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Homomorphic Continuation of Holomorphic Functions
with Bounded Growth

Marek JARNICKI

Abstract. Let X be a Stein manifold and let. M be an analytic subset of X. Let 4, A, be subalgebras
of @ (X)and O (M), respectively, endowed with some topologies. In the paper we present some relations
between continuous algebra-homomorphisms T: A4, — A4 satisfying the condition (Tf)|pm = f, fe Ay, and
holomorphic retractions of X onto M.

Introduction. Let X be a connected n-dimensional Stein manifold, let M be an analytic
subset of X and let R denote the restriction operator: O0(X)3 F — F|y € 0(M), where,
as usually, @(M) denotes the algebra of all continuous functions f: M — C such that
for every a € M there exist an open neighbourhood U € top X of the point ¢ and a function
g € O(U) for which flyv = 9lunu-

- It is clear that R is an algebra-homomorphism of ¢(X) onto O(M) (R is surjective
in virtue of Cartan’s Theorem B — cf. [4], p. 177, Th. 5.11, [6], p. 245, Th. 18). Obviously
R is also continuous if we endow the algebras ¢(X) and O(M) with the topologies of
almost uniform convergence (i.e. uniform convergence on compact subsets) on X and M,
respectively. ,

In view of the theory of holomorphic continuation it is interesting to extend holo-
morphic functions on M to holomorphic functions on X accordingly to the algebraical
and topological structures of ¢(M) and O(X), in other words — to characterize the
situations in which there exists a continuous algebra-homomorphism 7: 0(M) — 0(X)
such that Ro T = idgyy. v

Observe that if X is holomorphically retractible on M, i.e. there exists a holomorphic
mapping n: X — M with rn|,, = id,, then such an operator may be given by the formula:

OM)5f o fome0(X).

The converse is also true, namely we have the following slightly more general theorem:

THEOREM 1. For every algebra-homomorphism T: O(M) — 0(X) with RoT = idgug
there exists (uniquely determined) holomorphic retraction n: X — M such that T = n*.
In particular T has to be continuous.
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The theorem may be easily deduced from the well-known more general classical
results — cf. [1], p. 141, Th. 8, [2]. However, since our situation is very special, in the
sequel we shall present an independent short proof.
 We want to generalize the above results in the following sense:

Let A (resp. A,) be a subalgebra of 0(X) (resp. O®(M)) endowed Wlth a topology.
We assume that:

— the topologies of A and A, are stronger than the topologies of pointwise convergence
on X and M, respectively,

— R|4 maps continuously A into A,,

— A separates points in X,

— M is determined by functions from A, ie. there exists a family F CA such that

= [} F7Y(0).

FedZF

We shall consider the following two problems:
— given a holomorphic retraction 7: X — M, when n*{,, maps continuously A,
into A7

— whether for every continuous algebra-homomorphism 7: 4, > 4 with Ro T
= 1d, there exists a holomorphic retraction n: X — M such that T = n*| 4o (Observe
that, under our assumptions, = is uniquelly determined by T).

Homomorphic continuation of holomorphic functions in the general case.

Remark 1. The existence of an algebra-homomorphism T: 4, — A with Ro T = id Ao
is algebraically equivalent to the existence of a decomposition A = I(M, A)+ B, where
I(M, A) = AnKerR, B is a subalgebra of 4 gnd B n I(M, 4) = {0}. In particular,
since X is connected, if such a decomposition exists then the ideal 7(M, A) is prime. Note
that I{M, A) is prime if and only if M is irreducible in the following sense: there are no
analytic subsets M, M, determined by functions from A for Wthh M=M, 0 M, and
M,# M, j=1,2. '

Remark 2. The condition saying that the ideal I(M, 4) is prime is only necessary
for existence of-the homomorphism 7. In [10], Prop. 5.3 the authors present examples
of connected Stein manifolds ¥ such that, if @: ¥ — C" is a Remmert embedding of Y
(cf. [7], Th. 5.3.9), then, for X = C", M = ®(Y), there are no linear (only linear!) continu-
ous operators L: O(M) — 0(X) with R oL = idgqy,, in spite of the ideal I(M, (D(X )) is
obv1ously prime.

By the way, in view of the results of [10], it scems to be mterestmg to try to characterize
algebra-homomorphisms among linear operators L: 0(M) — 0(X) with Ro L = idg(nr) -

ProrosiTION 1. Let L: O(M) — O(X) be a linear operator such that RoL = idgcar) -
Assume that L is continuous in the topologies of almost uniform convergence on M and
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pointwise convergence on X. Then the following conditions are equivalent:

(i) L is multiplicative;

(i) (LX) = f(M), fe O(M);

(i) L(1) = 1 and L(O*(M))<0*(X), where G*(M) (resp. @*(X)) denotes the group
of all invertible elements in O(M) (resp. 0(X));

(iv) L(1) = 1 and L(e") e 0%(X), fe O(M);

v) L(e') = ", fe O(M);

(vi) L(®Pof) = @ (Lf), fe O(M), ©cO(C).

Proof. The plan of the proof: (i) = (ii) = (111) = (1v) (1)
N /!
(vi) = (V)
The implications (ii) = (iii) = (iv), (vi) = (v) = (iv) are obvious. For the implication
(i) => (ii) suppose that for some fe O(M) there exists a point a € (Lf)(X)\f(M). Then

= (Lf—a)L (—--—-

), so we get the contradiction. For the implication (i) = (vi), assume

L* o)

that ¢(z) = % a,z*. Then L(¢p o f) = L i a.f® = ) alLf)f = qb. o (Lf). The only non-

_—

evident 1mphcat10n is (iv) = (i).

LEMMA 1. Every linear continuous operator &. O(M) — C such that £(1) =1 and
ﬁ(ef Yy # 0, fe O(M), is a character (i.e. non-zero homomorphism).

Proof. The lemma is strictly connected to the well-known theorem on characteri-
zation of characters in Banach algebras — cf. [12], Th. 10.9. The proof will be analogous.

It is sufficient to prove that fe Keré = f* e Keré (comp. [12]). For fe Ker¢, let
P(z) = E(e”), ze C. Tt is clear that @ € O*(C), p(0) = £(1) = 1, ¢'(0) = &(f) = 0 and,
“since & is continuous, | (z)| <e* ¥ z e C. Now, by Lemma 10.8 from [12] (after evident -
modifications) ¢ = 1. In particular ¢”'(0) = &(f*) = 0, what finishes the proot of the
lemma.

Now, for the proof of the implication (iv) = (i) we only need to apply Lemma 1 to
the mappings: O(M)>f - (Lf)(x), xe X. '
The proof of Proposition 1 is completed.

Let spA (resp. spA,) denote the set of all continuous characters on A (resp. A4y).
Let E(X, A) (resp. E(M, A,)) denote the set of all evaluations on A (resp. 4,) determined
by points of X (resp. M), 1.e. of all operators of the form:

A2 F > Fx)eC, xelX,
(resp. Ao 3f — fix)e C, xe M).
Note that E(X, A)ycspA, E(M, Ay)=spA,.

LemMa 2. If spA = E(X, A) and R(A) = A, then spA, = E(M, Ayp).

14*
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Proof. Let us take £ e sp4,. Then £o Re spA. Hence there exists exactly one point
x € X such that (¢ o R)(F) = F(x), Fe A. In particular, for Fe # (F is a family determin-
ing M) we have F(x) = £(0) = 0. Thus x€ M. Now let fe A, and let Fe A be chosen
such that RF = f. Then f(x) = F(x) = E(RF) = &f.

The proof is finished.

THEOREM 2. Assume that spA = E(X, A), R(4) = Ay and there exist Ne N, U € topC"
and ¢ e A" such that ¢ is an embedding of X onto a submanifold of U. Then for every continu-
ous algebra-homomorphism T: Ay - A with Ro T = id 40 there exists uniquely determined
holomorphic retraction n: X — M such that T = | 4o

Proof. Let us take x € X and consider the functional

dy3f 5 (Tf)x) e C.

X 1s connected so T'(1) = 1, Hence £ e spAy. By Lemma 2 there exists a point 7 (x) € M
such that ¢f = f(n(x)), fe 4y, ic. (If)(x) = f(m(x)), fe A, Since A, separates points
in M 50 7|y = idy. Observe that Fox = (To R)(F), Fe 4. In particular ¢ o e A"
Since © = ¢~ ! o (¢ o7n), so m is holomorphic.

The proof is finished. '

Remark 3. Theorem 2 remains true without the assumption on existence of the em-
bedding ¢ if we assume, for instance, that A is dense in O(X) and T is continuous in the
topologies of almost uniform convergence on' M -and X.

Proof. Analogously as in the proof of Theorem 2 we get a mapping 7. X — M such
that 7|y = idy and Tf = fon, fe A,.

Fix ae X and let ¢, - a as k > + 0. Put K = {a,ay, a,,..}. Since K is compact,
there exists a compact L. < M such that ||Tf|| g <||f]l, f € 4p. In particular n(q,) € I:AOCEA=
= LypccX. Let b= lim n(ay). Then f(b) = lim f(n(a,) = lim (If)(q,) =

I+ + o I~ + oo I-=q
= (Tf)(a), fe Ay. Thus b = 7(a) and therefore 7 is continuous.

Let ¢e X and let U, VetopX, Fy,..,F,e A be such that ae U, n(U)cV and
(Fily, ..., F,ly) is a coordinate system on V. Since Fion=(ToR)(F), j=1,..,n,
so 7 is holomorphic.

The proof is completed.

Remark 4. In Theorem 2 the assumption sp4 = E(X, A) cannot be omitted —
a counterexample will be given below.

Let H °°(X ) (resp. H °°(M‘)) denote the algebra of all bounded holomorphic functions
on X (resp. M) endowed with the topology generated by the supremum-norm. O‘bviously
for every holomorphic retraction n: X — M, ¥ go(ary Maps continuously H*(M) into
H%(X). However, even under very restrictive assumptions on X and M, there exist continu-
ous algebra-homomorphisms 7: H®(M) - H®(X ) with R o T = idye(y, Which are not
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given by any holomorphic retraction. This will be shown in the following construction
based on some results of [13].

Let A4 be a connected domain of holomorphy in D? (D = {ze C: |z]<1}) such that
4 # D? and the restriction operator
' R4 ‘
H*(D*)5 ¢ — ¢|,€ H*(4)
1s an isomorphism and an isometry (for the construction of such a domain 4 see [13]). Let
U= {(z,,25,2;) e Ax D: |23l <d(zy, z,)} ,

where d, denotes the distance function to C°\4 in the sense of the polydiscal norm.
One can prove that U is an H* — domain of holomorphy (cf. [13]).

Let us fix ae 4, b e C? such that a+b e DA and let ¢ = b.Puty(z,, z,, z3) =

Pi ,
= (21 +¢123, 23+ €323, 23). Tt is clear that ¥ is an authomorphism of C?, hence vy (U)
is also an H*”-domain of holomorphy. Observe that Y (U) n {z3 = 0} = 4x{0}. Let
X denote the connected component of (U) n D? containing 4 x {0} and let M = X n

- 7
N {z3 = 0}. Clearly M = Ax{0}. Note that (al, a,, Edd(a))e U, 0<0<1, hence

- .0 1
(ch +0b,, a,+0b,, 2d4(a))e W(U)n D 0<0<1.In particular (a!1 +b,,a, +b2,5dd(a))eX.
Let

D* 3 (z,, z,, z3) 5 (21, 22, 0) € D* x {0} .

Note that (a; +b,, a,+b,,0) € n,(X), so n,(X) # M.
Now let

Tf = [ » Ry Y (f)lix, fe H (M)

(we identify M with 4 and D*x {0} with D?).

Obviously 7: H*(M) — H®(X) is a continuous homomorphism with R o T =
but 7 is not given by any holomorphic retraction of X onto M.

One can easily prove that X U (D? x {0}) =sp H*(X).

Observe that X is holomorphically retractible on M, for instance by the retraction

ide(M)

X3 (319 Zy, Z3) — (z4 —C1Z3, 2, —CpZ3, Z3) EM .

The proof of Theorem 1. For the proof we only need to apply Theorem 2 and the
following classical results:
— M= F7Y0)—cf. [6], p. 245, Th. 18,
FeKerR
— every character on 0(X) is continuous and sp@(X) = E(X, 0(X))—cf.[5], p. 177,
Th. 2,

— there exists a Remmert embedding ¢ € [0(X)]*"*! of X onto a submanifold of
C*"*1 _cf. [7], Th. 5.3.9.
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Homomorphic continuation of holomorphic functions with bounded growth. Let X
and M be as in the previous sections. Suppose that : X — (0, 1] is a continuous function

and put: | |
OW(X, 8) = {(Fe O(X): ||0*Flix<+w}, 0X,d) = | 0¥(X,9),

k=0 .
analogously
G*(M,8) = {fe OM): ||8|ly<+w}, OGWM,5) = | O0¥M,SI).
k=20
It is seen that (D("’(X , 0) (resp. 0" (M, §)) is a vector space normed by the function
F — ||6%F||y (resp. f = ||6*f||») and that the topology generated by this norm is stronger
than the topology of almost uniform convergence. Obviously O(X, d) and O(M, §) are
complex algebras. _

Let us recall some definitions (cf. [3]). A pair (E, (E,),) is said to be a polynormed
vector space if any E, is a normed space, E,cF, for k</, idg, is a continuous mapping
of E, into E, for k<land E = |JE,. We say that a linear operator ¢: E — C is continuous

k

if, for every k, &|g, maps continuously E; into C. A linear operator L: E — F, where
(F, (Fy),) is also a polynormed space, is said to be continuous if for every k there exists /
such that L|g is a continuous mapping of E; into Fj. S

Observe that R|ex s 18 a continuous mapping (in the sense of the above definition)
of O(X, ) into O(M, d) (in the general case is not known whether this operator is sur-
jective). .
Let =: X —- M be a holomorphic fetraction satisfying the inequality 6*<c¢éd o n for
some %, ¢>0. Then '

S m* (xS fllw . e O(M, ).

Hence n*|gar,s) is @ continuous operator of O(M, d) into O(X, 9).

It is natural to ask whether this is the universal form of continuous algebra-homo-
morphisms T: O(M, 8) - 0(X, 8) with R o T = idgy, 5. Below we shall present a partial
answer to this question.

- Assume additionally that X is a Riemann domain and let p: X — C” denote its locally
biholomorphic projection into C". Let us introduce some notations (cf. [8], [9]). Let
0x(x) denote the maximal number r>0 such that there exists an open neighbourhood
B(x, r) of the point x which is mapped homeomorphically by p onto the Euclidean ball
B(p(x), r)=C". A function é: X — (0, 1] is called a weight function on X if 6<dy =
= min {(1 +1p1?) Y2, ox} and |8(x) =3 (x")|<|p(x)—p(x)| for every x € X, x’ e B(x, ox(x)).

LEMMA 3. Let (X, p) be a connected Riemann-Stein domain over C", let M be an analytic
subset of X, let & be a weight function on X such that —logé is plurisubharmonic. Suppose
* that for a holomorphic retraction n: X — M, n¥|g 5 maps continuously O(M, ) into
0(X, d). Then there exist constants %, c>0 such that 6*<c¢d o 7.

Proof. Using the methods of the proof of Th. I in [8] we get: for every a € X there
exists a function F,e 0°"*1D(X, ) such that 8(a)Fa) = 1 and ||6°"F1F Jjxy<c(n),
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where c(n) depends only on n. Since 7*|gy, 5 i continuous so for some x, ¢>0 we have:
SO F(r(x))|<c, @, xe X. Putting ¢ = m(x) we get the thesis.

Remark 5. By a remark of P. Pflug (cf. [11]), from the proof of Th. 3 in [8] follows
that, under the assumptions of Lemma 3, 0'4™ (X, §) separates points in X. Hence 0(X, &)
is dense in O(X)—cf. [8], Th. 4.

THEOREM 3. Let X = D be a connected domain of holomorphy in C". Let 5:C" > [0, 1]
satisfy the conditions

S(x)SA+|x}H Y2 I8(x)— (X)L |x~x], x,x' € C", D = {xeC": §(x)>0}

and —logé is plurisubharmonic on D. Let M be an analytic subset of D determined by
Sunctions frem O(D,d). Then for every continuous algebra-homomorphism T: O(M, )
— O(D, d)wvith Ro T = idg, s there exists uniquelly determined holomorphic retraction
n: D - M such that T = w*|gy, 5 and "< co o w for some %, c>0.

Proof. By Th. 6, p. 52 in [3], sp@(D, 8) = E(D, 0(D, 8)). Obviously idp € [0(D, 57"
Thus our theorem follows from Theorem 2. Lemma 3 and Remark 5.

Remark 6. The example given in [9] shows that, even under the assumptions of
Theorem 3, there exist holomorphic retractions z € [@(D, §)]* for which n* does not
map O(M. ) into O(D, ). However basing on the methods of [9] one can prove the
following:

THEOREM 4. Let D be a connected domuin of hblomorphy in C", let 0 be a weight
function on D such that —logd is plurisubharmonic and let M be an analytic subset of D
determined by a finite number of functions from 0(D, 8). Assume that there exists a holo-
morphic retraction n: D — M such that ne[0(D,8)]". Then R(O(D, 5)) = (M, 9),
more exactly: there exist constants o, A>0 such that for every k=0 there exists a linear
continuous operator L. 0®(M.8) —» 0**(D, ) such that RoL, = idgoogy,s and
|| <4 A.
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