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ON BERGMAN COMPLETENESS OF NON-HYPERCONVEX
DOMAINS
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Abstract. In the paper we study the problems of the boundary behaviour
of the Bergman kernel and the Bergman completeness in some classes of
bounded pseudoconvex domains, which contain also non-hyperconvex do-
mains. Among the classes for which we prove the Bergman complete-
ness and the convergence of the Bergman kernel to infinity while tend-
ing to the boundary are all bounded pseudoconvex balanced domains, all
bounded Hartogs domains with balanced fibres over regular domains and
some bounded Laurent-Hartogs domains.

Introduction. The aim of the paper is to present some new results con-
cerning Bergman completeness and the boundary behaviour of the Bergman
kernel in bounded pseudoconvex but not necessarily hyperconvex domains. We
are interested in the following exhausting property of the Bergman kernel:

(%) Kp(z) = 00 as z = dD.

The starting point for our considerations may be the following two recent
results:

— any bounded hyperconvex domain satisfies (x) (see [11]),

— any bounded hyperconvex domain is Bergman complete (see [1] and [5]).

Both properties mentioned above are closely related. In particular, the
Bergman completeness is often shown after proving the property (). To the
best of our knowledge there are no known examples of bounded Bergman
complete domains not satisfying (x).

The existence of non-hyperconvex bounded domains satisfying (*) is very
well-known and easy (take the Hartogs triangle). On the other hand, the
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_existence of bounded pseudoconvex but non-hyperconvex Bergman complete
domains is not so trivial but also known (see [3], [5], [17]).

In our paper we shall present a class of domains satisfying the above prop-
erties. The classes of domains which we consider are the following: bounded
pseudoconvex balanced domains, Hartogs domains with m-dimensional bal-
anced fibres, Hartogs-Laurent domains and Zalcman type domains (domains
in the unit disc with complements composing of infinitely many closed discs).

Among others, we prove the following results.

All bounded pseudoconvex balanced domains satisfy (x) and are Bergman
complete. The latter result gives the positive answer to the question posed in
[7] and [8]. Note that if the Minkowski functional of the considered domain
is continuous then the domain is hyperconvex and the result follows from the
above mentioned theorems.

Any bounded pseudoconvex Hartogs domain with m-dimensional balanced
fibres over a domain with the property (x) satisfies (x). Any bounded pseu-
doconvex Hartogs domain over a c'-complete domain (which implies automat-
ically Bergman completeness) is Bergman complete. In particular, there are
bounded and pseudoconvex non-fat domains that are Bergman complete and
satisfy (x).

On the other hand, we show that there are bounded fat domains in C (some
Zalcman type domains) not satisfying (*) — this gives an answer to a question
posed in [8].

1. Definitions and known results. Let us denote by E the unit disc in
C and let E, := E \ {0}.

Let D be a bounded domain in C". Let us denote by L?(D) the set of
square integrable holomorphic functions on D. Then L2(D) is a Hilbert space
with the scalar product induced from L?(D). Let us define the Bergman kernel
of D

|/ (2)]?

e  f e Ly(D), f #0}.

Kp(z) = sup{

Among other well-known properties let us recall only two of them (see for
instance [8]).
If D; C D, are bounded domains in C* then Kp,(z) < Kp,(2), z € D1.
If {D;}52, is an increasing sequence of domains in C" whose union is a
bounded domain D, then Kp, tends decreasingly and locally uniformly to
Kp.
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It is well-known that log K is a smooth plurisubharmonic function. There-
fore, we may define

n 1/2

0%log Kp(z -
Op(z; X) = Z —g‘ﬁ_])()Xij ,z€D, X eC".
k=1 3zjdzk

Then f8p is a pseudometric called the Bergman pseudometric.
For w,z € D we put

bp(w,z) :=inf{Ls, ()},

where the infimum is taken over piecewise C'-curves a : [0,1] — D joining w
and z and Lg, (o) = fol Bp(a(t); o (t))dt.

We call bp the Bergman distance of D.

The Bergman distance (as well as the Bergman metric) is invariant with
respect to biholomorphic mappings. In other words, for any biholomorphic
mapping F': D — G (D,G CC C") we have

ba(F(w), F(z)) =bp(w,2), Be(F(w); F'(w)X) = p(w; X),
w,z € D, X € C".

A bounded domain D is called Bergman complete if any bp-Cauchy sequence
is convergent to some point in D with respect to the standard topology of D.

Any bounded Bergman complete domain is pseudoconvex (see [2]). Let us
recall that a bounded domain D is called hyperconvez if it admits a continuous
negative plurisubharmonic exhaustion function. Now we may formulate the
following very general result:

THEOREM 1.1. (see [1], [5], [11]) Let D be a bounded hyperconvez domain
in C*. Then D satisfies (x) and D is Bergman complete.

Our aim is to study the boundary behaviour of the Bergman kernel and the
problem of Bergman completeness. We shall make use of following powerful
tools; namely, the extension theorem of L%—functions, localization principle of
the Bergman kernel and the Bergman metric and criteria for a domain to be
Bergman complete and for the Bergman kernel to tend to infinity near the
fixed point from the boundary. Let us recall below these results.

THEOREM 1.2. (see [12]) Let D be a bounded pseudoconvexr domain in C™.
Let H be any affine subspace of C*. Then there is a constant C' € R dependent
only on diameter of D such that for any f € L2 (DN H) there is an F € L3(D)
such that Flpng = f and [|F|[2py < Clfllr2(pam)-
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In particular, we get from Theorem 1.2
(1.1) Kpnm(z) SCKD(Z), ze€ DNH,
where C € R is a constant dependent only on diameter of D.

THEOREM 1.3. (see [4], [10]) Let D be a bounded pseudoconvez domain in
C", 2% € OD. Then for any neighbourhoods Uy = Uy (2°) CC Uy(2°) = U, there
15 a positive constant C such that for any connected component V of D N U,
and for any z € Uy NV, X € C" we have:

%Kv(z) < KD(Z) < Kv(Z),

260 (2 X) < Pl X) < (2 X).

THEOREM 1.4. (see [9], [13]) Let D be a bounded domain such that (x) is
satisfied and H*®(D) is dense in L%(D). Then D is Bergman complete.

THEOREM 1.5. (see [13]) Let D be a bounded pseudoconver domain. Let
2% € OD be such that there exist v € (0,1], € > 1 and a sequence {2"}2, of

points from C*\ D tending to 2° such that B(z,r||z" —2°||*)ND = 0 (so called
‘outer cone condition’). Then lim,_,,0 Kp(z) = co.

2. Balanced domains. Recall that a set D is balanced if z € D and
X\ € E implies Az € D.

In this section we deal with bounded pseudoconvex balanced domains. We
prove the following result.

THEOREM 2.1. Let D be a bounded pseudoconvex balanced domain. Then
D satisfies (¥) and D is Bergman complete.

Note that if the Minkowski functional of D is continuous then D is hyper-
convex and the result follows from Theorem 1.1. Additionally, in this case the
theorem has already been known for a long time (see [7]). Using only a little
more refined methods than the ones used in that paper we prove the theorem
in the general case. Let us mention here that the problem whether bounded
pseudoconvex balanced domains are Bergman complete was stated in [7] and

8).

PrROOF OF THEOREM 2.1. First we prove the property (*). Take any point
20 € OD. Fix any M € R. In view of (1.1) (applied to H = C2° - remember
that Cz® N D is a disc) there is some z' = 52°, 0 < s < 1 such that 2! € D and
Kp(z') > M. Tt follows from the continuity of Kp that there is some open
neighbourhood U C D of 2! such that Kp(z) > M for z € U. Note that for
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any z € U the function

1
Uy WE 32— Kp(Az)

is subharmonic and radial. Therefore, u,(t), 0 <t < ﬁz) is increasing (see for
instance [6]). Consequently, Kp(z) > M for any z € ([1,00)U) N D. Since
[1,00)U is a neighbourhood of 2", we finish the proof.

To complete the proof it is sufficient to show that H>°(D) is dense in L3 (D)
(and then use Theorem 1.4).

It is well-known that any holomorphic function F on D is a local uniform
limit of a series Y 7o, Qx(2), where Qy is a homogeneous polynomial of degree
k (see for instance [6]). Since all Qj are orthogonal (in L? (D)) and there is an
exhausting family of compact balanced sets of the domain D (on each of them
the functions @y are orthogonal), the standard approximation process leads to
the convergence of Fiy 1= Zszo Qr to F in L?(D) norm (under the assumption
that F € L(D)). Since D is bounded, all Fy’s are bounded, which finishes
the proof. 0

3. Hartogs domains. In the present section we consider bounded pseu-
doconvex Hartogs domains with m-dimensional balanced fibres. Let Gp C
C**™ denote a bounded pseudoconvex Hartogs domain over D C C" with
m-dimensional balanced fibres, i.e.

Gp ={(z,w) € DxC" : H(z,w) < 1},

where D is bounded and pseudoconvex, log H is plurisubharmonic on D x C™,
H(z, \w) = |A|H(z,w), (z,w) € Dx C™ XA € C, and Gp is bounded (i.e.
H(z,w) > C||lw]|| for some C >0, z € D, w € C™).

Let Gp be as above. For any f € L?(D) we define a function F(z,w) :=
f(2), (z,w) € Gp. Since Gp C D x (RE)™ for some R > 0, we easily see that
HFHL%(GD) < Cl”fHLi(D) for some Cy > 0 independently of the choice of f

therefore, F € L?(Gp)). In particular, we get
h

(3.1) Kp(z) < C3Kg,(2,0), z € D.

THEOREM 3.1. Let Gp be a bounded pseudoconver Hartogs domain over
D with m-dimensional balanced fibres. Fiz a point (2°,w°) € 0Gp. Assume
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.that one of the following three conditions is satisfied:

(i) 2 eD,
(ii) 2" € 9D and Kp(z) = 00 as z — 20,
(iii) there is some neighbourhood U of (2°,w®) such that

UNGp C{(z,w) € C""™ : |jw|| < ||z — 2°||°}

for some 6 > 0 (in particular, w® = 0).

Then Kgp(z,w) = o0 as (z,w) — (2°,w°).
In particular, if D satisfies (x), then Gp satisfies (x).

PROOF. Consider the case where 2° € D (that is, the case (i)). Then
H(z°,w") > 1. In view of the L?-extension theorem for any M € R there
is a w' = tw®, 0 < ¢t < 1, such that (%, w') € Gp and Ke, (2% wl) >
M. The continuity of Kg,, gives us the existence of an open neighbourhood
U:=U; x Uz of (2°,w!) in Gp (with 0 € Us) such that Kg,(z,w) > M for
(z,w) € U. Similarly as earlier, considering the function

1

Uz ) mE S A = Kgp(z, \w)
we get a radial subharmonic function such that u, (1) > M which gives that
Kgp,(z,w) > M for (z,w) € (U x [1,00)U3) NG p.

Consider now the case (ii). Then 2° € dD. It follows from (3.1) and (ii)
that for any M € R there is some open neighbourhood U of 2° such that
Ka,(2,0)>M,ze UND.

Fixa z € UND. Fix additionally for a while a w such that 0 < H(z,w) < 1.
Then the function %E > A= Kg,(z, Aw) is larger than M at 0 and is
radial and subharmonic; therefore, increasing. Consequently, K¢, (z, w) > M
for any w with H(z,w) < 1. Since z € U was chosen arbitrarily we have
Ka,(z,w) > M for any (z,w) € Gp with z € U.

We are left with the case (iii). Without loss of generality we may assume
that 2 = 0. Consider points (0,wy) & D (i.e. wy # 0). Let us consider
the balls B((0,wo),r||wo||?), where ¢ > 0, 0 < r < 1 will be chosen later
(independently of wg). Our aim is to verify that the outer cone condition from
Theorem 1.5 is satisfied for a suitable 0 < r <1 and £ > 1.

Fix r = 1. Consider only |lwo|| < 1. Take a point (z,w) €
B((0,wo), 5llwo|I) N Gp. Then [z]] < 3llwoll* and [fwol| —[|w|| < |jw—wol| <
3llwoll*. Consequently, [Jwo|| — 5llwol|* < [Jw]] < [|2]|° < (3)°[lwol|**. So

assuming that ¢ is large enough (e =1 >0,ed —1 >0, 6 +ed —2 > 0) we get:
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1 1 1 1
- 1 _ e—1 - 0 ed—1 -
5 < 1= sllunll= < () lwoll " < 5
a contradiction. Therefore, in view of Theorem 1.5 we finish the proof. 0

The idea of the condition (iii) comes from generalizing the phenomenon,
which appears in the Hartogs triangle and the point (2%, w®) = (0, 0).

It turns out that there are bounded pseudoconvex Hartogs domains and
points from the boundary, which do not satisfy any from the conditions (i)-(iii)
but such that the limes as in Theorem 3.1 exists.

EXAMPLE 3.2. Let {a;}52; C (0,1) be a sequence tending to 0. Let us de-
fine ux(N) = log (Zle(ﬁ)m) A€ E\{ai,... a5}, where n; > j. Note
that ux(0) <0, k =1,2,.... Define u := limg_,o, ux = log <Z;i1(7i>\a—7—aﬂ)m)
on Eo = E\ ({a;}32; U{0}). The construction ensures us that the sequence
{ur}?2, on Ey is locally bounded from above, globally bounded from below
and increasing, so u on E, is subharmonic and bounded from below. Moreover,
limg<gz—ou(z) < 0. Define Gp = {(z,w) € Eoc x C: |w| < exp(—u(z))}.
Then Gg,_, is a bounded pseudoconvex Hartogs domain with one-dimensional
fibres. Note that the point (0,0) does not satisfy any from the conditions
(1)-(iil) but one may easily verify that, choosing if necessary n; larger, the
outer cone condition from Theorem 1.5 is satisfied (for instance for points
(aj,a;)). Therefore, the claim of Theorem 3.1 is also satisfied. Note that
{(0,0)} € 8Gp,. N ({0} x T™).

We may prove even more. Namely, the domain Gp_ satisfies (*). In fact,
the points (z,w) € dGg. , z € JF, satisfy (ii). The points (ax,w) € 0Gg,,
(and then automatically w = 0) satisfy (iii). The points (z,w) € 90Gg.,
z € Ey, satisfy (1). Finally, one may easily verify (proceeding similarly as
in the case of (0,0)) that the points (0,w) € OGg. satisfy the outer cone
condition from Theorem 1.5.

LEMMA 3.3. Let Gp be a bounded pseudoconvex Hartogs domain over D
with m-dimensional balanced fibres such that H*(D) is dense in L3 (D) and,
additionally, assume that there is some ¢ > 0 such that D x P(0,¢) C Gp,
where P(0,¢) := eE™. Then H*®(Gp) is dense in L3 (Gp).

ProOOF. Take an F € L?(Gp). We know that
o0 o0
F(z,w) = ZFy(z,w) = Z Z fa(2)w?
v=0 v=0 ﬂEZT:|m:V

where the convergence of Gy := Z;]/V:O F, to F is locally uniform (see for
instance [6]). Consequently, because of the orthogonality of w?, similarly as
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in the proof of Theorem 2.1 the functions Gy converge in L?2(Gp) to F. It is
therefore sufficient to approximate fz(2)w? by bounded functions. But because
of the assumption of the lemma one may easily conclude from the Fubini
theorem that fz € L} (D) so hy(z)w? tends to fg(z)w? in L%(Gp), where
hy € H®(D) and hy — fg in L2 (D). O

REMARK 3.4. Note that the assumption D x P(0,e) C Gp is essential. For
instance, H*(E,) = H®(E)|g, is dense in L3 (E,) = L}(E)|g, and H®(Gg,)
is not dense in L} (Gg,), where G, is the Hartogs triangle, G, = {(z, w) €
E, xC:|w| <|z|}.

THEOREM 3.5. Let Gp be a bounded pseudoconver Hartogs domain over
D with m-dimensional balanced fibres. Assume that D satisfies (x), H*®(D) is

dense in L3 (D) and there is an € > 0 such that D x P(0,¢) C Gp. Then Gp
1s Bergman complete.

Proor. Combine Theorem 3.1, Lemma 3.3 and Theorem 1.4. O

Note that Theorem 3.5 cannot be even applied to arbitrary pseudoconvex
bounded Hartogs domain with one dimensional fibres. However, a small change
in assumptions on the domain D in Theorem 3.5 will make possible to prove
Bergman completeness of G'p without additional assumptions on the shape of
G p. But before formulating the result we have to introduce the notion of the
inner Carathéodory pseudodistance.

For a domain D C C* we define the Carathéodory-Reiffen pseudometric

(% X) = sup{|f(:)X| : | € O(D,E), f(x) =0}, z€ D, X € C".
The inner Carathéodory pseudodistance is the integrated form of vp, 1.e.
ch(w, z) = inf{L,, (a) :
a:[0,1] = D is a piecewise C'-curve joining w and z}

where L., (o) 1= fol vp(a(t); &/ (t))dt. Tt is well-known that holomorphic map-
pings are contractions with respect to ¢’ (i.e. cL(F(w), F(2)) < ¢4 (w, ) for
any F' € O(D,G), w,z € D). The last property is not shared by the Bergman
distance (in the class of bounded domains - see for instance [8]). We have
additionally (see for instance [8])

(3.2) ch < bp.

Exactly as in the case of the Bergman distance we introduce the notion of
c’-completeness for bounded domains.

THEOREM 3.6. Let Gp be a bounded pseudoconver Hartogs domain over
D with m-dimensional balanced fibres. Assume that D is c*-complete. Then
Gp is Bergman complete.



177

PROOF. Take any point (zp,wp) € OGp. Suppose that there is a ba -
Cauchy sequence {(z,, w,)} tending (in the natural topology of D) to (zg, wp).
Because of (3.2) and the contlactlvny of ¢}, with respect to the projection we
exclude the case where 2 € oD.

So assume that 2° € D. Let Ui, Us be small open balls with the centre at 29
such that Uy CC Uy CC D. There is a sequence of C'-piecewise curves You
[0,1] = Gp such that 'yl,u(O) = (2, wy), Y,u(1) = (24, w,) and Lgg, (Vo) <
bap ((zv,wy), (2, wy))+ U, I < v < p. We claim that there is some v such that
You([0,1]) C Gu, (Gu; == (Uj x C*)NGp, j =1,2) for u > v > 1. Actually,
if it were not the case, then there would be a sequence of # € (0,1) such that
(ug, V) = Yo () & G, (so uy, & Up) and bap (2o, Wy, ), (ug, vg)) — 0 as
k tends to infinity. But then also

0< ciD(anaUIc) < CY‘V(;D((an:wnk)a (“k‘,'Uk)) -0

which contradicts the completeness of D.

Note that Gy, satisfies the assumptions of Theorem 3.5, so Gy, is Bergman
complete, 7 =1, 2.

Applying the localization principle of the Bergman metric (Theorem 1.3)
we get

bGU2 ((ZU7 Ujl/)a (Zm U)M)) S L/BGU? (71/,/14) S

1
CLﬂGD ('711,/1) < C([)GD((Z,,,U),,), (zuawu)) + ;)7 w>v >y

so {(zu,wy)}us>1 18 a bay,-Cauchy sequence tending to the boundary of Gy,
(in the natural topology of Gy,), which, however, contradicts the Bergman
completeness of Gy, . 0

REMARK 3.7. Since any Kobayashi complete bounded domain is taut (a
bounded domain D in C* is taut if for any convergent sequence of mappings
v, € O(E, D) its limit ¢ satisfies ¢(E) C D or p(E) C dD), there are bounded
pseudoconvex balanced domains (in fact any such that the Minkowski func-
tional is not continuous) in C? such that no estimate of the type bp < Ckp
holds (compare [8]).

Note that there are bounded balanced pseudoconvex domains which are
not fat (i.e. int(D) # D, see [16]), so there are Bergman complete domains
satisfying (*), which are not fat (use Theorem 2.1). Other domains having the
same property (but in the class of Hartogs domains) are given below.



178

Theorem 3.1, Theorem 3.5 and Theorem 3.6 apply among others to the
following domain

|z — ay]

Gp:={(z,w)e ExC:|w| < exp(—exp(z a; log T))},

j=1
where a; > 0, {a;}52; is dense in E, and 22, a;log|aj| > —oo. Note that
Gp C EQ, Gg # E? but int(@E) = E?.

It follows from Theorem 3.6 that any bounded pseudoconvex Hartogs do-
main over a complete bounded pseudoconvex Reinhardt domain (e.g. the unit
disc) is Bergman complete (see [14]).

It seems natural to ask the question whether Theorem 3.6 remains true
under the assumption that D is Bergman complete.

Since any bounded hyperconvex domain is Bergman complete, new results
concerning Bergman completeness are given in the non-hyperconvex case. In
the class of bounded pseudoconvex balanced domains hyperconvexity is equiv-
alent to tautness and the latter is equivalent to the continuity of the Minkowski
functional associated to the domain.

Below we give a full characterization of tautness and hyperconvexity in the

class of bounded pseudoconvex Hartogs domains with m-dimensional balanced
fibres.

PROPOSITION 3.8. Let Gp be a bounded pseudoconver Hartogs domain
over D with m-dimensional balanced fibres. Then

Gp is taut iff D is taut and H 1s continuous;

G p 1s hyperconvez iff D is hyperconver and H 1s continuous.

PRrROOF. Note that the noncontinuity of H gives us a sequence {(z,,w,)} C
Gp converging to (z,w) € D x C™ such that lim, oo H(z,,w,) = § <
H(z,w) = 1. Then the sequence ¢, (A\) := (2", H(“’D’\ )), A € E, satisfies

Zy Wy
¢, (E) C Gp and ¢, converges locally uniformly to ¢, where p()) = (2, “JTA),
©0(0) € Gp but p(E) ¢ Gp, so Gp cannot be taut.

It is trivial to see that tautness (respectively, hyperconvexity) of G p implies
tautness (respectively, hyperconvexity) of D.

Hyperconvexity of D delivers us the existence of negative continuous pluri-
subharmonic exhaustion function v of D. Note that if H is continuous, then the
function max{u(z),log H(z,w)} is a continuous negative exhaustion function
of G D

Assume now the tautness of D and the continuity of H. Consider a se-
quence @ = (p%, ) € O(E,Gp) which converges locally uniformly to V.
Because of the tautness of D either ¢ € O(E,D) or ¢(E) C 9D, in the
second case ’(E) C OGp. So consider the first case. It easily follows from
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the maximum principle for subharmonic functions that either H(p"(\)) = 1
or H(o()\)) < 1, A € E, which finishes the proof. O

4. Hartogs-Laurent domains. In this section we consider Hartogs-Lau-
rent domains. More precisely, let D be a bounded pseudoconvex domain in
C" and let u,v be plurisubharmonic functions on D, u + v < 0 on D. Then
we define the Hartogs-Laurent domain G := {(z,2z,41) € D x C: exp(u(z)) <
|znt1] < exp(—v(2))} over D. We assume additionally that there is some
constant C' € R such that v(z) > C (i.e. G is bounded) and u # —oo.

PROPOSITION 4.1. Let G be as above (with some D, u and v). Assume
additionally that D satisfies (x). Then G satisfies (*).

PROOF. Since G C {(2,2n41) € D x C : |zp41| < exp(—v(2))}, we get in
view of Theorem 3.1 and because of the contraction property of the Bergman
kernel under inclusion of domains that K (z, zn4+1) — oo whenever (z, zp,41) —
(w,wp11) € 0G, where w € 9D or |wy11| > exp(—v(w)).

Now we consider the case where (2, z,11) = (w,wp11) € 0G (w € D) and
|wpi1] < exp(u(w)).

First we prove that Kg(z,2zp41) — 00 as (z,2p41) — (w,0) € G with
w € D. Take a small ballU CC D with the centre at w. Put Gy := GN(U xC).
We claim that the function ﬁ is from L%/(GU). In fact,

1 .
/ d£2"+2(z, Zni1) =
G

U ‘Zn'f']- |2

1 ; .
/(/ ““‘—gdﬁz(znﬂ))dﬁzn(z) =
U Jexp(u(z))<|zn+1|<exp(—v(z)) 'Zn+1|

—v(2) —u(z ().
27r/U< (2) — u(2))dL>" (2)

Therefore, in view of the local summability of plurisubharmonic functions (not
identical to —oo) the last expression is finite. Consequently, K¢, (2, 2p41) — 00
as (z,zp+1) — (w,0). And now the localization property of the Bergman kernel
(Theorem 1.3) implies that

Ka(z,2n41) = 00 as (2, 2pn41) — (w,0).

We are left with the case (z,2zn41) — (w,wpy1) € 0G, w € D, 0 < ¢ <
|wnt1] < exp(u(w)). Consider now the new Laurent-Hartogs domain G de-
fined over D with u replaced by @ := max{u,loge} (and the same v). Tak-
ing now G to be {(z,1/2,41) : (2,2n41) € G1} we deduce that the con-
vergence of Kg, (2, 2n4+1) — 00 as (2, zp41) — (W, wy41) is equivalent to the
convergence of K¢ (z,2n41) = 00 as (2, 2p41) = (w,1/wn1) (use the invari-
ance of the Bergman kernel with respect to biholomorphic mappings). Since
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G C {(z,2n41) : 2 € D, |zna1| < exp(=i(2))} and 1/|wpsq| > exp(—u(w))
we get (using the contractivity of the Bergman kernel under inclusion and
Theorem 3.1) K¢, (2, 2n41) — 00 as (2, zp41) — (w,wn+1). And now the lo-
calization of the Bergman kernel (Theorem 1.3) implies Kg(z, zy11) — oo as

(2, Zn41) = (W, wWpp1). O

THEOREM 4.2. Let D be a bounded pseudoconvez domain in C*, which is
c'-complete. Let G be as above with the additional property that fhmc 18 some
constant C such that u(z) > C > —oo for any z € D. Then G is Bergman
complete.

PRrOOF. We proceed similarly as in the proofs of results in Section 3. Take
any bg-Cauchy sequence {(2”, z, 1)} converging to (2°, 2 ;) € 0G. One easily
excludes (because of the ¢’-completeness of D) the case where 2° € D. In
case z° € D we may exactly as in the proof of Theorem 3.6 reduce the problem
to the problem of the completeness of G := G N (U x C), where U is some small
ball centred in 2°, U CC D, such that U x A C G, where 4 is some annulus.
Similarly, as in the proof of Lemma 3.3, expanding any L,L-functlon in the
series F(z, zn41) 1= Y pe_ oo hu(2)244 1, (2, 2n11) € G, we casily conclude that
Fn(z,2n41) = ZI]L_N hy(2)z., tends to F in L?(G). Moreover, h,(z) €
L2(U). Since H®(U) is dense in L2 (U), then, consequently, H®(G) is dense
in Lf,(é) (approximate h,(2)z), | by h, j(z)z,, |, where h,; € H®(U) tends
to h, in L*(U), and then use the inequality v > ), which in connection with
Proposition 4.1 and Theorem 1.4 finishes the proof. O

5. Zalcman type domains. In Section 3 we saw that there are non-fat
domains satisfying (*) and being Bergman complete. In this chapter we go into
the opposite direction and we find domains which are bounded pseudoconvex
and fat but which do not satisfy (x) (this gives the answer to the problem
of the existence of such domains in [8]). This counterexample is found in the
class of Zalcman type domains, which were considered in the context of (x) and
Bergman completeness in [11] and [3]. It follows from the papers above that
there are Zalcman type domains satisfying (*) and being Bergman complete
and non-hyperconvex. We show that there are Zalcman type domains, which
neither satisfy (x) nor are Bergman complete.

Let us fix a sequence (of pairwise different points) {a;}32, C E and a closed
disc B C E such that a; € B, a; — 0 and 0 € B (automatically 0 € 9B).

Below we shall consider only a sequence of positive numbers r; such that
Alaj, i) N A(ag, i) = 0 for any j # k and B N A(aj,r;) = 0.
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~ LEMMA 5.1. We may choose r; so that there is a constant M < oo such
that

(5.1) Kpy(z) <M forany z€ B, N=1,2,...,
where Dy := E \ (U;V:1 Aaj,ry)).

PROOF. We define r; inductively. Since E'\ A(ay,r) increases to E \ {a;}
as r decreases to 0 and K (4,} coincides with Kz on E\ {a1}, then there is a
constant M € R such that Kp\ 54, »,) < M on B for sufficiently small r; > 0.
Assume that we have already chosen r1,... ,ry such that

(5.2) Kpy <M on B

(D is defined as in the lemma). Since Dy \ A(ani1,7n41) increases to
Dy\{an+1} and Kpy\{ay4) coincides with Kp, on Dy\{an+1}, we conclude
as previously (use (5.2)) that Kpy\Afays1,rnen) < M on B for sufficiently small
rn+1 > 0, which completes the proof. O

PROPOSITION 5.2. There is a sequence s; — 0, 0 < s; <rj and a domain
G =B\ (Uj2, Alay, s5) U{0}) satisfying the property

Kg(z) <M, ze€ BNAG.

PROOF. Let us fix an increasing sequence of compact sets Ly such that
UX-; Ly =int B.

We clail_n that we may choose a family of positive numbers {Si}/\"}lisV\/\om\fi;j
such that S?V-{—l < sg\, <rjforj > N-+1and s% < ry such that for the domain

0o N

Gy :=F\( U aj,sN U (aj, s J U{O}

we have Kg, < M on Ly.

Assume for a while that such a choice can be done. Then define s; := s;
Since G C G, we have K, > K¢ for any N, in particular, Ko < M on Ly
for any NV, which completes the proof.

We define the desired family inductively with respect to N. Let 0 < ¢ < 1.
Since B\ (U2 , Aaj,tri) U Alar,r1) U {0}) increases to B\ (Ujzafajt U
A(ay, 1)U {O}) as t decreases to 0 and the Bergman kernel of the last domain
is the restriction to this domain of Kp, , then Kg, < M on L; for ¢ sufficiently

small, where s{ =Ty, 5{ =1rj, 5 > 2.
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. Assume that the construction has been successful for N (i.ewe have defined
already all 5], j > k, k < N). Let 0 < ¢ < 1. Since

o0

U (aj,ts%) U Aay sy, shThu

Cz

Alag,s7) U {0))

Il

mcreases to

2

U {aj}UA(aNH,sN U (aj,s ] U{O}

J=N+2 j=1

as t decreases to 0 and the Bergman kernel of the last domain is the restriction
to this domain of KE\(A(aNH,s%“)UUj":] Aaz,51)) (which is smaller than or equal

to Kpy,, because Dy is a subset of the consuiered domain), then defining

for ¢ sufficiently small s%ﬁ = s%“, sg\,ﬂ = tsgv, J 2 N + 2 the inequality
KGy.y <M holds on Ly;. O

Let us remark that because of the property Kp.(z) — Kp(z) locally
uniformly for any sequence {D;}?2, of domains such that D; C Dj;, and
U;’;l Dj = D (D is a bounded domain) we conclude easily that 8p, — fp
locally uniformly on D x C" (although the convergence in contrast to the con-
vergence of Bergman kernels need not be monotone).

Based on the above property of the Bergman kernel we present below a
similar construction (to that from Proposition 5.2) leading to a domain having

the assumptions as in Proposition 5.2 and, additionally, not Bergman complete.
We denote Op(z) := Bp(z;1).

LEMMA 5.3. There are a constant M; € R and a family of tuples A =
URN=o An, where:
Ag = @, Ay C (0,81] X ... X (O,SN];
for any N if X € An then there is some Ayi1 such that for any 0 < s < Aniq

(/\,S) € Anai1;
for any A= (A1,...,An) € A we have Bp, < M; on B, where

N
Dy = B\ | Alay )
j=1
PRroOOF. The proof goes similarly as that of Lemma 5.1. We proceed using
induction. Since E \ A(ay,t) increases to E \ {a1} as t decreases to 0 and
BE\{a;} coincides with 8 on E '\ {a1}, then there is a constant M; € R such
that /BE\A(al,t) < M;j on B for any 0 <t < A; < s1. We define A; := (0, Ay].
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~ Assume that we have already defined Aq,... , Ay such that Lemma is sat-
isfied, in particular,

Bp, < My on B
for any A € Ay.

Fix any X € Ay. Since Dy \ A(ays,t) increases to Dy \ {ani1}
and fp,\{ay,} coincides with Bp, on Dy \ {an;1}, then as previously
ﬂI)A\A(aN+1,t) < M; on B for sufficiently small ¢ > 0, which completes the
proof. O

PROPOSITION 5.4. There is a sequence A\; — 0, 0 < X\; < s; and a domain
G =B\ (Uj2; Alaj, Aj) U{0}) satisfying the property

Ba(z) <My, z€ BNG.

PRrROOF. Let us fix an increasing sequence of compact sets Ly such that
U(]Jvo:1 Ly = int B.

Without loss of generality we may assume that s; = A! (s is from Propo-
sition 5.2 and A! is from Lemma 5.3).

It is sufficient to find sequences {\/ 521 and {#;}52, C (0, )N such that
P= An, Ay =t - ... - tNSw, ANVHL = (AN,)\N+1), and ﬁDN < M on Ly,
where Dy = Dynv \ U7y 4 Alaj,ty ... tns)).

Put A; := Al(=s1), t; := 1. Then for 0 < ¢ < 1 small enough the Bergman
metric on D1\ (U2, Alaj, ts;)U{0}) is less than My on L' for 0 < t <ty < 1,
we may also assume that A\? := (Al t9s9) € A2

Assume that the construction has been successful for N (i.e. we have de-
fined already all ¢;, j =1,... ,N and M, j =1,... ,N). Let 0 <t < 1. Since

Dy \(UjZn 41 Dla, .. tys;)U{0}) increases to Dyn \ (U521 {a;}U{0})
as ¢ decreases to 0 and the Bergman metric of the last domain is the restric-
tion to this domain of ,BDAN we may choose ty,; and then define \NT! :=

(AN ty .. typisne1) € ANT! having the desired properties. O

REMARK 5.5. Note that the above mentioned results may be put in some
more general context. Two principal properties that were used were the fol-
lowing: Kp and Sp do not change after deleting a discrete subset and both
are continuous with respect to the increasing family of domains. Applying
the same procedure we may prove for instance that there are Zalcman type
domains, which are not Carathéodory complete. Consequently, there are Zal-
cman type domains, without peak functions in 0 (see [15]).
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