A Note on Holomorphic Continuation with Restricted Growth

Pierre Mazet (Paris), Marek Jarnicki (Kraków)

The central problem of the theory of holomorphic continuation with restricted growth is the following one (comp. for example [1], [2], [4], [5], [6], [7]).

Given an open set \(D \subset \mathbb{C}^n \) and a complex analytic submanifold \(M \subset D \), denote by \(R \) the restriction operator

\[
\mathcal{O}(D) \ni f \rightarrow f|_M \in \mathcal{O}(M).
\]

Let \(\delta : D \rightarrow (0, 1] \) be a weight function on \(D \), that is (comp. [3]):

(i) \[
\delta \leq \delta_D = \min \{ q_D, (1 + |z|^2)^{-1/2} \}.
\]

where \(q_D \) denotes the distance to \(\partial D \) taken with respect to the Euclidean norm,

(ii) \[
|\delta(z_1) - \delta(z_2)| \leq ||z_1 - z_2||, \quad z_1, z_2 \in D.
\]

For \(k \geq 0 \), let \(\mathcal{O}^{(k)}(D, \delta) \) (resp. \(\mathcal{O}^{(k)}(M, \delta) \)) denote the space of all functions \(f \) holomorphic on \(D \) (resp. on \(M \)) for which the function \(\delta^kf \) is bounded.

It may easily be verified that \(\mathcal{O}^{(k)}(D, \delta) \) (resp. \(\mathcal{O}^{(k)}(M, \delta) \)) endowed with the norm

\[
|f|_{\infty} \rightarrow ||\delta^k f||_{\infty}
\]

is a Banach space. Put

\[
\mathcal{O}(D, \delta) = \bigcup_{k \geq 0} \mathcal{O}^{(k)}(D, \delta)
\]

and analogously

\[
\mathcal{O}(M, \delta) = \bigcup_{k \geq 0} \mathcal{O}^{(k)}(M, \delta).
\]

One may easily prove that \(\mathcal{O}(D, \delta) \) (resp. \(\mathcal{O}(M, \delta) \)) is a complex algebra. Observe that \(R(\mathcal{O}^{(k)}(D, \delta)) \subset \mathcal{O}^{(k)}(M, \delta) \).

The problem is as follows: Under which additional assumptions

(a) \[
R(\mathcal{O}(D, \delta)) \subset \mathcal{O}(M, \delta),
\]

i.e. for every \(f \in \mathcal{O}(M, \delta) \) there exists \(\hat{f} \in \mathcal{O}(D, \delta) \) such that \(R(\hat{f}) = f \).

It is natural to try to estimate the growth of \(\hat{f} \) in terms of the growth of \(f \). This leads to the following (slightly more restrictive) conditions.

(b) For every \(k \geq 0 \) there exists \(\widetilde{k} \geq 0 \) such that: for every \(f \in \mathcal{O}^{(k)}(M, \delta) \) there exists \(\hat{f} \in \mathcal{O}^{(\widetilde{k})}(D, \delta) \) such that \(R(\hat{f}) = f \).
(b₂) For every $k \geq 0$ there exist $\tilde{k} \geq 0$, $b > 0$ such that: for every $f \in \mathfrak{C}^{(k)}(M, \delta)$ there exists $\tilde{f} \in \mathfrak{C}^{(\tilde{k})}(D, \delta)$ such that $R(\tilde{f}) = f$ and $\|\delta^k f\|_\infty \leq b\|\delta^\tilde{k} f\|_\infty$.

(b₃) For every $k \geq 0$ there exist $\tilde{k} \geq 0$ and a linear continuous extension-operator $L_{\tilde{k}}$: $\mathfrak{C}^{(k)}(M, \delta) \to \mathfrak{C}^{(\tilde{k})}(D, \delta)$ such that $R \circ L_{\tilde{k}} = \text{id}_{\mathfrak{C}^{(k)}(M, \delta)}$.

It is seen that (b₃) \Rightarrow (b₂) \Rightarrow (b₁) \Rightarrow (a).

Let $H^{(k)}(D, \delta) = \{ f \in \mathfrak{C}(D): \|\delta^k f\|_2 : = (\int_D |f|^2 \delta^2 d\lambda)^{1/2} < +\infty\}$, $k \geq 0$, where λ denotes the Lebesgue measure in C^n.

It is easily seen that $H^{(k)}(D, \delta)$ is a complex Hilbert space. In view of Prop. 2, § 1.3 in [3],

$$\bigcup_{k \geq 0} H^{(k)}(D, \delta) = \mathfrak{C}(D, \delta)$$

$$\mathfrak{C}^{(k)}(D, \delta) \subset H^{(k+n+\varepsilon)}(D, \delta), \quad \|\delta^{k+n+\varepsilon} f\|_2 \leq c(n, \delta)\|\delta^k f\|_\infty, \quad \varepsilon > 0;$$

$$H^{(k)}(D, \delta) \subset \mathfrak{C}^{(k+n)}(D, \delta), \quad \|\delta^{k+n} f\|_\infty \leq c(n, k)\|\delta^k f\|_2.$$}

In consequence, the conditions (b₁), (b₂), (b₃) may be equivalently formulated as:

(c₁) \iff (b₁)) For every $k \geq 0$ there exists $l \geq 0$ such that: for every $f \in \mathfrak{C}^{(k)}(M, \delta)$ there exists $\tilde{f} \in H^{(l)}(D, \delta)$ such that $R(\tilde{f}) = f$.

(c₂) \iff (b₂)) For every $k \geq 0$ there exists $l \geq 0$, $c > 0$ such that: for every $f \in \mathfrak{C}^{(k)}(M, \delta)$ there exists $\tilde{f} \in H^{(l)}(D, \delta)$ such that $R(\tilde{f}) = f$ and $\|\delta^k f\|_2 \leq c\|\delta^k f\|_\infty$.

(c₃) \iff (b₃)) For every $k \geq 0$ there exist $l \geq 0$ and a linear continuous extension-operator L_{kl}: $\mathfrak{C}^{(k)}(M, \delta) \to H^{(l)}(D, \delta)$ such that $R \circ L_{kl} = \text{id}_{\mathfrak{C}^{(k)}(M, \delta)}$. The main result of this note is the following

Theorem 1. All the conditions (a), (b₁), (b₂), (b₃), (c₁), (c₂), (c₃) are equivalent.

Proof. Since $H^{(l)}(D, \delta)$ is a Hilbert space, so by Lemma 1 in [4], (c₂) \Rightarrow (c₃). It remains to show that (a) \Rightarrow (b₂).

Let us fix $k \geq 0$ and let

$$C_N = \{ f \in \mathfrak{C}^{(k)}(M, \delta): \|\delta^k f\|_\infty \leq N, \exists \tilde{f} \in \mathfrak{C}^{(N)}(D, \delta): R(\tilde{f}) = f, \|\delta^N \tilde{f}\|_\infty \leq N\}. \quad N \in \mathbb{N}.$$

It is seen that C_N is absolutely convex and, since $\mathfrak{C}^{(k)}(M, \delta) \subset R(\mathfrak{C}(D, \delta))$, so $\mathfrak{C}^{(k)}(M, \delta)$

$$= \bigcup_{N = 1}^{\infty} C_N.$$

The space $\mathfrak{C}^{(k)}(M, \delta)$ has the Baire property, hence there exists $N \in \mathbb{N}$ such that $\text{int}(\overline{C}_N) \neq \emptyset$ (the closure and the interior are taken with respect to the space $\mathfrak{C}^{(k)}(M, \delta)$).

In consequence, \overline{C}_N is a neighbourhood of zero in $\mathfrak{C}^{(k)}(M, \delta)$ and hence

(§) $\quad \overline{C}_N \subset \mathfrak{C}_N + \frac{1}{2} \overline{C}_N$.

Let $r > 0$ be such that the ball $\{ f \in \mathfrak{C}^{(k)}(M, \delta): \|\delta^k f\|_\infty \leq r\}$ is contained in \overline{C}_N.

Fix $f \in \mathfrak{C}^{(k)}(M, \delta), f \neq 0$ and let $f_0 = r(\|\delta^k f\|_\infty)^{-1} f$. Observe that $f_0 \in \overline{C}_N$, so in view of (§), there exist sequences $(F_m)_{m=1}^{\infty} \subset \mathfrak{C}^{(N)}(D, \delta)$, $(f_m)_{m=1}^{\infty} \subset \overline{C}_N$ such that

$$f_{m-1} = R(F_m) + \frac{1}{2} f_m, \quad m \geq 1,$$

$$\|\delta^N f_m\|_\infty \leq N, \quad m \geq 1.$$
In particular,
\[f_0 = \left[\sum_{p=1}^{\infty} 2^{-p+1} R(F_p) \right] + 2^{-m} f_m, \quad m \geq 1. \]

Note that in view of the definition of \(C_N, \|\delta^k f_m\|_\infty \leq N \). Hence \(2^{-m} f_m \to 0 \) in \(\mathcal{O}(k)(M, \delta) \) as \(m \to +\infty \). This shows that
\[f_0 = \sum_{p=1}^{\infty} 2^{-p+1} R(F_p). \]

On the other hand, since \(\|\delta^N f_m\|_\infty \leq N, m \geq 1 \), the series
\[\sum_{p=1}^{\infty} 2^{-p+1} F_p \]
is absolutely convergent in \(\mathcal{O}(N)(D, \delta) \) to a function \(F_0 \); note that \(\|\delta^N F_0\|_\infty \leq 2N \). Hence \(f_0 = R(F_0) \) and in consequence, \(f = R(\tilde{f}) \), where \(\tilde{f} = \|\delta^k f\|_\infty r^{-1} F_0 \).

Thus we get (b) with \(\hat{k} = N \) and \(b = \frac{2N}{r} \). The proof is completed.

References

Received January 5, 1982 —