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Holomorphic Continuation with Restricted Growth
Marek JARNICKI

1. Introduction. In the paper we shall present a generalization of the following theorem
to the case of Riemann domains.

THEOREM N ([3]). Let M be an n—1 dimensional analytic submanifold of C" such that
there exists a function G e O(C") for which M = G~Y(0) and

1G(2)| <MWz e Cm,

max

where ¢>0,a,b>1 are constants.
Then for every m=1 there exists m=1 (depending only on n, o, a, b, m) such that every
Junction fe O(M) satisfving the condition

@)™ WD 2 e pr,

admits an extension f e O(C") such that

k=1, ...,n};e'b(”z””’l), ze M,

oG
— (2)
0z,

1@<, zecn

Let (X, p) be a Riemann domain spread over C", p = (p,, ..., p,): X = C". We say
that (X, p) is a Stein domain if X with the natural analytic structure given by p is a Stein
manifold. ‘

From now on (X, p) will always denote a Riemann-Stein domain over C", in particular,
(X, p) = (Q,idy), where @ is a domain of holomorphy in C".

For xe X, r>0, let B(x,r) denote an open neighbourhood of x mapped homeo-
morphically by p onto the Euclidean ball B(p(x), r)=C". Let us put:

0(x) = sup{r>0: B(x, r)" exists} ,
B(x) = E’(x, 0(x)),
8y = min{g, (1+]IplH)~*?}.
A function é: X — (0, 1] is said to be a weight function on X if
(1) 0Ky ,

(2) 3(x)=3(x) <llp(x)=p(x)]], xe X, x" € B(x) (comp. [1]).
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Observe that (2) implies

(3) 15(x) =3 (") <lp(x)=p(x, x'.x" € B(x, Te(x), xe X,
(4) a ~0)5x) <SS +0)5(x), xe X, "€ B(x, 05(x)), 0<6 <t .

Let us remark that if (X,p) = (Q,idy) and if 6 is a welght function on Q then in
view of (1) | -

| )] f&z("+"dl< j (1 +1zl15)” ("+‘)dl< —( ) 8>0,

X

where 1 denotes the Lebesgue measure in C”".

Let i denote the measure on X generated by the volume element (2i)™"dp, ~ ... Adp, A
dp; A ... A dp,. Put

HOX, 5) = (£ 000): 1151, = (J Iflzéz’du)”2< +ao},
0¥NX, 8) = {fe O0(X): 116l < + o0}, and analogously for a submanifold M of X:
O9(M, 8 = {fe O(M): |8lo<+o0}, 5=0.

The following three results will be useful in the sequel.
Let & be a weight function on X. Then:

(6) ({11, Prop. 2) 165 1% f || <alfnlH 25 |18, , € 6(X ), 520, ae Z% .
(D ([11, Prop. 3) |6 Fllo<[(1—00"/7] "M I8F1l2. S € 0(X), s20, 0<0<1,
where 1, denotes the volume of the unit ball in C". ‘

(8) ([1] Th. 2) If moreover —logdePSH(X), then for every d-closed form
ue L, (X, loc) there exists ve L¥(X,loc) such that év =u and [|6° 20|l <||6%]|;
= ( [ |u|*6%du)'"*.

X

The main result of the paper is the following

THEOREM 1. Let (X, p) be a Riemann-Stein domain over C" and let 6 be a weight function
on X such that —logd e PSH(X) and, for some o5=0, A, = |67l <+ 0 1. Let M be
an n—1 dimensional analytic submanifold of X such that there exists a function G € 0(X,d)
for which M = G~1(0) and

A = ||6°Gl|, < + o,

o

where a. =0, B>0 are constants.

k=1, };B&”(_x), xeM,

! Comp. (3) and note that if £ is bounded then we can put ¢, = 0.
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Then for every n>1 there exists a constant ¢4 >0 (depending onlyonn, a, 8, Ay, A, B, 1)
such that: | -
~ for every s20 there exists a linear continuous extension operator

Ly 09(M, 8) - HEY9(X, 6)
such thar | ‘
L(f)=fon M, fe w‘”(M 3),

HL I < eonr’,
where Yo = Og+ Sa+SF+8.

~ Notice that y, is effectively given and as it will follow from the proof, ¢, may be also
effectwely calculated.
The proof will be presented in Section 2.

COROLLARY 1. Under the assumptions of Theorem 1, for every n>1 there exists a con-
stant ¢>0 (depending only on n,a, B, Ay, A, B, ) such that:

Jor every s3>0 there exists a linear continuous extemsion operator L. 0“(M, d) -
— 0“Y(X, 8) such that -
L{f)=fon M, fe 0" (M, ),

L <en®,

where 7 = yo+n (= n+oy+S50+56+8).

Proof. Let us fix o>1 and let 0<f<1 be chosen such that n = (1—-6)n,>1. Let
¢o, (Lg)s» ¢ be associated with n accordingly to Theorem 1. In view of (7), L, may be
regarded as a linear continuous operator of 0“)(M, 8) into @“**™(X, §) and as an
operator between these spaces, it has the norm <cng, where ¢ = ¢o[(1—-0)"6"/7,] " .
The proof is finished.

COROLLARY 2. Theorem N is a consequence of Corollary 1.

Proof. Let M, G, 0, a, b be as in Th N. It is easy to show that for some % = %(6)>0
the function

d(z) = xmin{e™?, e‘”"'“a}, ze ",

-

1s a weight function in C". Clearly —logé e PSH(C").

Thus (C", 1dcn) o, M, G satlsfy all the assumptions of Th. 1 with oy = n+e (comp (5)),
a=da, f =b.

Let ¢, (Ly)s»o be associated with n = 2 accordingly to Corollary 1. Fix m<1 and
Fe OM) with |f(2)| <™ "D 22 M. Then fe 0™(M, ) and |[6™f]|,<(xe)™. Put
J=L,(f). Tt is seen that fe O(C"), f = fon M and [|6™*"f]| . <c(2xe)™, where y = 2n+

m

:l we get | f (2)| <e™ 1217+ 7 e €7, which

2
+5a+5b+8 +¢. Putting it = m+7y+ log™ [( ev)
| %

finishes the proof.
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Below we shall present two (in some sense extremal) examples of a domain of holo-
morphy Q< C” and an n—1 dimensional analytic submanifold M < Q such that for every
weight function é in with —logd € PSH(Q) the assumptions of Theorem 1 are fulfilled.

a) Q is a bounded domain of holomorphy in C", M = M, n Q, where M, = G4 '(0),
Gy € 0(Q,), Q=QyetopC”, and d,G, # 0, z€ M,.

In this case a4y = ax = f = 0.

b) @ = C", M = G~ !(0), where G is a polynomial of n complex variables such

that d,G # 0, ze M. |
In this case we only need to verify that there exist k=0, c>0 such that

(1+ 121"\, Gl > ¢, z € M.

The method of the proof is due to'L. Lempert.
oG oG

The polynomials G,ua—_,. . have no common zeros in C”, hence there exist
Z4 z,

P, such that

n

oG .
PG+ PJ-E =1 in C".
. J

J"=.1

polynomials P,, Py, ...,

In consequence, for ze M we get

n

| ¢ -
I = ZP,-(Z)EZ_(Z)SII(PJZ), ooy P2 11d,GI < const, (14 [|z]D)]14.GHl .

. J
Jj=1

where k = max{degP;: j =1, ..., n}.

2. Proof of Theorem 1,

The space HY*7XX,§) is a Hilbert space whose topology is stronger than the
topology of uniform convergence on compact subsets of X, hence in view of Lemma 1.
in [2], it is sufficient to prove the following slightly weaker version of Theorem 1.

THEOREM 1. Under the assumptions of Theorem 1, for every n>1 there exists a constant
Cy = Cx(n,a, B, Ao, A, B, n)>0 such that: for every 520, fe€ O“NM, §) there exists

fe H "X, &) with f = f on M and 116" fil, <ecxll0% |7

Proof of Theorem 1’. Without loss of generality we may assume that 4>1, B = 1.

For the proof, analogously as in [3], we shall construct some special open coverings

(U)); of M, holomorphic retractions «;: U; - U; n M and a partition of unity, namely:

1 We can put ¢p = 2¢x.
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ProrosiTion 1. There exists N, | < N<n, such that for every n>1 there exists an
open covering Uy, Uy, ..., Uy of X, Uyn M =@, UnM# @, k=1,.., N, holo-
morphic retractions . ‘Uk > U, M, k=1,.., N, a partition of unity &o, &1, ..., Ex
e C(X, [0, 1]) and constants C; = Cyn,a,f, A, n)>0, j=1,2 such that: '

(i) suppé&, c Uy, 0& EL(ZO,”(X', loc), '

9) PPN I<Cy, k=0, ..., N;
(ii) given fe O(M,$), if f, =0, f, =fom, k=1, ...,N, then
(10) <6 le in Uy, k =0,..,N,

§ TR f—fI S Call6Y 1]l Gl in Uy 0 U,
k,l= . N.
Assummg this result for a moment, we shall finish the main proof of Theorem 1’,

Letusfix #n>1and fe @(s)(JM 0). Put L = {|6%1!,, . Let (Uk)k 0> (Wk)k 1> (‘fa)k =0, C1, €,
and ()., be as in Proposition 1.

Define fy, --[—g—ff‘ in U, n U (note that fe O(U, nUy)) and let b: U > C

(I =0,...,N) be given by the formula
_ .
by =3 &fas
k=0

where we mean that &, /), = 0 in Upsuppé,, k=0, .., N.
Clearly by e C(U)) and, in view of (10),

ST 1< (n+ ) Con’L
By dint of (9), Eb,eLfo,l)(U,, loc) and
($S+4a+5ﬁ+3]gbllg(ﬁ+l)clcznsL-

It is seen that b;— b, = /,, in U, n U;. In particular, the form u given by the formula
u=0b in U, 1=0..., N, isa well-defined d-closed form of the class L(zo,l)('X, loc) with

I|5s+a°+4d+53+61‘||2~<~(n+1)A0C1C2’7$L-
Hence, by (8), there exists v e L*(X, loc) such that dv = w and
ot T e ATyl K(n+1) A, C,Con'L .

Now let f = f;—G(b,—v) in U;, I =0, ..., N. Tt is clear that f is well-defined holo-
morphic on X and f = fon M. It remains to estimate the growth of f _

N .
1977 F 113<2 3 L] (GUAI)?6™ 0t 2 [ (S11GD(E° > * ¥ 1by])?6 %+
=0 U I
+2 j (5&,(;,)2,]_0'252(34'10'}'40."+ 5ﬂ+8)dﬂ]
Ui

<2+ DA +24%n+ D21+ CHCEn* L2,

The proof of Theorem 1’ is finished.



138

| Proof of Proposition 1. 1. Local retractions. . :
We start with a generalization of Lemma 6 in [3]. Put £ = t(f) = 4(2)* and let

: oG
Mi={xeM: | —(x)
0x;

>rf5f’(x)}, k=1...nj=1,2,.

, N
- Without loss of generality we may assume that, for some 1<N<n, M = {J M} and

ML#9 k=1,..,N. k=1
For xe X, O<e<1 and y>1 let

Ax; ¢, 1) = {y e B(x, 8"M): pj(») = i), =1, ... k=1,k+1,...n} k=1, ...n
Deﬁne Yy = 0€+ﬁ+2, ¢y = ts(nAZ“”)“l

LEMMA 1. For every x e Mi, yed(x;i ¢, 7)):

th .
]G(;V)I; Eaﬂ(x)lpk(y)_pk(x)lw k = 19 ey 1y j = 19 revy 8 .

In particular, for evefy xe Ml Ax; c,y)nM={x}, k=1,..,n, j=1...,8
p | | _

Proof Observe that G(y) = Z { ox (x) [Pi(»)—pu(x)]™, hence, in view of (6),

G =

oG | B
7 (P —pix)] -~ E AT AS T x| p(3) — Pl
k
' =2

> [1°67(x) = nA2* 6™ 2 (x) o 3) — ]| pal 1) = i)
. - ¢ |
> [116%(x) —n 42" 3¢, 8 ()] () — pu()] = 5 3 NP =P
The proof of Lemma 1 is finished.

Let us fix #>1 and let 0<f<1 be such that (1 +60)%(1—6) " <n.
Put ¢, = ¢,0(3" 7)1,
LeMMA 2 comp. [3], (v)). For every x, e M¥, x,e M if

Ay(xys €2, 70) N A3 7)) # O
- then x; = x,.

Proof. Let us fix x € A (xy; €5, 7)) o A(x5; €3, 7). Note that ¢, <%, hence in view
of (4) (with 0 = 1), 5(x2)§25(x)é35(x1). In particular,

llp(x2)=p(xOlISlp(x2) —p DN+ p ()~ p(x)]| <
<€y [07(x2) + 0" (x I (37 + DT (x ) <0y 8 (xy)
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Thus x,€A(x,; ¢, 7)) and hence by Lemma I, x, = xz.'The proof of Lemma 2is
finished.

Define Ul = U Ak(x €2, ), k=1,.,N j=1,..8
xeM{

In view of Lemma 2, mapping m,: Ug — M, given by the relation:
™

mly) = x < yedi(x; ¢, 71)
is a well-defined retraction such that m(Ul) = Mi =M U{,j=1,..,8.

We pass to the study of properties of the coverings (UHY-, and retractions (m)h=1
Let cy = t*(n? 447371

LEMMA 3 (comp. [3], Lemma 7). For every x & Mi, y € B(x, c36"(x)):

00,
3 )

Xk

>tit188(y), k=1,..,N,j=1,..,8.

Proof. In view of (6), (4), for any yeﬁ(x, 15 (x)):

!6G

la <222 *3 46T D (X)) [p () —p Il -
k

») aG( )
— —(x

Y 0X.

In particular, for yeﬁ(x c;6"(x)) we get:

(J’)—*“(x)‘ —tséﬁ(X)<; t'5°(x),

0G| 1-p <8 .
hence sé—~-( ) >§t’5 (x)=T (). The proof of Lemma 3 is completed.

0%

Let qp = {.pla '-':pk—lsplk-+15 . spn) X'—’ (o4 1 k = 1 ~
Define ¢, = §min{c;, ;27" 7V} o5 = ¢yt (n3’2A4“+2) , cg =70 nAZT p,
= 20+2B+3. y; = a+f+1.

5

LEMMA 4. Let us fix xo € M; and let ¥ = {xe X qu(x)——qk(xo)l<c55Y’kxo)}. Then
there exists a holomorphic mapping .
| Y. Y- M m-ﬁ(xo, c;,é’“(xo))
such thas :
' i © Y = q
[P —Pi o ¥ <b45”‘(x0) )
V(x) = Xg provided that q,(x) = gfxq),

8(pr° )

5}'3( qj) = }

c,rs—l , 1.
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Proof. Let Gy = G o, where 7 = (pl3e) ™
U= B(Qk(xo)a Cséyz(xo))ccnula D = B(pi(x,), 04571(3‘0))‘:(7-

Observe that Ux Dc <p(B(x,, 035’”(x0))) By Lemma 3:

36, o s
(11) 6 (z) >1t70"(x(2)), ze Ux D.
|

In view of Lemma I, the function

!

D € A= Go(‘Ik(xo), i)
has exactly one zero i = p,(x,) and |
1Go(g:(x0), A= e, %" M (x,), AedD.

On the other hand, using methods analogous to those used in the proof of Lemma 3.
we get:

|Golw, 1)~ Go(gqi(xo), /1)| S Uanh 1)(?50”),“7"'%(350)' s
| <2, 1854 (x,), we U, AedD.
Hence, by the Rouché theorem, for every w € U, the function
D32 > Gylw, 4)
has exactly one zero A = ¢@(w). By the implicit function theorem, the function

¢o: U~ D
1$ holomorphic and

3G, -1
PN —(w,oW)| , wel, s #k.
0z,

In particular, in view of (11):
e
5, 9 ()| 2 () e, we U, 5 # k.
' Ow,

Now it is seen that we can put
Y(x) = x(qu(x), o(q(x)), xeV.

The proof of Lemma 4 is finished.

LEMMA 5 (A characterization of the coverings (U)Y_, and retractions (T = s).
(1) U,ﬁetOpX, k=~1,...,N, j=1,..,8;

(pronk)
”_"‘—|-..,_ 65k_1 N, i',S=1,...,H;
xS

(n) &, is holomorphic and 5“(75‘.)'

() For every x; € M,’( f?(xo, 507 (xy)) = U;f“, k=1,..,N, j=1,.., 7;;
(ivy UlcUi*, k=1,..N j=1,..,17.
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Proof. Let us fix x4 € Uj. Put x, = m(x4) and let ¥, ¥ have the same meaning as -
in Lemma 4. Note that, in view of Lemma 3, ¥(Y)cM]}"'. Put B = B(xy, ¢56™(x0))
(c50"(x0) € €50 (x0) <2050 (x4) <@(x4)). Observe that B, ¥ (B)< B(x,, $0(xo)), hence for
every x € B: x € B(¥(x)). In view of the continuity of ¥, there exists £>0 such that:

w(x) € M, |p(0) —p T ()| < 3 28" (P (). x e Blxs, ).

Thus B(x,.e)= Ul and =, = ¥ in B(x,, €) which, in view of Lemma 4, gives (i) and (ii).
If xu = x4 then for x € B we have
|2 — P ¥ () <1 () = Pulxo)l + [ Pe(x0) — (¥ (X))] <
<587 (xg) + €487 (x0) 20487 (%) <27 e 8 (P (W) S 8" (P (1)) <

<72 6,6M(W(x)). Hence we get (iii).

For the proof of (iv), let x = lum x, where x,, € B(xyn 4 k(xﬁ,. é , yl), x2e Mi,

m-—+ o

m>=1. Observe that

ilp(x‘)—p(x,?,)lléllp(x)~p(xm)ll+|lp(xm)-p(x.?)ll<llp(x)-p(xm)ll+cz5(x3,)é
| < p () —p (Xl +2¢28(x,), m=1.
Hence there exists m, such that for m=m,:
P (x)—p (x| SF(¥) +4c2d (x)<ze(x) .

Since B(x) ~ B(x%) # @, this means that x, e B(x, fo(x)), m=m,. The last “ball” is
« relatively compact, so there exist a subsequence (x,,);=, and a point x° e B(x, $o(x))

such that x° = lim x,,. Obviously x° € Mic M, q(x) = llim g (Xp,) = lifl 4.(x%)
=+ -+ o -+«

. R
= () and [p0) x| = Tim [pyr) =PI < g€ lim 87(x) = e28"(:%) <

{= o0 =+ o
i+ 1 ‘ _ | | | |
<L3ﬁ ¢28"(x%). Thus x e Uf*(x° = m(x)). The proof of Lemma 5 is finished.

N
Define U, = A\ U U, U = Ul, k=1,...,N. We shall show that the covering

k=1 ‘
Uy, U,. .... Uy satisfies all the required conditions (comp. Prop. 1).

II. Partition of unity.
The method of the construction is taken from [3].
Let &, e C”(C, [0, 1]) be such that:

E(z) = 1if z1<3e,, E@ =0 if |z|>%c,.

{(z) =0 if |z|<e*, (=1 if |7z,

C(leey lac)
and let ¢, = ¢;(f, ¢;) = max{'%' , “m‘l
i
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Define (ék: X — [0, 1] by the formulae:
Py = 0 in X\U::

Py = 5(6w?1(nk)(pk —Dio ”k))'C((s_ﬁ(%k)‘gg" (“k)) in Uks .
k

It is seen that. ¢, 1s well-defined continuous ¢, = 1 on U? and suppe,c UicU?,
k=1,..,N.In view of (3) @ 18 absolutely continuous. An easy calculation shows that
a]most everywhere in U: 8"(m)|[0%< cecqcs, Where cg = cg(n, a, B, A). Hence §"|0%
<(3)%cseqcs = cy. ' -
By the same method we can construct functions 1//1, o ye CX , [0, 1]) such that

¥p = 1 in Uy, suppy,c Uy = Us, 8, e L%, ;5(X, loc) and |

5}'2|5wk|<6'10 = C;o(n a,fB,A,csCq).

Put Yo = (1—¢,)...(1—¢y). Obviously ¥, =1 in X\U Uk, supp¥,<= U, and

5”]dl,b0|<ncm In particular ¢ = ¥,+y;+... +¥y=1 on X.

Finally, let us put £, = ﬁ k=0,..,N.

Y

It is clear that &, &,, ..., &y satlsfy all the required conditions (comp. Prop. 1).

1. Local extensions.

Let us fix /'€ 0'Y(M, §), let L = ||6*f||,. and let f;: U, - C be given by the formulae:
fO = 0:
fi=Ffom, k=1,.., N (note that in fact £, is defined in U).

For the i)roof of the first part of (10), observe that if x e UZ then
x € B(my(x), 06 (m(x))),

hence (in view of (4)):

(1) ' FIAI<IA+0)6 o mI| fo ml <n'L .

For the proof of the second part of (10), let us firstly suppose that I = 0. Fix
xe Uy n U, put x5 = m(x). There exists 1<m<N such that x, e M,f,, so In view of
Lemma 5(iii): B(x,, ¢56"(xy))= U = X\U,. In consequence

X EAk(x(), Cls ’yl)\Ak(xOD 053 YZ) >

t7
hence in view of Lemma 1, |G(x)|> —2—¢555+”’(x0). Finally: 6”2“+3”+3(x)]ﬁc(x)|‘

<[A+0)8(xo)I*" P2 flxo)l <2(1+ 0+ 7*(t7cs) ' n*LIG (x)] .
Now, suppose that &,/ # 0. Fix xe U, n U; and let x, = m(x), x, = m,(x). Put
c11 = ¢s(3” 14+ 1)"1. We shall consider two cases:

() ~ | X ¢ B(xm Cy 151’2(3‘0)) N E(x*s C115?2(x*)) .
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Assume. for instance, that x ¢ B(xo, ¢116"(x,)). Then, analogously as in the case I =0,
7

we have: |G(x)|= % cy16° T7%(x,), thus
O T2 )| i) = LN S +0) 72677 (x0)
x [8° (o)l fxo)] + 5S(X%)If (x)1<4(1+0)P (17 eyy) ' HLIG)L.
(%) - x € B(xg, ¢,16"(xg)) N B(Xyx, €116 (%)) .
Put V = A,(xq; 2¢;,,7,) and note that for y e V' we have: .
1P =PI =P EI+ 112 (o) =P (I +112 () =P (xa)ll <
<31[307(x0) +8(x )] < ¢4 1(3?2“ +1)8"(x,) < €587 (x4) -

Hence in view of Lemma 5(iii), VeU?n UL Let g =fi—f, in UinU. For

y € Ai{xqs €11, 72)» put Py = {Z e V. |p(2) —Pk(J’)|<C115n(xo)} (note that P, = < V). By
Cauchy inequalities: -

o9

axk(})

<[e;10™(x0)] ™ lﬂg“Py >

0 2 [1+6Y
2 <)L
ox; cig\1—0

H

hence, in view of (12),

7 (x,)

In consequence

. 2 [1+6YV
5T 2(x)lg (N < (W) Lip(x) —pi(x0)! .
(11 ] _"6

On the other hand, in view of Lemma I,

7

G(x) = -’55ﬂ<xo)|pk(x> — Pl -

Finally
5s+2a+ 3ﬁ+3(x)|fl(x) _fk(x)l \<\4(1 +0)B+ ?z(t'lc] 1)—1’13L|G(x)[ .

The proof of PrOposii;ion 1 is completed.
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