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‘Holomorphic continuation of functions
with restricted growth ‘

Marek JARNICKI

Abstract. Let (X, p)bea connected Riemann-Stein domain over C". Let § be a weight function on X'
such that —logd is plurisubharmonic. Let Gj, ..., Gm be S-tempered holomorphic functions on X and

m
let I'= () G5 0.
j=1

In the paper we present examples of normed spaces & of holomorphic functions on I” for which there
exists a linear continuous operator T of £ into (X)NLYX, 62'd,ux) such that Tf = fon I

1 Introductlon. First we shall present some basic notations, definitions and auxiliary
theorems which will be used in the paper (the details may be found in [3]).

Let (X, p) be a connected Riemann domain spread over. C". '

We denote by By(x, r) an open neighbourhood of x € X which is mapped homeomor-
phically by -the projection p onto the Euclidean ball B(p(x),r) in C". We put

0x(x) = sup{r>0: By(x,r) exiéts}\, xeX,
| dx = min{ox, 8o °p},
where 8o(z2) = (1+12 ™2, [z = Y Iz, z = (z1, oy 2) € C°.
A function §: X — (0, 1] will bé?alled a weight function on X (6 € W(X)) if :
a.n - 0=y, A
(12) B -8@I<IPR)—p()],  xeX, ¥ e By(x, 0x()).

Notice that dy € W(X).
Let py denote the measure on X generated by the volume element
(2i)™"dpy A...AdP,Adp, A...Adp,, Where (py, ...,p) =p .
For a continuous function ¢: X — (0, 1] and for a number ke [0, +00), we put

0V, ) = {fe 0X): 10" o< +c0},
HPX, 0) = {fe 0X): 0], = (JI/ P o™ dun*? <+ a0},

where Q(X ) denotes the space of all complex-valued holomorphic functions on X.



(1.3) Notice that af(k)(X @) is a complex Hilbert space whose topology is stronger than
the topology of uniform convergence on compact subsets of X (#®(X, ) is anatural Hilbert

space in 0(X)).
(1.4) Observe that if [@*], < + oo, then

(D(k)(X, (P)C.#(k'l"m)(X, (P)

and

e * f o< lo™ I, 19%f | -
(1.5) In the case when X is an open subset of C", p = idy, if § W(X' ) then in view
of (1.1) we have:

18" 2, < 118" 2|, < + 00
It may be proved ([3], Propositions 2,3) that if § € W(X) then:
(1.6) . 1851 af Jax;ll o, < /25116 |
(L.7) WX, 5);:(9““"”)(}(, 8 and
167 Nl <257 0y Y218 112

where 1, denotes the volume of the unit ball in C".
We denote by L, (X, loc), re Z, , the space of all forms u = Z urdp; of type (0, r)

with locally square-integrable coefﬁcnents >’ means that the sum is taken only over
strictly increasing multi-indexes I = (i, ..., i,), dp; = dp; A...Adp; . Weput [u|* = Z ).

Let
(0 ,)(X ) = {ueL(o n(X, 1oc): ||6%|, = (j|u| 52"dux)”2<+oo} k=0, rez, .

In the sequel an important role will be played by the following version of the generalized
Hormander’s theorem on the solvability of the J-problem ([3], Theorem 2):

(1.8) If X is a Stein domain and —logd is plurisubharmonic on X then for every
ue Fiore (X, 8) with u = 0 (3 is taken in the sense of the distribution theory) there exists
ve ForP(X, 6) such that dv = u and ||6*+ ]|, <6l ,.

Now we pass to the formulation of the problem of holomorphic continuation which

will be investigated in this paper.
Let (X, p) be a connected Riemann—Stein domain over C". Let é € W(X) be such
m

that —logd is plurisubharmonic and let G, ..., G,, € 0“(X,, 8). LetusputI’ = () G;(0).
. i=1
We always assume that ¢ # I' # X. Set ¢o = max{[|0°G;|,: j =1, .., m}.



it

Let us consider the following general problem:

(1.9) Given a normed space & of holomorphic functions on I'; whether there exist
[>0 and a linear continuous operator

T: & » #X, 5)
such that T(f) =fon I, fe &.
In Section 2 we shall consider the case when & = #*(U, ), where U is an open
neighbourhood of I'. The main result of this section is the following:

.

THEOREM 1. Let (X, p), 8, Gy, ..., G, ', U be as above. Assume that there exist an open
nelghbourhood Vol (Vo U), d functzon ¢ CX,[0,1])) and constants s,,s,>0,
¢y ¢ >0 such that:

(1.10) ¢ =1on V, supppcU,

(1.11) 3 € Ly (X, oo), [09]8% <eq ,

(1.12) |G(x)|=c,8(x), xeU\V, where |G*= Y |G)*.
=1

Then there exist constants o, ¢>0 (depending only on n,m,s;, c;, j =0,1,2) such that
for every k=0 there exists a linear continuous operator

T: #MU, 8) » #* X, 8)

such that ||T|<c and T(f)=fon I.
In Section 3 we shall consider the case when I' isa graphand & = #*(I', §). Theorem 2
of this section is a generalization of Theorem 2 in [2].

2. Proof of Theorem 1. Before the proof we shall make a few remarks in relation
to the problem (1.9).

Remark\l. In view of (1.7), the operator T in (1.9) may be considered as a linear con-
tinuous operator from & into 0¢TM(X, 9).

Remark 2. By Remark 1, the necessary condition of existence of T in (1.9) is:
(2. 1) there exist k>0 ¢=0 such that

SIS <l f e, fe'es*’, xel,

\ , ,
where || || denotes the norm of &..

LemMma 1. The problem (1.9) is equivalent to the following one:
(2.2) whether there exist 120 and c¢>0 such that for every f € & there exists fe ,}?m(X )]
such that |8 fll,<c| fllsand f = f on T.

"Proof. Tt is clear that (2.2) is apparently weaker than (1.9).

Conversely, let o# = #W(X,5) and let | ||, denote the norm of 4. Let us put

={geH:g=0o0nT}.By(l3),Pisa closed subspace of #. Let = denote the
pro_]ectlon of & onto &.
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For fe &, if ges# and g = f on I, we put

I(f) = g-n(g).

The operaior T is well-defined, in fact, if g, = f = g, on I then g'l— g, €% and hence
(g, —g2) = g, —g,. It is seen that T: & — # is linear.. If we put g =f, we get
IT(F)l»<2¢|f g, which finishes the proof.

Notice that Lemma 1 may be applied to some other problems like (1.9); we have only
used the fact that 3# is a natural Hilbert space in @(X)
We pass to the proof of Theorem 1.

LeEMMA 2. There exist o, ¢'>0 (depending only on n,m,s;,c ied = 0,1,2) such that
Sor every fe #®(U, 5) there exzst Sforms ug, ..., u, 69’"?{,3") WX, 8) such thas: ’

23) u;=0, j=1,..,m,
i=1
@5 1yl <10l =1,.m
Assuming this lemma for a n;oment we shall finish the main proof.

Fix k>0, fe #®(U, §) and let uy, ..., u,, be associated with f accordingly to Lemma 2.
By (1.8), there exist vy, ..., v, € F (o0 T (X, &) such that

d;=u; and 6% 10 Nl =1, ., m.
Let us put ‘ -
f =f¢—'§1ijj , | .
‘where we mean that f¢ = 0 in X\U. ' .
 Since Efmfﬁgbm‘f: G,:av,., s0 in view of (2.4), fe O(X). It.is cléar that f = fon T.
It is easy to prove tjl:alt ‘
16°*F lo<cli6"f s, where o« =o'+25p, c* = 2[1+(mecoc’)?].
By Lemma 1, this finishes the prpof 'of Theorem 1.

Proof of Lemma 2. The general idea of the proof is the same as in the proof of
Theorem 1 in [1]. For simplicity of notations we shall write / (resp. c) instead of all the
(usually different) constants of the form k+a, where « (resp. c¢) depends only on
n,m,s;, ¢, j = 0,1, 2 (as we shall see, all these constants may be effectively calculated,
but this is not essential for our proof).

Let us put

. Af = {hEL(O,r)(Xs loc): 3, c20: "‘Slhﬂzs ”515}‘“250”57”2}, reZ,,
A =1{h = I =gy ey i), 150y, oy iy <m, Bpe A2,

the system (A); is skew-symmetrical with respect to 7}.



For h = (h) € 4}, we put
Hi? = 3 Vel 16%112 = ( ; B2 8% dux)*?,  Gh = (Bhp)y.

" Observe that the operator 0: 4; — A‘,’.‘.1 is well-defined.
For heA'*!, we put

(Ph)l = '21 Gth,j >
j=

where I,j = (i1, lys )
It is easy to prove that the operator P: 4;*! — 4} is well-defined, Pod=200P (as
the mapping from 4;*!into 4;,,) and PoP =0 (as the mapplng from AY*? into A4)).
By dint of (1:10), (1.11), f3¢ € 49. Let us put .

- {IG]"G,-quS on X\I'

i ,f=1,..,m,

0 on V
and let A = (A%, ..., hY). In view of (1.10), A' is well-defined and supph’ < U. By (1.12),
18R, < |6 ||, Since JOhj = 5(|G|'2Gj) AfO¢, so in view of (1.6) and (1.12),
16'3h |, <cli6% |, Hence h' e A]. Tt is seen that Ph' = f0¢. -

Unfortunately, if m>1, then 6h' # 0, so h' must be modified.

Firstly, by an increasing induction over v, we shall construct a sequence (h)"* ! such
that

hedl, h =0onV, supph’clU v=1,..,m+l,

PR =0n, v=1,.,m.

h! has already been constructed. Suppose that A', ..., A"~" are already constructed

-2<v<m). Tt is easy to check that i given by the formula:

hy _ lGI—Z Z( 1)" JGUah(h NS TR YR Py ) on X\I‘
o=

0 on V

satisfies all the required conditions.
Notice that by skew-symmetry, A™*1 = 0.
Now, by a decreasing induction over v, we shall construct a sequence (g")y=; such that

v " gv+1 ’
gedy™, v=1,.,m,

0" '=hr-Pg", v=2, .,m.

Let us put g™ = 0 and suppose that g™, ..., g" are already constructed (2<v<m).
Since (A" —Pg™) = 8PH™*! = Oand d(h* —Pg") = O’ —Pdg* = 8h"—P("* ' —Pg"" )= 0,
v<m, so g'~! may be obtained by componentwise application of (1.8).

Finally, let v = (uy, ..., u,) = h*—Pg'. The conditions (2.5) follows directly from
the definition. Since d(h! —Pg?) = dh' —Ph* = 0, so (2.3) is fulfilled. Since Pu = Ph' = [0,
s0 (2.4) is also fulfilled.

The proof of Lemma 2 is finished.
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8. Applications of Theorem 1. Let us consider the case when I' is a graph.
Let (Y, g) be a connected Riemann domain over C"™™ (1<m<n—1), let

F = (Fl, LR ] Fm)e [w(r)(Y, ar)]m

and let I' denote the graph of F. Set 4 = max{||6yFill,, j =1, ..., m}.

Let X be a connected open subset of ¥ x C™ containing I' and let p = (g®id _)lx -
Assume that X is a Stein domain.

Let § € W(X) be such that —logd is plurisubharmonic on X and let
n{x) = 6(x, F(x)), x e Y.

We pose the following question:

(3.1)  Given k>0, whether there exist />0 and a linear continuous operator
T: #9(Y,n) > #9X, 5)

such that (Tf)(x, F(x)) = f(x), xe Y.
It is clear that (3.1) may be interpreted as a particular case of (1.9).

In the case Y C"™™, g = idy, a similar problem was investigated by I. Cnop in [2].
The result of this section will be the generalization of Theorem 2 in [2] (notice that our
methods of the proof are independent of [2]).

The first idea is to try to put (Tf ), t) = f(x, 1) = f(x), (x, 1) € X. Unfortunately,
f so defined may lie outside of the space ) #(X, 6). For, let us consider the following

120
example:,

n=2 m=1 Y={zeC:0<lz<1), q=idy, F@) =1z

(since oy(2)<lz|, so Fe 0U(Y, 8,)),
X ={(z,1)e Y C: |z|<|t|} (it is seen that the graph of F is contained in X and
that X'is a domain of holomorphy),
0 = 6y (since X is a domain of holomorphy, so —logé is plurlsubharmonlc),
J = F (since gx(z, 1)< oy(2), so dx(z, 1)< y(z) and in particular ||nf |, < + ).

1 _
Observe that i(ltl—]zl)SQX(z, 1)</2(t|—|z), (z,t)eX. Hence for Izl <|t]<1[2

1
we have 6x(z,-r t)>§(|t!—|z|), so for every />0:

§|f1252’dux>4“' §oold72 (e~ dAg(z, 1) = +o0,

1
|z[<!t|<i-

where 4, denote the Lebesgue measure in C”.
The main result of this section is the following: .

THEOREM 2. Let (Y, q), F, (X, p), d, n be as in (3.1). Then there exist constants o, ¢>0
(depending only on n,m,r, A) such that for every k=0 there exists a linear continuous
operator.

e O, £, 5
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such that |T|<2¥c and (Tf)(x, F(x)) = f(x), x € Y, where

= 0 if 0gk<sm,
T lk=m ifk>m.

Proof. We shali show that Theorem 2 is a particular case of Theorem 1. Let
Gi(x,t) = t;—F(x), (x,t)eX, j= I,..,m. Since 8y(x, )<dy(x), so by (1.1),
Gy, ..., G, e O°V(X, §), where 5o = max{l,r} (¢, = 1+A4).

LemMma 3. Let U = {(x,t)e Yx C™: |t—F(x)| <n(x)}. Then
(3.2)  for every (x,t)e U: (x,1) € A(x) = By((x, F(x)), n(x))
(notice that n(x)<eox(x, F(x)), so the “ball” A(x) is well-defined), in particular UcX;

(3.3) ox,H<U(x), ((x,)el;
(34 | |F120% duy <t ® [ 1P duy,  fe #P(Y, ).
147 Y )

Proof of Lemma 3.

Ad (3.2). Let us fix (x,t)e U and consider the mapping:

[0, 1let > (x, F(x)+1[t—F(x)])e YxC™

It is seen that 7 is continuous, y(0) € A(x) and (q®idcm) o y: [0, 1] » p(4(x)). Hence
there exists a continuous curve $: [0,1] » A(x) such that $(0) = y(0) and

pof = (q®idem) 7.

Since such a lifting is uniquely determined, so $ = y and therefore y(1) = (x, )€ A(x).
Ad (3.3). In view of (1.2) and (3.2), for (x, ¢)e U we have:

3(x, )<O(x, F(x))+1p(x, t)=p(x, FX))| = () +|t—F(x)|<2n(x) .
Ad (3.4). Since py = (uy®4,)|x, so in view of (3.3), by the Fubini theorem we have:

SIS P8 duy<a f17 P () Il BOFx), )ity (3) <™ 1 P ity

The proof of Lemma 3 is finished.

We return to the proof of Theorem 2. Let U be as in Lemma 3. The property (3.4)
shows that the natural embedding of #®(Y, n) into #*7(U, §) is well-defined and con-
tinuous. Hence it is sufficient to prove that the assumptions of Theorem 1 are fulfilled.

Let us put ¥V = {(x, 1) e X: [t—F(x)|<%n(x)}. By (3.3), for ¥ so defined, the con-
dition (1.12) is fulfilled. We only need to construct the function ¢.

Let e CF(C™, [0, 1]) be such that y(z) = 1 if {z|<1[2, Y¥(2) = O if |z}=3/4 and
let us put

P(x, 1) = w(ﬂf}) ., Wx,DeX.
1(x)

It is seen that (1.10) holds true. Note that 8¢ = 0 in ¥ u (X\U), so the estimate (1.11)

is essential only in UNV.
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Obviously
6(;6 oy t F\ 1
6t aZj ” ﬂ’

ag| - i
6—1“:]6<2a° in U,

SO

where
: { oy
dy = max-< |[—

0z;

: 'j=1,...,m}.
o0

By dint of (1.2), the function § is'locally Lipschitz with the constant 1. Hence ¢ is
absolutely continuous. In view of (1.6) (applied to F,, ..., F,,), using the inequality n<dy
and (3.3), by direct calculation we get: ' )

o¢
ax
where ¢ depends only on », m, r, A.

The proof of Theorem 2 is completed.
In view of (1.4) (comp. also (1.5)) and Remark 1, from Theorem 2 we get:

5r+2<aoc

\

COROLLARY 1 (Generalized Cnop’s theorem). There exists a constant x>0 such that
if for some ko=0, |n*°||,<+ oo, then for every k>0 there exist a linear continuous

operator
T: 09(Y, ) » 0%*** (X, 5) \

such that (Tf)(x, F(x)) = f(x), xe Y. ’ .

Added in Proof. After this paper has been submitted for publicati(;)n,‘ the author
learnt that recently, basing on the same general ideas, some results in the case of X< C"
were earlier obtained in [4]; our Theorem 1 in the case X<={C”" and

U= {xeX: |G(x)|<ed"(x)}

may be deduced from Theorem 1 of [4] and from our Lemma 1.
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