On Series of Homogeneous Polynomials Noncontinuable Beyond Their Domain of Convergence

by Małgorzata Downarowicz

Abstract. Let Ω be a balanced domain of holomorphy. Then functions which are holomorphic in Ω and noncontinuable beyond Ω form a large set in \mathcal{O}_{Ω} equipped with a suitable topology.

0. Introduction. Let f be an analytic function of n complex variables defined by a series of homogeneous polynomials

$$f(z) = \sum_{\nu=0}^{\infty} f_{\nu}(z), (\deg f_{\nu} = \nu)$$
 (0.1)

that converges in a neighbourhood of zero in the space C^n .

Let Ω denote the domain of convergence of series (0.1). Since Ω is the domain of holomorphy, there exists at least one function f holomorphic in Ω and noncontinuable beyond Ω . Let us consider the set \mathcal{O}_{Ω} of all functions analytic in Ω and a subset of \mathcal{O}_{Ω} consisting of those functions which are noncontinuable beyond Ω . The question arises how large this subset is. L. Bieberbach in his book [2] presented the history of this problem and collected many theorems concerning it for n = 1.

The aim of this paper is to generalize three of the results inserted in [2]. Two of them, due to Hausdorff and Polya, say that having set up a suitable topology in \mathcal{O}_{Δ} , the subset under consideration turns out to be dense and open in \mathcal{O}_{Δ} , Δ being the unit disc in C. The third one, due to Ryll-Nardzewski and Steinhaus, says that in a Banach space consisting of functions holomorphic in the unit disc the functions noncontinuable beyond the disc form a set of second category.

1. Denotations and definitions.

$$\Delta := \{ \lambda \in \mathbb{C} : |\lambda| < 1 \}, \ B(z_0, r) := \{ z \in \mathbb{C}^n : ||z - z_0|| < r \}, \ z_0 \in \mathbb{C}^n, \ r > 0, \}$$

||z|| being the Euclidean norm in C^n .

For a function $f: \mathbb{C}^n \supset S \to \mathbb{C}$ we write

$$||f||_{\mathcal{S}} = \sup\{|f(z)| \colon z \in \mathcal{S}\}.$$

 $P^{\nu}(C^{n}, C)$ denotes the set of all homogeneous polynomials from C^{n} to C of degree ν ($\nu = 0, 1, 2, ...$).

If $f: \Omega \to C$ is analytic in Ω , then $T_a f$ denotes the Taylor series of the function f centred in $a \in \Omega$, $\varrho(T_a f)$ denotes the radius of convergence of this series.

Let f be holomorphic in a domain Ω . We say that f continues through a point $z_0 \in \partial \Omega$ if there exists a point $a \in \Omega$ such that $\varrho(T_a f) > ||z_0 - a||$. A holomorphic function $f: \Omega \to C$ which continues through a point of $\partial \Omega$ is called continuable beyond Ω .

2. Generalization of the theorems of Hausdorff and Polya. Let $\Omega \subset \mathbb{C}^n$ be a bounded balanced domain of holomorphy. Let $\mathcal{O}_{\Omega} = \{f \colon \Omega \to \mathbb{C} \colon f \text{ is analytic}\}$. For every $f \in \mathcal{O}_{\Omega}$ we have the only representation

$$f(z) = \sum_{\nu=0}^{\infty} f_{\nu}(z), \quad z \in \Omega,$$
 (2.1)

where $f_v \in P^v(\mathbb{C}^n, \mathbb{C})$ for v = 0, 1, 2, ...

For $f \in \mathcal{O}_{\Omega}$ we put

$$u_f(z) = \limsup_{v \to \infty} \sqrt[v]{|f_v(z)|}$$

and

$$u_f^*(z) = \limsup_{\zeta \to z} u_f(\zeta)$$
.

Then $\Omega \subset \{z \in \mathbb{C}^n : u_f^*(z) < 1\}.$

Following Hausdorff we introduce in \mathcal{O}_{Ω} a topology defined by a fundamental system of neighbourhoods. Let $\varepsilon = (\varepsilon_{\nu})_{\nu=0}^{\infty}$ be a sequence of positive real numbers such that $\lim_{\nu \to \infty} \sqrt[\nu]{\varepsilon_{\nu}} = 1$ and let $f \in \mathcal{O}_{\Omega}$. By an ε -neighbourhood of f we mean the set

$$V_{\Omega,\varepsilon}(f) = \left\{ g \in \mathcal{O}_{\Omega} \colon \sup_{z \in \overline{\Omega}} \left(\limsup_{v \to \infty} \frac{|f_{v}(z) - g_{v}(z)|}{\varepsilon_{v}} \right) < 1 \right\}.$$

Now we define an equivalence relation in \mathcal{O}_{Ω} as follows: let two functions $f, g \in \mathcal{O}_{\Omega}$ be in relation $(f \sim g)$ if and only if $f - g \in \mathcal{O}_{\overline{\Omega}}$; where $\mathcal{O}_{\overline{\Omega}} = \inf \lim \mathcal{O}_{V}$.

2.1 PROPOSITION. Let $f, g \in \mathcal{O}_{\Omega}$. Then $f \sim g$ if and only if $u_{f-g}^*(z) < 1$ for every $z \in \partial \Omega$. Proof. Let $f, g \in \mathcal{O}_{\Omega}$ and $f-g \in \mathcal{O}_{\overline{\Omega}}$. Then there exists a number r > 0 such that $f-g \in \mathcal{O}_{\overline{\Omega}r}$, where

$$\overline{\Omega}^r = \{ z \in \mathbb{C}^n : \operatorname{dist}(z, \overline{\Omega}) < r \},$$

dist $(z, \overline{\Omega})$ denotes the distance between the point z and the set $\overline{\Omega}$ in Euclidean norm in C^n . Since $\overline{\Omega}^r$ is a balanced neighbourhood of zero in C^n , the inequality $u_{f-g}^*(z) < 1$ holds for $z \in \overline{\Omega}^r$ and, in particular, for $z \in \partial \Omega$.

Suppose now that $u_{f-g}^*(z) < 1$ for every $z \in \partial \Omega$. Then $\partial \Omega$ so $\overline{\Omega}$ is contained in the domain of convergence of series $\sum_{v=0}^{\infty} (f_v - g_v)$. Therefore $f \sim g$.

- **2.2.** Now let us consider the topological space $\mathscr{X} = \mathscr{O}_{\Omega/\sim}$ with the quotient topology. Let $\mathscr{N} = \{ [f] \in \mathscr{X} \colon f \text{ is noncontinuable beyond } \Omega \}.$
- **2.3.** THEOREM (for n = 1 see Theorem 4.2.1, in [2]). Let Ω be a bounded balanced domain of holomorphy in \mathbb{C}^n . Suppose that there exists a family P of homogeneous polynomials such that

$$\Omega = \inf\{z \in \mathbb{C}^n \colon |p(z)| < 1, \ p \in P\}.$$

Then the set \mathcal{N} is dense in \mathcal{X} .

Proof. 1°. Choose an arbitrary sequence $\varepsilon = (\varepsilon_v)_{v=0}^{\infty}$ of positive real numbers such that $\sqrt[v]{\varepsilon_v} \to 1$, with $v \to \infty$. We shall find a series of homogeneous polynomials $\sum_{v=0}^{\infty} g_v$, $g_v \in P^v(C^n, C)$, convergent in Ω to a function g noncontinuable beyond Ω and such that $||g_v||_{\Omega} \le \varepsilon_v$, v = 0, 1, 2, ...

By hypothesis there exists a countable set $A = \{a_1, a_2, ...\}$ contained in $C^n \setminus \Omega$ satisfying the two following conditions:

- (i) $\partial \Omega \subset \overline{A}$,
- (ii) for every $z \in A$ there exists a homogeneous polynomial p, not identically equal to 1 such that |p(z)| = 1 and $||p||_{\Omega} \le 1$.

Let $(b_s)_{s \in N}$ be a sequence of elements of A such that each element of A is repeated in $(b_s)_{s \in N}$ infinitely many times. By virtue of (ii) for every $s \in N$ we can choose a homogeneous polynomial $p_s \neq 1$ such that $||p_s||_{\Omega} \leq 1$ and $|p_s(b_s)| = 1$. Given a sequence of positive integers $(m_s)_{s \in N}$ such that $m_s \deg p_s > 2m_{s-1} \deg p_{s-1}$, $s \geq 2$, put

$$f_1 = p_1,$$

$$f_s = p_s^{m_s}, s \geqslant 2$$

and write $v_s := \deg f_s = m_s \deg p_s$. For an arbitrary integer $v \ge 0$, we define

$$g_{v} := \begin{cases} 0, & \text{if } v \notin \{v_{s} : s \in N\} \\ \varepsilon_{v_{s}} f_{s}, & \text{if } v = v_{s} \text{ for some } s \in N. \end{cases}$$

Observe that for every $z \in \partial \Omega$

$$\limsup_{v\to\infty} \sqrt[v]{|g_v(z)|} \leqslant \lim_{v\to\infty} \sqrt[v]{\varepsilon_v} = 1.$$

Hence the series $\sum_{\nu=0}^{\infty} g_{\nu}$ converges in Ω . Moreover,

$$\lim_{v\to\infty} \sup_{\alpha} \sqrt[v]{|g_v(\alpha)|} \geqslant 1, \ \alpha \in A.$$

So Ω is the domain of convergence of $\sum_{\nu=0}^{\infty} g_{\nu}$. Let

$$g(z) = \sum_{\nu=0}^{\infty} g_{\nu}(z), \ z \in \Omega.$$

Since the series under consideration is a lacunary one, the function g cannot be continued beyond Ω ([13]).

2°. Let $f \in \mathcal{O}_{\Omega}$. Given g, constructed in 1°, let us consider the family of functions

$$f_{\alpha} = \sum_{v=0}^{\infty} (f_v + \alpha g_v), \quad \alpha \in (0, 1).$$

Note that for any $\alpha \in (0, 1)$ $f_{\alpha} \notin [f]$. Indeed,

$$\limsup_{v\to\infty} \sqrt[v]{|g_v(a)|} \geqslant 1, \ a\in A.$$

Hence, in view of (i),

$$u_{f-f_{\alpha}}^{*}(z) = \limsup_{\zeta \to z} (\limsup_{v \to \infty} \sqrt[v]{\alpha} \sqrt[v]{|g_{v}(\zeta)|}) \geqslant 1, \ z \in \partial \Omega.$$

So, by Proposition 2.1, $f_{\alpha} \notin [f]$. As a consequence of the construction of g we obtain

$$f_{\alpha} \in V_{\Omega, \varepsilon}(f)$$
, $\alpha \in (0, 1)$.

We claim that at least one of the functions f_{α} cannot be continued beyond Ω . Otherwise for every $\alpha \in (0, 1)$ there would exist a point $z \in \Omega$ and a positive integer k such that $\varrho(T_z f_{\alpha}) \geqslant \operatorname{dist}(z, \partial \Omega) + 1/k$. Let D be a countable subset of Ω , dense in Ω . To every $\alpha \in (0, 1)$ there corresponds a pair $(z, k) \in D \times N$ such that $\varrho(T_z f_{\alpha}) \geqslant \operatorname{dist}(z, \partial \Omega) + 1/k$. In view of the countability of $D \times N$ and the uncountability of (0, 1) we can find two different numbers $\alpha_1, \alpha_2 \in (0, 1)$ and a pair $(z, k) \in D \times N$ such that

$$\varrho(T_z f_{\alpha_i}) \geqslant \operatorname{dist}(z, \partial \Omega) + 1/k \ (i = 1, 2).$$

Therefore $\varrho(T_z(f_{\alpha_1}-f_{\alpha_2})) \geqslant \operatorname{dist}(z, \partial\Omega) + 1/k$.

But
$$(f_{\alpha_1}-f_{\alpha_2})(z)=(\alpha_1-\alpha_2)\sum_{\nu=0}^{\infty}g_{\nu}(z)=(\alpha_1-\alpha_2)g(z), z\in\Omega.$$

This leads to a contradiction since g is noncontinuable beyond Ω . The proof is ended. A class of domains which satisfy the hypothesis of Theorem 2.3 is given by the following

2.4. PROPOSITION. Let Ω be a bounded balanced domain of holomorphy in \mathbb{C}^n . Assume that $\partial\Omega$ does not contain a ring (i.e. the intersection of $\partial\Omega$ with any complex vector line is a circle). Then there exists a family P of homogeneous polynomials from \mathbb{C}^n to \mathbb{C} such that

$$\Omega = \inf\{z \in \mathbf{C}^n \colon |p(z)| < 1, \ p \in P\}.$$

Proof. We define $P := \{p \colon C^n \to C \colon p \text{ is a homogeneous polynomial}, ||p||_{\Omega} = 1, \deg p \ge 1\}$. Then

$$\Omega \subset \Omega' := \inf_{p \in P} \{z \in \mathbb{C}^n : |p(z)| < 1\}.$$

We shall prove that $\Omega' \subset \Omega$. With this aim in view fix $z_0 \in \Omega'$ and take a number r > 1 such that $rz_0 \in \Omega'$. Then for every $p \in P \mid p(rz_0) \mid < 1$. Therefore the point rz_0 belongs to the hull of Ω convex with respect to homogeneous polynomials. By hypothesis Ω is a compact subset of $r\Omega$. But $r\Omega$, as a balanced domain of holomorphy, is convex with respect to homogeneous polynomials. Hence $rz_0 \in r\Omega$, so $z_0 \in \Omega$. The proof is completed.

2.5. Remark. Note that there exist balanced domains of holomorphy of the form

$$\Omega = \inf \bigcap_{p \in P} \{ z \in C^n \colon |p(z)| < 1 \},$$

the boundaries of Ω contain rings, P being a family of homogeneous polynomials (see Theorems 3.1 and 4.1 in [11]).

2.6. Lemma. Let Ω be a bounded balanced domain in \mathbb{C}^n such that $\partial\Omega$ does not contain a ring. Assume that $f \in \mathcal{O}_{\Omega}$ is noncontinuable beyond Ω . Put $\mathscr{A} = \{z \in \partial\Omega \colon f_z \text{ continues analytically through } 1\}$, where $f_z \colon \Lambda \in \lambda \to f(\lambda z) \in \mathbb{C}$, $z \in \partial\Omega$. Then $\mathscr{A} = \mathscr{C} \cap \partial\Omega$, \mathscr{C} being a pluripolar cone in \mathbb{C}^n .

Proof. By hypothesis Ω is the Mittag-Leffler star of the function f (for definition see [5]). Let

$$f(z) = \sum_{\nu=0}^{\infty} f_{\nu}(z), \ z \in \Omega; \ f_{\nu} \in P^{\nu}(\mathbb{C}^{n}, \mathbb{C}), \ \nu = 0, 1, 2, ...$$

For every $k \in N$ let us consider the k-th function associated with f given by the formula

$$F_k(z) = \sum_{v=0}^{\infty} \frac{f_v(z)}{\Gamma(1+v/k)}, \quad z \in \mathbb{C}^n$$

and its regularized radial indicator

$$H_k^*(z) = \limsup_{\zeta \to z} H_k(\zeta)$$
,

where

$$H_k(\zeta) = \limsup_{t \to \infty} t^{-k} \ln |F_k(t\zeta)|, \ \zeta \in \mathbb{C}^n.$$

Note that for n = 1 the function H_k is continuous ([6]), so in that case $H_k = H_k^*$, k = 1, 2, ...

We claim that $\mathcal{A} = \bigcup_{k=1}^{\infty} A_k$, where $A_k = \{z \in \partial \Omega \colon H_k(z) < H_k^*(z)\}$. Indeed, given any $z \in \partial \Omega$, we have: f_z continues analytically through 1 if and only if there exists $k \in N$ such that $H_k(z) < 1$. This fact is a consequence of Theorem 4 in [5] for n = 1 (since $H_k(z)$ is the value at 1 of the indicator of k-th function associated with f_z). Furthermore, by the assumptions on Ω and by Theorem 4 in [5] we obtain $\Omega = \{z \in C^n \colon H_k^*(z) < 1\}, k = 1, 2, ...$ and $H_k^*(z) = 1, z \in \partial \Omega, k = 1, 2, ...$ Hence, for $z \in \partial \Omega, f_z$ continues analytically through 1 if and only if there exists $k \in N$ such that $H_k(z) < H_k^*(z)$.

Let $\mathscr{C} = \bigcup_{t \in (0, \infty)} t \mathscr{A}$. Then $\mathscr{C} = \bigcup_{k=1}^{\infty} \{z \in \mathbb{C}^n \colon H_k(z) < H_k^*(z)\}$, since the functions H_k and H_k^* are positively homogeneous (of order k). Hence \mathscr{C} is negligible (see [9]) and thus pluripolar ([1]).

2.7. Proposition. Let Ω and $f \in \mathcal{O}_{\Omega}$ satisfy the assumptions of Lemma 2.6. Put $\mathscr{E} := \{z \in \partial \Omega : f_z \text{ continues analytically beyond } \Delta \}$. Then the cone $\bigcup_{t \in (0, \infty)} t\mathscr{E}$ is pluripolar.

Proof. Let $\{\theta_1, \theta_2, ...\} = Q \cap [0, 2\pi)$ where Q denotes the set of rational numbers. Given any $j \in N$ we write

- (1) $f_j(z) = f(e^{i\theta_j}z), z \in \Omega$,
- (2) $E_j = \{z \in \partial \Omega : f_{j,z} \text{ continues analytically through } 1\},$ where $f_{j,z} : \Delta \in \lambda \to f_j(\lambda z) \in C$.

Then $\mathscr{E} = \bigcup_{j=1}^{\infty} E_j$. By Lemma 2.6 the set $\mathscr{C}_j = \bigcup_{t \in (0, \infty)} t E_j$ is pluripolar for every $j \in N$.

Hence $\bigcup_{t \in (0, \infty)} t \mathscr{E} = \bigcup_{j=1}^{\infty} \mathscr{C}_j$ is pluripolar as a countable union of pluripolar sets.

- **2.8.** Remark. Since the set \mathscr{E} is of the type F_{σ} it is of the first category in $\partial\Omega$. In the case when Ω is a ball in C^n this fact was proved (in another way) by Cima and Globevnik ([4]).
- **2.9.** COROLLARY. Let Ω satisfy the assumptions of Lemma 2.6 and let $f \in \mathcal{O}_{\Omega}$. Then f is noncontinuable beyond Ω if and only if there exists a subset Z of $\partial \Omega$ dense in $\partial \Omega$ and such that f_z is noncontinuable beyond Δ for every $z \in Z$.
- **2.10.** Theorem (for n=1 see Theorem 4.2.2 in [2]). Let Ω be a bounded balanced domain of holomorphy in \mathbb{C}^n such that $\partial \Omega$ does not contain a ring. Then \mathcal{N} is open in \mathcal{X} .

Proof. Let $f \in \mathcal{O}_{\Omega}$ be noncontinuable beyond Ω . We shall find a neighbourhood of f consisting of functions which are not continuable beyond Ω .

Let $Z = \{z_1, z_2, ...\}$ be a countable subset of $\partial \Omega$, dense in $\partial \Omega$ and such that f_z is non-continuable beyond Δ for every $z \in Z$. By Theorem 4.2.2 in [2] for each $k \in N$ we can choose a sequence $\varepsilon^{(k)} = (\varepsilon_v^{(k)})_{v=0}^{\infty}$ of positive real numbers satisfying the following conditions

(1)
$$\lim_{v \to \infty} \sqrt[v]{\varepsilon_v^{(k)}} = 1$$
,

(2) for every $\varphi \in V_{\Delta, \varepsilon^{(k)}}(f_{z_k})$ φ is noncontinuable beyond Δ . Now let us take a strictly increasing sequence $(\mu_k)_{k=1}^{\infty}$ of positive integers such that for any $k \in N$

$$\sqrt[v]{\varepsilon_v^{(j)}} \geqslant 1 - \frac{1}{k}$$
 if $j \in \{1, 2, ..., k\}, \quad v \geqslant \mu_k$.

Finally we define a new sequence $\varepsilon = (\varepsilon_v)_{v=0}^{\infty}$ as follows

$$\begin{split} \varepsilon_0 &= \varepsilon_1 = \ldots = \varepsilon_{\mu_1 - 1} = 1 \,, \\ \varepsilon_v &= \min \big\{ \varepsilon_v^{(1)}, \, \varepsilon_v^{(2)}, \, \ldots, \, \varepsilon_v^{(k)} \big\}, \, \, \mu_k \leqslant v < \mu_{k+1}, \, \, k \in N \,. \end{split}$$

Then $\lim_{v\to\infty} \sqrt[v]{\varepsilon_v} = 1$ and for each $k \in N$

$$\varepsilon_{\nu} \leqslant \varepsilon_{\nu}^{(k)}, \ \nu \geqslant \mu_{k} \,.$$
 (2.2)

We claim that any function $g \in V_{\Omega,\varepsilon}(f)$ is noncontinuable beyond Ω . Indeed, let $g \in V_{\Omega,\varepsilon}(f)$. Then for every $k \in N$ $g_{z_k} \in V_{A,\varepsilon}(f_{z_k})$. By (2.2) $V_{A,\varepsilon}(f_{z_k}) \subset V_{A,\varepsilon}(k)(f_{z_k})$. Hence g_{z_k} does not continue beyond Δ . Since Z is dense in $\partial \Omega$ g is noncontinuable beyond Ω .

- 3. Generalization of the theorem of Ryll-Nardzewski and Steinhaus. Siciak observed that the *n*-dimensional version of the theorem of Ryll-Nardzewski and Steinhaus may be proved by the same method as that of one variable.
- 3.1. Let X be a Fréchet space. Given a domain $\Omega \subset \mathbb{C}^n$, let A be a countable subset of Ω , dense in Ω . Assume that a function $F: X \times \Omega \to \mathbb{C}$ satisfies the following conditions
 - 1) For any $x \in X$ the function $F_x: \Omega \ni \zeta \to F(x, \zeta) \in \mathbb{C}$ is analytic in Ω .
- 2) For any $\zeta \in \Omega$ the function $F_{\zeta} \colon X \ni x \to F(x, \zeta) \in C$ is linear and continuous in X. We say that a point $(a, p) \in A \times Q$ is regular with respect to F if $p > \operatorname{dist}(a, \partial \Omega)$ and $\varrho(T_a F_x) \geqslant p$ for all $x \in X$.

Let R denote the set of all pairs $(a, p) \in A \times Q$ regular with respect to F. Set

$$T := \{(a, p) \in (A \times Q) \setminus R \colon p > \operatorname{dist}(a, \partial \Omega)\}.$$

We define

$$M_{\nu}(a, p) := \{ x \in X : \varrho(T_a F_x) \geqslant p, ||T_a F_x||_{B(a, p)} \leqslant \nu \}, \ \nu \in N, \ (a, p) \in A \times Q,$$

where

$$\begin{split} ||T_a F_x||_{B(a,p)} &= \sup \left\{ |T_a F_x(\zeta)|, \ \zeta \in B(a,p) \right\}; \\ \mathscr{P} &:= \bigcup_{\nu=1}^{\infty} \bigcup_{(a,p) \in T} M_{\nu}(a,p), \quad \mathscr{Q} := X \backslash \mathscr{P}; \\ \mathscr{G} &:= \bigcup_{(a,p) \in R} B(a,p) \cap \partial \Omega, \quad \mathscr{H} := (\partial \Omega) \backslash \mathscr{G}. \end{split}$$

With this denotations we have

- **3.2.** THEOREM (for n = 1 Theorem 4.3.1 in [2]; comp. Theorem 4 in [10], Theorem 10.1 in [12] and § 4.5 in [7]).
 - (i) The set \mathcal{P} is of the first category in X.
 - (ii) For every $\zeta \in \mathcal{G}$ and $x \in X$ there exists a point $a \in A$ such that $\varrho(T_a F_x) > ||a \zeta||$.
 - (iii) For every $\zeta \in \mathcal{H}$, $x \in \mathcal{Q}$, $a \in A$, $\varrho(T_a F_x) \leq ||a \zeta||$.
- Proof. (i) By virtue of the Vitali Theorem the sets $M_{\nu}(a, p)$ are closed in X. So it suffices to prove that $\inf M_{\nu}(a, p)$ is empty if $(a, p) \in T$, $\nu \in N$. Suppose it is not true and choose $\nu \in N$ and $(a, p) \in T$ such that $\inf M_{\nu}(a, p) \neq \emptyset$. Let $x_0 \in \inf M_{\nu}(a, p)$. By definition of T we can find a point $x \in X$ such that $\varrho(T_a F_x) < p$. For a suitable r > 0 we have $x_0 + rx$

 $\in \operatorname{int} M_{\nu}(a, p)$. As a consequence of 2) we receive $F(x, \zeta) = \frac{1}{r} [F(x_0 + rx, \zeta) - F(x_0, \zeta)],$ $\zeta \in \Omega$. Hence $\varrho(T_a F_x) \geqslant p$. Contradiction.

(ii) This part of the theorem is an immediate consequence of the definition of the set \mathcal{G} .

(iii) Suppose that there exist $\zeta \in \mathcal{H}$, $x \in \mathcal{Q}$ and $a \in A$ such that $\varrho(T_a F_x) > ||a - \zeta||$. Then we can choose such numbers $p \in Q$ and $v \in N$ that $x \in M_v(a, p)$, $\zeta \in B(a, p)$. Since $x \in \mathcal{Q}$ and $\zeta \in \partial \Omega$ the pair (a, p) belongs to R. Hence $\zeta \in \mathcal{G}$. But this is in contradiction with hypothesis $(\zeta \in \mathcal{H})$. The proof is concluded.

Let Ω be a domain in C^n . Let us consider the Fréchet space \mathcal{O}_{Ω} with the topology of uniform convergence on compact subsets of Ω . From Theorem 3.2 we derive

3.3. COROLLARY. Let Ω be a domain in C^n and let A be a countable dense subset of Ω . Assume that for every $\zeta \in \partial \Omega$ there exists a function $g \in \mathcal{O}_{\Omega}$ such that $\varrho(T_a g) \leq ||\zeta - a||$, $a \in A$. Then Ω is the domain of holomorphy and the set $\{g \in \mathcal{O}_{\Omega} : g \text{ is noncontinuable beyond } \Omega\}$ is of the second category in \mathcal{O}_{Ω} .

Proof. Put $X = \mathcal{O}_{\Omega}$, $F: X \times \Omega \ni (g, \zeta) \to g(\zeta) \in \mathbb{C}$. Then F satisfies the hypothesis of Theorem 3.2. In the case under consideration the set \mathscr{G} is empty. Hence $\mathscr{H} = \partial \Omega$ and by (iii) of Theorem 3.2 all functions belonging to \mathscr{Q} are noncontinuable beyond Ω .

3.4. Given a bounded balanced domain of holomorphy $\Omega \subset \mathbb{C}^n$, let us consider the two following Banach spaces:

$$X_1 := \{ f = \sum_{\nu=0}^{\infty} f_{\nu} \colon f_{\nu} \in P^{\nu}(C^n, C), \ \nu = 0, 1, ...; \sum_{\nu=0}^{\infty} ||f_{\nu}||_{\Omega} < \infty \},$$

$$X_2 := \{ f = \sum_{\nu=0}^{\infty} f_{\nu} : f_{\nu} \in P^{\nu}(\mathbb{C}^n, \mathbb{C}), \ \nu = 0, 1, ...; \ \sup_{\nu} ||f_{\nu}||_{\Omega} < \infty \}$$

with norms

$$||f||_1 = \sum_{v=0}^{\infty} ||f_v||_{\Omega}, \quad f \in X_1$$

and

$$||f||_2 = \sup_{v} ||f_v||_{\Omega}, f \in X_2.$$

- 3.5. Theorem. The following conditions are equivalent
- 1) There exists a series $f \in X_1$ that converges in Ω to a function noncontinuable beyond Ω .
- 2) There exists a series $f \in X_2$ that converges in Ω to a function noncontinuable beyond Ω .
- 3) There exists a family P of homogeneous polynomials such that

$$\Omega = \inf\{z \in \mathbb{C}^n \colon |p(z)| < 1, \ p \in P\}.$$

Proof. 1) \Rightarrow 2). This implication is obvious. 2) \Rightarrow 3). Suppose that $f \in X_2$ is non-continuable beyond Ω . Set

$$P_f := \left\{ \frac{1}{||f_{\nu}||_{\Omega}} f_{\nu} \colon \nu \in N, f_{\nu} \neq 0 \right\},\,$$

$$\Omega' := \inf\{z \in C^n : |p(z)| < 1, p \in P_f\}.$$

We claim that $\Omega = \Omega'$. Suppose it is not true, i.e. $\Omega \subsetneq \Omega'$. Then we can find a point $\zeta_0 \in \partial \Omega$ and a number r > 0 such that $B = B(\zeta_0, r) \subset \subset \Omega'$. Now $||p||_B \leqslant ||p||_{\Omega'} \leqslant 1$, $p \in P_f$. Hence

$$||f_{\nu}||_{B} \leq ||f_{\nu}||_{\Omega'} \leq ||f_{\nu}||_{\Omega} \leq ||f||_{2}, \ \nu \in N.$$

Choose $t \in (0, 1)$ so as to $\zeta_0 \in tB$. Then

$$||f_{\nu}||_{tB} \leq t^{\nu}||f_{\nu}||_{B} \leq t^{\nu}||f||_{2}$$
.

Therefore the series $\sum_{v=0}^{\infty} f_v$ converges in a neighbourhood tB of the point ζ_0 . This leads one to contradiction.

3) \Rightarrow 1). Given a family P of homogeneous polynomials such that

$$\Omega = \inf\{z \in \mathbb{C}^n \colon |p(z)| < 1, \ p \in P\}$$

one may obtain a series $f \in X_1$ noncontinuable beyond Ω by repeating the construction from the point 1° of the proof of Theorem 2.3 for the sequence $\varepsilon_{\nu} = 1/\nu^2$, $\nu \in N$.

Assume that a bounded domain Ω satisfies the condition 3) of Theorem 3.5. Then, as an immediate consequence of Theorems 3.2 and 3.5, we obtain the following corollaries

- **3.6.** COROLLARY. The set $\{f \in X_i : f \text{ is noncontinuable beyond } \Omega\}$ is of the second category in X_i (i = 1, 2).
- **3.7.** COROLLARY. There exists a function $f \in \mathcal{O}_{\Omega}$, continuous in $\overline{\Omega}$ and noncontinuable beyond Ω .
- 3.8. Remark. There exist bounded balanced domains of holomorphy which do not satisfy the condition 3) of Theorem 3.5. They are the domains of the form

$$\Omega = \{ z \in \mathbb{C}^n \colon \Phi(z) < 1 \} \tag{3.1}$$

where Φ is plurisubharmonic in \mathbb{C}^n with nonpluripolar set of discontinuities and such that $\Phi(\lambda z) = |\lambda| \Phi(z)$ for $\lambda \in \mathbb{C}$, $z \in \mathbb{C}^n$.

Indeed, let Ω be of the form (3.1) and suppose that Ω satisfies 3) of Theorem 3.5.

Then there exists a bounded function $f \in \mathcal{O}_{\Omega}$ noncontinuable beyond Ω . Let $f = \sum_{v=0}^{\infty} f_v$, $f_v \in P^v(C^n, C)$. Then

$$\Phi = (\limsup_{v \to \infty} \sqrt[v]{|f_v|})^*$$

and by boundedness of f

$$\Phi = \left(\sup_{v \in N} \sqrt[\nu]{\frac{|f_v|}{M}}\right)^*,$$

where $M = ||f||_{\Omega}$ (see [14]). But the last function admits discontinuities at most at the points of a pluripolar set.

I owe Remark 3.8 to Professor Józef Siciak whom I wish to thank for discussions concerning the subject of this paper.

References

- [1] E. Bedford, B. A. Taylor, Some potential theoretic properties of plurisubharmonic functions, (pre-print), 1981.
- [2] L. Bieberbach, Аналитическое продолжение, Наука, Москва, 1967.
- [3] J. Bochnak, J. Siciak, Analytic functions in topological vector spaces, Studia Math., XXXIX (1971), 77-112.
- [4] J. A. Cima, J. Globevnik, Analytic continuation on complex lines, (preprint), 1981.
- [5] M. Downarowicz, Analytic continuation of series of homogeneous polynomials of n complex variables, Zeszyty Naukowe U. J., Prace Mat., 17 (1975), 105—114.
- [6] М. М. Джрбашян, Интегральные преобразования и представления функций в комплексной области, Наука, Москва, 1968.
- [7] J. P. Ferrier, Spectral theory and complex analysis, North-Holland, Amsterdam-London, 1973.
- 181 F. Leia, Funkcje zespolone, Warszawa, 1971.
- [9] P. Lelong, Fonctions entieres de type exponentiels dans Cⁿ, Ann. Inst. Fourier, 16 (1966), 269—318.
- [10] —, Fonctions plurisousharmoniques et ensembles polaires dans les espaces vectoriels topologiques, C. R. Acad. Sci. Paris Sér. A 267 (1968), 916—918.
- [11] M. Mazurek, Some properties of extremal functions, Zeszyty Naukowe U. J., Prace Mat., 20 (1979), 167—174.
- [12] K. Rusek, J. Siciak, Maximal analytic extensions of Riemann domains over topological vector spaces, in: Infinite dimensional holomorphy and applications, North—Holland, 1977.
- [13] J. Siciak, Generalization of a theorem of Fatou, Zeszyty Naukowe U. J., Prace Mat. 1 (1966), 81-84.
- [14] —, Extremal plurisubharmonic functions and capacities in C^N , (preprint), 1981.

Received February 12, 1982.