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On some Fréchet spaces of analytic functions
Marek JarniCKI

Abstract. In the paper we present a characterization of domains of analyticity with respect to some
Fréchet spaces of K-analytic functions on Riemann domains over K", K= R or K= C.

1. Introduction. The aim of the paper is to generalize some results of [1] and [3]. First
we shall fix some basic notations.

We denote by K either the field of real numbers R or complex numbers C. For
{= (4, ) e K" and r>0, let

B, r) = {E =, .. )K" (&=t <r, j=1,.,n}.

Let (X, p) be a connected Riemann domain over K", p = (py, ..., p,): X = K". For
x € X, let d(x) denote the supremum of all »>0 such that there exists an open neighbour-
hood B(x, r) of the point x which is mapped homeomorphically by p onto B(p(x), r).
Let us put B(x) = B(x, d(x)), px = Plsey. For AcX, let d(4) = inf{d(x): xe 4}. We
denote by &/ (X) the space of all K-analytic functions on X. Let D® denote the operator
of a-derivative, i.e.

(D‘ff)(x) aéafl Pg‘f“"( x), a=(,.,0)eZy, fedX) xeX.

For Focs/(X), we put F* = {p,, ..,p,} W{Df: feF,aecZ}},

F,, = {feF: 3fe A (B(p(x),n)): f =Fopx in B(x)},
w={ffeF,)}, xeX, r>d{). |

For a function f: E - C we write |['fﬂ,,-: = sup{|f(®){: xe E}.

- Definition 1. A pair (F, t) is said to be a natural Fréchet space in o (X) if F is a vector
subspace of &7 (X), ¢ is a topology of a Fréchet space on F and ¢ is stronger than the
topology 5 of uniform convergence on every compact subset of X.

In the sequel we shall always denote by I' a family of seminorms on F which generates
the topology ¢ and which satisfies the following condition: for every g¢,, ¢, € I' there exists
a norm g el such that q,, 9,<gq.
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For gel’ and M, c>1, let us set:
H(F;q,M,c)={xeX: VfeF,YaeZ}: |D"f(x)l<a‘Mc'°“q(f)}

Definition 2. A family Fc.o/(X) is said to be regular if for every x € X, r>d(x)
there exists a natyral Fréchet space (G™, ™) in & (B(p(x), r)} such that F,=G™.
The main result of the paper is the following:

THEOREM 1. Let (F, t) be a regular natural Fréchet space in o4 (X). Then the following
conditions are equivalent:

(1) (X, p) is an F-domain of K-analyticity;

(ii) there exists a set N F of the second Baire category in (F,t) such that for every
feN: (X,p) is an { f}-domain of K-analyticity;

(iii) F* separates points in X and
(1) for every qeI’, M,c=1: d(H(F; q, M, ¢))>0;

(iv) F* separates points in X and
(2)  for every set EcX with d(E) = 0 and for every c=1 there exists f € F such that

1 o n
sup e IuI“D flg: a€Zi}t = +oo.
In particuiar cases, Theorem 1 generalizes the well-known Cartan-Thullen theorem,

some results of [1] and Theorem 10.1 from [31.

2. Domains of K- analyticity. For fe o (X) let T ./ denote the Taylor series of f at x,
D,
ie. (Tf W) = Z ﬂx)({—p(x)) Put d(T.f) = sup{r>0 T.f is convergent in

acZ”

B(p(x), r)}.
For a family Feo/(X), let us consider the condition:

(RC) VxeX 3r(x)>0: VfeF: dT.f)=r(x).

Obviously this condition is interesting only in the real case. Note that if K = R then
the family F = & (X) does not satisfy (RC). .

It is easy to prove

LemMMmA 1. If F satisfies (RC) then (X, p) is an F-domain of K-analyticity if and only
if F* separates points in X and for every x € X, r>d(x): F,, # F.

3. Natural Fréchet spaces. Using the Baire property, it is easy to get (cf. [1], [B]):

LeMMA 2. If (F, t) is a natural Fréchet space in sf(X) then F satisfies (RC).

COROLLARY 1. In the real case the whole space <7 (X') cannot be endowed with the structure
of a natvral Fréchet space.

The following simple lemma will be useful in the sequel (cf. [1}):
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LemMMA 3 (Generalized Cauchy inequalities). Let (F,t) be a natural Fréchet space
in o/ (X). Then for every compact set K= X there exists a constant c(K)>0 such that:
for every 0<t<c(K) there exist ¢,>0, g, €I

!
|0 Ik<gradf), feF. aeZi.

_ Now we shall present an important example of a natural Fréchet space for the real
case (cf. [1]. '
Let & = (&, ..., &) be a differential operator in R" such that

&= Y apD*, where a,ed(R), j=1,.,5 [d<N,
jaf N

(*) (ellipticity of &) for every open set Uc R" and for every function f continuous in U, '
if &f =0 (in the sense of the distribution theory) then fe o (U).

Set &(U) = {fe S (U): &f = 0}. By (¥, (6(U), t5) is a Fréchet space.

For a connected Riemann domain (X, p) over R", set

EX)={fed(X): VxeX: fop; e &(B(p(x),dx))} -
1t is easily seen that (€(X), tx) is a natural Fréchet space in /(X).

4. Regular families. Obviously in the complex case every family Fe0(X) = #(X)
is regular — we can put (G*, ") = (0(B), t5), where B = B(p(x), r). In the real case
this is not true even if (F, ) is a natural Fréchet space in &/ (X); consider the following
example (due to J. Siciak): «

Let D = {zeC: |2|<1}, X = (—=1,1)cR, p = idy, F = {f|x: fe O(D)}. Let ¢ de-
note the topology on F which is transported from the topology t5 by the bijection
O(D)>f - f|x€F. Obviously (F, t) is a natural Fréchet space in &/ (X). However, F is
not regular; for instance, the functions fi(z) = (z—(1+i/k))™, ke N, belong to Fo,
but d(T, f,) = 1/k. : ‘

Note that the space &(X) is regular — we can put (G¥, t™) = (£(B), t5), where
B = B(p(x), r).

5. The proof of Theorem 1. _

The implication (i) = (ii) (the method of the proof is taken from the proof of
Theorem 10.1 in [3]).

Let A = {x,: ke N} be a countable dense subset of X such that 4 = p~}(p(4)).
For x = x,, r = d(x)+ 1/, let us put F, = F,,, Fy = F,, and let (G¥, *) be a natural
Fréchet space in o (B(p(x), r)) such that F,,cG". Denote by I'; a family of seminorms
generating the topology 7. It may easily be proved that the space F; with the topology
generated by the following seminorms ‘

£ ]

Fuaf—-aq(f), gqel,
Fklaf"’Q(f), gely

2 — Prace matematyczne z. 23
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is a Fréchet space. In view of Lemma 1, F; # F, so by the Banach theorem F; is of the
first Baire category in F.

Now let Hy = {feF: VaeZi: D*f(x) = D*f(x,)}, where the numbers , / run
over all k, /e N for which x; # x, and p(x;) = p(x;). The set H,, is a closed subspace
of F (Lemma 3). Since Hy; # F (Lemma 1), so Hy; is nowhere dense in F.

It may be easily proved that it is now sufficient to put

N = F\(U Fkl i U sz)

The implication (ii) = (iii). It is seen that for any er(F g, M,c) we have
d(T.f)=1]c, fe F. Hence, by Lemma 1, d(x)>1/c.

The implication (iii) = (iv) (the method of the proof is taken from [1]). Suppose
that (2) does not hold true. Then for some EcX with d(E) = 0 and for some c¢>1 we
have: F = {J kS, where

keN

S:={feF: VaeZ}: |Df|z<alc™}.

The set S is closed in F (Lemma 3) and absolutely convex. By the Baire property of F,
there exist ¢>0 and a norm g eI such that { fe F: g(f)<2¢e}<=S. Hence

1
|D*f Ilssa!-ecmq(f), feF, aeZi.

. :
Thus EcH(F; q,-, c) which contradicts (1).
£

The implication (iv) = (i). Suppose by absurd, that for some x € X and r>d(x) we
have F,, = F. Let (G, t™). be chosen accordingly to Definition 2 and let I',, be a family
of seminorms generating ™. Put K := B(p(x), d(x)). By Lemma 3, for 0<t<c(K) there
exist ¢,>0, g, € I',, such that:

1Dl < Ial “0l9), geG”, €z .

N 1
Let us set E = B(x) (d(E) =0, [2]), ¢ = ~. We have

)

1D le<| D Ix<aleclg(f), feF, aeZ}.

We get a contradiction. The proof is concluded.

6. The case when ¢ = 5. Throughout this section we assume that (F, t5) is a natural
Fréchet space in & (X). Fo‘r a compact set K=X and for constants M, c>1, we put:

KoM, c) = {xeX VfeF,YmeZ,: ZID"f{x)] Mc™ ”Daf”K}, B

= ol

fafsm jz]<m
Re(M):={xeX:YfeF: |fx)I<M|f] },
Rp = Ry().
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* Observe that if F is d-stable (i.e. VfeF,VaecZ}: D"feF)then Ry(M, c) = R{(M)
and if F is p-stable (i.e. VfeF, Yme N: f"e F) then Ry(M) = R, (comp. [1]).

PROPOSITION 1. The- condition (1) is equivalent to (t = t§!)
(1) for every compact set K< X and for every M,c>1:

d(Rx(M, ¢))>0.

If F is d-stable then the condition (2) is equivalent to

(2") for every set Ec X with d(E) = O there exists a function f e F for which | f|z = + co.

» Proof. Let us fix a constant c,>1 such that Y 1<cf, meZ,. For a compact set

al<m
KcX, let gg denote the seminorm given by the| Ifc»rmula Foaf—|flk.
It is easily seen that H(F;qx, M, c)c Kg(M, cc,), hence (1') = (1).

~ Conversely, in view of Lemma 3, for every 0 <7 <c(K) there exist ¢,>1 and a compact
set K, € X for which '

KF(Ms C)CH(F; I Mcnfﬁ) ) ’
T

hence (1) = (1"). ! ‘
Obviously (2’) = (2). For the proof of the implication (2) = (2'), suppose by absurd

that for some EcX with d(E) = 0 we have || f|lg<+o0, fe F. Then F = |J kT, where
keN

T:={feF: | flg<1}. The set T is closed and absolutely convex £o0, as in the proof of
Theorem 1, for some £¢>0 and K= X we have [Ifl]E\ l[f”x,feF Since Fis d-stable,

so in view of Lemma 3,

IlD“fIlE\ ||D°'f1|K\ ,,, llflix, feF, aeZ}.

We get the contradiction.
The proof is completed.

COROLLARY 2. If X = D is a domain in C", p = idy, (F, t) = (0(D), t5), then from
Theorem 1 and Proposition 1 we get the well-known Cartan-Thullen theorem on the charac-
terization of domains of holomorphy.

COROLLARY 3. If X' = D is a domain in R", p = idy, (F,t) = (8(D), t5), then from
Theorem 1 and Proposition 1 we get the main results of [1].
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