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A note on blow-up points for a semilinear parabolic equation

MAREK JARNICKI and LECH SLAWIK

Let D be a bounded domainin R*, 0 < T < + 0. Let us consider the following problem:
¢)) uy—Au = f(u) in Dx(0,T),
u(€,t)=0, (& t)edDx[0,T),
u(€, 0 =a©), <ceD,
where f'e C'(R), f(n) >0, f'() >0, ne(0, +w), de C(D), >0, d,, = 0.
Suppose that u is a classical solution of (1); note that u is uniquely determined and,

in view of the maximum principle, u > 0.
A point &° e D is said to be a blow-up point for u (¢° e B(w)) if

limsup w(é,1) = + .
(£,0-(°,T)

The problem of existence of blow-up points was considered, for instance, in [3]. For
some classes of strictly convex domains D, the structure of the set B(u) was studied, for
example, in [2], [3].

In this note (being inspired by the methods of [2]) we will consider the problem of
characterization of the set B(u) for the case where

D=P:={(eR" R <|¢||<R,} (O<R <R, < + ™)
and

2(8) = o(llElD, ¢eP.
In this case, problem (1) may be reduced to the following one:
u— ——up—u; = f(u) in (R, R)x(0,T),

U(Ry, 1) =u(R,,t) =0, 0<t<T,

u(r,0) = ¢(r), R <r<R,.
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In fact, we will consider a more general problem, namely:
) u—g(X)u,—uy, =) in (a,b)x(0,T) (—w<a<b< +x),
u(a,t) =ub,t)=0, 0<t<T,
u(x,0) = @(x), a<x<b.
If u is a solution of (2), then B(u) will denote the set of all c e [a, b] such that
limsup u(x,t) = + co.
(x,1)~(c,T)

The main result of the paper is the following theorem.

THEOREM 1. Assume that

g: [a,b]—[0, + ) (resp. g: [a, b] - (—0,0]) is a real-analytic function;
(3) f: R—R, [0, + is real-analytic, f(n)>0, f'(n) >0, ne€(0, +0);
(4) there exists a C*-function F: [0, +o0)— [0, +0) such that

F(n)>0, F'(n) >0, F"(n) 20, ne€(0, +0),

f'F—fF > FF';

(5) ¢: [a,b]—>[0, +00) is a C'-function such that ¢(a) = @(b) = 0 and for some
x, €(a, b):
PxX)>0, a<x<xg,

o'(x)<0, x,<x<b.

Xo+b
Let u be a solution of (2) such that B(u) # &. Then there exists a point ¢ € [a, 0 —]

2
+
(resp. ce [a 2x0 0, b]) such that B(u) = {c}.

As an immediate consequence, we get
COROLLARY 1. Assume that the functions f, ¢ satisfy (3), (4), (5) witha = R, b = R,
(0< R, <R, < + 00). Let u be a solution of (1) with D = P, ®(&) = @(||¢|]), & € P, such

+R
Yo 5 i] such that B(u) = {€ € R*: ||¢]| = R,).

that B(u) # . Then there exists R, e [Rl,
Remark I. Thecrem 1 (and, consequently, Corollary 1) may be extended to more
general classes of functions g, f, ¢.

Remark 2. Observe that, for a large class of functions f satisfying (3), condition (4)
is automatically fulfilled. For instance:



If there exists 0 <p <1 such that

ff/,>(l —p)(f’)z in [O’ +OO),

Moo
Jrar=T

then for every ¢> 0, the function

1—
O ROV LS

satisfies condition (4).
Standard examples: f() = €', f(n) = n* (a>1).

Proof of Theorem 1. The proof will be divided into five steps.
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1°. By the same methods as in [2], Lemma 5.2 and Remark 5.1, one can prove that

there exists a continuous function s: [0, T)—(a, b) such that s(0) = xo and

ux,1)>0, a<x<s(), 0<t<T,
u(x,1)<0, s(t)<x<b, O0<t<T.
Put

57 = liminfs(s), % := limsups(¢) .
=T t->T

2°. (cf. [1], Lemma 2.1). If s~ <s* then

limu(x,t) = +00, s~ <x<s*.

100

3° [(a,sT)u (s, B)]nBu) = O .

Proof of 3° (cf. [2], the proof of Theorem 3.3). Suppose thata < s~ and fix a < X, <S8,

We will prove that (a, x,) " B(u) = 9.
Define Ny = |lglle, Ny = [lg']lw, and let

d(Q) == e —eM (e R,

where 1; <1, are such that (A—2A)(A—2,) = A2>—NyA—N,; d is a solution of

Y'=Nyy'—N; = 0. Observe that

d0) =0, d(0)>0, d'()>0, (>0.
Set

c(x) := ed(x,—x), xeR,

J(x, 1) == —u(x, ) +c(x)F(u), a<x<b. 0<t<T,

where ¢>0 will be chosen in the sequel (F is as in (4)).
In view of 1°, there exists 0 <t, < T such that

U(x,,1)>0, t,<t<T,
149
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and hence
J(x;, 1) <0, t,<t<T.
if ¢ is sufficiently small then
J(x, 1) <0, a<x<x,.
Comparing u with the solution of the problem
v,—g(x)v.—v. =0 in (a,b)x(0,T),
v(a,t) =v(b,t)=0,0<t<T,
v(x,0) = o(x), a<x<b.
we conclude that for small e,

J(a, 1) <0, t,<t<T.
In view of (2), we get

J =g =T < Clx, ) —c(x)H(x, )= F) Hy(x),a<x<b, 0<t<T,

where
C(x,t) = f'(w)+g'(x)+c(x) F'(w)

(note that C is continuous on [a, b]x [0, T)),
Hy(x,t) = () Fu) —f (u) F'(u) + 2¢'(x) Fu)F'(u) ,

H, = cg’+gc’' +c'".

By (4), if ¢ is sufficiently small, then
Hi(x,t)20, a<x<x,, to<t<T.

By the definition of the function 4,

H,(x)=20, a<x<x, .
Thus, by the maximum principle,
©) J(x,1)<0, a<x<x,, to<t<T.

Let

(observe that G(s)—0 as s— +0). In view of (%),

(Gowy(x, 1)< —c(x), a<x<x,, ty<t<T.

Hence
X2

G(u(x, 1)) = | c(QdE>0, a<x<x,, ty<t<T,

X
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and therefore

limsup u(x,7) <40, a<ec<x,.
G, 0)= (e, T)_

The proof for the interval (s*,b) is analogous (s* <ux, <b, ¢(x) := ed(x—x,),
J(x, 1) 1= uy(x, t)+c(x)F(u)).
Xo+b

4.1 >0then s <" and b ¢ B(w) (resp. ifg <O then s~ > ‘if‘;? and a ¢ B(u)) .

b
Proof of 4°. Assume that g >0, let o := {O—;;A and define

wx, 1) = u(x, t)—uRa—x,1), a<x<b, 0<1<T.

Observe that
w(a,t) =0, wb, <0, 0<t<T,

wix,0)<0, a<x<bh.

Put
D(x,t) 1= u(x, ) +u(Ra—x, 1),
B(x, 1) := gQu—x)u2e—x, 1)—g(x)uy(x, 1), a<x<b, 0<t<T,

and let

B D e p 0

L t

A(x,t) :={D(x,1) (x, 1) #
0 if D(x,t)=0.

Note that B(x,1) >0 if D(x,1) = 0. In view of (2),
Wi+ AW, —wyy = Cw—B+AD< Cw, a<x<b, 0<t<T,

where C: («, b) x (0, T) b (0, +c0)is a function such that, for any 0 < f < T, Cis bounded
in (a, b)x(0, f]. Consequently, by the maximum principle,

w<0 in [, b]x[0,T),
and hence, in view of 1°,
s()y<a, 0<t<T.
In particular, s* <o and b¢ B(u).

L a+x
If g<O0 then the proof is similar (x := —23, w(x, 1) = u(x, t)—ua—x, t),

a<x<a, 0<t<T).
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Proof of 5°. Assume that g >0 and suppose that s~ <s*. Let s~ <x; <s" <x, <b

X +Xx
be such that a:= —— >

<s* (cf. 4°). In view of 3°, there exists M >0 such that

u(x,, H<M, 0<t<T.
By 2°, there exists 0 <t, <7 such that x; = s(¢,) and
u(x,t)y>M, t,<t<T.
Put
wix, t) == u(x, ) —uQou—x,1), a<x<X,, ty<t<T.

Now, after formal changes only, we can apply the method of the proof of 4° which leads
to the inequality s™ <« — contradiction.

The case g <0 is analogous (we start with a<x, <s~ <x, <s*).
The proof of Theorem 1 is completed.
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