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Analytic Continuation of Pluriharmonic Functions

) ABSTRACT

“In this paper we shall present a construction of the pluriharmonic envelope of analy-
ticity and of holomorphy for a region in R?". We shall prove that this envelope is “inva-
riant” with respect to biholomorphic transformations of the region. We shall alsb construct
the polyharmonic envelope of analyticity and of holomorphy for a polycylindrical region.

INTRODUCTION

Let U be an open set in R"; by 4(U) we denote the space of all real analytic functions

of n real variables on U. ' ' ‘

Let Q be open in C”; by 0(Q) we denote the space of all holomorphic functions on £.

' By 0, we denote the sheaf of germs of holomorphic functions on C", and by =, the na-
tural projection ¢,—C".

Every region (i.e. a non-empty, open and connected set) in 0, will be called an
analytic function. : - : A

An analytic function Fc @, will be called arbitrarily continuable if:

(*) YVzen(F), VF,ex, 1(z) n F and _for every continuous mapping y: I = [0, 1]
—m,(F) such that y(0) = z, there exists a continuous mapping §: I—F such that §(0) = F;
and w09 = . ' 7 ' V

It is known that (#) is equivalent to \ .

" (##) Yzen(F), VE,en, (2 nF, Ype F,: ¢ may be holomorphically extended on
every polydisc P(z; r)cm,(F). . o

Fix a region D in R", n>2, and a vector subspace § in A(D). We consider the two
following problems:

(4) Whether there exists a set 2 in C" such that:

(41) © is a connected domain of holomorphy containing D; _

(42) for every fe S there exists an arbitrarily continuable analytic function F over Q
(i.e. m,(F) = Q) such that Vxe D the germ f; belongs to F;

£




v (A3) there emsts a funqtlon foE S such that its contmuatlon F0 (int the sense of (AZ)) has_‘_ U
“the’ followmg property - o

. Vz e, V(Fg), € Rn "(z) N Fy, V(p e(Fp): o cannot be holomorphlcally extended on
‘ any po]ydtsc P(z; R) if P(z, R)\.Q # Q

(H) Whethet there exists a set 02 in C" such that:

| (H1) @ satisfies (41);

(H2) VfeS3fe 0(@): fip = ' o

(H3) there exists f, € S such that its holomorphic - continuation fo on Q cannot be;‘ s

: holomorphlcally continued beyond Q. S

Remarks, The function F in (A2) is - umquely determined by f

The solutlo,n of (4) is uniquely determined by D and S, so if Q satisfies (A) we wnte )

Q= D¢ and we call Df the S — envelope of analyticity for D.

~and we call DH the § — envelope of holomorphy for D.

-If (H) has the solution, then (4) has the solution and D% = Ds ,

. If (4) has a solution which satisfies (H2), then (H) has the solution and DY = Ds

~ If (4) has a solution which is homotopically simply connected, then D satisfies (H2).

I Q ‘satisfies (A1), (42) and (H3) then Q = D%,

It is possible to show. that for S = A(D) the problem (4) has not any solutlon On
the other hand, if 'S is too small (for example, if S = R[x,, ...; x,]|p), then (H) has the
only solution D = C"; this case is not interesting. ‘

We shall present some solutions of (4) and (H) for particular cases of S.

1° § = H(D) — the space of all real harmonic functions on D. P. Lelong proved -
- that here the answer to the problem (4) is always posntlve and that in the case n = 2p>4
P eN the answer to -the problem (H) is also positive. More exactly we have -

Lelong’s theorem [4]. Given z = (zy, ..., 2,) € C", put

T = {t; (t1y s ) € R z(z,-_ ) = 0}.

Set D = {zeC": Jae b, Ay I—»C" such that y is contlnuous, 2(0) = q, (l) =z and
Vzel: T(-y(-c})c:D} .
‘Then D = DH(D) and in the case n = 2p =4 5 Dn(m (see [4], theorems 2 4 and 6)

for- which 5 is not any solutlon of (H) (see [4], p- 15, also [2] theorem 6).

Similarly, the ‘solution of (H) is uniquely determined by D and S, we write Q = Ds

Note that in the cases n = 2 and n'= 2p+1, p € N, there exist examples of reglons D S

2° § = Hy(D)—the space of all solutions of a linear elliptic differential operator L w1th e .

~éxists a maximal convex region Q in C” which satisfies (H1) and (H2).

and for §'= PH(D) — the space of all pluriharmonic functions on D. This will be an
_ extension of LeIong s theorem and of theorems 2, 3, 4, 7 from [2] (see also [4], p. 17). o
.. In Section 2 we-consider the problems (A) and (H) for the space H,(D) conmstmg of all.
B 'polyharmonlc functlons of ‘the given type on a polycylindrical region D. '

- constant coeﬂicxents C. O. Kiselman in [3] proved that for every convex region D-thére "

Tn Section 1 of this paper we answer the problems (4) and (H) for a region DcR™ o




: 1'.‘ANAIQYI"IC CONT.INUATION oF PLURﬁ{ARMONIC FUN cnoNs A

Ll

In this sectlon D denotes a rcglon in Rz" Forze C" and the positive numbers Fis ees Ty
- by P(z; 1y s ry) we denote the polydisc in C* with the center z and the radn Piy vy Tio
- M= =r=r we write P(z;r; k) mstead of P(zyr, .., 1) -
. Forz= (21,22, s Zoge 1,22,,)EC2" .
(1) T : ¢(z) = (z1+122: s Zyp— 1+lzz,,)eC"

Let

e betecm 46) $@eD);

‘we. ldentlfy R2" with C".

Remarks. D isa region in C*" symmetnc with respect to the mapping Cz" 5z—Z€ C"‘ .
D n R*™ = D; we identify R*"x {0}<C?" with C". )
' Di is starlike with respect to &€ D if and only if D is starlike with respect to E

" D is convex if and only if D is convex.

Dis homotopwally s:mply connected if and only if ﬁ is homotoplcally s:mply con- .

- nected.

The following theorem (analogxcal to Lelong’s theorem) plays the fundamentai role'in
‘our considerations. : :

~Theorem 1. D satisfies (A2) for § = PH(D), moreover for every f e PH(D) ‘the

e analytlc arbitrarily continuable continuation F of f over D has the s1ng1e-va1ued real part L
" on D and -

e ' - ReF@) = %(f(¢(2))+f(¢(2))),zeﬁ.

Proof. Let Jfe PH(D)befixed: Locally in D, fis the real part of a holomorphic function,

so there exists an analytic arbitrarily continuable fuhctiph G0, over D suchthatf = ReG.

 We shall give a construction of the continuation of f over D. Let ze b, take

Gogzy €Ty Y¢())n G and Gogzy € Tn PE)NG. Let 9eGopy. p€ 0(P(¢(z) 05 n)),
/ 'P(¢(z), 0; n)cD Ve Gogy, YeO(P(P(D); e n)), P(¢(2); ¢; n)= D. Set

@ 0 = 3o (00 (B we P 103 ). _
. P(z;%e; 2n)c D, so Ais well defined and 1 e 0(P(z; }o; 2n)). We take the germ 4,, of }L at -
~ weP(z;40;2n). Now we change, if possible, w e P(z; 4¢; 2n), Ggpy€ T, (¢(z)) N G B
Gq,(,) en, (¢(@)N G and z € D. The set of all germs of the type 4,,, obtained in this way,
.. we denote by F. It is obvious that F is an arbitrarily continuable analytic function over D«. ‘
S ‘whlch extends f Since f = ReG, (4) lmplles (3). This completes the proof o
" The mappmg [0 ez—>(¢(z), ¢(z)) eC"xC" is a homeomorphlsm and its inverse
‘ mappmg A is given by the formula

- ,C"x_c"s(é = s s &o 11 = (g, s M)
‘\ _’(fl'l“ﬁl fl“ﬁl fu"’ﬂn f "x) C;,

3 seey

2 o U T2 2i




48

Analogically to Theorem 2 in [2], we can prove the following
Lemma 1. A function # € PH(D) has a holomorphic continuation k on D if and only
if there exists fe O(D) such that h ='Re f, moreover:

(© £ = h(@)+i@Imh(A(E, m)+const.), {e D; ne D fixed ;
) h(z) = 3(f(6(2)+f($@)). ze D.

~ Proposition 1. If D is homotopically simply connected then D satisfies (H2) for '

8 = PH(D).

_ Proof. If -D is homotopically simply connected then every function from PH(D)
is the real part of a holomorphic function from @(D), so we can use Lemma 1.

The following theorem is analogous to Theorem 7 in [2].

Theorem 2. Let D, G be regions in C”, f = (f}, ..., f,): D—G be biholomorphic;
fio = w+ivg, fy, ﬁk denote the correspondmg holomorphic continuations of #, and v, on D,

k=1,...,n; f (ﬂl,ﬁl,.. ,0,,9,): D—C?". Then f(D) = G and J: DG is biholo-
morphlc ‘

Proof. The proof is analoglcal as in the case n = 1.
By Lemma 1: ~

| ,(2) = %(fk(qs D) +4(6@))
t(2) = %(ﬁ‘(¢(z))—ﬁc(¢(z))), zeD, k=1,.,n.

Set, for z € C*", | ‘ ,
3 @) = {¢(2), 9D} .

It is easy to show that for every z e D T(f(2)) = f(T(®), so f(D)=G.

Now, let we G be fixed. There exist &,ne D such that ¢(w) = (%), P (W) = f(n),

so w = (A(&,m), (see (5)), hence Gf(D).
For the mapping g = f~*: G—D we construct § (in the same way as f for £). Then 7.4

are holomorphic, (f o ﬁ)l«; = idg, (§ ° Plp = idp, so § = (f)~*. This completes the proof.
Corollary 1. Let D G, f be as in Theorem 2. Then D satisfies (H2) if and only 1f G

satisfies (H2). _
1f D satisfies (H2), D need not satisfy (H3). For example, if we take D = Q\Ksuch that:

(a) Q is a region in C",

(b) KcQ, K is a non-empty compact set,

. (c) D is homotoplcally simply connected, then Q satisfies (H2) for PH (D) but P¢Q.

Now we shall dlscuss situations when D is the solutlon of (4) or (H).

Theorem 3. If Disa domain of holomorphy in C" then D is the solu,txon‘of A
Proof. By Theorem 1 it suffices to show that D satisfies (H3).
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Let fe 0(D) be a function which cannot be holomorphically continued beyond D.

Let /i be given by the formula (7). It suffices to show that f cannot be holomorphzcally
" continued beyond D.

Suppose that there exist ze D, r>0and p € G(P(z r; 2n)) such that P(z; r; 2n)\13 #¢
and ¢ is equal to h. in a neighbourhood of z. It is easy to prove that & (P(z;r; 2n))
= P(¢(2); 2r; n), Y (P(z;r;2n)) = P(p(2); 2r;n), where Y(2) = ¢(2),z¢€ C?". We have
P(¢();2r;m)\D # ¢ or P($(2); 2r; n)\D # ¢; suppose, for example, that P(¢(2);
2r;n\D # ¢.

Set  g(&) = 20(A(E, $@))—f(¢@), EeP(p(@;2r;n). g is well ~ defined,
g € 0(P(¢(2); 2r; m)) and g is equal to f in a neighbourhood of ¢(z). Since f cannot be
continued beyond D, this glves a contradiction. ‘This completes the proof.

Conversely, we have

Theorem 4. If D satisfies (A1) then D is a domain of holomorphy

Proof. We shall use the following well known theorem (see [1], Theorem 2.5.14):

Let Q and Q' be holomorphy domains in C" and in C™, respectively, and let u be a holo-
morphic map of @ into C™ Then Q, = {z € Q: u(z) € Q'} is a domain of holomorphy.

In our situation we set, for fixed ne D, m = 2n, Q.= C", @ = D, u(&) = A, n),

~EeC" Then Q, = D, so D is a domain of holomorphy. The proof is completed.
‘Note that if we put @ = C*", Q' = DxD*, u(z) = (¢(2), $(2)), ze C*", where
D* = {¢(eC": £ D}, then from the assumption that D is a domain of holomorphy,
we may deduce that D is a domain of holomorphy. Hence the essential meaning of
. Theorem 3 is such that D is a domain of holomorphy with respect to the space of all holo-
morphlc functions in D which are the continuations of functions from PH(D).
_Theorems 1, 3 and 4 imply
Corollary 2. D is the solution of (4) if and only if D is a domain of holomorphy.

Corolla’fy 3. D is the solution of (H) if and only if D is a domain of holomorphy and
(R) _ Vhe PH(D)3Afc O(D): h = Ref.

+

Corollary 4. If D is not any domain of holomorphy, D satisfies (R) and the envelope
" of holomorphy @ of D is univalent, then € is the solution of (H) for PH(D)
Directly from the definitions of T (see Lelong’s theorem) and — of T (see (8)) we have:

® T cT(zy, 2;,) %o X T(Zon— 15 Z2) <T(2), z = (21, Zgs s Zan—1> Z2a) € C*".

Whence D < D (more exactly - {ze C*: T(z)cD}=D)and for D = D;x...x D,, D; —
a region in C, i =1,..,m D= D,x..xD, (in the case n=1: D = D).

Below we shall give an example of a situation when D¢ D. Let D =B = {{€ R™:
Kel<r} — . |
the ball in R*", n>2. 1t is possible to show that B = {ze C*": t(z)<r}, where for
z=x+ipeC™: 1(z) = (IxI>+ 172 +2 JIxPIyP ~<x, 1)), see [3], [5] also [2]. Let

0e(2,22), z = % ((1,1,0,..,0+i(0,0,1,1,0,...,0) It is easy to check z e B\B.

4 — Prace matematyczne z, 18
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2. ANALYTIC CONTINUATION OF POLYHARMONIC FUNCTIONS

Fix keN, & = (¢4, ..., %) € N* and let 2 be an open set inR“Il = R* x..x R*™,

The function u: Q—R is called x-polyharmonic if for every a = (a;; ..., ) € Q
the function x;—=u(a;, ..., @j-q1, X;, CIPSTRRS @) is harmonic in a neighbourhood of a;,
i=1,..,k. :

By H (Q) we denote the space of all ¢-polyharmonic functions on Q. A :

We consider the problems (4) and (H) for S = H,(D), where D = D, x...x Dy, D, is

_aregion in R*, i=1,..,k

First, note that in thlS case we can reduce the problem fo the case oci>2 i= 1 k.
Further we always make this assumption.
The main result of this section is the following

Theorem 5. The set D, x ... x D, is the oc-polyharmomc envelope of analyticity for D.
Moreover, if «; = 2p;>4, p,-eN i=1,..,k, then D, x...x D, is the a- polyharmomc

_envelope of holomorphy for D.

 where o; denotes the (o;—1) — dimensional Lebesgue measure on 0G;, i =1, ..., k;

Proof. Obviously D, x... x Dy is a domain of holomorphy, so (41) = (H1) is satisfied.

By iterdtion of the classical integral representation with the Newton kernel for har-
monic functions we obtain an integral representation for a«-polyharmonic functions;
more exactly we get the following - _

Lemma 2. Let E; denote the Newton kernel in R™. Set E(x) = E, (xl) e Elx),
%= (%, ., x) R, x;, #0,i=1,..,k Let G, be a region in R* such that G,=D,,.
8G, is the union of a finite number of surfaces of class C', i =1, ..., k. Let fe H(D).

Then, for every x = (xy, 0., %) € Gy X ... X Gyt

F) = § o | WSy x5ty s )0y (d1) .. 03(dty) 5

oGy 090Gk

2

Wy X1s eors Xs Bys vos Ip)

OTEX, =1, s X— 1) Sty ooy 1)
Oty very Oy Bl s, 011,

(=17

T3
where 1 = (iy, ey i)y J = iy wosdiphs I0T = ¢, p+r = K, {F}yess, denotes the field
of exterior normal vectors to 8Gy, i =1, ..., k.

Having this representation, in the proof that every a- polyharmomc functlon on D may

be continued to arbitrarily continuable analytic (or, in the case a; = 2p;24,i =1, ..., k,

to holomorphic) function on D, x...x D,, we can apply (with only formal changes) the
method of [4]. Hence D, x...x D, satlsﬁes (42) (or — (H2)).
.Let f;e H(D,) satisfy (A3) for S;=H(D), i=1,..,k. Then the functlon

S = filx), o [, x = (xq, ., X )€ D, s a- polyharmomc on D. Let F;=0,, be an

‘arbitrarily continuable continuation of f; over D;, i=1,..,k;.let z = (z;,...,z) €
€ .5_1 X X ﬁk’ (Fi z'e ﬂ;‘l(zi) N Fi’ @; € (Fi)zg"(Pi € O(U‘), Z,-,E UE =‘U?Cﬁi, i= 1, eey k.

Set @(w) = @;(w,) .. W)y W = Wy, s W)U = Uy X...xUy; @ €0(U). We take

~ the germ @, of ¢ at w. Now we change we U, (F)), € n,,(z) n F; and ze Dy x ... x D;.




The set of .111 the germs, obtained in this way, we denote by F. Obvmusly, Fzs an arbltra_ y:
continuable continuation of f over ﬁ x ... x Dy, which satisfies (43) for S = H,(D) In
the case o; = 2p;>4, the proof of (H3) is analogical.” The proof is completed ‘
Corollary 50  a;=..=0 =2, then DH,(D) =P, x..xD, =Db= me)
if, moreover, D, is mmply connected, i =1, ..., k then Dm) = 151 X . x Dy = D DPH(D, o
Note that if k=2 then PH(D)% H,(D).
It is easy to show that for z = (z;,..,z)eCl: T(z))x.. xT(zklcT(z), so
Dc D, x...x D,. Below, we shall give an example of a situation when DgDyx...x By -
Let k = oy = oy = 2, let Dy be a region in C such that 1+1 —1+z,-—1—z, ~1-z € Dy, :

but 1¢ D,. Set D = Dy x D,. Then the point z = (i, —i, —i, —i) belongs to Do xﬁu i
| : 1+5 —1+J5
but z¢ D because the pomt_t =( 2\/ ) 2\/ , 1, )eT(z).

Theorem 5 implies the following

Proposition 2. In the general ¢ase, if D is only a region in R (not necessanly poly- -

cylindrical) and %;22, i =1, ..., k, then the set U D, x..xD,, where  D; is a
DiyX...xDr<=D

convex region im R“, is the region in C'* containing D and satlsfymg (H2) for H,,(D)

L
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