Homomorphic Continuation of Holomorphic Functions with Bounded Growth

Marek JARNICKI

Abstract. Let X be a Stein manifold and let M be an analytic subset of X. Let A, A_0 be subalgebras of $\mathcal{O}(X)$ and $\mathcal{O}(M)$, respectively, endowed with some topologies. In the paper we present some relations between continuous algebra-homomorphisms $T: A_0 \to A$ satisfying the condition $(Tf)|_{M} = f, f \in A_0$, and holomorphic retractions of X onto M.

Introduction. Let X be a connected n-dimensional Stein manifold, let M be an analytic subset of X and let R denote the restriction operator: $\mathcal{O}(X) \ni F \to F|_M \in \mathcal{O}(M)$, where, as usually, $\mathcal{O}(M)$ denotes the algebra of all continuous functions $f: M \to C$ such that for every $a \in M$ there exist an open neighbourhood $U \in \text{top } X$ of the point a and a function $g \in \mathcal{O}(U)$ for which $f|_{M \cap U} = g|_{M \cap U}$.

It is clear that R is an algebra-homomorphism of $\mathcal{O}(X)$ onto $\mathcal{O}(M)$ (R is surjective in virtue of Cartan's Theorem B — cf. [4], p. 177, Th. 5.11, [6], p. 245, Th. 18). Obviously R is also continuous if we endow the algebras $\mathcal{O}(X)$ and $\mathcal{O}(M)$ with the topologies of almost uniform convergence (i.e. uniform convergence on compact subsets) on X and M, respectively.

In view of the theory of holomorphic continuation it is interesting to extend holomorphic functions on M to holomorphic functions on X accordingly to the algebraical and topological structures of $\mathcal{O}(M)$ and $\mathcal{O}(X)$, in other words — to characterize the situations in which there exists a continuous algebra-homomorphism $T: \mathcal{O}(M) \to \mathcal{O}(X)$ such that $R \circ T = \mathrm{id}_{\mathcal{O}(M)}$.

Observe that if X is holomorphically retractible on M, i.e. there exists a holomorphic mapping $\pi: X \to M$ with $\pi|_M = \mathrm{id}_M$, then such an operator may be given by the formula:

$$\mathcal{O}(M)\ni f\stackrel{\pi*}{\to} f\circ \pi\in \mathcal{O}(X).$$

The converse is also true, namely we have the following slightly more general theorem:

THEOREM 1. For every algebra-homomorphism $T: \mathcal{O}(M) \to \mathcal{O}(X)$ with $R \circ T = \mathrm{id}_{\mathcal{O}(M)}$ there exists (uniquely determined) holomorphic retraction $\pi: X \to M$ such that $T = \pi^*$. In particular T has to be continuous.

14 — Acta Mathematica 24

The theorem may be easily deduced from the well-known more general classical results — cf. [1], p. 141, Th. 8, [2]. However, since our situation is very special, in the sequel we shall present an independent short proof.

We want to generalize the above results in the following sense:

Let A (resp. A_0) be a subalgebra of $\mathcal{O}(X)$ (resp. $\mathcal{O}(M)$) endowed with a topology. We assume that:

- the topologies of A and A_0 are stronger than the topologies of pointwise convergence on X and M, respectively,
 - $R|_A$ maps continuously A into A_0 ,
 - A separates points in X,
- M is determined by functions from A, i.e. there exists a family $\mathcal{F} \subset A$ such that $M = \bigcap_{F \in \mathcal{F}} F^{-1}(0)$.

We shall consider the following two problems:

- given a holomorphic retraction $\pi: X \to M$, when $\pi^*|_{A_0}$ maps continuously A_0 into A?
- whether for every continuous algebra-homomorphism $T: A_0 \to A$ with $R \circ T = \mathrm{id}_{A_0}$ there exists a holomorphic retraction $\pi: X \to M$ such that $T = \pi^*|_{A_0}$ (observe that, under our assumptions, π is uniquely determined by T).

Homomorphic continuation of holomorphic functions in the general case.

Remark 1. The existence of an algebra-homomorphism $T: A_0 \to A$ with $R \circ T = \mathrm{id}_{A_0}$ is algebraically equivalent to the existence of a decomposition A = I(M, A) + B, where $I(M, A) = A \cap \mathrm{Ker}\,R$, B is a subalgebra of A and $B \cap I(M, A) = \{0\}$. In particular, since X is connected, if such a decomposition exists then the ideal I(M, A) is prime. Note that I(M, A) is prime if and only if M is irreducible in the following sense: there are no analytic subsets M_1, M_2 determined by functions from A for which $M = M_1 \cup M_2$ and $M_j \neq M$, j = 1, 2.

Remark 2. The condition saying that the ideal I(M, A) is prime is only necessary for existence of the homomorphism T. In [10], Prop. 5.3 the authors present examples of connected Stein manifolds Y such that, if $\Phi: Y \to \mathbb{C}^N$ is a Remmert embedding of Y (cf. [7], Th. 5.3.9), then, for $X = \mathbb{C}^N$, $M = \Phi(Y)$, there are no linear (only linear!) continuous operators $L: \mathcal{O}(M) \to \mathcal{O}(X)$ with $R \circ L = \mathrm{id}_{\mathcal{O}(M)}$, in spite of the ideal $I(M, \mathcal{O}(X))$ is obviously prime.

By the way, in view of the results of [10], it seems to be interesting to try to characterize algebra-homomorphisms among linear operators $L \colon \mathcal{O}(M) \to \mathcal{O}(X)$ with $R \circ L = \mathrm{id}_{\mathcal{O}(M)}$.

PROPOSITION 1. Let $L \colon \mathcal{O}(M) \to \mathcal{O}(X)$ be a linear operator such that $R \circ L = \mathrm{id}_{\mathcal{O}(M)}$. Assume that L is continuous in the topologies of almost uniform convergence on M and

pointwise convergence on X. Then the following conditions are equivalent:

- (i) L is multiplicative;
- (ii) $(Lf)(X) = f(M), f \in \mathcal{O}(M);$
- (iii) L(1) = 1 and $L(0*(M)) \subset 0*(X)$, where 0*(M) (resp. 0*(X)) denotes the group of all invertible elements in 0(M) (resp. 0(X));
 - (iv) L(1) = 1 and $L(e^f) \in \mathcal{O}^*(X)$, $f \in \mathcal{O}(M)$;
 - (v) $L(e^f) = e^{L(f)}, f \in \mathcal{O}(M);$
 - (vi) $L(\Phi \circ f) = \Phi \circ (Lf), f \in \mathcal{O}(M), \Phi \in \mathcal{O}(C).$

Proof. The plan of the proof: (i)
$$\Rightarrow$$
 (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) \Rightarrow (vi) \Rightarrow (v)

The implications (ii) \Rightarrow (iii) \Rightarrow (iv), (vi) \Rightarrow (v) \Rightarrow (iv) are obvious. For the implication (i) \Rightarrow (ii) suppose that for some $f \in \mathcal{O}(M)$ there exists a point $a \in (Lf)(X) \setminus f(M)$. Then $1 \equiv (Lf-a)L\left(\frac{1}{f-a}\right)$, so we get the contradiction. For the implication (i) \Rightarrow (vi), assume that $\phi(z) = \sum_{k=0}^{\infty} a_k z^k$. Then $L(\phi \circ f) = L\sum_{k=0}^{\infty} a_k f^k = \sum_{k=0}^{\infty} a_k (Lf)^k = \phi \circ (Lf)$. The only nonevident implication is (iv) \Rightarrow (i).

LEMMA 1. Every linear continuous operator $\xi \colon \mathcal{O}(M) \to \mathbb{C}$ such that $\xi(1) = 1$ and $\xi(e^f) \neq 0$, $f \in \mathcal{O}(M)$, is a character (i.e. non-zero homomorphism).

Proof. The lemma is strictly connected to the well-known theorem on characterization of characters in Banach algebras — cf. [12], Th. 10.9. The proof will be analogous.

It is sufficient to prove that $f \in \text{Ker } \xi \Rightarrow f^2 \in \text{Ker } \xi$ (comp. [12]). For $f \in \text{Ker } \xi$, let $\varphi(z) \doteq \xi(e^{zf})$, $z \in C$. It is clear that $\varphi \in \mathcal{O}^*(C)$, $\varphi(0) = \xi(1) = 1$, $\varphi'(0) = \xi(f) = 0$ and, since ξ is continuous, $|\varphi(z)| \leq e^{\alpha + \beta |z|}$, $z \in C$. Now, by Lemma 10.8 from [12] (after evident modifications) $\varphi \equiv 1$. In particular $\varphi''(0) = \xi(f^2) = 0$, what finishes the proof of the lemma.

Now, for the proof of the implication (iv) \Rightarrow (i) we only need to apply Lemma 1 to the mappings: $\mathcal{O}(M) \ni f \to (Lf)(x), x \in X$.

The proof of Proposition 1 is completed.

Let $\operatorname{sp} A$ (resp. $\operatorname{sp} A_0$) denote the set of all continuous characters on A (resp. A_0). Let E(X, A) (resp. $E(M, A_0)$) denote the set of all evaluations on A (resp. A_0) determined by points of X (resp. M), i.e. of all operators of the form:

$$A \ni F \to F(x) \in \mathbb{C}$$
, $x \in X$,
(resp. $A_0 \ni f \to f(x) \in \mathbb{C}$, $x \in M$).

Note that $E(X, A) \subset \operatorname{sp} A$, $E(M, A_0) \subset \operatorname{sp} A_0$.

LEMMA 2. If $\operatorname{sp} A = E(X, A)$ and $R(A) = A_0$ then $\operatorname{sp} A_0 = E(M, A_0)$.

Proof. Let us take $\xi \in \operatorname{sp} A_0$. Then $\xi \circ R \in \operatorname{sp} A$. Hence there exists exactly one point $x \in X$ such that $(\xi \circ R)(F) = F(x)$, $F \in A$. In particular, for $F \in \mathscr{F}$ (\mathscr{F} is a family determining M) we have $F(x) = \xi(0) = 0$. Thus $x \in M$. Now let $f \in A_0$ and let $F \in A$ be chosen such that RF = f. Then $f(x) = F(x) = \xi(RF) = \xi f$.

The proof is finished.

THEOREM 2. Assume that $\operatorname{sp} A = E(X,A)$, $R(A) = A_0$ and there exist $N \in \mathbb{N}$, $U \in \operatorname{top} \mathbb{C}^N$ and $\phi \in A^N$ such that ϕ is an embedding of X onto a submanifold of U. Then for every continuous algebra-homomorphism $T: A_0 \to A$ with $R \circ T = \operatorname{id}_{A_0}$ there exists uniquely determined holomorphic retraction $\pi: X \to M$ such that $T = \pi^*|_{A_0}$.

Proof. Let us take $x \in X$ and consider the functional

$$A_0 \ni f \xrightarrow{\xi} (Tf)(x) \in C$$
.

X is connected so T(1) = 1. Hence $\xi \in \operatorname{sp} A_0$. By Lemma 2 there exists a point $\pi(x) \in M$ such that $\xi f = f(\pi(x))$, $f \in A_0$, i.e. $(Tf)(x) = f(\pi(x))$, $f \in A_0$. Since A_0 separates points in M so $\pi|_M = \operatorname{id}_M$. Observe that $F \circ \pi = (T \circ R)(F)$, $F \in A$. In particular $\phi \circ \pi \in A^N$. Since $\pi = \phi^{-1} \circ (\phi \circ \pi)$, so π is holomorphic.

The proof is finished.

Remark 3. Theorem 2 remains true without the assumption on existence of the embedding ϕ if we assume, for instance, that A is dense in $\mathcal{O}(X)$ and T is continuous in the topologies of almost uniform convergence on M and X.

Proof. Analogously as in the proof of Theorem 2 we get a mapping $\pi: X \to M$ such that $\pi|_M = \mathrm{id}_M$ and $Tf = f \circ \pi$, $f \in A_0$.

Fix $a \in X$ and let $a_k \to a$ as $k \to +\infty$. Put $K = \{a, a_1, a_2, ...\}$. Since K is compact, there exists a compact $L \subset M$ such that $||Tf||_K \le ||f||_L$, $f \in A_0$. In particular $\pi(a_k) \in \widehat{L}_{A_0} \subset \widehat{L}_A = \widehat{L}_{0(X)} \subset \subset X$. Let $b = \lim_{l \to +\infty} \pi(a_{k_l})$. Then $f(b) = \lim_{l \to +\infty} f(\pi(a_{k_l})) = \lim_{l \to +\infty} (Tf)(a_{k_l}) = (Tf)(a)$, $f \in A_0$. Thus $b = \pi(a)$ and therefore π is continuous.

Let $a \in X$ and let $U, V \in \text{top } X, F_1, ..., F_n \in A$ be such that $a \in U, \pi(U) \subset V$ and $(F_1|_V, ..., F_n|_V)$ is a coordinate system on V. Since $F_j \circ \pi = (T \circ R)(F_j), j = 1, ..., n$, so π is holomorphic.

The proof is completed.

Remark 4. In Theorem 2 the assumption spA = E(X, A) cannot be omitted—a counterexample will be given below.

Let $H^{\infty}(X)$ (resp. $H^{\infty}(M)$) denote the algebra of all bounded holomorphic functions on X (resp. M) endowed with the topology generated by the supremum-norm. Obviously for every holomorphic retraction $\pi\colon X\to M$, $\pi^*|_{H^{\infty}(M)}$ maps continuously $H^{\infty}(M)$ into $H^{\infty}(X)$. However, even under very restrictive assumptions on X and M, there exist continuous algebra-homomorphisms $T\colon H^{\infty}(M)\to H^{\infty}(X)$ with $R\circ T=\mathrm{id}_{H^{\infty}(M)}$ which are not

given by any holomorphic retraction. This will be shown in the following construction based on some results of [13].

Let Δ be a connected domain of holomorphy in \mathbf{D}^2 ($\mathbf{D} = \{z \in C: |z| < 1\}$) such that $\Delta \neq \mathbf{D}^2$ and the restriction operator

$$H^{\infty}(\mathbf{D}^2) \ni \varphi \stackrel{R_{\Delta}}{\to} \varphi|_{\Delta} \in H^{\infty}(\Delta)$$

is an isomorphism and an isometry (for the construction of such a domain Δ see [13]). Let

$$U = \{(z_1, z_2, z_3) \in \Delta \times \mathbf{D} : |z_3| < d_{\Delta}(z_1, z_2)\},$$

where d_A denotes the distance function to $C^2 \setminus A$ in the sense of the polydiscal norm. One can prove that U is an H^{∞} — domain of holomorphy (cf. [13]).

Let us fix $a \in \Delta$, $b \in \mathbb{C}^2$ such that $a+b \in \mathbb{D}^2 \setminus \Delta$ and let $c = \frac{2}{d_A(a)}b$. Put $\psi(z_1, z_2, z_3) = (z_1+c_1z_3, z_2+c_2z_3, z_3)$. It is clear that ψ is an authomorphism of \mathbb{C}^3 , hence $\psi(U)$ is also an H^{∞} -domain of holomorphy. Observe that $\psi(U) \cap \{z_3 = 0\} = \Delta \times \{0\}$. Let X denote the connected component of $\psi(U) \cap \mathbb{D}^3$ containing $\Delta \times \{0\}$ and let $M = X \cap \{0\}$ Clearly $M = \Delta \times \{0\}$. Note that $\left(a_1, a_2, \frac{\theta}{2}d_A(a)\right) \in U$, $0 \le \theta \le 1$, hence $\left(a_1 + \theta b_1, a_2 + \theta b_2, \frac{\theta}{2}d_A(a)\right) \in \psi(U) \cap \mathbb{D}^3$, $0 \le \theta \le 1$. In particular $\left(a_1 + b_1, a_2 + b_2, \frac{1}{2}d_A(a)\right) \in X$. Let

$$D^3 \ni (z_1, z_2, z_3) \xrightarrow{\pi_0} (z_1, z_2, 0) \in D^2 \times \{0\}$$
.

Note that $(a_1 + b_1, a_2 + b_2, 0) \in \pi_0(X)$, so $\pi_0(X) \neq M$. Now let

$$Tf = [(\pi_0^* \circ R_{\Delta}^{-1})(f)]|_X, f \in H^{\infty}(M)$$

(we identify M with Δ and $\mathbf{D}^2 \times \{0\}$ with \mathbf{D}^2).

Obviously $T: H^{\infty}(M) \to H^{\infty}(X)$ is a continuous homomorphism with $R \circ T = \mathrm{id}_{H^{\infty}(M)}$ but T is not given by any holomorphic retraction of X onto M.

One can easily prove that $X \cup (D^2 \times \{0\}) \subset \operatorname{sp} H^{\infty}(X)$.

Observe that X is holomorphically retractible on M, for instance by the retraction

$$X\ni (z_1,\,z_2,\,z_3) \to (z_1-c_1z_3,\,z_2-c_2z_3,\,z_3)\in M$$
.

The proof of Theorem 1. For the proof we only need to apply Theorem 2 and the following classical results:

-
$$M = \bigcap_{F \in \text{Ker } R} F^{-1}(0)$$
 - cf. [6], p. 245, Th. 18,

— every character on $\mathcal{O}(X)$ is continuous and $\operatorname{sp}\mathcal{O}(X) = E(X, \mathcal{O}(X))$ — cf. [5], p. 177, Th. 2,

— there exists a Remmert embedding $\phi \in [\mathcal{O}(X)]^{2n+1}$ of X onto a submanifold of C^{2n+1} — cf. [7], Th. 5.3.9.

Homomorphic continuation of holomorphic functions with bounded growth. Let X and M be as in the previous sections. Suppose that $\delta: X \to (0, 1]$ is a continuous function and put:

$$\mathcal{O}^{(k)}(X,\delta) = \left\{ F \in \mathcal{O}(X) \colon ||\delta^k F||_X < +\infty \right\}, \qquad \mathcal{O}(X,\delta) = \bigcup_{k \geq 0} \mathcal{O}^{(k)}(X,\delta),$$

analogously

$$\mathcal{O}^{(k)}(M,\boldsymbol{\delta}) = \left\{ f \in \mathcal{O}(M) \colon ||\delta^k f||_M < +\infty \right\}, \quad \mathcal{O}(M,\delta) = \bigcup_{k \geq 0} \mathcal{O}^{(k)}(M,\delta).$$

It is seen that $\mathcal{O}^{(k)}(X, \delta)$ (resp. $\mathcal{O}^{(k)}(M, \delta)$) is a vector space normed by the function $F \to ||\delta^k F||_X$ (resp. $f \to ||\delta^k f||_M$) and that the topology generated by this norm is stronger than the topology of almost uniform convergence. Obviously $\mathcal{O}(X, \delta)$ and $\mathcal{O}(M, \delta)$ are complex algebras.

Let us recall some definitions (cf. [3]). A pair $(E, (E_k)_k)$ is said to be a polynormed vector space if any E_k is a normed space, $E_k \subset E_l$ for $k \leq l$, id_{E_k} is a continuous mapping of E_k into E_l for $k \leq l$ and $E = \bigcup E_k$. We say that a linear operator $\xi \colon E \to C$ is continuous

if, for every k, $\xi|_{E_k}$ maps continuously E_k into C. A linear operator $L: E \to F$, where $(F, (F_l)_l)$ is also a polynormed space, is said to be *continuous* if for every k there exists l such that $L|_{E_k}$ is a continuous mapping of E_k into F_l .

Observe that $R|_{\mathcal{O}(X,\delta)}$ is a continuous mapping (in the sense of the above definition) of $\mathcal{O}(X,\delta)$ into $\mathcal{O}(M,\delta)$ (in the general case is not known whether this operator is surjective).

Let $\pi: X \to M$ be a holomorphic fetraction satisfying the inequality $\delta^* \leq c\delta \circ \pi$ for some $\varkappa, c > 0$. Then

$$||\delta^{\times k}\pi^*(f)||_X \leq c^k ||\delta^k f||_M$$
, $f \in \mathcal{O}^k(M, \delta)$.

Hence $\pi^*|_{\mathcal{O}(M,\delta)}$ is a continuous operator of $\mathcal{O}(M,\delta)$ into $\mathcal{O}(X,\delta)$.

It is natural to ask whether this is the universal form of continuous algebra-homomorphisms $T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$ with $R \circ T = \mathrm{id}_{\mathcal{O}(M, \delta)}$. Below we shall present a partial answer to this question.

Assume additionally that X is a Riemann domain and let $p: X \to \mathbb{C}^n$ denote its locally biholomorphic projection into \mathbb{C}^n . Let us introduce some notations (cf. [8], [9]). Let $\varrho_X(x)$ denote the maximal number r>0 such that there exists an open neighbourhood $\widehat{B}(x,r)$ of the point x which is mapped homeomorphically by p onto the Euclidean ball $B(p(x),r)\subset \mathbb{C}^n$. A function $\delta\colon X\to (0,1]$ is called a weight function on X if $\delta\leqslant \delta_X=\min\{(1+|p|^2)^{-1/2},\varrho_X\}$ and $|\delta(x)-\delta(x')|\leqslant |p(x)-p(x')|$ for every $x\in X, x'\in \widehat{B}(x,\varrho_X(x))$.

LEMMA 3. Let (X, p) be a connected Riemann-Stein domain over \mathbb{C}^n , let M be an analytic subset of X, let δ be a weight function on X such that $-\log \delta$ is plurisubharmonic. Suppose that for a holomorphic retraction $\pi\colon X\to M$, $\pi^*|_{\mathscr{O}(M,\delta)}$ maps continuously $\mathscr{O}(M,\delta)$ into $\mathscr{O}(X,\delta)$. Then there exist constants $\varkappa,c>0$ such that $\delta^*\leqslant c\delta\circ\pi$.

Proof. Using the methods of the proof of Th. 1 in [8] we get: for every $a \in X$ there exists a function $F_n \in \mathcal{O}^{(6n+1)}(X, \delta)$ such that $\delta(a)F_a(a) = 1$ and $||\delta^{6n+1}F_a||_X \leq c(n)$,

where c(n) depends only on n. Since $\pi^*|_{\mathscr{O}(M,\delta)}$ is continuous so for some \varkappa , c>0 we have: $\delta^{\varkappa}(x)|F_a(\pi(x))| \leq c$, a, $x \in X$. Putting $a = \pi(x)$ we get the thesis.

Remark 5. By a remark of P. Pflug (cf. [11]), from the proof of Th. 3 in [8] follows that, under the assumptions of Lemma 3, $\mathcal{O}^{(4n)}(X, \delta)$ separates points in X. Hence $\mathcal{O}(X, \delta)$ is dense in $\mathcal{O}(X)$ — cf. [8], Th. 4.

THEOREM 3. Let X = D be a connected domain of holomorphy in \mathbb{C}^n . Let $\delta \colon \mathbb{C}^n \to [0, 1]$ satisfy the conditions

$$\delta(x) \le (1+|x|^2)^{-1/2}, \ |\delta(x)-\delta(x')| \le |x-x'|, \ x, x' \in \mathbb{C}^n, \ D = \{x \in \mathbb{C}^n : \ \delta(x) > 0\}$$

and $-\log \delta$ is plurisubharmonic on D. Let M be an analytic subset of D determined by functions from $\mathcal{O}(D,\delta)$. Then for every continuous algebra-homomorphism $T\colon \mathcal{O}(M,\delta)\to \mathcal{O}(D,\delta)$ with $R\circ T=\mathrm{id}_{\mathcal{O}(M,\delta)}$ there exists uniquely determined holomorphic retraction $\pi\colon D\to M$ such that $T=\pi^*|_{\mathcal{O}(M,\delta)}$ and $\delta^*\leqslant c\delta\circ\pi$ for some $\varkappa,c>0$.

Proof. By Th. 6, p. 52 in [3], $\operatorname{sp} \mathcal{O}(D, \delta) = E(D, \mathcal{O}(D, \delta))$. Obviously $\operatorname{id}_{D} \in [\mathcal{O}(D, \delta)]^{n}$. Thus our theorem follows from Theorem 2, Lemma 3 and Remark 5.

Remark 6. The example given in [9] shows that, even under the assumptions of Theorem 3, there exist holomorphic retractions $\pi \in [\mathcal{O}(D,\delta)]^n$ for which π^* does not map $\mathcal{O}(M,\delta)$ into $\mathcal{O}(D,\delta)$. However basing on the methods of [9] one can prove the following:

Theorem 4. Let D be a connected domain of holomorphy in C^n , let δ be a weight function on D such that $-\log \delta$ is plurisubharmonic and let M be an analytic subset of D determined by a finite number of functions from $\mathcal{O}(D,\delta)$. Assume that there exists a holomorphic retraction $\pi\colon D\to M$ such that $\pi\in [\mathcal{O}(D,\delta)]^n$. Then $R(\mathcal{O}(D,\delta))=\mathcal{O}(M,\delta)$, more exactly: there exist constants $\alpha,A>0$ such that for every $k\geqslant 0$ there exists a linear continuous operator $L_k\colon \mathcal{O}^{(k)}(M,\delta)\to \mathcal{O}^{(k+\alpha)}(D,\delta)$ such that $R\circ L_k=\mathrm{id}_{\mathcal{O}(M,\delta)}$ and $||L_k||\leqslant 4^kA$.

References

- [1] H. Behnke, P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer-Verlag, Berlin-Heidelberg-New York 1970.
- [2] K. Czaja, A homomorphismus of certain Stein algebras, Zeszyty Naukowe UJ, 20 (1979).
- [3] J. P. Ferrier, Spectral Theory and Complex Analysis, North-Holland Publishing Company, Amsterdam—London 1973.
- [4] H. Grauert, K. Fritzche, Several Complex Variables, Springer-Verlag, New York—Heidelberg—Berlin 1976.
- [5] H. Grauert, R. Remmert, Theory of Stein Spaces, ibid. 1979.
- [6] R. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, New York 1965.

- [7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company, Amsterdam—London 1973.
- [8] M. Jarnicki, Holomorphic functions with bounded growth on Riemann domains over \mathbb{C}^n , Zeszyty Naukowe UJ, 20 (1979).
- [9] —, Holomorphic continuation of functions with restricted growth, ibid., 23 (1982).
- [10] Б. С. Митягин, Т. М. Хенкин, Линейные задачи комплексного анализа, Успехи Мат. Наук. XXVI (4) (1971).
- [11] P. Pflug, Eine Bemerkung über die Konstruktion von Holomorphiehüllen, Zeszyty Naukowe UJ, 23 (1982).
- [12] W. Rudin, Functional Analysis, McGraw-Hill Book Company 1973.
- [13] N. Sibony, Prolongement analytique des fonctions holomorphes bornées, Lecture Notes in Math. 410. Springer Verlag, Berlin—Heidelberg—New York 1974.

Received October 29, 1980.