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Abstract. The present paper consists of two parts, In the first part we give a'sh'arp estimation of the
degree of the inverse to a polynomial automorphism of C”. The second part contains the theorem on li-
mits of sequences of polynomial automorphisms with some of its applications.

Introduction. In Part One we give a sharp estimation of the degree of the inverse
to a polynomial authomorphism of C". (Theorem 1.5). This result is based on the affine
version of Bezout’s theorem. Since we can not find in bibliography such a version of
Bezout’s theorem we present its proof based on Rouche’s theorem and on the well known
projective version of Bezout’s theorem (cf. [6], p. 191). |

In Part Two a structure of some sets of polynomial automorphisms is examined.
In particular, a formal analogue of known Cartan’s theorem on sequences of bi-
holomorphisms of a bounded domain (cf. [3], p. 78) is proved (Theorem 2.3). The con-
structibility and algebraicity of the sets of polynomial automorphisms of bounded degree
apd fixed jacobian are also given (Theorems 2.5 and 2.6).

We introduce some notations and definitions which will be frequently used in the
sequel.

Let M N be complex vector spaces. Let F: M — N be a polynom1a1 mapping and

let F = Z F, be the decomposition of F into the homogeneous components. As usual,

the number degF = max{k: F, # 0} is called the degree of F. Let us write, for k e N,
PM,N) = _{F: M — N, F is a polynomial and degF<k},
P M) = PM, M), C-[M] = PYM, C),
P(M,N) = OC)F}?”‘(M,N), FM)=P(M, M),
CIM] = #(M, C).

DEFINITION. We call a mapping F: M — M a polynomial automorphism of the space M,
if F is one-to-one polynomial transformation of M onto M and the mapping F~!
polynomial too.
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We write

F(M) = {Fe #M): F is a polynomial automorphism of M},
P (M) = UPYM) .
1

Assume that M is a finite-dimensional 'space.
The mapping J: (M) 3 F — detF ' e C[M] is a polynomial mapping. Thus for Ae C,

k e N, the set
PYM) = {Fe PM): J(F) = 4}

is algebraic in the vector space PHM).

We shall need also some notations from the projective geometry. |

If M is a finite dimensional complex vector space, we denote by P(M) the respective
projective space, i.e. the space of vector lines through the origin in M. Define
o: M2z P((1,2) =C(1,2) e P(C x M). For an arbitrary set ScM the set ¢(S) will

be denoted by P(S).

Part One..In the beginning we present an affine version of Bezout’s theorem.

~ ProrosiTiON 1.1 Let dimM =n22 and F = (fy, ... [p): M — C" be a polynomial
mapping such that F~'(0) = {ay, ..., &}. Then

k
v(F) = Y m,F<degf; ... degfe,
i=1
where m,, F denotes the multiplicity of F at the point a; (see e.g. Stoll [7] for the definition).

The proof is preceded by two lemmas which permit us to use the projective version
of Bezout’s theorem

LEMMA 1.2. Let V,, V, be homogeneous algebraic sets in M of pure dimensions k, I,
respectively (1<k<l<n). Then there exists a linear isomorphism o of M such that

dim(V, n o (Vy)<k.

Proof. Let ¥V, = Vi u..u ¥y be the decomposition of V; into its irreducible
components (which are also homogeneous). Let us fix a point g; inP(VHforj=1,..,5
and a hyperplane X in M such that X n q; = 0,j=1,..,5 Let YoM be a vector line,
complementary to X such that Y n V, = {0}. Fix in turn a point yo € Y\{0} and two
constants r, R>0 such that

(d U ... Ua) N (yo+X)<yo+ Bx(R),
}’0+Bx(r)C(J’o+X)\V2
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. . R
(Bx(?) denotes the ball of center 0 and radius 7 in the space X). We define, for A> —,
p

the mapping
6: X+Yax+y - Ax+ye M.

Then & is an isomorphism and a; ¢ P(c(V,)). Thus dimV,; n o (V) <k.

Let ¢ = [End(M)]", 4, = [Isom(M)]", where End(M) (resp.: Isom(M)) denotes the
set of all linear endomorphisms (resp.: isomorphisms) of M. If ¢ = (04, ...,0,) €% and
G=1(gy,....9,): M—C" we put G, = (g;°0y,..;gn° 0 Under these notations
we have |

LemMMA 1.3. Let H = (hy, ..., h,): M — C", where h; is a homogeneous polynomial and
degh;=1, i = 1, ...,n. Then the set

Xy = {oce%: H;'(0) # {0}}

is algebraic, properly included in the space G.

Proot. The set X is the projection on % of the constructible set
{(6,2)e9xM: H(z) =0, z # 0},
and, on the other hand, of the closed set
{o,2)eFx{ze M: |z| = 1}: H,(2) = 0} .

Thus, the set X, is algebraic in ¥ (being constructible and closed). Applying Lemma 1.2
we can easily deduce that (9\Xy) N 9, # @. This completes the proof.

Proof of Proposition 1.1. Let F* = (f75,..../») (f g€ CIM), g = go+ ... +9y is the
natural decomposition of g into the homogeneous components, we put g* = g,). Then
degf;>1fori=1,...,n, and, by Lemma 1.3, the set Xy is algebraic, properly included
in9 IfI"=(, ..., I) ¢ Xp. (I denotes the identity), our statement follows immediately
from the projective version of Bezout’s theorem.

Let us suppose that I" € Xpe N ;. It is easy to find an affine complex line L in ¢ and
an open neighborhood U; <%, of the point I" such that (L N Xes) 0 U, = {I"} and
the set @ = L n U, is connected.

Let us fix R>0 such that F~1(0)<B(R) and define the holomorphic mapping

Y: OQxB(2R)3 (0, z) > F(z)e C"

Since ¥ (I", z) # 0 for every z € B2R)\B(R), we can find a connected neighborhood U
of I", U=Q such that F,(z) # 0 for o € U, ze B2R)\B(R). We know that #F-1(0)< o0
for every o e U (since dimF, 1(0) = 0 for o € U). Therefore, the Rouché theorem (see
Stoll [7]) implies that the function U3 o — v(F,lpr) €N is constant. Let us fix an
element o in UN{/"}. Applying the projective version of Bezout’s theorem we obtain
the desired estimation, namely

V(F) = v(Fm)<Vv(F,) = degf; ... degf,.

10 — Acta Mathematica 24
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The following theorem summarizes the properties of invertible polynomial trans-
formations.

THEOREM 1.4. Let F: ' M — M, dimM = n, be one-to-one polynomial mapping. Then
(i) F is a polynomial automorphism of M; .
(ii) degF~ 1< (degF)"!.

Proof. (i) Following the classical theorem of Clements, the set F(M) is open and
the inverse mapping G: F(M) — M is holomorphic. Since the set S = M\F(M ) 1s closed
and constructible, it is algebraic. Suppose that codimS = 1 and let S, be an irreducible
component of S of codimension one, Then there exists a nonconstant polynomial g € C[M]
such that S, = g ~'(0). Since the polynomial g o Fe C[M]has no zeros in M, it is constant,
This contradicts the assumption that codimS, = 1. Therefore codim S>2. By the suit-
able version of the extension theorem there exists a holomorphic mapping G: M - M
such that Glp) = G. By the identity principle Fo G = idy. Hence F(M) = F(G(M))
= M, i.e. the mapping F is one-to-one transformation of M onto M. The fact that F~!
is a polynomial mapping is a special case of Serre’s theorem ([5], Prop. 9). A more
elementary proof can be given (see e.g. [4], [8]) but not by the brutal computation. Thus
F is a polynomial automorphism of M.

(ii). Let us fix a vector line L, =M and its complementary subspace M, such that
F™% = h+H, where h: M > L, is a polynomial satisfying the condition degF ! = degh.
Let us observe that the set V = A~1(0) = F(M 1) 1is irreducible and the polynomial /4 is
irreducible too. '

An affine line Lc M can be found with 4V A L = degh = s. Indeed, we can find,

in a standard way, two vector subspaces X, ¥ of M such that M = X + Y, dimX = n—1,
dimY = 1 and

h(x+y) = a(3*+h,(x)y 1+ .. +hy(x)) for xeX, veY,

where a e C\{0}, degh;<jfor j=1,2,..,s.
It is easy to sec that there exists ¢ € X such that #V n(a+ Y)=s. Then the line
L = a+ Y has the desired property.

Now, using the properties of polynomial automorphism F~! and Proposition 1.1,
we get

degF ' = degh = #V AL = #¥F'V AL = #M, N F YL)<(degF)" 1.

Here is an immediate consequence of Theorem 1.4:

CoROLLARY 1.5. Let F: C" — C" be one-to-one polynomial mapping with F(0) = 0.
Let us define, for r>0, _
o(F; r) = inf{|F(x)|: |x| = r}
and let o = (1/degF)"~1,
Then there exist ro>0, A>0 such that

e(F; r)Z=Ar"  for r>r,.
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Remark 1.6. In the case M = C?, the inequality (i) implies the equality degF
= degF ! for Fe #,C?). On the other hand, we obtain this equality immediately from
known Jung’s theorem (see e.g. [1], [2]). This difficult theorem states that the group
2 ,(C?) is generated by the set Isom(C?) U2 ,(C?), where

PUCH) = {Fe PC?: F(x,y) = (x,y+ix"), r>1, Ae C\{0}}.

It is easy to see that the theorem of Jung may be formulated in the following equivalent
form: if F = (f},f,) € #,(C?) then degfi|degf, or degf,|degf;.

Remark 1.7. When n33, the inequality (ii) is, in general, sharp. As the class of
examples we propose the mappings

‘Fa: C'sx — (xla X2 +x§ls vy xn+x:'-.—-11) e C”

for a = (0ty, ..., 0ty_4) € N* 7L, A
Let us observe that degF, = max{«,,..,o,_,} and degF;' = a,...a,_;. These
examples show also that our estimation is the best possible.

Part Two. We nced two elementary lemmas which hold true for every finite di-
mensional space M (real or complex).

LEMMA 2.1. Let {F,},¢n be a sequence of homeomorphisms of M onto M, locally uniformly
convergent in M to a local homeomorphism F: M — M. Then the mapping F is one-to-one.

Proof. Suppose that there exist x,, x, € M, x; # x, such that F(x;) = F(x;) = y.
Fix §,>0 such that for every 0<d <4, there exists an open bounded neighborhood U(d)
of the point x; (j = 1,2) with the properties: U (0) n U,(6) = & and Fly: U,0) -
— B(y, 8) is a homeomorphism for j = 1,2 (B(y,d) denotes the open ball with the
center y and the radius 8). Find £>0 such that 0<2e<d,. Since F, — F uniformly in

Ud,) and the mappings F, are homeomorphic, there exists vo € N such that for every
v>vy, j = 1,2, we have

3 g e
Fv(ﬁUj(s))cB(y, 5 8)\8 (y, i) and Fi(x;e B(y, 2) .

& &
Hence B( ¥, 5)CF‘,( Ufe)), ie. F, I(B(y, 5))c Uje), j = 1,2. This contradicts the as-

sumption that U,(e) n U,(e) = .

‘LEMMA 2.2. Let {F,},en be a sequence of homeomorphisms of M onto M, locally uni-
formly convergent in M to a homeomorphism F of M onto M. Then
(i) the sequence {F, 1}‘,6 ~ Is locally uniformly bounded,
(i) F;Y(p) — F~Yp) for every ye M.
10+
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Proof. (i). Let us fix yoe M and &>0. Let xo = F~1(y,), A(y, ) = F™YB(y, ¢)).
Since the set 4 = 0A4(y, 2e) U {x,} is compact, there exists vo € N such that for every

£
v>v, and every xe A, |F(x)— F(x)|< 2 This means that

F(0A(y, 2e))=B(y, 3e)\B(y, &) and F(x0)=B(y,, &) for v>v,.

Hence, for v>vo, B(yo, &) F(A(y, 2¢)), ie. F; Y(B(y, =A(y, 26).
(i) Let x, = F, '(yo), v = 1, 2, ... It follows from (i) that the sequence {x,} is bounded
and by assumption F, - F uniformly on {x,}. Hence

lim (F,(x,)= F(x,)) = lim (y,— F(x,)) = 0.

Voo v oo

Thus x, — x4 = F~!(p,) and the proof is complete.

Now we obtain easily

THEOREM 2.3. Let {F,},.n be a sequence of polynomial automorphisms of M, locally
uniformly convergent in M to a polynomial mapping F. Suppose that J(F) is not identically
zero in M.

Then
() F is a polynomial automorphism of M:
(i) F,* = F~1 Jocally uniformly in M.

Proof. By the Weierstrass theorem J(F) e C\{0}, i.e. F is a local homeomorphism
and moreover, one-to-one mapping (by Lemma 2.1). F ollowing Theorem 1.4, F is a poly-
nomial automorphism of M. Applying Lemma 2.2 and the Vitali theorem, we obtain
the statement (ii).

COROLLARY 2.4. The set #,(M) endowed with the compact-open topology and the
standard group-operations is a topological group.

THEOREM 2.5. For every k € N the set #*(M) is constructible in the vector space P(M).

Proof. Define the linear mapping

b: P(M)3 F — (MxM3(x,y) > F(x)—F(y)e M)e P Mx M, M)-.

If we set |
Q={HeP"MxM,M): H"10) n (M\4) = @},

where 4 = {(x, x): xe M}, then
Q=P MM, MN\Q = {He PMx M, M): (x,y)e M4 such that H(x, y) = 0}.
Define, in turn, the polynomial mapping

@: PMxM,M)Yx MxM>(H,x,y)— Hx,»)eM.
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Let p: PHMx M, Myx M x M — P(M x M, M) denotes the natural projection and let
A =@ H0) N (PHMx M, M)x(M\4)).

It 1s easy to see that p(A) = Q'. Therefore, by Chevalley’s thcorem, the set Q is con-
structible in the space #*(M x M, M). Thus the set &~ () is constructible in the space
P*(M). Observe that

& HQ) = {Fe PY(M): F is one-to-one} .

Applying Theorem 1.4 we obtain the equality &~ 1(Q) = #*(M). This concludes the proof.

Observe that every set P4 M) = PYM)n PyM) (ke N, e C\{0})) is closed ‘
(by Theorem 2.3). Therefore, Theorem 2.5 implies immediately

THEOREM 2.6. For everv keN and /e C\{0}, the set P% (M) is algebraic in the
space PH(M).

' The following question arises:
Problem 2.7. Is the set ?E,A(M) irreducible?

Remark 2.8. Theorem 2.6 may be an argument for the positive solution of so-called
“jacobian problem” for the field C (see [1]). It can be formulated as a question: does
the equality #25(M) = @ﬁ’l(M) hold true for every ke N?
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