p_i \geq 4 \), \(p_i \in \mathbb{N} \), \(i = 1, \ldots, k \), then \(\overline{D}_1 \times \cdots \times \overline{D}_k \) is the \(\alpha \)-polyharmonic envelope of holomorphy for \(D \).

Proof. Obviously \(\overline{D}_1 \times \cdots \times \overline{D}_k \) is a domain of holomorphy, so \((A)I = (H)I\) is satisfied.

By iteration of the classical integral representation with the Newton kernel for harmonic functions we obtain an integral representation for \(\alpha \)-polyharmonic functions; more exactly we get the following

Lemma 2. Let \(E \) denote the Newton kernel in \(\mathbb{R}^{\alpha_i} \). Set \(E(x) = E_1(x_1) \cdots E_k(x_k) \), \(x = (x_1, \ldots, x_k) \in \mathbb{R}^{|\alpha|} \), \(x_i \neq 0 \), \(i = 1, \ldots, k \). Let \(G_i \) be a region in \(\mathbb{R}^{\alpha_i} \) such that \(G_i \subseteq D_i \), \(\partial G_i \) is the union of a finite number of surfaces of class \(C^1 \), \(i = 1, \ldots, k \). Let \(f \in H_\alpha(D) \).

Then, for every \(x = (x_1, \ldots, x_k) \in G_1 \times \cdots \times G_k \):

\[
f(x) = \int_{\partial G_1} \cdots \int_{\partial G_k} W_\alpha(f, x, t_1, \ldots, t_k) \sigma_1(dt_1) \cdots \sigma_k(dt_k),
\]

where \(\sigma_i \) denotes the \((\alpha_i - 1)\) — dimensional Lebesgue measure on \(\partial G_i \), \(i = 1, \ldots, k \);

\[
W_\alpha(f, x_1, \ldots, x_k, t_1, \ldots, t_k) = \sum_{I,J} (-1)^p \frac{\partial^p E(x_1 - t_1, \ldots, x_k - t_k)}{\partial n_{t_1} \cdots \partial n_{t_k} / \partial n_{t_p}},
\]

where \(I = (i_1, \ldots, i_p), J = (j_1, \ldots, j_p), I \cap J = \emptyset, p + r = k, \{n_{t_i}\}_{t_i \in \partial G_i} \) denotes the field of exterior normal vectors to \(\partial G_i \), \(i = 1, \ldots, k \).

Having this representation, in the proof that every \(\alpha \)-polyharmonic function on \(D \) may be continued to arbitrarily continuous analytic (or, in the case \(\alpha_i = 2p_i \geq 4 \), \(i = 1, \ldots, k \), to holomorphic) function on \(\overline{D}_1 \times \cdots \times \overline{D}_k \), we can apply (with only formal changes) the method of [4]. Hence \(\overline{D}_1 \times \cdots \times \overline{D}_k \) satisfies \((A)2\) (or \((H)2\)).

Let \(f_i \in H(D_i) \) satisfy \((A)3\) for \(S_i = H(D_i) \), \(i = 1, \ldots, k \). Then the function \(f(x) = f_1(x_1), \ldots, f_k(x_k) \), \(x = (x_1, \ldots, x_k) \in D \), is \(\alpha \)-polyharmonic on \(D \). Let \(F_i \in \mathcal{O}_{\alpha_i} \) be an arbitrarily continuous continuation of \(f_i \) over \(\overline{D}_i \), \(i = 1, \ldots, k \); let \(z = (z_1, \ldots, z_k) \in \overline{D}_1 \times \cdots \times \overline{D}_k \), \((F_i)_{a_i} \in \pi_{a_i}^{-1}(z_i) \cap F_i \), \(\phi_1 \in (F_i)_{a_i} \), \(\phi_i \in \mathcal{O}(U_i), z_i \in U_i = U_i^\circ \subseteq D_i, i = 1, \ldots, k \).

Set \(\varphi(z) = \varphi_1(w_1) \cdots \varphi_k(w_k), w = (w_1, \ldots, w_k) \in U = U_1 \times \cdots \times U_k \); \(\varphi \in \mathcal{O}(U) \). We take the germ \(\varphi_\omega \) of \(\varphi \) at \(w \). Now we change \(w \in U \), \((F_i)_{a_i} \in \pi_{a_i}^{-1}(z_i) \cap F_i \) and \(z \in \overline{D}_1 \times \cdots \times \overline{D}_k \).
The set of all the germs, obtained in this way, we denote by F. Obviously, F is an arbitrarily
continuabile continuation of f over $\bar{D}_1 \times \ldots \times \bar{D}_k$, which satisfies
(A3) for $S = H_+(D)$. In the case $z_i = 2p_i \geq 4$, the proof of (H3) is analogical. The proof is completed.

Corollary 5. If $z_1 = \ldots = z_k = 2$, then
$D_{PH(D)}^A = \bar{D}_1 \times \ldots \times \bar{D}_k = \bar{D} = D_{PH(D)}^A$;
if, moreover, D_i is simply connected, $i = 1, \ldots, k$, then
$D_{PH(D)}^I = \bar{D}_1 \times \ldots \times \bar{D}_k = \bar{D} = D_{PH(D)}^I$.

Note that if $k \geq 2$ then $PH(D) \not\subseteq H_+(D)$.

It is easy to show that for $z = (z_1, \ldots, z_k) \in C^{[a]}$: $T(z_1) \times \ldots \times T(z_k) \subset T(z)$, so
$\bar{D} = \bar{D}_1 \times \ldots \times \bar{D}_k$. Below, we shall give an example of a situation when $\bar{D} \not\subseteq \bar{D}_1 \times \ldots \times \bar{D}_k$.

Let $k = z_1 = z_2 = 2$, let D_0 be a region in C such that $1 + i, -1 + i, -1 - i, 1 - i \in D_0$,
but $1 \notin D_0$. Set $D = D_0 \times D_0$. Then the point $z = (1 + \sqrt{5}, -1 + \sqrt{5}, 1, 0) \in T(z)$.

Theorem 5 implies the following

Proposition 2. In the general case, if D is only a region in $R^{[a]}$ (not necessarily poly-
cylindrical) and $z_i \geq 2$, $i = 1, \ldots, k$, then the set \(\bigcup \bar{D}_1 \times \ldots \times \bar{D}_k \), where D_i is a
convex region in $R^{[a]}$, is the region in $C^{[a]}$ containing D and satisfying (H2) for $H_+(D)$.

REFERENCES

zeszyt 17 (1975), 93–104.

