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Holomorphic functions with restricted
growth on complex manifolds

by Marek JARNICKI

Abstract. The aim of this paper is to extend some results of the theory of holomorphic functions with
restricted growth in pseudoconvex domains in C" to the case of Stein manifolds.

0. Introduction. Throughout the paper we denote by M a fixed countable at infinity
complex analytic manifold of dimension n. We assume that M is endowed with a Hermitian
metric and let u denote the measure (the volume element) generated by this metric.

We denote by @(M) the space of all holomorphic functions on M. We shall always
assume that @(M) is endowed with the topology of almost uniform convergence
(i.e. uniform convergence on every compact subset of M).

For a continuous function §: M — (0, 1] we set

H®E) := {fe 0O(M): [|f|?S*du<+o}, kelN,
M

o«
H®) = | HYO).
k=1 :
It is easily seen that H®(5) is a vector subspace of O(M). Since H®(8)c H**1)(5),
so H(J) is also a vector subspace of ¢(M). In the case of open subsets of C" or, more
generally, in the case of Riemann domains spread over C” spaces of type H(d) are strictly
connected to the theory of J-tempered holomorphic functions (see [3], § 1.3, Propo-
sition 2; [5]. ‘
The aim of this paper is to study some relations between the spaces H(d) and O(M).
The main result of Section 1 of the paper is the following:

TueoreM 1. If O(M) contains non-constant functions then H*X(8) is of the first Baire
category in the Fréchet space O(M). In particular H(J) is of the first Baire category in
o(M).

The analogous theorem in the case of Riemann domains over C* and J-tempered
holomorphic functions was proved by the author in [5].

The greater part of the results of this paper heavily depends on Hormander’s theory
of non-homogeneous Cauchy-Riemann equations on .complex manifolds ([4], § 5.2).

Let us denote by PX(M) (resp. SP¥(M)) the set of all plurisubharmonic (resp. strictly
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plurisubharmonic) functions on M of class C¥, ke Z, U {+}. To simplify notations
let us introduce the following:

Definition 1. A function §: M — (0, 1]is said to be a weight function for d-problem
if —logd € P*(M) and for every ¢ € P*(M), foreveryp, g€ Z,, , forevery g € L e 1y(M, 9)
with dg = O there exists ueL(ZM,(M , —4logd) such that du = g and

§lulte=®8*du< | |gl*e™"du
M M

(all notations used above have the same meaning as in [4]).

Obviously the class of weight functions for d-problem on M depends on Hermitian
metric on M.

It is well known that the function 8(2) := (1+|z|*)~ /3, ze C", is a universal weight
function for d-problem in all pseudoconvex domains in C" with respect to the standard
Hermitian metric (Cf. [4], Theorem 4.4.2). More generally, the author proved in [5] that
if (X, p) is a Riemann domain over C” then the function & := (1+]p|*)”*/? is a weight
function for d-problem on X with respect to the Hermitian metric generated by the
projection p.

In Section 2 we present a characterization of weight functions for d-problem on Stein
manifolds (Theorem 1) and a construction of such functions (Proposition 1).

In Section 3 we prove the following approximation theorem:

TueoreM IL. Let 8 be a weight function for d-problem on M. Assume that
(*) for every 1>0, the set {x e M: 6(x)>1} is compact in M.
Then for every function ¢ € PX(M) the set

F(, ) = {feOM): FkeN: [|f|?e ?5du< + 0}
M

is dense in O(M).

The above theorem is a generalization of Proposition 3, § 7.4 in [3]. In the case of
Riemann domains the analogous theorem was proved by the author in [6].

In Section 4 we present a generalization of the fundamental spectral theorem for
5-tempered holomorphic functions in pseudoconvex domains in C” (Cf. [2])

Definition 2. Let & = (&4, ..., Py): M — C" be a holomorphic mapping. A con-
tinuous function §: M — (0, 1] is said to be a spectral function for @ if there exist mappings
Ug, ..., Uy: M x M — C and constants k € N, ¢>0 such that

@) ufs, )e (O(M),N seM, j=0,..,N,

(i) 8(uols, D+ ¥[8 =B, x) = 1, 5,x€ M,
=1
(iif) s, )I?"du<c, se M, j=0,.., N
M
The main result of Section 4 is the following:

Tarorem III. Let & = (®,, .., Py): M — C" be a holomorphic mapping such that
|do)|<1, j =1, ..., N. Let  be a function satisfying the following conditions:
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8 is a weight function for 3-problem;
N
88y 1= (1+]0|%)"12, where |0]* := Y |9)|%;
ji=1
[6(x)—8(x)|<|P(x)—D(x)|, x,x" € M, for some me N, | S"du< +oo.
M

Then & is spectral for ®.

In Section 4 we also present a construction of functions & satisfying the assumptions
of the above theorem in the case when & is regular and proper.

In Section 5 we present an application of the results of Section 4 to the theory of analytic
extensions of complex manifolds.

1. Basic properties of spaces H(8). By standard reasoning (based, for example, on
the local application of Theorem 2.2.3 from {4]) one can easily get:

LEMMA 1. Let 6: M — (0, 1] be a continuous function. Then for all compact sets K, Lc M
with KcintL there exists a constant ¢>0 such that

Ilfli;iSC(mina)'*J [f1?8*du, feO(M), keN,
where || f |k = sup{|f(X)|: x € K}.
In particular the space H™(8) with the scalar product (f, g) — {fgs*du is a complex
Hilbert space with a topology stronger than the topology of almost um}:)rm convergence in M.
Now we can prove Theorem I (see Introduction).
Let us set E, :={fe H¥(): Ng | f128%du<!}, Ie N. Obviously H®(5) = Q Ey.

It may be easily verified that the set E,; is closed in ¢(M). Hence it is sufficient to prove
that the interior of Ey; in 0(M) is empty.

Suppose by absurd that for some fe E; and for some open neighbourhood U of zero
in O(M): f+UcE,. By dint of Lemma 1 U has to be bounded in 0(M). Under our
assumptions, 0(M) is an infinite dimensional space so we get the contradiction.

2. Weight functions for §-problem. Let ¢ € SP?(M). For any local orthonormal basis
n n
@, ..., " of forms of type (1,0) if d0p = Y ¢;w'@", then the form Y ¢u&;&,
k=1 Jk=1
& =(&,...,E)eC" is positive definite (comp. [4], §5.2). A continuous function
A: M — (0, +00) will be called a lower bound for the plurisubharmonicity of ¢ if

; qu onl; & =AlER,  EecC.

Note that for ¢ € SP2(M) such a function always exists (obviously it depends on
Hermitian metric on M).
The main result of this section is the following:
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THEOREM 1. Let M be a Stein manifold. Let §: M — (0, 1] be a function such that —logd
is of class SP*(M). Assume that §* is a lower bound for the plurisubharmonicity of —logé.
Then & is a weight function for 3-problem.

The method of the proof will be completely based on results of [4], so we only present
a sketch of the proof.

Let (n,)y=1<=Cq(M, [0, 1]) be such that for any compact set K= M there exists
vo = vo(K) with #n,|K =1, v=v, Let yeC®(M,R) satisfy: |dn,|><e”, veN. Let
@ € SPX(M) have a lower bound for the plurisubharmonicity A. Put @; := ¢+G—=/Y,
J=1,2,3. Let

T
L(zp.q)(Ms ¢)>DT — L(2p,4+ oM, @,),

s
L(zp.q+ 1)(M » 92)> DS — L(zp.q+ z)(M » 93)

denote the operators generated by the operator @ (taken in the sense of distribution theory)
(comp. [4], § 5.2). Let

T+
L(2P-9+ 1)(M: @2) >DT* — L(zp’q)(M, (01)

denote the operator conjugate to 7.
By a reasoning analogous as in the proofs of Lemmas 4.1.3, 5.2.1 in [4] we get:

LemMMA 2. The space D, 44 1)(M) is dense in DT* n DS in sense of the norm
“DT* 0 DS 3 f— IT*f g, + 1| [ Npa+1Sf s -

Repeating almost exactly the proof of Theorem 5.2.3 in [4] we get:

LEMMA 3. There exists a continuous function ¢: M — (0, +o0) (which is independent
of the functions Y, @) such that

4(&—0-4{&//]2) |f 2™ du<4IT* llg, +[ISF113,),  f€ Diygr1(M) .

Substituting in the proof of Lemma 4.4.1 in [4], Lemma 4.1.3 by Lemma 2 and the
inequality (4.2.9) by Lemma 3 we obtain:

LEMMA 4. Let M be a Stein manifold. Let qoeSPz(M ) have a lower bound for the
plurisubharmonicity A. Then for every form g € L(,, ayM, @) LY a+1)(M, @ +logl) with
dg = 0 there exists a form u eLl, (M, @) such that du = g and

j]ulze“¢du<4 jlglze""’id,u
M M

Now for the proof of Theorem 1 we can repeat the first part of the proof of
Theorem 4.4.2 in [4] with the function (1 +]z]*)~ /2 substituted by 6 and with Lemma 4.4.1
substituted by Lemma 4.

It is natural to ask whether for a given Stein manifold with a Hermitian metric there
exist functions & satisfying the assumptions of Theorem 1.
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ProPOSITION 1. Let M be a Stein manifold endowed with a Hermitian metric. Then
exists a function 6: M — (0, 1] such that:

—logd e SP®(M), the function 8* is a lower bound for the plurisubharmonicity of
—logé.

& satisfies the condition (+) (see Introduction, Theorem II).

Proof. It is well known that there exists a function s e SP*(M), s=0, such that for
any ¢>0 the set K, 1= {xe M: s(x)<t} is compact (comp. [4], Theorem 5.1.6).

Observe that such a function may be obtained by the embedding theorem for Stein -
manifolds (comp. [4], Theorem 5.3.9), namely, let & = (@, , ..., Dy): M — C" be a regular
and proper holomorphic mapping, let &y := (1+|®[2)"/2, then s := —logd, meets all
the required conditions.

Let A be a lower bound for the plurisubharmonicity of s. Take a function y: [0, 4 c0)—

. . ) 1
[0, +c0) of class C* with ¥’ =0, " =0 growing so rapidly that e“""”;max/—1 , 1=0. Put
K

x(t) = 14+t+4(t), t=0, and let §:= e *9. It is easily seen that &: M — (0, 1],
~logd e SP*(M) and a lower bound for the plurisubharmonicity of —logé is equal to
A-x'(s). By dint of the choice of the function § A-y'(s)=6*. Since <e™* so the condition
(*) is also fulfilled. The proof is completed.

3. An approximation theorem. In this section we present a proof of Theorem II.

The method of the proof will be based on the proof of Theorem 4.4.7 in [4].

Let us fix feO(M) and a compact set KcM. We want to find a sequence
(f)ve1<=F(8, ¢) which tends to f uniformly on K. We may assume that for some 7>0,
K ={xeM: s(x)=1}.

Set M, := {xe M: §(x)>¢}, €>0. Let us fix ¢, f such that O<a<pf<z. Let

B
oy = <p+;cv(10g;5 ,
where y,: R— R is an arbitrarily fixed function of class C* such that x>0, x, =0,
x,() = 0 for <0, x,(t)<vt for 10 and y,(t), "+ as v+ o0 for t;logg.
o«

It is easily seen that ¢, € P*(M), ¢, = ¢ in My, p(x),/"+ 0 asv 7+ o0 for x€ M\M,.
Let us fix a function ¢ e CJ(M, [0, 1]) such that & =1 in M, and let ¢ := ff,
g:=0y. ~
It is seen that g is a form of class D, 4(M), dg =0 and g =0 in M,u
U (M \supp ®). Set
' I, := [lg|*e ®du, veN.
M

Observe that I,\\0 as v+ co. Since J is a weight function for 3-problem, so there
exists a form u, e L*(M, ¢,—4logd) such that du, = g and :

Ijuvlze_vva“dﬂgly, veN.
M
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Observe that u,e O(M,), so by Lemma 1; u,— 0 uniformly on K. Let us put
[, = ¢ —u,, ve N. Obviously f,e (M) and f, — f uniformly on K. By dint of the choice
of the functions y,,

[1flPe 8" *du<+o0, veN
M

The proof is completed.

Putting in Theorem II ¢ = 0 we get:

COROLLARY 1. If 6 satisfies the assumptions of Theorem 11 then H(0) is dense in O(M)
{comp. Theorem I).

4. Spectral functions. The assumptions of Theorem III (see Introduction) are in such
a way chosen that by repeating (with some evident modifications) the Cnop’s proof of the
fundamental spectral theorem in C" ([2]) we can easily get:

LemMA 5. Under the assumptions of Theorem 111 there exist mappings ug, ..., uy:M %
x M — C and constants k, l € N, ¢>0 for which the conditions (i), (ii) of Definition 2 are
satisfied and

(iii") 82s) J luy(s, ?S*du<e, seM,j=0,..,N.
M .
Now the assertion of Theorem III follows from the following generalization of a part
of the proof of Lemma 3, § 3.4 in [3]:

LEMMA 6. Let @ = (&, , ..., Py): M — C" be a holomorphic mapping. Let §: M — (0, 1]
be a continuous function such that §<8, and for some me N, [ §™du< + 0. Assume that
M

mappings ug, ..., uy and constants k, I, ¢ satisfy the conditions (i), (ii) of Definition 2 and the
condition (iii"). Then & is spectral for @.

Proof. Let
UGs, x) := 1+k_§lm P(x), s,xeM,
Wols, X) i= 83(5) U(s, x)uy(s, x),
w(s, x) 1= —6§(s)5jz;)+6§(s) Uls, x)ufs, x), s,xeM,j=1,..,N.
It may be easily verified that
wis, )eOM), seM,j=0,..,N,
() wy(s, x)+j__§1 [B(x)—B()]wis,x) =1, s,xeM,

for some constants k, € N, ¢; > 0: 83¢7V(s) [ Iws, )**du<ey, seM, j=0,..,N.
M

The decreasing induction over / finishes the proof.
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Observe that for a given holomorphic mapping ®: M — C" we can always find
a Hermitian metric in which |d®;|<1,j = 1, ..., N; it is sufficient to take first an arbitrarily
chosen Hermitian metric and next to multiply it by a sufficiently rapidly growing function
of class C*(M, (0, + o0)).

The problem is to construct a function ¢ satisfying the assumptions of Theorem IIL
Below we shall present a construction of a function of this type under some additional
assumptions on .

PROPOSITION 2. Assume that a holomorphic mapping ®: M — CV is regular and
and proper. Then there exists a function §: M — (0, 1] such that:

(a) —logd € SP™(M), the function 5* is a lower bound for the plurisubharmonicity
of —logg,

(b) for every 1>0, the set {x € M: 6(x)=1} is compact,

(c) 6<do,

@) 6(x)=s(x)|<|P(x)—2(x), x,x"eM,

(® Jédu<l.

M

Proof. We already know (comp. Proposition 1) that if § = e~¥ "% where
x(t) = 1+t+y (), ¢: [0, +0)— [0, +c0) is a sufficiently rapidly growing function
of class C® with §'20, ¥" >0, then § satisfies (a), (b), (c). It may be easily proved that
the condition (&) will be also satisfied if { grows sufficiently rapidly. Note that if, moreover,
Y’ <e¥ then the function

(0,1] 31— e~ 780
is a Lipschitz function with the Lipschitz constant 1 (comp. [3], § 1.5, Lemma 2). Since
[00(x) = So(x) <P (x)— P (x) ,
so in the case when y/’<e¥ the condition (d) will be also satisfied.

In this way the proof of Proposition 2 is reduced to the following:

LemMMA 7. Let F: [0, 4+ 00) — [0, +00) be a function of class C* with F'>0, F" >0,
F(+ ) = +o0. Then there exists a function y: [0, +00) — [0, +c0) such that Y= F,
o<y'<e’, ¥ =0,

Proof. The method of the proof is due to A. Kleiner.
The function

F: [0, + 0)— A4 := [F(0), +0)

is bijective. Set G := F~! and let @(u) := G(u)—e™", ue A. Tt is easily seen that ¢ is
of class C®, ¢<G, ¢'>0, ¢" <0. The function

@: B:i= ¢~ ([0, +00)) = [0, +0)

is bijective. Set ¢ := ¢~*. It may be easily verified that i meets all the required con-
ditions.
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- 6. Analytic extensions. ‘ :
Throughout this section we additionally assume that M is connected.
At first we recall some definitions (Cf. [1], [7]).

Definition 3. Let Fc@(M). A pair (M’, o) is said to be an analytic extension (a.e.)
of (M, F) 1f
(i) M’ is a connected countable at infinity complex analytic manifold of dimension n,
(ii) «: M — M’ is a holomorphic mapping,
(iii) for every fe F there exists exactly one f'e O(M') such that f'oa = f.

 Definition 4. A manifold M is said to be an F-domain of holomorphy if for every a.e.
(M’, o) of (M, F) the mapping « is an analytic isomorphism of M onto M’.

Observe that if F separates points in M then for every a.e. (M’, a) of (M, F) the
mapping a has to be injective, hence the set a(M) is open in M’.

It is well known that any Stein manifold M is an @(M)-domain of holomorphy ([1], {4]).

We shall show that if M is a Stein manifold then M is an H” (8)-domain of holomorphy
for some & and p (we recall that H” (§) is of the first Baire category in O(M)).

LemMa 8. Let E be a vector subspace of O(M). Assume that the space E is endowed with
a norm || || such that (E, || ||) is a Banach space with a topology stronger than the topology
of almost uniform convergence in M. Let 6: M — (0, 1] be a continuous Sfunction satisfying
the condition (*). Let B E and ¢>0 be such that

1
I flI<e, feB, sup{|fl: fe B}'—Bg.

Assume that EcF<O(M) and F separates points in M. Then M is an F-domain of holo-
morphy.
Proof. Let (M’, &) be an a.e. of (M, F). We already know that ¢ has to be an analytic
isomorphism of M onto an open set a(M). Suppose by absurd that a(MYEM'.
Set E':= {f' e O(M'): f'oxe E}. Obviously E' is a vector subspace of O(M").
Let us consider the following family of seminorms:
E'af = |lf oall
E's3f' =|fllky, KccM'.
It may be easily verified that the space E’ endowed with the topology generated by this
family of seminorms is a Fréchet space. The mapping

E’af’jaf'oaeE

is continuous and it is an algebraic isomorphism. By Banach theorem (x*)~1 is continuous.
Let a be a2 boundary point of a(M)in M’. Let K be a compact neighbourhood of ain M".
Since (a*)~! is continuous so there exists a constant ¢,>0 such that

W le<edlf oall, feE.

In particular
Hflle-saySCic, feB.
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1
Hence a"‘(K)c{xeM 6(x)>;--} and therefore a™*(K) is compact. This implies
1€

that a(M) n K is compact in a(M). We get the contradiction with the choice of XK.

PROPOSITION 3. Let &: M — C" be a holomorphic mapping. Let &: M — (0, 1] be
a continuous function satisfying (*). Assume that S is spectral for ®. Then

(1) if H(O) separates points in M then M is an H(8)-domain of holomorphy,

(ii) if for some le N the space HYXS) separates points in M then there exists peN
such that M is an H“”(8)-domain of holomorphy.

Observe that
— H() separates points in M if moreover ¢ is a weight function for &-problem

and O(M) separates points (Theorem 11),
— H™*2)5) separates points in M if moreover & is injective, §< 8, and | " du< + 0.
M

Proof. Let u,, ..., uy, k, ¢ be associated to @ and & accordingly to Definition 2.
Set E:= HWE), I £ := [ f1?8"du, fe E, B := {uys,.): se M}. Since
M

(s, S)=3—(—) jluo(s,-)lzcs"du-ic, seM,
M

so the above defined E and B satisfy the assumptions of Lemma 7.
Now for the proof of (i) we only need to put in Lemma 1 F := H(6) and for the proof
of (ii)—F := H™*®g),
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