Holomorphic functions with restricted growth on complex manifolds

by Marek Jarnicki

Abstract. The aim of this paper is to extend some results of the theory of holomorphic functions with restricted growth in pseudoconvex domains in C^n to the case of Stein manifolds.

0. Introduction. Throughout the paper we denote by M a fixed countable at infinity complex analytic manifold of dimension n. We assume that M is endowed with a Hermitian metric and let μ denote the measure (the volume element) generated by this metric.

We denote by $\mathcal{O}(M)$ the space of all holomorphic functions on M. We shall always assume that $\mathcal{O}(M)$ is endowed with the topology of almost uniform convergence (i.e. uniform convergence on every compact subset of M).

For a continuous function $\delta: M \to (0, 1]$ we set

$$H^{(k)}(\delta) := \{ f \in \mathcal{O}(M) : \int_{M} |f|^{2} \delta^{k} d\mu < +\infty \}, \quad k \in IN,$$

$$H(\delta) := \bigcup_{k=1}^{\infty} H^{(k)}(\delta).$$

It is easily seen that $H^{(k)}(\delta)$ is a vector subspace of $\mathcal{O}(M)$. Since $H^{(k)}(\delta) \subset H^{(k+1)}(\delta)$, so $H(\delta)$ is also a vector subspace of $\mathcal{O}(M)$. In the case of open subsets of \mathbb{C}^n or, more generally, in the case of Riemann domains spread over \mathbb{C}^n spaces of type $H(\delta)$ are strictly connected to the theory of δ -tempered holomorphic functions (see [3], § 1.3, Proposition 2; [5]).

The aim of this paper is to study some relations between the spaces $H(\delta)$ and O(M). The main result of Section 1 of the paper is the following:

THEOREM I. If $\mathcal{O}(M)$ contains non-constant functions then $H^{(k)}(\delta)$ is of the first Baire category in the Fréchet space $\mathcal{O}(M)$. In particular $H(\delta)$ is of the first Baire category in $\mathcal{O}(M)$.

The analogous theorem in the case of Riemann domains over C^n and δ -tempered holomorphic functions was proved by the author in [5].

The greater part of the results of this paper heavily depends on Hörmander's theory of non-homogeneous Cauchy-Riemann equations on complex manifolds ([4], § 5.2). Let us denote by $P^k(M)$ (resp. $SP^k(M)$) the set of all plurisubharmonic (resp. strictly

plurisubharmonic) functions on M of class C^k , $k \in \mathbb{Z}_+ \cup \{+\infty\}$. To simplify notations let us introduce the following:

Definition 1. A function δ : $M \to (0, 1]$ is said to be a weight function for $\bar{\partial}$ -problem if $-\log \delta \in P^2(M)$ and for every $\varphi \in P^2(M)$, for every $p, q \in \mathbb{Z}_+$, for every $g \in L^2_{(p,q+1)}(M,\varphi)$ with $\bar{\partial}g = 0$ there exists $u \in L^2_{(p,q)}(M, \varphi - 4\log \delta)$ such that $\bar{\partial}u = g$ and

$$\int_{\mathbf{M}} |u|^2 e^{-\varphi} \delta^4 d\mu \leqslant \int_{\mathbf{M}} |g|^2 e^{-\varphi} d\mu$$

(all notations used above have the same meaning as in [4]).

Obviously the class of weight functions for $\bar{\partial}$ -problem on M depends on Hermitian metric on M.

It is well known that the function $\delta(z) := (1+|z|^2)^{-1/2}$, $z \in \mathbb{C}^n$, is a universal weight function for $\bar{\partial}$ -problem in all pseudoconvex domains in C^n with respect to the standard Hermitian metric (Cf. [4], Theorem 4.4.2). More generally, the author proved in [5] that if (X, p) is a Riemann domain over C^n then the function $\delta := (1+|p|^2)^{-1/2}$ is a weight function for $\bar{\partial}$ -problem on X with respect to the Hermitian metric generated by the projection p.

In Section 2 we present a characterization of weight functions for $\bar{\partial}$ -problem on Stein manifolds (Theorem 1) and a construction of such functions (Proposition 1).

In Section 3 we prove the following approximation theorem:

THEOREM II. Let δ be a weight function for $\bar{\partial}$ -problem on M. Assume that (*) for every $\tau > 0$, the set $\{x \in M : \delta(x) \ge \tau\}$ is compact in M. Then for every function $\varphi \in P^2(M)$ the set

$$F(\delta,\varphi):=\big\{f\in O(M)\colon \exists k\in N\colon \int\limits_{M}|f|^{2}e^{-\varphi}\delta^{k}d\mu<+\infty\big\}$$

is dense in O(M).

The above theorem is a generalization of Proposition 3, § 7.4 in [3]. In the case of Riemann domains the analogous theorem was proved by the author in [6].

In Section 4 we present a generalization of the fundamental spectral theorem for δ -tempered holomorphic functions in pseudoconvex domains in C^n (Cf. [2])

Definition 2. Let $\Phi = (\Phi_1, ..., \Phi_N)$: $M \to \mathbb{C}^N$ be a holomorphic mapping. A continuous function $\delta \colon M \to (0, 1]$ is said to be a spectral function for Φ if there exist mappings $u_0, ..., u_N$: $M \times M \to C$ and constants $k \in N$, c > 0 such that

(i)
$$u_j(s,.) \in \mathcal{O}(M)$$
, $s \in M$, $j = 0,...,N$,

(ii)
$$\delta(s)u_0(s, x) + \sum_{j=1}^{N} [\Phi_j(x) - \Phi_j(s)]u_j(s, x) = 1, \quad s, x \in M,$$

(iii) $\int_{M} |u_j(s, .)|^2 \delta^k d\mu \leq c, s \in M, j = 0, ..., N.$

(iii)
$$\int_{M} |u_{j}(s,.)|^{2} \delta^{k} d\mu \leq c, \ s \in M, \ j = 0, ..., N.$$

The main result of Section 4 is the following:

Theorem III. Let $\Phi = (\Phi_1, ..., \Phi_N)$: $M \to \mathbb{C}^N$ be a holomorphic mapping such that $|d\Phi_j| \le 1$, j = 1, ..., N. Let δ be a function satisfying the following conditions:

 δ is a weight function for $\bar{\partial}$ -problem;

$$\begin{split} \delta &\leqslant \delta_0 := (1 + |\Phi|^2)^{-1/2}, \ where \ |\Phi|^2 := \sum_{j=1}^N |\Phi_j|^2; \\ |\delta(x) - \delta(x')| &\leqslant |\Phi(x) - \Phi(x')|, \ x, \, x' \in M, \ for \ some \ m \in N, \ \int\limits_M \delta^m d\mu < + \infty. \end{split}$$

Then δ is spectral for Φ .

In Section 4 we also present a construction of functions δ satisfying the assumptions of the above theorem in the case when Φ is regular and proper.

In Section 5 we present an application of the results of Section 4 to the theory of analytic extensions of complex manifolds.

1. Basic properties of spaces $H(\delta)$. By standard reasoning (based, for example, on the local application of Theorem 2.2.3 from [4]) one can easily get:

LEMMA 1. Let $\delta: M \to (0, 1]$ be a continuous function. Then for all compact sets $K, L \subset M$ with $K \subset \operatorname{int} L$ there exists a constant c > 0 such that

$$||f||_K^2 \le c (\min_L \delta)^{-k} \int_L |f|^2 \delta^k d\mu, \quad f \in \mathcal{O}(M), \ k \in \mathbb{N},$$

where $||f||_{K} := \sup\{|f(x)|: x \in K\}.$

In particular the space $H^{(k)}(\delta)$ with the scalar product $(f,g) \to \int_{M} f\bar{g} \, \delta^{k} d\mu$ is a complex Hilbert space with a topology stronger than the topology of almost uniform convergence in M.

Now we can prove Theorem I (see Introduction).

Let us set $E_{kl} := \{ f \in H^{(k)}(\delta) : \int_{M} |f|^2 \delta^k d\mu \leq l \}, l \in N$. Obviously $H^{(k)}(\delta) = \bigcup_{l=1}^{\infty} E_{kl}$. It may be easily verified that the set E_{kl} is closed in $\mathcal{O}(M)$. Hence it is sufficient to prove that the interior of E_{kl} in $\mathcal{O}(M)$ is empty.

Suppose by absurd that for some $f \in E_{kl}$ and for some open neighbourhood U of zero in $\mathcal{O}(M)$: $f+U \subset E_{kl}$. By dint of Lemma 1 U has to be bounded in $\mathcal{O}(M)$. Under our assumptions, $\mathcal{O}(M)$ is an infinite dimensional space so we get the contradiction.

2. Weight functions for $\bar{\partial}$ -problem. Let $\varphi \in SP^2(M)$. For any local orthonormal basis $\omega^1, ..., \omega^n$ of forms of type (1,0) if $\partial \bar{\partial} \varphi = \sum_{j,k=1}^n \varphi_{jk} \omega^j \bar{\omega}^k$, then the form $\sum_{j,k=1}^n \varphi_{jk} \xi_j \bar{\xi}_k$, $\xi = (\xi_1, ..., \xi_n) \in C^n$, is positive definite (comp. [4], § 5.2). A continuous function $\lambda \colon M \to (0, +\infty)$ will be called a lower bound for the plurisubharmonicity of φ if

$$\sum_{j,k=1}^n \varphi_{jk} \xi_j \xi_k \geqslant \lambda |\xi|^2, \quad \xi \in \mathbb{C}^n.$$

Note that for $\varphi \in SP^2(M)$ such a function always exists (obviously it depends on Hermitian metric on M).

The main result of this section is the following:

THEOREM 1. Let M be a Stein manifold. Let $\delta: M \to (0, 1]$ be a function such that $-\log \delta$ is of class $SP^2(M)$. Assume that δ^4 is a lower bound for the plurisubharmonicity of $-\log \delta$. Then δ is a weight function for $\bar{\partial}$ -problem.

The method of the proof will be completely based on results of [4], so we only present a sketch of the proof.

Let $(\eta_v)_{v=1}^{\infty} \subset C_0^{\infty}(M, [0, 1])$ be such that for any compact set $K \subset M$ there exists $v_0 = v_0(K)$ with $\eta_v | K \equiv 1$, $v \geqslant v_0$. Let $\psi \in C^{\infty}(M, R)$ satisfy: $|\bar{\partial} \eta_v|^2 \leqslant e^{\psi}$, $v \in N$. Let $\varphi \in SP^2(M)$ have a lower bound for the plurisubharmonicity λ . Put $\varphi_j := \varphi + (3-j)\psi$, j = 1, 2, 3. Let

$$L^{2}_{(p,q)}(M, \varphi_{1}) \supset DT \xrightarrow{T} L^{2}_{(p,q+1)}(M, \varphi_{2}),$$

$$L^{2}_{(p,q+1)}(M, \varphi_{2}) \supset DS \xrightarrow{S} L^{2}_{(p,q+2)}(M, \varphi_{3})$$

denote the operators generated by the operator $\bar{\partial}$ (taken in the sense of distribution theory) (comp. [4], § 5.2). Let

$$L^2_{(p,q+1)}(M, \varphi_2) \supset DT^* \xrightarrow{T^*} L^2_{(p,q)}(M, \varphi_1)$$

denote the operator conjugate to T.

By a reasoning analogous as in the proofs of Lemmas 4.1.3, 5.2.1 in [4] we get:

LEMMA 2. The space $D_{(p,q+1)}(M)$ is dense in $DT^* \cap DS$ in sense of the norm

$$DT^* \cap DS \ni f \to ||T^*f||_{\varphi_1} + ||f||_{\varphi_2} + ||Sf||_{\varphi_3}$$
.

Repeating almost exactly the proof of Theorem 5.2.3 in [4] we get:

LEMMA 3. There exists a continuous function $c: M \to (0, +\infty)$ (which is independent of the functions ψ, φ) such that

$$\int_{M} (\lambda - \mathbf{c} - 4|\partial \psi|^{2}) |f|^{2} e^{-\varphi} d\mu \leq 4(||T^{*}f||_{\varphi_{1}}^{2} + ||Sf||_{\varphi_{3}}^{2}), \quad f \in D_{(p,q+1)}(M).$$

Substituting in the proof of Lemma 4.4.1 in [4], Lemma 4.1.3 by Lemma 2 and the inequality (4.2.9) by Lemma 3 we obtain:

LEMMA 4. Let M be a Stein manifold. Let $\varphi \in SP^2(M)$ have a lower bound for the plurisubharmonicity λ . Then for every form $g \in L^2_{(p,q+1)}(M,\varphi) \cap L^2_{(p,q+1)}(M,\varphi+\log\lambda)$ with $\bar{\partial} g = 0$ there exists a form $u \in L^2_{(p,q)}(M,\varphi)$ such that $\bar{\partial} u = g$ and

$$\int_{M} |u|^{2} e^{-\varphi} d\mu \leqslant 4 \int_{M} |g|^{2} e^{-\varphi} \frac{1}{\lambda} d\mu.$$

Now for the proof of Theorem 1 we can repeat the first part of the proof of Theorem 4.4.2 in [4] with the function $(1+|z|^2)^{-1/2}$ substituted by δ and with Lemma 4.4.1 substituted by Lemma 4.

It is natural to ask whether for a given Stein manifold with a Hermitian metric there exist functions δ satisfying the assumptions of Theorem 1.

PROPOSITION 1. Let M be a Stein manifold endowed with a Hermitian metric. Then exists a function δ : $M \rightarrow (0, 1]$ such that:

 $-\log \delta \in SP^{\infty}(M)$, the function δ^4 is a lower bound for the plurisubharmonicity of $-\log \delta$.

 δ satisfies the condition (*) (see Introduction, Theorem II).

Proof. It is well known that there exists a function $s \in SP^{\infty}(M)$, $s \ge 0$, such that for any $t \ge 0$ the set $K_t := \{x \in M: s(x) \le t\}$ is compact (comp. [4], Theorem 5.1.6).

Observe that such a function may be obtained by the embedding theorem for Stein manifolds (comp. [4], Theorem 5.3.9), namely, let $\Phi = (\Phi_1, ..., \Phi_N)$: $M \to \mathbb{C}^N$ be a regular and proper holomorphic mapping, let $\delta_0 := (1+|\Phi|^2)^{-1/2}$, then $s := -\log \delta_0$ meets all the required conditions.

Let λ be a lower bound for the plurisubharmonicity of s. Take a function $\psi \colon [0, +\infty) \to [0, +\infty)$ of class C^{∞} with $\psi' \geqslant 0$, $\psi'' \geqslant 0$ growing so rapidly that $e^{4\psi(t)} \geqslant \max_{K_t} \frac{1}{\lambda}$, $t \geqslant 0$. Put $\chi(t) := 1 + t + \psi(t)$, $t \geqslant 0$, and let $\delta := e^{-\chi(s)}$. It is easily seen that $\delta \colon M \to (0, 1]$, $-\log \delta \in SP^{\infty}(M)$ and a lower bound for the plurisubharmonicity of $-\log \delta$ is equal to $\lambda \cdot \chi'(s)$. By dint of the choice of the function $\psi \lambda \cdot \chi'(s) \geqslant \delta^4$. Since $\delta \leqslant e^{-s}$ so the condition (*) is also fulfilled. The proof is completed.

3. An approximation theorem. In this section we present a proof of Theorem II. The method of the proof will be based on the proof of Theorem 4.4.7 in [4].

Let us fix $f \in \mathcal{O}(M)$ and a compact set $K \subset M$. We want to find a sequence $(f_v)_{v=1}^{\infty} \subset F(\delta, \varphi)$ which tends to f uniformly on K. We may assume that for some $\tau > 0$, $K = \{x \in M : \delta(x) \ge \tau\}$.

Set $M_{\varepsilon} := \{x \in M : \delta(x) > \varepsilon\}$, $\varepsilon > 0$. Let us fix α , β such that $0 < \alpha < \beta < \tau$. Let

$$\varphi_{\mathbf{v}} = \varphi + \chi_{\mathbf{v}} \left(\log \frac{\beta}{\delta} \right),$$

where $\chi_{\mathbf{v}} \colon R \to R$ is an arbitrarily fixed function of class C^{∞} such that $\chi_{\mathbf{v}}' \geqslant 0$, $\chi_{\mathbf{v}}'' \geqslant 0$, $\chi_{\mathbf{v}}(t) = 0$ for $t \leqslant 0$, $\chi_{\mathbf{v}}(t) \leqslant vt$ for $t \geqslant 0$ and $\chi_{\mathbf{v}}(t) \nearrow + \infty$ as $\mathbf{v} \nearrow + \infty$ for $t \geqslant \log \frac{\beta}{\alpha}$.

It is easily seen that $\varphi_v \in P^2(M)$, $\varphi_v = \varphi$ in M_β , $\varphi_v(x) \nearrow + \infty$ as $v \nearrow + \infty$ for $x \in M \setminus M_\alpha$. Let us fix a function $\Phi \in C_0^\infty(M, [0, 1])$ such that $\Phi = 1$ in M_α and let $\psi := f \psi$, $g := \bar{\partial} \psi$.

It is seen that g is a form of class $D_{(0,1)}(M)$, $\overline{\partial}g = 0$ and g = 0 in $M_{\alpha} \cup (M \setminus \text{supp }\Phi)$. Set

$$I_{\mathbf{v}} := \int_{\mathbf{M}} |g|^2 e^{-\varphi_{\mathbf{v}}} d\mu, \quad \mathbf{v} \in \mathbf{N}.$$

Observe that $I_v \setminus 0$ as $v \nearrow + \infty$. Since δ is a weight function for $\bar{\partial}$ -problem, so there exists a form $u_v \in L^2(M, \varphi_v - 4\log \delta)$ such that $\bar{\partial} u_v = g$ and

$$\int_{M} |u_{\nu}|^{2} e^{-\varphi_{\nu}} \delta^{4} d\mu \leqslant I_{\nu}, \quad \nu \in \mathbb{N}.$$

Observe that $u_v \in \mathcal{O}(M_z)$, so by Lemma 1, $u_v \to 0$ uniformly on K. Let us put $f_v := \psi - u_v$, $v \in N$. Obviously $f_v \in \mathcal{O}(M)$ and $f_v \to f$ uniformly on K. By dint of the choice of the functions χ_v ,

$$\int_{M} |f_{\nu}|^{2} e^{-\varphi} \delta^{\nu+4} d\mu < +\infty, \quad \nu \in \mathbb{N}$$

The proof is completed.

Putting in Theorem II $\varphi \equiv 0$ we get:

COROLLARY 1. If δ satisfies the assumptions of Theorem II then $H(\delta)$ is dense in O(M) (comp. Theorem I).

4. Spectral functions. The assumptions of Theorem III (see Introduction) are in such a way chosen that by repeating (with some evident modifications) the Cnop's proof of the fundamental spectral theorem in C^n ([2]) we can easily get:

LEMMA 5. Under the assumptions of Theorem III there exist mappings $u_0, ..., u_N: M \times M \to C$ and constants $k, l \in N, c>0$ for which the conditions (i), (ii) of Definition 2 are satisfied and

(iii')
$$\delta_0^{2l}(s) \int_M |u_j(s,.)|^2 \delta^k d\mu \le c, \quad s \in M, \ j = 0, ..., N.$$

Now the assertion of Theorem III follows from the following generalization of a part of the proof of Lemma 3, § 3.4 in [3]:

LEMMA 6. Let $\Phi = (\Phi_1, ..., \Phi_N)$: $M \to C^N$ be a holomorphic mapping. Let $\delta \colon M \to (0, 1]$ be a continuous function such that $\delta \leqslant \delta_0$ and for some $m \in N$, $\int_M \delta^m d\mu < +\infty$. Assume that mappings $u_0, ..., u_N$ and constants k, l, c satisfy the conditions (i), (ii) of Definition 2 and the condition (iii'). Then δ is spectral for Φ .

Proof. Let

$$U(s, x) := 1 + \sum_{k=1}^{N} \overline{\Phi_{k}(s)} \Phi_{k}(x), \quad s, x \in M,$$

$$w_{0}(s, x) := \delta_{0}^{2}(s) U(s, x) u_{0}(s, x),$$

$$w_{j}(s, x) := -\delta_{0}^{2}(s) \overline{\Phi_{j}(s)} + \delta_{0}^{2}(s) U(s, x) u_{j}(s, x), \quad s, x \in M, j = 1, ..., N.$$

It may be easily verified that

$$\begin{aligned} w_j(s,\,.) &\in \mathcal{O}(M), \quad s \in M, \ j=0,\,...,\,N\,, \\ \delta(s)\,w_0(s,\,x) &+ \sum_{j=1}^N \left[\Phi_j(x) - \Phi_j(s)\right] w_j(s,\,x) = 1, \quad s,\,x \in M\,, \end{aligned}$$

for some constants $k_1 \in \mathbb{N}$, $c_1 > 0$: $\delta_0^{2(l-1)}(s) \int_M |w_j(s,.)|^2 \delta^{k_1} d\mu \leq c_1$, $s \in M$, j = 0, ..., N. The decreasing induction over l finishes the proof. Observe that for a given holomorphic mapping $\Phi: M \to \mathbb{C}^N$ we can always find a Hermitian metric in which $|d\Phi_j| \leq 1, j = 1, ..., N$; it is sufficient to take first an arbitrarily chosen Hermitian metric and next to multiply it by a sufficiently rapidly growing function of class $\mathbb{C}^{\infty}(M, (0, +\infty))$.

The problem is to construct a function δ satisfying the assumptions of Theorem III. Below we shall present a construction of a function of this type under some additional assumptions on Φ .

PROPOSITION 2. Assume that a holomorphic mapping $\Phi: M \to \mathbb{C}^{\mathbb{N}}$ is regular and and proper. Then there exists a function $\delta: M \to (0, 1]$ such that:

- (a) $-\log \delta \in SP^{\infty}(M)$, the function δ^4 is a lower bound for the plurisubharmonicity of $-\log \delta$,
 - (b) for every $\tau > 0$, the set $\{x \in M : \delta(x) \ge \tau\}$ is compact,
 - (c) $\delta \leqslant \delta_0$,
 - (d) $|\delta(x) \delta(x')| \leq |\Phi(x) \Phi(x')|$, $x, x' \in M$,
 - (e) $\int_{M} \delta d\mu \leq 1$.

Proof. We already know (comp. Proposition 1) that if $\delta = e^{-\chi(-\log \delta_0)}$, where $\chi(t) = 1 + t + \psi(t)$, $\psi : [0, +\infty) \to [0, +\infty)$ is a sufficiently rapidly growing function of class C^{∞} with $\psi' \ge 0$, $\psi'' \ge 0$, then δ satisfies (a), (b), (c). It may be easily proved that the condition (e) will be also satisfied if ψ grows sufficiently rapidly. Note that if, moreover, $\psi' \le e^{\psi}$ then the function

$$(0, 11 \ni t \to e^{-\chi(-\log t)}$$

is a Lipschitz function with the Lipschitz constant 1 (comp. [3], § 1.5, Lemma 2). Since

$$|\delta_0(x) - \delta_0(x')| \leqslant |\Phi(x) - \Phi(x')|,$$

so in the case when $\psi' \leq e^{\psi}$ the condition (d) will be also satisfied.

In this way the proof of Proposition 2 is reduced to the following:

LEMMA 7. Let $F: [0, +\infty) \to [0, +\infty)$ be a function of class C^{∞} with F' > 0, $F'' \ge 0$, $F(+\infty) = +\infty$. Then there exists a function $\psi: [0, +\infty) \to [0, +\infty)$ such that $\psi \ge F$, $0 \le \psi' \le e^{\psi}$, $\psi'' \ge 0$.

Proof. The method of the proof is due to A. Kleiner.

The function

$$F: [0, +\infty) \to A := [F(0), +\infty)$$

is bijective. Set $G := F^{-1}$ and let $\varphi(u) := G(u) - e^{-u}$, $u \in A$. It is easily seen that φ is of class C^{∞} , $\varphi \leq G$, $\varphi' > 0$, $\varphi'' \leq 0$. The function

$$\varphi\colon\thinspace B:=\varphi^{-1}([0,\,+\infty))\to[0,\,+\infty)$$

is bijective. Set $\psi := \varphi^{-1}$. It may be easily verified that ψ meets all the required conditions.

6. Analytic extensions.

Throughout this section we additionally assume that M is connected.

At first we recall some definitions (Cf. [1], [7]).

Definition 3. Let $F \subset \mathcal{O}(M)$. A pair (M', α) is said to be an analytic extension (a.e.) of (M, F) if

- (i) M' is a connected countable at infinity complex analytic manifold of dimension n,
- (ii) $\alpha: M \to M'$ is a holomorphic mapping,
- (iii) for every $f \in F$ there exists exactly one $f' \in \mathcal{O}(M')$ such that $f' \circ \alpha = f$.

Definition 4. A manifold M is said to be an F-domain of holomorphy if for every a.e. (M', α) of (M, F) the mapping α is an analytic isomorphism of M onto M'.

Observe that if F separates points in M then for every a.e. (M', α) of (M, F) the mapping α has to be injective, hence the set $\alpha(M)$ is open in M'.

It is well known that any Stein manifold M is an $\mathcal{O}(M)$ -domain of holomorphy ([1], [4]). We shall show that if M is a Stein manifold then M is an H^p (δ)-domain of holomorphy for some δ and p (we recall that H^p (δ) is of the first Baire category in $\mathcal{O}(M)$).

LEMMA 8. Let E be a vector subspace of $\mathcal{O}(M)$. Assume that the space E is endowed with a norm $|| \ ||$ such that $(E, || \ ||)$ is a Banach space with a topology stronger than the topology of almost uniform convergence in M. Let $\delta \colon M \to (0, 1]$ be a continuous function satisfying the condition (*). Let $B \subset E$ and c > 0 be such that

$$||f|| \leqslant c, f \in B, \quad \sup\{|f|: f \in B\} \geqslant \frac{1}{\delta}.$$

Assume that $E \subset F \subset \mathcal{O}(M)$ and F separates points in M. Then M is an F-domain of holomorphy.

Proof. Let (M', α) be an a.e. of (M, F). We already know that α has to be an analytic isomorphism of M onto an open set $\alpha(M)$. Suppose by absurd that $\alpha(M) \not\subseteq M'$.

Set $E' := \{ f' \in \mathcal{O}(M') : f' \circ \alpha \in E \}$. Obviously E' is a vector subspace of $\mathcal{O}(M')$. Let us consider the following family of seminorms:

$$\begin{split} E' \ni f' &\to ||f' \circ \alpha|| \\ E' \ni f' &\to ||f'||_K, \quad K \subset \subset M'. \end{split}$$

It may be easily verified that the space E' endowed with the topology generated by this family of seminorms is a Fréchet space. The mapping

$$E'\ni f'\stackrel{\alpha^*}{\longrightarrow} f'\circ\alpha\in E$$

is continuous and it is an algebraic isomorphism. By Banach theorem $(\alpha^*)^{-1}$ is continuous. Let a be a boundary point of $\alpha(M)$ in M'. Let K be a compact neighbourhood of a in M'. Since $(\alpha^*)^{-1}$ is continuous so there exists a constant $c_1 > 0$ such that

$$||f'||_K \leq c_1 ||f' \circ \alpha||, \quad f' \in E'.$$

In particular

$$||f||_{\alpha^{-1}(K)} \leqslant c_1 c, \quad f \in B.$$

Hence $\alpha^{-1}(K) \subset \left\{ x \in M : \delta(x) \geqslant \frac{1}{c_1 c} \right\}$ and therefore $\alpha^{-1}(K)$ is compact. This implies that $\alpha(M) \cap K$ is compact in $\alpha(M)$. We get the contradiction with the choice of K.

PROPOSITION 3. Let $\Phi: M \to C^N$ be a holomorphic mapping. Let $\delta: M \to (0, 1]$ be a continuous function satisfying (*). Assume that δ is spectral for Φ . Then

- (i) if $H(\delta)$ separates points in M then M is an $H(\delta)$ -domain of holomorphy,
- (ii) if for some $l \in \mathbb{N}$ the space $H^{(l)}(\delta)$ separates points in M then there exists $p \in \mathbb{N}$ such that M is an $H^{(p)}(\delta)$ -domain of holomorphy.

Observe that

- $H(\delta)$ separates points in M if moreover δ is a weight function for $\bar{\partial}$ -problem and $\mathcal{O}(M)$ separates points (Theorem II),
 - $-H^{(m+2)}(\delta)$ separates points in M if moreover Φ is injective, $\delta \leqslant \delta_0$ and $\int_M \delta^m d\mu < +\infty$.

Proof. Let $u_0, ..., u_N, k, c$ be associated to Φ and δ accordingly to Definition 2. Set $E := H^{(k)}(\delta)$, $||f||^2 := \int_M |f|^2 \delta^k d\mu$, $f \in E$, $B := \{u_0(s, .): s \in M\}$. Since

$$u_0(s,s) = \frac{1}{\delta(s)}, \quad \int_M |u_0(s,.)|^2 \delta^k d\mu \leqslant c, \quad s \in M,$$

so the above defined E and B satisfy the assumptions of Lemma 7.

Now for the proof of (i) we only need to put in Lemma 1 $F := H(\delta)$ and for the proof of (ii) $-F := H^{(\max\{k,l\})}(\delta)$.

References

- [1] H. Behnke, P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer-Verlag, Berlin-Heidelberg-New York 1970.
- [2] I. Cnop, Spectral study of holomorphic functions with bounded growth, Ann. Inst. Fourier, 22 (2), (1972).
- [3] J.-P. Ferrier, Spectral Theory and Complex Analysis, North-Holland Publishing Company, Amsterdam—London 1973.
- [4] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company, Amsterdam—London 1973.
- [5] M. Jarnicki, Holomorphic functions with bounded growth on Riemann domains over Cⁿ, Zeszyty Naukowe UJ 20 (1979).
- [6] —, Holomorphic functions with bounded growth on Riemann domains over Cⁿ, to appear in Biuletyn PAN.
- [7] R. Narasimhan, Several Complex Variables, The University of Chicago Press, 1971.

UNIWERSYTET JAGIELLOŃSKI INSTYTUT MATEMATYKI KRAKÓW (POLAND)