On some Fréchet spaces of analytic functions

Marek Jarnicki

Abstract. In the paper we present a characterization of domains of analyticity with respect to some Fréchet spaces of K-analytic functions on Riemann domains over K^n , K = R or K = C.

1. Introduction. The aim of the paper is to generalize some results of [1] and [3]. First we shall fix some basic notations.

We denote by **K** either the field of real numbers **R** or complex numbers **C**. For $\zeta = (\zeta_1, ..., \zeta_n) \in K^n$ and r > 0, let

$$B(\zeta, r) = \{ \xi = (\xi_1, ..., \xi_n) \in \mathbf{K}^n : |\xi_i - \zeta_j| < r, j = 1, ..., n \}.$$

Let (X, p) be a connected Riemann domain over K^n , $p = (p_1, ..., p_n)$: $X \to K^n$. For $x \in X$, let d(x) denote the supremum of all r > 0 such that there exists an open neighbourhood $\hat{B}(x, r)$ of the point x which is mapped homeomorphically by p onto B(p(x), r). Let us put $\hat{B}(x) = \hat{B}(x, d(x))$, $p_x = p|_{\hat{B}(x)}$. For $A \subset X$, let $d(A) = \inf\{d(x): x \in A\}$. We denote by $\mathcal{A}(X)$ the space of all K-analytic functions on X. Let D^{α} denote the operator of α -derivative, i.e.

$$(D^{\alpha}f)(x) = \frac{\partial (f \circ p_x^{-1})}{\partial \xi_n^{\alpha_1} \dots \partial \xi_n^{\alpha_n}} (p(x)), \quad \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n, \quad f \in \mathscr{A}(X), \quad x \in X.$$

For $F \subset \mathcal{A}(X)$, we put $F^* = \{p_1, ..., p_n\} \cup \{D^x f: f \in F, \alpha \in \mathbb{Z}_+^n\}$,

$$F_{xr} = \{ f \in F \colon \exists \tilde{f} \in \mathscr{A} \big(B \big(p(x), r \big) \big) \big) \colon f = \tilde{f} \circ p_x \text{ in } \hat{B}(x) \} ,$$

$$\tilde{F}_{xr} = \{ \tilde{f} : f \in F_{xr} \}, \quad x \in X, \quad r > d(x) .$$

For a function $f: E \to C$ we write $||f||_E := \sup\{|f(x)|: x \in E\}$.

Definition 1. A pair (F, t) is said to be a natural Fréchet space in $\mathscr{A}(X)$ if F is a vector subspace of $\mathscr{A}(X)$, t is a topology of a Fréchet space on F and t is stronger than the topology t_x^c of uniform convergence on every compact subset of X.

In the sequel, we shall always denote by Γ a family of seminorms on F which generates the topology t and which satisfies the following condition: for every $q_1, q_2 \in \Gamma$ there exists a norm $q \in \Gamma$ such that $q_1, q_2 \leq q$.

For $q \in \Gamma$ and $M, c \ge 1$, let us set:

$$H(F;q,M,c) = \{x \in X : \forall f \in F, \forall \alpha \in \mathbb{Z}_+^n : |D^{\alpha}f(x)| \leq \alpha |Mc^{|\alpha|}q(f)\}.$$

Definition 2. A family $F \subset \mathcal{A}(X)$ is said to be regular if for every $x \in X$, r > d(x) there exists a natural Fréchet space (G^{xr}, t^{xr}) in $\mathcal{A}(B(p(x), r))$ such that $F_{xr} \subset G^{xr}$.

The main result of the paper is the following:

THEOREM 1. Let (F, t) be a regular natural Fréchet space in $\mathcal{A}(X)$. Then the following conditions are equivalent:

- (i) (X, p) is an F-domain of K-analyticity;
- (ii) there exists a set $N \subset F$ of the second Baire category in (F, t) such that for every $f \in N$: (X, p) is an $\{f\}$ -domain of **K**-analyticity;
 - (iii) F^* separates points in X and
- (1) for every $q \in \Gamma$, M, $c \geqslant 1$: d(H(F; q, M, c)) > 0;
 - (iv) F^* separates points in X and
- (2) for every set $E \subset X$ with d(E) = 0 and for every $c \ge 1$ there exists $f \in F$ such that $\sup \left\{ \frac{1}{\alpha! c^{|\alpha|}} \|D^{\alpha} f\|_{E} : \alpha \in \mathbb{Z}_{+}^{n} \right\} = +\infty.$

In particular cases, Theorem 1 generalizes the well-known Cartan-Thullen theorem, some results of [1] and Theorem 10.1 from [3].

2. Domains of K-analyticity. For $f \in \mathcal{A}(X)$, let $T_x f$ denote the Taylor series of f at x, i.e. $(T_x f)(\zeta) = \sum_{\alpha \in \mathbb{Z}_+^n} \frac{D_\alpha f(x)}{\alpha!} (\zeta - p(x))^\alpha$. Put $d(T_x f) = \sup\{r > 0: T_x f \text{ is convergent in } f$

For a family $F \subset \mathcal{A}(X)$, let us consider the condition:

(RC) $\forall x \in X \ \exists r(x) > 0 \colon \forall f \in F \colon d(T_x f) \geqslant r(x).$

Obviously this condition is interesting only in the real case. Note that if K = R then the family $F = \mathcal{A}(X)$ does not satisfy (RC).

It is easy to prove

B(p(x), r).

LEMMA 1. If F satisfies (RC) then (X, p) is an F-domain of K-analyticity if and only if F^* separates points in X and for every $x \in X$, r > d(x): $F_{xr} \neq F$.

3. Natural Fréchet spaces. Using the Baire property, it is easy to get (cf. [1], [3]):

LEMMA 2. If (F, t) is a natural Fréchet space in $\mathcal{A}(X)$ then F satisfies (RC).

COROLLARY 1. In the real case the whole space $\mathcal{A}(X)$ cannot be endowed with the structure of a natural Fréchet space.

The following simple lemma will be useful in the sequel (cf. [1]):

LEMMA 3 (Generalized Cauchy inequalities). Let (F, t) be a natural Fréchet space in $\mathcal{A}(X)$. Then for every compact set $K \subset X$ there exists a constant c(K) > 0 such that: for every $0 < \tau < c(K)$ there exist $c_{\tau} > 0$, $q_{\tau} \in \Gamma$:

$$||D^{\alpha}f||_{K} \leq \frac{\alpha! c_{\tau}}{\tau^{|\alpha|}} q_{\tau}(f), \quad f \in F, \quad \alpha \in \mathbb{Z}_{+}^{n}.$$

Now we shall present an important example of a natural Fréchet space for the real case (cf. [1]).

Let $\mathscr{E} = (\mathscr{E}_1, ..., \mathscr{E}_s)$ be a differential operator in \mathbb{R}^n such that

$$\mathscr{E}_{j} = \sum_{|\alpha| \leq N} a_{j\alpha} D^{\alpha}$$
, where $a_{j\alpha} \in \mathscr{A}(\mathbb{R}^{n})$, $j = 1, ..., s$, $|\alpha| \leq N$,

(*) (ellipticity of \mathscr{E}) for every open set $U \subset \mathbb{R}^n$ and for every function f continuous in U, if $\mathscr{E}f = 0$ (in the sense of the distribution theory) then $f \in \mathscr{A}(U)$.

Set $\mathscr{E}(U) = \{ f \in \mathscr{A}(U) : \mathscr{E}f = 0 \}$. By (*), $(\mathscr{E}(U), t_U^c)$ is a Fréchet space.

For a connected Riemann domain (X, p) over R^n , set

$$\mathscr{E}(X) = \{ f \in \mathscr{A}(X) \colon \forall x \in X \colon f \circ p_x^{-1} \in \mathscr{E}(B(p(x), d(x))) \}.$$

It is easily seen that $(\mathscr{E}(X), t_X^c)$ is a natural Fréchet space in $\mathscr{A}(X)$.

4. Regular families. Obviously in the complex case every family $F \subset \mathcal{O}(X) = \mathscr{A}(X)$ is regular — we can put $(G^{xr}, t^{xr}) = (\mathcal{O}(B), t_B^c)$, where B = B(p(x), r). In the real case this is not true even if (F, t) is a natural Fréchet space in $\mathscr{A}(X)$; consider the following example (due to J. Siciak):

Let $D = \{z \in C: |z| < 1\}$, $X = (-1, 1) \subset R$, $p = id_X$, $F = \{f|_X: f \in \mathcal{O}(D)\}$. Let t denote the topology on F which is transported from the topology t_D^c by the bijection $\mathcal{O}(D) \ni f \to f|_X \in F$. Obviously (F, t) is a natural Fréchet space in $\mathscr{A}(X)$. However, F is not regular; for instance, the functions $f_k(z) = (z - (1 + i/k))^{-1}$, $k \in N$, belong to F_{02} but $d(T_1 f_k) = 1/k$.

Note that the space $\mathscr{E}(X)$ is regular — we can put $(G^{xr}, t^{xr}) = (\mathscr{E}(B), t_B^c)$, where B = B(p(x), r).

5. The proof of Theorem 1.

The implication (i) \Rightarrow (ii) (the method of the proof is taken from the proof of Theorem 10.1 in [3]).

Let $A = \{x_k : k \in N\}$ be a countable dense subset of X such that $A = p^{-1}(p(A))$. For $x = x_k$, $r = d(x_k) + 1/l$, let us put $F_{kl} = F_{xr}$, $\tilde{F}_{kl} = \tilde{F}_{xr}$ and let (G^{kl}, t^{kl}) be a natural Fréchet space in $\mathcal{A}(B(p(x), r))$ such that $\tilde{F}_{kl} \subset G^{kl}$. Denote by Γ_{kl} a family of seminorms generating the topology t^{kl} . It may easily be proved that the space F_{kl} with the topology generated by the following seminorms

$$F_{kl} \ni f \to q(f), \quad q \in \Gamma,$$

 $F_{kl} \ni f \to q(\tilde{f}), \quad q \in \Gamma_{kl}$

is a Fréchet space. In view of Lemma 1, $F_{kl} \neq F$, so by the Banach theorem F_{kl} is of the first Baire category in F.

Now let $H_{kl} = \{ f \in F : \forall \alpha \in \mathbb{Z}_+^n : D^{\alpha}f(x_k) = D^{\alpha}f(x_l) \}$, where the numbers k, l run over all $k, l \in \mathbb{N}$ for which $x_k \neq x_l$ and $p(x_k) = p(x_l)$. The set H_{kl} is a closed subspace of F (Lemma 3). Since $H_{kl} \neq F$ (Lemma 1), so H_{kl} is nowhere dense in F.

It may be easily proved that it is now sufficient to put

$$N = F \setminus \left(\bigcup_{k,l} F_{kl} \cup \bigcup_{k,l} H_{kl} \right).$$

The implication (ii) \Rightarrow (iii). It is seen that for any $x \in H(F; q, M, c)$ we have $d(T_x f) \ge 1/c$, $f \in F$. Hence, by Lemma 1, $d(x) \ge 1/c$.

The implication (iii) \Rightarrow (iv) (the method of the proof is taken from [1]). Suppose that (2) does not hold true. Then for some $E \subset X$ with d(E) = 0 and for some $c \ge 1$ we have: $F = \bigcup_{E \in X} kS$, where

$$S:=\left\{f\in F\colon \forall\alpha\in Z^n_+\colon \|D^\alpha f\|_E\leqslant\alpha!\,c^{|\alpha|}\right\}.$$

The set S is closed in F (Lemma 3) and absolutely convex. By the Baire property of F, there exist $\varepsilon > 0$ and a norm $q \in \Gamma$ such that $\{f \in F: q(f) < 2\varepsilon\} \subset S$. Hence

$$||D^{\alpha}f||_{E} \leq \alpha ! \frac{1}{\varepsilon} c^{|\alpha|} q(f), \quad f \in F, \quad \alpha \in \mathbb{Z}_{+}^{n}.$$

Thus $E \subset H\left(F; q, \frac{1}{\varepsilon}, c\right)$ which contradicts (1).

The implication (iv) \Rightarrow (i). Suppose by absurd, that for some $x \in X$ and r > d(x) we have $F_{xr} = F$. Let (G^{xr}, t^{xr}) be chosen accordingly to Definition 2 and let Γ_{xr} be a family of seminorms generating t^{xr} . Put $K := \overline{B}(p(x), d(x))$. By Lemma 3, for $0 < \tau < c(K)$ there exist $c_{\tau} > 0$, $q_{\tau} \in \Gamma_{xr}$ such that:

$$||D^{\alpha}g|| \leq \frac{\alpha! c_{\tau}}{\tau^{|\alpha|}} q_{\tau}(g), \quad g \in G^{xr}, \quad \alpha \in \mathbb{Z}_{+}^{n}.$$

Let us set $E = \hat{B}(x) (d(E) = 0, [2]), c = \frac{1}{\tau}$. We have

$$||D^{\alpha}f||_{E} \leq ||D^{\alpha}f||_{K} \leq \alpha! c_{\tau} c^{|\alpha|} q_{\tau}(f), f \in F, \alpha \in \mathbb{Z}_{+}^{n}.$$

We get a contradiction. The proof is concluded.

6. The case when $t = t_X^c$. Throughout this section we assume that (F, t_X^c) is a natural Fréchet space in $\mathcal{A}(X)$. For a compact set $K \subset X$ and for constants $M, c \ge 1$, we put:

$$\begin{split} \hat{K}_F(M,c) &:= \left\{ x \in X \colon \forall f \in F, \forall m \in \mathbb{Z}_+ \colon \sum_{|\alpha| \leq m} \frac{|D^{\alpha} f(x)|}{\alpha!} \leq Mc^m \sum_{|\alpha| \leq m} \frac{\|D^{\alpha} f\|}{\alpha!} K \right\}, \\ \hat{K}_F(M) &:= \left\{ x \in X \colon \forall f \in F \colon |f(x)| \leq M \|f\| \right\}, \\ \hat{K}_F &:= \hat{K}_F(1). \end{split}$$

Observe that if F is d-stable (i.e. $\forall f \in F$, $\forall \alpha \in \mathbb{Z}_+^n$: $D^{\alpha} f \in F$) then $\hat{K}_F(M, c) = \hat{K}_F(M)$ and if F is p-stable (i.e. $\forall f \in F$, $\forall m \in N$: $f^m \in F$) then $\hat{K}_F(M) = \hat{K}_F$ (comp. [1]).

PROPOSITION 1. The condition (1) is equivalent to $(t = t_X^c!)$

(1') for every compact set $K \subset X$ and for every $M, c \ge 1$:

$$d(\hat{K}_F(M,c))>0$$
.

If F is d-stable then the condition (2) is equivalent to

(2') for every set $E \subset X$ with d(E) = 0 there exists a function $f \in F$ for which $||f||_E = +\infty$.

Proof. Let us fix a constant $c_0 \ge 1$ such that $\sum_{|\alpha| \le m} 1 \le c_0^m$, $m \in \mathbb{Z}_+$. For a compact set

 $K \subset X$, let q_K denote the seminorm given by the formula $F \ni f \to ||f||_K$.

It is easily seen that $H(F; q_K, M, c) \subset \hat{K}_F(M, cc_0)$, hence $(1') \Rightarrow (1)$.

Conversely, in view of Lemma 3, for every $0 < \tau < c(K)$ there exist $c_{\tau} \ge 1$ and a compact set $K_{\tau} \in X$ for which

$$\hat{K}_F(M,c) \subset H\left(F; q_K, Mc_\tau, \frac{cc_0}{\tau}\right),$$

hence $(1) \Rightarrow (1')$.

Obviously $(2') \Rightarrow (2)$. For the proof of the implication $(2) \Rightarrow (2')$, suppose by absurd that for some $E \subset X$ with d(E) = 0 we have $||f||_E < +\infty$, $f \in F$. Then $F = \bigcup_{k \in N} kT$, where $T := \{f \in F: ||f||_E \le 1\}$. The set T is closed and absolutely convex so, as in the proof of Theorem 1, for some $\varepsilon > 0$ and $K \subset X$ we have $||f||_E \le \frac{1}{\varepsilon} ||f||_K$, $f \in F$. Since F is d-stable, so in view of Lemma 3,

$$\|D^{\alpha}f\|_{E} \leq \frac{1}{\varepsilon} \|D^{\alpha}f\|_{K} \leq \frac{1}{\varepsilon} \frac{\alpha! c\tau}{\tau^{|\alpha|}} \|f\|_{K_{\tau}}, f \in F, \alpha \in \mathbb{Z}_{+}^{n}.$$

We get the contradiction.

The proof is completed.

COROLLARY 2. If X = D is a domain in C^n , $p = id_D$, $(F, t) = (O(D), t_D^e)$, then from Theorem 1 and Proposition 1 we get the well-known Cartan-Thullen theorem on the characterization of domains of holomorphy.

COROLLARY 3. If X = D is a domain in \mathbb{R}^n , $p = id_D$, $(F, t) = (\mathscr{E}(D), t_D^c)$, then from Theorem 1 and Proposition 1 we get the main results of [1].

References

- [1] A. Andreotti, M. Nacinovich, Théorie élémentaire de la convexité, R. C. P. 25 (Strasbourg), vol. 24 (1977).
- [2] R. Narasimhan, Several Complex Variables, The University of Chicago Press (1971).
- [3] K. Rusek, J. Siciak, Maximal analytic extensions of Riemann domains over topological vector spaces, Infinite Dimensional Holomorphy and Applications, North-Holland Publishing Company (1977).

INSTITUTE OF MATHEMATICS JAGELLONIAN UNIVERSITY KRAKÓW (POLAND)