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Holomorphic functions with bounded growth on Riemann domains over C*

by M. JARNICKI

Abstract. The aim of this paper is to extend some results of the theory of § -tempered holomorphic functions
in pseudoconvex domains in C* (cf. [3]) to the case of Riemann-Stein domains over C".

1. Introduction

First we fix the following denotations:

#,: = the class of all Riemann domains over C";

&;: = the class of all connected Riemann domains over C";

Ay = the class of all countable at infinity Riemann domains over C";

if (X,p)eR,, xe X, r>0 then B(x, r) (resp. P(x, r)) denotes an open neighbourhood
of x which is mapped homemorphically by p onto the Euclidean ball B(p(x),r)cC"
(resp.-onto the polydisc P(p(x), r)=C");

ox(x): = sup{r>0: B(x,r) exists}; Jy: = min{(1+|p|)~"2 0y);

dy(x): = sup{r>0: P(x,r) exists};

cdy(A): = inf{dy(x): xe 4} (A<= X);

WS lla: =sup{|f(X)|: xe A} (f: X»C, AcX);

¢(X): = the space of all holomorphic functions on X (X, p)e R,);

PSH(X): = the class of all plurisubharmonic (psh.) functions on X ((X,p)e®,);

Ks: = {xe X: ¥feS:|[fI<] flx} (K< X, Sc0(X));

¢%: = the differential operator on @(X) given by the formula:

U foph
o f(x): =

0% ... o
where p.: = p|B(x, ox(x));
§*: = {0"f: a2} ,fe S} (S<0(X)); a family ScO(X) will be called d-stable if
S* = §;
if (X, p) e &7, then du = duy denotes the element of volume on X defined by the form
@H7"dpy Aondp,ndpy A ndp, (cf. [T], §2.9);

(P(x))a a=(al,...,ot,,)eZ’},,fed?(X),xe X,

Tyl = e = the volume of the unit ball in C".
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Now we give some basic definitions related to the theory of §-tempered holomorphic
functions on Riemann domains (comp. [3], §§ 1.1, 1.2).
Let (X, p)e #, be fixed.

Definition 1. Let §: X—[0, +0) be such that the set X°: = {xe X: §(x)>0} is
open and non-empty. A function f€ 0(X°) is said to be a §-tempered holomorphic function
on X of degree<r (fe 0"8)) if 8'f is a bounded function on X* (r=0); let us put
0(8): = | 0(S) = : the class of all 5-tempered holomorphic functions on X.

rz0

Definition 2. A4 function 6: X—[0, +00) is called a Lipschitz function on X
(b eL(X)) if

(L1) é<ex,

(L2) 6(x)=(xN<Ip(x)—p(X)], x€ X, x" € B(x, ox(x)).

Definition 3. A function 6: X—[0, + o) is called a weight function on X (5 € W(X)) if

(W1) 6<5y,

(W2) 6eL(X).

Note that if 6 e L(X) (resp. W(X)) then 6|ys € L(X°) (resp. W(X?%).

Example: (X, p)e®,, 6 = 8y. Functions in #(5y) are called holomorphic functions
with polynomial growth on X (note that X* = X). It may easily be verified that 5y € W(X).

2. General properties of J-tempered holomorphic functions

Directly from Definition 1 we get the following:

Remark 1. (comp. [3], §§ 1.1, 2.1)

(i) 0(5) is « complex vector space;

(ii) the function O(8)sf—0"f |xs € [0, +0) is a norm on OV(5);
(iii) if & is lower semi-continuous on X then for every compact set K< X?

Ilfllx<(11;in5)"llé'f lxss e 0@,

in particular, OV)(5) with the norm given in (ii) is a Banach space;
(iv) 000" (5) ;
(V) if & is bounded then O(6) = ©)(5), 0<r<s, in particular, O(5) is a complex algebra

and 0(9) = G oM(5).
N=1

Below we shall prove some fundamental properties of §-tempered holomorphic
functions.

ProposITION 1. Let (X,p)e Ry and let 6: X—[0, + ) be lower semi-continuous.
Then 0)(5) is of the first Baire category in O(X?®) (O(X®) with the topology of almost uniform
convergence in X° is a Fréchet algebra).

Note that if § is moreover bounded then, in view of Remark 1(v), 0(8) is of the first Baire
category in 0(X°).
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Proof. We may assume that X° = Y. For meN, set
On©): = { fe 0(5): 167 iy sm} .

Obviously 09(8) is a closed subset of 0(X), meN, and 0(5) = |J 09%(5). Hence it is
m=1

sufficient to prove that the interior of 00(8) in @(X) is empty, m e N. Suppose by absurd
that there exists 7 € N such that 09(8) has a non-empty interior. It is easily seen that in
this case 0(5) = 0(X) and the topology of 0(X) admits a bounded neighbourhood of
zero. Since O(X) is an infinite-dimensional Fréchet space we get the contradiction.

ProrosiTION 2. (comp. [3], § 1.3) Let (X,p)ea,, § e L(X). Then
1610 || xa < D(ns v, @) [5°F | o, r20,0eZ, fe0"s),

where D(n;r,a): = oc!\/rsz“JZ'ﬂ“;.

In particular, 0(3) is 6-stable in 0(X?).

Proof. We may assume that X¥* = Y. Fix r20, 07", fe 05y and x e X. By the
Cauchy inequality:
) 67 Cl<ale™ | flsgs, O<r<dy(v).
In view of Remark 1 (iii):

(+4) 1/ e 5<min )~ 187 [, 0<c<dy(r).
?(x, )

By the condition (L2) of Definition 2:

) S(x)28(x) =z, x eP(x,1),0<7< QX(Jf) .

n
From (*), (*), (:*) we get:
(::) lagf(x)l<0€!T—Ja!(5(x)—\/;‘c)—'|[5'fj|x, O<r< @ '

n

o
Putting in (}}) ©: = —(Q we obtain the required formula.
n

PROPOSITION 3. (comp. [3], § 1.3) Let (X.p) ey, s L(X). Then
18" M f |xe<I(n; g, r, O(f1f17 6", ¢>0,r>0,0€ (0, D,fe0(X%),
2 .

where I(n; q,r, 0): = [(1 —0) g, 17,
In particular we have:

D 18 Ixa<IA =0y 0" 22211 ([ | £126%d) Y2, >0, 0 € (0, 1), fe O(X?.
X

Proof. As previously we may assume that X° = X. Fix q4>0,r>0,0¢(0, 1), fe 0(X)
and x e X. The function |f}? is psh. on X, so

If<]vol(B(p(x), 03CON"* | I f 1.

B(x, 05(x))
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Since & e L(X), so §(x)=(1—-0)d(x), x' € B(x, 06(x)) and therefore
S F T < [(1=0) Vol (B(p(x), 06N ™" | IS0k
B(x, 08(x))
<I(niq,r, B)qxf | f196"du .

This completes the proof.

3. Approximation theorem for weight functions

In this section we shall prove the following:

TuroreM 1. (comp. [3], §7.3) Let (X,p) be a Riemann-Stein domain over C", let
5 € W(X). Then the following conditions are equivalent:

(Cl) Vs>0 3C,>0 (depending only on n and s), AF,cO(X?):

1/6°<sup{| f1: fe F}<Cf8®, lim Gl =13
s=+w
i 1
(C2) I{np}p=N, ﬂ{fﬂ}ﬂc@(X"): —logd = sgp {—n—log]fﬁi};
B

(C3) —logd e PSH(X?).
Proof.
(C1) =(C2) From (Cl) we get:

N 1 [ /1
— — (logd+logC¥™M< log“—: fe Fyb < —logd, NeN.
N+6n(og +logCy") < sup Vo Och feFy og

Since the left hand side of the above inequalities tends to —logd as N—»+ 0, so it is
sufficient to put:

ﬁ:’—_(st)a NEstEI:N: nﬁ:="'—_>fﬁ:=—~

The jmplication (C2)=>(C3) is obvious.

Before the proof of the implication (C3)=(Cl) we need some auxiliary theorems.

Let (X.p)e®,. For p € PSH(X),q,r€Z,, we denote by L% (X, ¢) the space of
all forms of type (g, r) with coefficients in L*(X, e~ °dy). Repeating almost exactly the
methods of Chapter IV in [5], we obtain the following generalization of Theorem 4.4.2
in [5]:

TueoreMm 2. Let (X, p) be a Riemann-Stein domain over C", let ¢ € PSH(X). Then
for every geLiy,+1y(X,0) (g, reZLy) with dg = 0 there existsv € L (X, o+2log(1+
+1p1?) such that ¢v = g and

}J{lvlze“"(lﬂplz)'zdué ;f(lglze“’du

(3 is taken in the sence of distribution theory).
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Taking this theorem as basis (with ¢ = 0, r = 1), we shall prove the followmg analogue
of Theorem 4.44 in [5].

THEOREM 3. Let (X, p) be a Rieman-Stein domain over C". Let ¢ € PSH(X) be such
that e~ ? is locally integrable on X. Then for every a € X, 0<1<dy(d) there exists u e 0(X)
such that u(a) = 1 and

Ilu12 e (1 +1pI") ™ du<( | e~du)[2+ C¥ (1 +|p(a)?P,
Pa )

where C20 is a constant independent of n, (X,p), @, a, t
Proof. (The method of the proof is taken from [5]) Let y e C¢ (C, [0, 1)) be such that

a 2
Y(z) =1 for |zj<%, ¥ (2 =0 for |z|=1. Set ¢: = max {l,( v )}, C: = 36c.
[

0
Let y.(2): !!/(g), zeC.

Let X,: = {xe X: |p(x)~pfa)i<t, k<j<n}, k = 0, ...,n. It may easily be verified
that (X, ply,) is also a Riemann-Stein domain and that P(x, ) is a connected component
of X,.

It is sufficient to show that there esists u, € O(X,) such that #,{a) = 1 and

[ e+ |pI) " du<M,, k=0,..,n
Xk

where Mo: = [ e %du, M: = M,_ 2+ Cc™*(1+|p@)?)], k = 1,
?(a 1)
Put uy: = 1 on P(a, 1), ug: = 0 on X;\P(a, ). It is easily seen that u, satisfies all
required conditions.
Suppose that uy, ..., u,_; are already constructed, 1<k <n. Consider the form g of
type (0, 1) given by the following formula:

Uy 1(x)
PilX)—pi(a)
g(x): =01if xe X\X,_; or p(x) = p(a) .

glx)y: = — (pk(X) ~pila)) dp, if xe X,_; and p(x) # pa),

It may easily be proved that the coefficient of g is of class C* in X;, g is equal to zero in
a neighbourhood of a, dg = 0 and

§lg1%e™*( +1p1?) 2% Vdu< ™M, _, .
X

By Theorem 2, there exists v e L*(X;, ¢+ (3k—Dlog(1+|p|?)) such that év = g and
FlePe A +1p1») ™ du<9er™*M, _, .
Xk

Set
e = Y p—pl@)uy_ ~ (Pe—pu(@)-v on X,_,,
U = -(Pk“Pk(a))'U on X\Xy-; .



48

It may easily be verified that du, = 0 in X, uf{a) = u,,(a) = 1 and
f I e+ |pI) "> du< |

Xk

<2 | Wdpe—pu@)te— 1P (L +1p1?) 7> D+

k-1

+2X§ U 2e—pd@|*(1+{p*) ™ Tlol%e™ *(1+|p|*) 3 <
L2M +4(1+1p@)) [ [ol%e™ (L +]p) >  du< My - 2+ Co ¥ {1+ p@)1*)] -
X

Induction on k finishes the proof.

Now we pass to the proof of the implication (C3)=-(Cl) in Theorem 1I.
Since —logd e PSH(X), so (X°, plxe) is also a Riemann-Stein domain and therefore
we may assume that X° = X.

0 1
Fix 5s>0. From Theorem 3 with ¢: = ~(4n+2s)logd, 7: = 7:5(a), where 0: = o,
n
we find that there exists a function u = u,,€ 0(X) such that u(a) =1 and

(%) §lul26* 2 (1+|pl?) >du<( | e ®dp)[24 C™*(1+1p@ )",

X P(a,7)
Since s<(1+|p|>)~ Y2, P(a, )< B(a, 5(a)) and (x)<(1+0)d(a), x' € B(a, 05(a)), s0
from (*) we get:

(**) j‘ lu|2510"+2’d}1<(1 +9}4"”892"1',,6(0)6””5{2-{—Cn29_45(a)"6]" .
X
Let us put f = f, ,: = (6(@)) "u, . In view of (++) we have:
(:*) !’ lf|2510n+2:d“<(1 +9)4n+2s02nrn(2+cn29-4)n .
by
Using the formula () of Proposition 2, from (;*) we can easily deduce that:
1+ 0V

18572 fllx < (1——0) (Mn0~2%y", where M >0 is a constant independent of #, (X, p),

,5,a.
.. . 1+ 6V _ 1
Now it is sufficient to put C: = iTh (Mn0™ 3" |0 = 355/ Fo={f,a aeX}.

The proof of Theorem 1 is completed.

4, @(9)-Domains of holomorphy

The following two theorems are the main result of this paper.

THEOREM 4. (comp. [3], § 4.5, Theorem 4) Let (X, p) € &;; be a Riemann-Stein domain.
Let 6 € W(X) be such that X° = X and —logd e PSH(X) (for instance: & = dy). Then
the following conditions are equivalent:
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(i) 0() is dense in O(X) in the topology of almost uniform convergence;
(ii) O0(8) separates points in X;
(iii) (X, p) is an @(8)-domain of holomorphy.
THEOREM 5. (comp. [3], § 4.5, Theorem 4) Assume that (X, p) and 6 satisfy the assump-
tions of Theorem 4. Then, for r>6n, the following conditions are equivalent:
(i) the family (0“7(8))* separates points in X;
(i) (X, p) is an 0“(5)-domain of holomorphy;
(iii) there exists a function f e 0)(3) such that (X, p) is an { f }-domain of holomorphy.

The proofs of these theorems will be based on the following auxiliary results.

THEOREM 6. Let (X, p) € &5 and let ScO(X) be a 0-stable closed subalgebra of 0(X)
such that p = (py, ..., p,) € S™. Then the following conditions are equivalent:

(S1) (X, p) is a Riemann-Stein domain- and S = 0(X);

(S2) (X, p) is an S-domain of holomorphy;

(83) S separates points in X and (X, p) is S-pseudoconvex, i.e. for every compact
KcX: dy(K) = dx(Ks); )

(S4) S separates points in X and (X, p) is S-convex, i.e. for every compact K< X: Ky is
also compact.

Proof. The implication (S1)==(S2) is well known — see [4], p. 283, Theorem 4. The
implication (S2)=>(83) is a consequence of Theorem 1, p. 110 in [8] (it is true without the
assumption that S is closed). The proof of the implication (§3)=-(S4) may be based on
Bishop’s proof that every pseudoconvex Riemann domain is holomorphically convex —
see [2], Theorem 5.1; [4], p. 54, Theorem 17; [8], p. 139, Theorem 1. The implication
(S4)=>(S1) is a consequence of Satz 10, p. 145 in [1] (comp. also [4], p. 213, the method
of proof of Theorem 6; [6], Theorem 4.2) (riote that this implication is true without the
assumption that S is 8-stable if we assume that 1€ S).

COROLLARY 1. Let (X,p)eR:. Let FcO(X) be such that (X,p) is an F-domain of
holomorphy. Put

F: = the C-algebra generated in O(X) by the family {1,p(, ...,ps} U F*.
Then F is dense in 0(X). :

Proof. We only need to put in Theorem 6 S: = clyx, F and to use the implication
(82)==(S1). '

COROLLARY 2. Let (X,p)e #. Let 5 € W(X) be such that X° = X and (X, p) is an
0(5)-domain of holomorphy. Then 0(0) is dense in O(X).

Proof. By Proposition 2, (0(5))* = 0(5). In view of the condition (W1) of Definition 3,
Dis s Dy € 0(8). Hence @(5) = 67(\53 and we can use Corollary 1.

LeMMmA 1. Let (X, p) e &y. Let §: X—(0, + 0) be lower semi-continuous and such that
0< gx. Assume that there exist 0<r,<r, M>0 and FcO(X) such that:

1" <sup{|f|: fe F}<M[d".

Then

(i) #f, for every x € X, the family (0(5))* separates points in p~*(p(x)) then (X, p) is
an 0")(8)-domain of holomorphy;

4 — Prace matematyczne, z. 20
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(i) if, for every x € X, the family (O(8))* separates points in p~*(p(x)) then (X, p) is
an 0(8)-domain of holomorphy.

Proof. (i) Let ((X’,2"),/,S’) be a maximal analytic extension of ((X, p), 0*(5))
(see [9], Definition 3.2). By Lemma 2, p. 96 in [8], j is injective, so we can assume that X' is
an open subset of X', p’ = p on X and j = idy. We wish to prove that X = X’. Suppose
that X X', This implies that there exists a point x, belonging to the boundary of X in X".
It may be proved (see [9]) that S’ with the topology generated by seminorms

S'3f =18"(f" e Nlx € [0, + 00),
S'af' = f'lgel0, + ), KecX’,
is a Fréchet space and the mapping
S' 55 (f 0 ) € 00)

is continuous in this topology (6(5) is endowed with the standard topology given by the
norm ||6". |x). Let U denote an open relatively compact neighbourhood of x, in X'. By
Banach theorem the mapping (j*) ™! is also continuous and therefore there exists a constant
C>0 such that

: I o< CU"(f o Dlx, freS".
In particular :
| flxu<CM, feF.

This implies that g4(x)>%>0, x € X n U, where x is a constant. Since Lim gy(x) = 0,
X=X0
xEX

we get a contradiction.

(ii) Let (X', p),j, S'") be a maximal analytic extension of ((X, p), @(5)). Analogously
as in the proof of (i) we may assume that X is open in X', p’ = p on X and j = idy. Put

S = {f"e8": foje0O)}.

Then ((X’, p"),j, S’} is an analytic extension of ((X, p), 0*(8)) and, for the proof that
X = X', we can exactly repeat the proof of (i).

Now we can present the proof of Theorem 4.

The implication (i)=>(ii) is obvious. The implication (ii)=>(iii) is a consequence of the
implication (C3)=-(C1) in Theorem 1 and of Lemma 1 (ii). The implication (iii)=(i) is
a consequence of Corollary 2.

The proof of Theorem 5 is analogous: the implication (i)=(ii) is a consequence of
Theorem 1 and Lemma 1 (i), the implication (ii)=>(iii) is a consequence of Theorem 10.1
in [9] and the implication (iii)=>(i) is a consequence of Lemma 2, p. 96 in [8].

COROLLARY 3. Let 6 € W(C") be such that Q: = {ze C": 6(z)>0} is connected and
—logd € PSH(Q) (for instance: & = g, where Q is a pseudoconvex connected subset of C").
Then the following conditions are equivalent:

(R1) @Q is a Runge domain;

(R2) functions in O(8) may be almost uniformly in Q approximated by polynomials;
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(R3) there exists >0 such that functions in 0"*(8) may be almost uniformly in Q
approximated by polynomials;

(R4) there exists e>0 and a function fe ¢'""5) which cannot be holomorphically
continued beyond Q and which may be approximated by polynomials;

(R5) there exists fe 0(Q) which cannot be holomorphically contimied beyond Q and
which may be approximated by polynomials.

Proof. The implications (R1)=-(R2)==(R3), (R4)=+(R5) are obvious. The implication
{R3)=>(R4) is a consequence of the implication (i)=>(iii) in Theorem 5. The implication
(R5)==(R1) is a consequence of Corollary 1 with F: = {f}.

5. List of problems

Assume that (X, p) and o satisfy the assumptions of Theorem 4.

(i) Does 0(5) separate points in X?

(ii) Ts the following implication true?: (¢(J) separates points in X) = (there exists
r>0 such that (0(5))* separates points in X).
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