Holomorphic functions with bounded growth on Riemann domains over C*

by M. Jarnicki

Abstract. The aim of this paper is to extend some results of the theory of δ -tempered holomorphic functions in pseudoconvex domains in \mathbb{C}^n (cf. [3]) to the case of Riemann-Stein domains over \mathbb{C}^n .

1. Introduction

First we fix the following denotations:

 \mathcal{R}_n : = the class of all Riemann domains over \mathbb{C}^n ;

 \mathcal{R}_n^c : = the class of all connected Riemann domains over \mathbb{C}^n ;

 \mathcal{R}_n^{∞} : = the class of all countable at infinity Riemann domains over \mathbb{C}^n ;

if $(X, p) \in \mathcal{R}_n$, $x \in X$, r > 0 then $\hat{B}(x, r)$ (resp. $\hat{P}(x, r)$) denotes an open neighbourhood of x which is mapped homemorphically by p onto the Euclidean ball $B(p(x), r) \subset \mathbb{C}^n$ (resp.-onto the polydisc $P(p(x), r) \subset \mathbb{C}^n$);

```
\varrho_X(x) := \sup\{r > 0 : \ \widehat{B}(x, r) \text{ exists}\}; \quad \delta_X := \min\{(1+|p|^2)^{-1/2}, \varrho_X\};
```

 $d_{\mathbf{x}}(\mathbf{x}) := \sup\{r > 0 : \hat{P}(\mathbf{x}, r) \text{ exists}\};$

 $d_X(A) := \inf\{d_X(x) \colon x \in A\} \ (A \subset X);$

 $||f||_A := \sup\{|f(x)|: x \in A\} \ (f: X \to \mathbb{C}, A \subset X);$

 $\mathcal{O}(X)$: = the space of all holomorphic functions on $X((X, p) \in \mathcal{R}_n)$;

PSH(X): = the class of all plurisubharmonic (psh.) functions on X ($(X, p) \in \mathcal{R}_n$);

 $\widehat{K}_{S} := \{ x \in X \colon \forall f \in S \colon |f(x)| \leqslant ||f||_{K} \} \ \big(K \subset X, \, S \subset \mathcal{O}(X) \big);$

 ∂^{α} : = the differential operator on $\mathcal{O}(X)$ given by the formula:

$$\partial^{\alpha} f(x) := \frac{\partial^{|\alpha|} (f \circ p_{x}^{-1})}{\partial z_{1}^{\alpha_{1}} \dots \partial z_{n}^{\alpha_{n}}} (p(x)), \quad \alpha = (\alpha_{1}, \dots, \alpha_{n}) \in \mathbb{Z}_{+}^{n}, f \in \mathcal{O}(X), x \in X,$$

where p_x : = $p|\hat{B}(x, \varrho_X(x))$;

 S^* : = $\{\partial^{\alpha} f: \alpha \in \mathbb{Z}_+^n, f \in S\}$ $(S \subset \mathcal{O}(X))$; a family $S \subset \mathcal{O}(X)$ will be called ∂ -stable if $S^* = S$:

if $(X, p) \in \mathcal{R}_{\infty}^{n}$ then $d\mu = d\mu_{X}$ denotes the element of volume on X defined by the form $(2i)^{-n}d\bar{p}_{1} \wedge ... \wedge d\bar{p}_{n} \wedge dp_{1} \wedge ... \wedge dp_{n}$ (cf. [7], § 2.9);

$$\tau_n$$
: = $\frac{(2\pi)^n}{2n!}$ = the volume of the unit ball in \mathbb{C}^n .

Now we give some basic definitions related to the theory of δ -tempered holomorphic functions on Riemann domains (comp. [3], §§ 1.1, 1.2).

Let $(X, p) \in \mathcal{R}_n$ be fixed.

Definition 1. Let $\delta: X \to [0, +\infty)$ be such that the set $X^{\delta}: = \{x \in X: \delta(x) > 0\}$ is open and non-empty. A function $f \in \mathcal{O}(X^{\delta})$ is said to be a δ -tempered holomorphic function on X of degree $\leq r$ $(f \in \mathcal{O}^{(r)}(\delta))$ if $\delta^r f$ is a bounded function on X^{δ} $(r \geq 0)$; let us put $\mathcal{O}(\delta): = \bigcup_{r \geq 0} \mathcal{O}^{(r)}(\delta) = :$ the class of all δ -tempered holomorphic functions on X.

Definition 2. A function $\delta \colon X \to [0, +\infty)$ is called a Lipschitz function on X $(\delta \in L(X))$ if

- (L1) $\delta \leqslant \varrho_x$,
- (L2) $|\delta(x) \delta(x')| \leq |p(x) p(x')|, x \in X, x' \in \hat{B}(x, \varrho_X(x)).$

Definition 3. A function $\delta: X \to [0, +\infty)$ is called a weight function on X ($\delta \in W(X)$) if (W1) $\delta \leq \delta_X$,

(W2) $\delta \in L(X)$.

Note that if $\delta \in L(X)$ (resp. W(X)) then $\delta_{X^{\delta}} \in L(X^{\delta})$ (resp. $W(X^{\delta})$).

Example: $(X, p) \in \mathcal{R}_n$, $\delta = \delta_X$. Functions in $\mathcal{O}(\delta_X)$ are called holomorphic functions with polynomial growth on X (note that $X^{\delta_X} = X$). It may easily be verified that $\delta_X \in W(X)$.

2. General properties of δ -tempered holomorphic functions

Directly from Definition 1 we get the following:

Remark 1. (comp. [3], §§ 1.1, 2.1)

- (i) $\mathcal{O}^{(r)}(\delta)$ is a complex vector space;
- (ii) the function $\mathcal{O}^{(r)}(\delta) \ni f \to ||\delta^r f||_{X^{\delta}} \in [0, +\infty)$ is a norm on $\mathcal{O}^{(r)}(\delta)$;
- (iii) if δ is lower semi-continuous on X then for every compact set $K \subset X^{\delta}$

$$||f||_{\mathbf{K}} \leq (\min \delta)^{-r} ||\delta^r f||_{X^{\delta}}, \quad f \in \mathcal{O}^{(r)}(\delta),$$

in particular, $\mathcal{O}^{(r)}(\delta)$ with the norm given in (ii) is a Banach space;

- (iv) $\mathcal{O}^{(r)}(\delta)\mathcal{O}^{(s)}(\delta) \subset \mathcal{O}^{(r+s)}(\delta)$;
- (v) if δ is bounded then $\mathcal{O}^{(r)}(\delta) \subset \mathcal{O}^{(s)}(\delta)$, $0 \le r \le s$, in particular, $\mathcal{O}(\delta)$ is a complex algebra and $\mathcal{O}(\delta) = \bigcup_{N=1}^{\infty} \mathcal{O}^{(N)}(\delta)$.

Below we shall prove some fundamental properties of δ -tempered holomorphic functions.

PROPOSITION 1. Let $(X, p) \in \mathcal{R}_n^{\infty}$ and let $\delta \colon X \to [0, +\infty)$ be lower semi-continuous. Then $\mathcal{O}^{(r)}(\delta)$ is of the first Baire category in $\mathcal{O}(X^{\delta})$ ($\mathcal{O}(X^{\delta})$) with the topology of almost uniform convergence in X^{δ} is a Fréchet algebra).

Note that if δ is moreover bounded then, in view of Remark 1(v), $O(\delta)$ is of the first Baire category in $O(X^{\delta})$.

Proof. We may assume that $X^{\delta} = X$. For $m \in \mathbb{N}$, set

$$\mathcal{O}_{m}^{(r)}(\delta) \colon = \{ f \in \mathcal{O}^{(r)}(\delta) \colon \| \delta^{r} f \|_{X} \leqslant m \} \ .$$

Obviously $\mathcal{O}_m^{(r)}(\delta)$ is a closed subset of $\mathcal{O}(X)$, $m \in \mathbb{N}$, and $\mathcal{O}^{(r)}(\delta) = \bigcup_{m=1}^{\infty} \mathcal{O}_m^{(r)}(\delta)$. Hence it is sufficient to prove that the interior of $\mathcal{O}_m^{(r)}(\delta)$ in $\mathcal{O}(X)$ is empty, $m \in \mathbb{N}$. Suppose by absurd that there exists $m \in \mathbb{N}$ such that $\mathcal{O}_m^{(r)}(\delta)$ has a non-empty interior. It is easily seen that in this case $\mathcal{O}^{(r)}(\delta) = \mathcal{O}(X)$ and the topology of $\mathcal{O}(X)$ admits a bounded neighbourhood of zero. Since $\mathcal{O}(X)$ is an infinite-dimensional Fréchet space we get the contradiction.

Proposition 2. (comp. [3], § 1.3) Let $(X, p) \in \mathcal{R}_n$, $\delta \in L(X)$. Then

$$\|\delta^{r+|\alpha|}\partial^{\alpha}f\|_{X^{\delta}} \leq D(n;r,\alpha) \|\delta^{r}f\|_{X^{\delta}}, \quad r \geqslant 0, \, \alpha \in Z^{n}_{+}, \, f \in \mathcal{O}^{(r)}(\delta),$$

where $D(n; r, \alpha) := \alpha! \sqrt{n^{|\alpha|}} 2^{r+|\alpha|}$.

In particular, $O(\delta)$ is ∂ -stable in $O(X^{\delta})$.

Proof. We may assume that $X^{\delta} = X$. Fix $r \ge 0$, $\alpha \in \mathbb{Z}_+^n$, $f \in \mathcal{O}^{(r)}(\delta)$ and $x \in X$. By the Cauchy inequality:

(*)
$$|\partial^{\alpha} f(x)| \leq \alpha! \tau^{-|\alpha|} ||f||_{\widehat{P}(x,\tau)}, \quad 0 < \tau < d_{X}(x).$$

In view of Remark 1 (iii):

$$\|f\|_{\widehat{P}(x,\tau)} \leq (\min_{\widehat{P}(x,\tau)} \delta)^{-r} \|\delta^r f\|_X, \quad 0 < \tau < d_X(x).$$

By the condition (L2) of Definition 2:

$$\delta(x') \geqslant \delta(x) - \sqrt{n\tau}, \quad x' \in \widehat{P}(x,\tau), \ 0 < \tau < \frac{\varrho_X(x)}{\sqrt{n}}.$$

From (*), (**), (**) we get:

$$|\partial^{\alpha} f(x)| \leq \alpha! \tau^{-|\alpha|} (\delta(x) - \sqrt{n\tau})^{-r} \|\delta^{r} f\|_{X}, \quad 0 < \tau < \frac{\delta(x)}{\sqrt{n\tau}}.$$

Putting in (**) τ : = $\frac{\delta(x)}{2\sqrt{n}}$ we obtain the required formula.

PROPOSITION 3. (comp. [3], § 1.3) Let $(X, p) \in \mathcal{R}_n^{\infty}$, $\delta \in L(X)$. Then

$$\|\delta^{r+2n/q}f\|_{X^{\delta}} \le I(n; q, r, \theta) (\int_{X} |f|^{q} \delta^{r} d\mu)^{1/q}, q > 0, r \ge 0, \theta \in (0, 1), f \in \mathcal{O}(X^{\delta}),$$

where $I(n; q, r, \theta) := [(1-\theta)^r \theta^{2n} \tau_n]^{-1/q}$.

In particular we have:

(f)
$$\|\delta^{r+n}f\|_{X^{\delta}} \le [(1-\theta)^r \theta^n \tau_n^{1/2}]^{-1} (\int_X |f|^2 \delta^{2r} d\mu)^{1/2}, r \ge 0, \theta \in (0, 1), f \in \mathcal{O}(X^{\delta}).$$

Proof. As previously we may assume that $X^{\delta} = X$. Fix q > 0, $r \ge 0$, $\theta \in (0, 1)$, $f \in \mathcal{O}(X)$ and $x \in X$. The function $|f|^q$ is psh. on X, so

$$|f(x)|^q \leq \left[\operatorname{vol}\left(B\big(p(x)\,,\,\theta\delta(x)\big)\right)\right]^{-1}\int\limits_{\widehat{B}(x,\,\theta\delta(x))}|f|^qd\mu\;.$$

Since $\delta \in L(X)$, so $\delta(x') \ge (1-\theta)\delta(x)$, $x' \in \widehat{B}(x, \theta\delta(x))$ and therefore

$$\begin{split} \delta'(x) \, |\, f(x)|^q & \leq \left[(1-\theta)^r \mathrm{vol} \left(B \big(p(x), \, \theta \delta(x) \big) \right) \right]^{-1} \int\limits_{\widehat{B}(x, \, \theta \delta(x))} |\, f\,|^q \delta^r d\mu \\ & \leq I(n; \, q, \, r, \, \theta)^q \int\limits_X |\, f\,|^q \delta^r d\mu \,. \end{split}$$

This completes the proof.

3. Approximation theorem for weight functions

In this section we shall prove the following:

THEOREM 1. (comp. [3], § 7.3) Let (X, p) be a Riemann-Stein domain over \mathbb{C}^* , let $\delta \in W(X)$. Then the following conditions are equivalent:

(C1) $\forall s>0 \exists C_s>0$ (depending only on n and s), $\exists F_s \subset \mathcal{O}(X^{\delta})$:

$$1/\delta^s \le \sup\{|f|: f \in F_s\} \le C_s/\delta^{s+6n}, \lim_{s \to +\infty} C_s^{1/s} = 1;$$

(C2)
$$\exists \{n_{\beta}\}_{\beta} \subset N$$
, $\exists \{f_{\beta}\}_{\beta} \subset \mathcal{O}(X^{\delta})$: $-\log \delta = \sup_{\beta} \left\{ \frac{1}{n_{\beta}} \log |f_{\beta}| \right\}$;

(C3) $-\log \delta \in PSH(X^{\delta}).$

Proof.

(C1) \Rightarrow (C2) From (C1) we get:

$$-\frac{N}{N+6n}(\log\delta+\log C_N^{1/N})\leqslant \sup\left\{\frac{1}{N+6n}\log\frac{|f|}{C_N}\colon f\in F_N\right\}\leqslant -\log\delta,\ N\in \mathbf{N}\ .$$

Since the left hand side of the above inequalities tends to $-\log \delta$ as $N \to +\infty$, so it is sufficient to put:

$$\beta := (N, f), \ N \in \mathbb{N}, \ f \in F_N, \quad n_{\beta} := \frac{1}{N+6n}, \ f_{\beta} := \frac{f}{C_N}.$$

The implication (C2)⇒(C3) is obvious.

Before the proof of the implication (C3) => (C1) we need some auxiliary theorems.

Let $(X, p) \in \mathcal{R}_n$. For $\varphi \in PSH(X)$, $q, r \in \mathbb{Z}_+$, we denote by $L^2_{(q,r)}(X, \varphi)$ the space of all forms of type (q, r) with coefficients in $L^2(X, e^{-\varphi}d\mu)$. Repeating almost exactly the methods of Chapter IV in [5], we obtain the following generalization of Theorem 4.4.2 in [5]:

THEOREM 2. Let (X, p) be a Riemann-Stein domain over \mathbb{C}^n , let $\varphi \in PSH(X)$. Then for every $g \in L^2_{(q,r+1)}(X, \varphi)$ $(q, r \in \mathbb{Z}_+)$ with $\overline{\partial} g = 0$ there exists $v \in L^2_{(q,r)}(X, \varphi + 2\log(1 + |p|^2))$ such that $\overline{\partial} v = g$ and

$$\int_{X} |v|^{2} e^{-\varphi} (1+|p|^{2})^{-2} d\mu \leq \int_{X} |g|^{2} e^{-\varphi} d\mu$$

 $(\overline{\partial}$ is taken in the sence of distribution theory).

Taking this theorem as basis (with q = 0, r = 1), we shall prove the following analogue of Theorem 4.4.4 in [5].

THEOREM 3. Let (X, p) be a Rieman-Stein domain over \mathbb{C}^n . Let $\varphi \in PSH(X)$ be such that $e^{-\varphi}$ is locally integrable on X. Then for every $a \in X$, $0 < \tau < d_X(a)$ there exists $u \in \mathcal{O}(X)$ such that u(a) = 1 and

$$\int_{X} |u|^{2} e^{-\varphi} (1+|p|^{2})^{-3n} d\mu \leq \left(\int_{\widehat{P}(a,\tau)} e^{-\varphi} d\mu\right) [2+C\tau^{-4}(1+|p(a)|^{2}]^{n},$$

where $C \ge 0$ is a constant independent of n, (X, p), φ , a, τ .

Proof. (The method of the proof is taken from [5]) Let $\psi \in C_0^{\infty}$ (C, [0, 1]) be such that

$$\psi(z) = 1$$
 for $|z| \leqslant \frac{1}{3}$, $\psi(z) = 0$ for $|z| \geqslant \frac{1}{2}$. Set $c := \max \left\{ 1, \left(\left\| \frac{\partial \psi}{\partial \overline{z}} \right\|_{\mathbf{C}} \right)^2 \right\}$, $C := 36c$.

Let
$$\psi_{\tau}(z) := \psi\left(\frac{z}{\tau}\right), z \in \mathbb{C}.$$

Let $X_k := \{x \in X: |p_j(x) - p_j(a)| < \tau, k < j \le n\}, k = 0, ..., n$. It may easily be verified that $(X_k, p|_{X_k})$ is also a Riemann-Stein domain and that $\hat{P}(x, \tau)$ is a connected component of X_0 .

It is sufficient to show that there exists $u_k \in \mathcal{O}(X_k)$ such that $u_k(a) = 1$ and

$$\int_{X_k} |u_k|^2 e^{-\varphi} (1+|p|^2)^{-3k} d\mu \leqslant M_k, \quad k = 0, ..., n,$$

where
$$M_0:=\int\limits_{\widehat{P}(a,\tau)}e^{-\varphi}d\mu,\ M_k:=M_{k-1}[2+C\tau^{-4}(1+|p(a)|^2)],\ k=1,...,n.$$

Put u_0 : = 1 on $\hat{P}(a, \tau)$, u_0 : = 0 on $X_0 \backslash \hat{P}(a, \tau)$. It is easily seen that u_0 satisfies all required conditions.

Suppose that $u_0, ..., u_{k-1}$ are already constructed, $1 \le k \le n$. Consider the form g of type (0, 1) given by the following formula:

$$g(x) := \frac{\partial \psi_{\tau}}{\partial \bar{z}} \left(p_k(x) - p_k(a) \right) \frac{u_{k-1}(x)}{p_k(x) - p_k(a)} d\bar{p}_k \text{ if } x \in X_{k-1} \text{ and } p_k(x) \neq p_k(a),$$

$$g(x) := 0 \text{ if } x \in X_k \setminus X_{k-1} \text{ or } p_k(x) = p_k(a).$$

It may easily be proved that the coefficient of g is of class C^{∞} in X_k , g is equal to zero in a neighbourhood of a, $\bar{\partial} g = 0$ and

$$\int_{X_k} |g|^2 e^{-\Phi} (1+|p|^2)^{-3(k-1)} d\mu \leq 9c\tau^{-4} M_{k-1} .$$

By Theorem 2, there exists $v \in L^2(X_k, \varphi + (3k-1)\log(1+|p|^2))$ such that $\bar{c}v = g$ and

$$\int\limits_{X_k} |v|^2 e^{-\varphi} (1+|p|^2)^{-3k+1} d\mu \leq 9c\tau^{-4} M_{k-1} \; .$$

Set

$$u_{k} := \psi_{\tau}(p_{k} - p_{k}(a))u_{k-1} - (p_{k} - p_{k}(a)) \cdot v \text{ on } X_{k-1},$$

$$u_{k} := -(p_{k} - p_{k}(a)) \cdot v \text{ on } X_{k} \setminus X_{k-1}.$$

It may easily be verified that $\bar{\partial}u_k=0$ in X_k , $u_k(a)=u_{k-1}(a)=1$ and

$$\begin{split} &\int\limits_{X_k} |u_k|^2 e^{-\varphi} (1+|p|^2)^{-3k} d\mu \leqslant \\ &\leqslant 2 \int\limits_{X_{k-1}} |\psi_\tau(p_k-p_k(a)) u_{k-1}|^2 e^{-\varphi} (1+|p|^2)^{-3(k-1)} d\mu + \\ &+ 2 \int\limits_{X_k} [|p_k-p_k(a)|^2 (1+|p|^2)^{-1}] |v|^2 e^{-\varphi} (1+|p|^2)^{-3k+1} d\mu \leqslant \\ &\leqslant 2 M_{k-1} + 4 \big(1+|p(a)|^2\big) \int\limits_{X_k} |v|^2 e^{-\varphi} (1+|p|^2)^{-3k+1} d\mu \leqslant M_{k-1} \big[2 + C\tau^{-4} \big(1+|p(a)|^2\big)\big] \,. \end{split}$$

Induction on k finishes the proof.

Now we pass to the proof of the implication (C3)⇒(C1) in Theorem 1.

Since $-\log \delta \in PSH(X)$, so $(X^{\delta}, p|_{X^{\delta}})$ is also a Riemann-Stein domain and therefore we may assume that $X^{\delta} = X$.

Fix s>0. From Theorem 3 with $\varphi:=-(4n+2s)\log\delta$, $\tau:=\frac{\theta}{\sqrt{n}}\delta(a)$, where $\theta:=\frac{1}{2+s}$, we find that there exists a function $u=u_{s,a}\in\mathcal{O}(X)$ such that u(a)=1 and

(*)
$$\int_{X} |u|^{2} \delta^{4n+2s} (1+|p|^{2})^{-3n} d\mu \leq \left(\int_{\widehat{P}(a,\tau)} e^{-\varphi} d\mu \right) [2+C\tau^{-4} (1+|p(a)|^{2})]^{n}.$$

Since $\delta \leq (1+|p|^2)^{-1/2}$, $\hat{P}(a,\tau) \subset \hat{B}(a,\theta\delta(a))$ and $\delta(x') \leq (1+\theta)\delta(a)$, $x' \in \hat{B}(a,\theta\delta(a))$, so from (*) we get:

$$\int_{Y} |u|^{2} \delta^{10n+2s} d\mu \leq (1+\theta)^{4n+2s} \theta^{2n} \tau_{n} \delta(a)^{6n+2s} [2 + Cn^{2} \theta^{-4} \delta(a)^{-6}]^{n}.$$

Let us put $f = f_{s,a}$: = $(\delta(a))^{-s}u_{s,a}$. In view of (**) we have:

$$\int_{X} |f|^{2} \delta^{10n+2s} d\mu \leq (1+\theta)^{4n+2s} \theta^{2n} \tau_{n} (2+Cn^{2}\theta^{-4})^{n}.$$

Using the formula (I) of Proposition 2, from (**) we can easily deduce that:

 $\|\delta^{6n+s}f\|_X \le \left(\frac{1+\theta}{1-\theta}\right)^s (Mn\theta^{-2})^n$, where M>0 is a constant independent of n, (X,p), δ , s, a.

Now it is sufficient to put C_s : $=\left(\frac{1+\theta}{1-\theta}\right)^s (Mn\theta^{-2})^n \quad \left(\theta = \frac{1}{2+s}\right), \ F_s$: $=\{f_{s,a}: a \in X\}.$

The proof of Theorem 1 is completed.

4. $\mathcal{O}(\delta)$ -Domains of holomorphy

The following two theorems are the main result of this paper.

THEOREM 4. (comp. [3], § 4.5, Theorem 4) Let $(X, p) \in \mathcal{R}_n^c$ be a Riemann-Stein domain. Let $\delta \in W(X)$ be such that $X^{\delta} = X$ and $-\log \delta \in PSH(X)$ (for instance: $\delta = \delta_X$). Then the following conditions are equivalent:

- (i) $\mathcal{O}(\delta)$ is dense in $\mathcal{O}(X)$ in the topology of almost uniform convergence;
- (ii) $\mathcal{O}(\delta)$ separates points in X;
- (iii) (X, p) is an $\mathcal{O}(\delta)$ -domain of holomorphy.

THEOREM 5. (comp. [3], § 4.5, Theorem 4) Assume that (X, p) and δ satisfy the assumptions of Theorem 4. Then, for r > 6n, the following conditions are equivalent:

- (i) the family $(\mathcal{O}^{(r)}(\delta))^*$ separates points in X;
- (ii) (X, p) is an $\mathcal{O}^{(r)}(\delta)$ -domain of holomorphy;
- (iii) there exists a function $f \in \mathcal{O}^{(r)}(\delta)$ such that (X, p) is an $\{f\}$ -domain of holomorphy.

The proofs of these theorems will be based on the following auxiliary results.

THEOREM 6. Let $(X, p) \in \mathcal{R}_n^c$ and let $S \subset \mathcal{O}(X)$ be a ∂ -stable closed subalgebra of $\mathcal{O}(X)$ such that $p = (p_1, ..., p_n) \in S^n$. Then the following conditions are equivalent:

- (S1) (X, p) is a Riemann-Stein domain and $S = \mathcal{O}(X)$;
- (S2) (X, p) is an S-domain of holomorphy;
- (S3) S separates points in X and (X, p) is S-pseudoconvex, i.e. for every compact $K \subset X$: $d_X(K) = d_X(\hat{K}_S)$;
- (S4) S separates points in X and (X, p) is S-convex, i.e. for every compact $K \subset X$: \hat{K}_S is also compact.

Proof. The implication $(S1)\Rightarrow(S2)$ is well known — see [4], p. 283, Theorem 4. The implication $(S2)\Rightarrow(S3)$ is a consequence of Theorem 1, p. 110 in [8] (it is true without the assumption that S is closed). The proof of the implication $(S3)\Rightarrow(S4)$ may be based on Bishop's proof that every pseudoconvex Riemann domain is holomorphically convex — see [2], Theorem 5.1; [4], p. 54, Theorem 17; [8], p. 139, Theorem 1. The implication $(S4)\Rightarrow(S1)$ is a consequence of Satz 10, p. 145 in [1] (comp. also [4], p. 213, the method of proof of Theorem 6; [6], Theorem 4.2) (note that this implication is true without the assumption that S is ∂ -stable if we assume that $1 \in S$).

COROLLARY 1. Let $(X, p) \in \mathcal{R}_n^c$. Let $F \subset \mathcal{O}(X)$ be such that (X, p) is an F-domain of holomorphy. Put

 \tilde{F} : = the C-algebra generated in $\mathcal{O}(X)$ by the family $\{1, p_1, ..., p_n\} \cup F^*$. Then \tilde{F} is dense in $\mathcal{O}(X)$.

Proof. We only need to put in Theorem 6 $S:=cl_{\emptyset(X)}F$ and to use the implication (S2) \Rightarrow (S1).

COROLLARY 2. Let $(X, p) \in \mathcal{R}_n^c$. Let $\delta \in W(X)$ be such that $X^{\delta} = X$ and (X, p) is an $\mathcal{O}(\delta)$ -domain of holomorphy. Then $\mathcal{O}(\delta)$ is dense in $\mathcal{O}(X)$.

Proof. By Proposition 2, $(\mathcal{O}(\delta))^* = \mathcal{O}(\delta)$. In view of the condition (W1) of Definition 3, $p_1, \ldots, p_n \in \mathcal{O}(\delta)$. Hence $\mathcal{O}(\delta) = \widehat{\mathcal{O}(\delta)}$ and we can use Corollary 1.

LEMMA 1. Let $(X, p) \in \mathcal{R}_n^c$. Let $\delta \colon X \to (0, +\infty)$ be lower semi-continuous and such that $\delta \leqslant \varrho_X$. Assume that there exist $0 < r_0 \leqslant r$, M > 0 and $F \subset \mathcal{O}(X)$ such that:

$$1/\delta^{r_0} \leqslant \sup\{|f|: f \in F\} \leqslant M/\delta^r$$
.

Then

(i) if, for every $x \in X$, the family $(\mathcal{O}^{(r)}(\delta))^*$ separates points in $p^{-1}(p(x))$ then (X, p) is an $\mathcal{O}^{(r)}(\delta)$ -domain of holomorphy:

^{4 -} Prace matematyczne, z. 20

(ii) if, for every $x \in X$, the family $(\mathcal{O}(\delta))^*$ separates points in $p^{-1}(p(x))$ then (X, p) is an $\mathcal{O}(\delta)$ -domain of holomorphy.

Proof. (i) Let ((X', p'), j, S') be a maximal analytic extension of $((X, p), \mathcal{O}^{(r)}(\delta))$ (see [9], Definition 3.2). By Lemma 2, p. 96 in [8], j is injective, so we can assume that X is an open subset of X', p' = p on X and $j = id_X$. We wish to prove that X = X'. Suppose that $X \subseteq X'$. This implies that there exists a point x_0 belonging to the boundary of X in X'. It may be proved (see [9]) that S' with the topology generated by seminorms

$$S' \ni f' \to \|\delta''(f' \circ j)\|_{X} \in [0, +\infty),$$

$$S' \ni f' \to \|f'\|_{K} \in [0, +\infty), K \subset \subset X',$$

is a Fréchet space and the mapping

$$S' \ni f' \xrightarrow{j^*} (f' \circ j) \in \mathcal{O}^{(r)}(\delta)$$

is continuous in this topology $(\emptyset^{(r)}(\delta))$ is endowed with the standard topology given by the norm $\|\delta^r.\|_X$). Let U denote an open relatively compact neighbourhood of x_0 in X'. By Banach theorem the mapping $(j^*)^{-1}$ is also continuous and therefore there exists a constant C>0 such that

$$||f'||_{U} \leq C ||\delta''(f' \circ j)||_{X}, f' \in S'.$$

In particular

$$||f||_{X \cap V} \leq CM, f \in F.$$

This implies that $\varrho_X(x) \geqslant \varkappa > 0$, $x \in X \cap U$, where \varkappa is a constant. Since $\lim_{\substack{x \to x_0 \\ x \in X}} \varrho_X(x) = 0$,

we get a contradiction.

(ii) Let (X', p'), j, S'' be a maximal analytic extension of $((X, p), \mathcal{O}(\delta))$. Analogously as in the proof of (i) we may assume that X is open in X', p' = p on X and $j = id_X$. Put

$$S' := \{ f' \in S'' : f' \circ j \in \mathcal{O}^{(r)}(\delta) \}.$$

Then ((X', p'), j, S') is an analytic extension of $((X, p), \mathcal{O}^{(r)}(\delta))$ and, for the proof that X = X', we can exactly repeat the proof of (i).

Now we can present the proof of Theorem 4.

The implication (i) \Rightarrow (ii) is obvious. The implication (ii) \Rightarrow (iii) is a consequence of the implication (C3) \Rightarrow (C1) in Theorem 1 and of Lemma 1 (ii). The implication (iii) \Rightarrow (i) is a consequence of Corollary 2.

The proof of Theorem 5 is analogous: the implication (i) \Rightarrow (ii) is a consequence of Theorem 1 and Lemma 1 (i), the implication (ii) \Rightarrow (iii) is a consequence of Theorem 10.1 in [9] and the implication (iii) \Rightarrow (i) is a consequence of Lemma 2, p. 96 in [8].

COROLLARY 3. Let $\delta \in W(\mathbb{C}^n)$ be such that $\Omega := \{z \in \mathbb{C}^n : \delta(z) > 0\}$ is connected and $-\log \delta \in PSH(\Omega)$ (for instance: $\delta = \delta_{\Omega}$, where Ω is a pseudoconvex connected subset of \mathbb{C}^n). Then the following conditions are equivalent:

- (R1) Ω is a Runge domain;
- (R2) functions in $O(\delta)$ may be almost uniformly in Ω approximated by polynomials;

- (R3) there exists $\varepsilon > 0$ such that functions in $\mathcal{O}^{(6n+\epsilon)}(\delta)$ may be almost uniformly in Ω approximated by polynomials;
- (R4) there exists $\varepsilon > 0$ and a function $f \in \mathcal{O}^{(6n+\varepsilon)}(\delta)$ which cannot be holomorphically continued beyond Ω and which may be approximated by polynomials;
- (R5) there exists $f \in \mathcal{O}(\Omega)$ which cannot be holomorphically continued beyond Ω and which may be approximated by polynomials.
- Proof. The implications (R1) \Rightarrow (R2) \Rightarrow (R3), (R4) \Rightarrow (R5) are obvious. The implication (R3) \Rightarrow (R4) is a consequence of the implication (i) \Rightarrow (iii) in Theorem 5. The implication (R5) \Rightarrow (R1) is a consequence of Corollary 1 with $F:=\{f\}$.

5. List of problems

Assume that (X, p) and δ satisfy the assumptions of Theorem 4.

- (i) Does $\mathcal{O}(\delta)$ separate points in X?
- (ii) Is the following implication true?: $(\mathcal{O}(\delta))$ separates points in X) \Rightarrow (there exists $r \ge 0$ such that $(\mathcal{O}^{(r)}(\delta))^*$ separates points in X).

References

- [1] H. Behnke, P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer-Verlag, Berlin-Heidelberg-New York 1970.
- [2] G. Coeuré, Analytic Functions and Manifolds in Infinite Dimensional Spaces, North-Holland Publishing Company, Amsterdam—London 1974.
- [3] J.-P-Ferrier, Spectral Theory and Complex Analysis, North-Holland Publishing Company, Amsterdam—London 1973.
- [4] R. Gunning, H. Rossi, Analytic Function of Several Complex Variables, Prentice-Hall, Inc. Englewood Cliffs, N. J. 1965.
- [5] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company, Amsterdam—London 1973.
- [6] M. A. Kuilenburg, Algebras of holomorphic functions and their maximal ideal spaces, Indag. Math. 37 (2) (1975) (175—182).
- [7] R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Publishing Company, Amsterdam 1968.
- [8] -, Several Complex Variables, The University of Chicago Press, Chicago-London 1971.
- [9] K. Rusek, J. Siciak, Maximal analytic extensions of Riemann domains over topological vector spaces, to appear in Infinite Dimensional Holomorphy and Applications, M. C. Matos-Editor, North-Holland Publishing Company, Netherlands.