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On Series of Homogeneous Polynomials Noncontinuable
Beyond Their Domain of Convergence
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by' Malgorzata DowNAROWICZ

Abstract. Let £2 be a balanced domain of holomorphy. Then functions which are holomorphic in 2
and noncontinuable beyond 2 form a large set in (o equipped with a suitable topology.

0. Introduction. Let f be an analytic function of n complex variables defined by
a scries of homogeneous polynomials

1) = Y1), @egsy = ©.1)

that converges in a neighbourhood of zero in the space C"

Let 2 denote the domain of convergence of series (0.1). Since  is the domain of
holomorphy, there exists at least one function f holomorphic in Q and noncontinuable
beyond Q. Let us consider the set 0, of all functions analytic in 2 and a subset of 0
consisting of those functions which are noncontinuable beyond Q. The question arises
how large this subset is. L. Bieberbach in his book [2] presented the history of this
problem and collected many theorems concerning it forn = 1.

The aim of this paper is to generalize three of the results inserted in [2]. Two of them,
due to Hausdorff and Polya, say that having set up a suitable topology in @, the subset
under consideration turns out to be dense and open in 04, 4 being the unit disc in C.
The third one, due to Ryll-Nardzewski and Steinhaus, says that in a Banach space con-
sisting of functions holomorphic in the unit disc the functions noncontinuable beyond
the disc form a set of second category.

1. Denotations and definitions.
A:={ieC: |A<1}, B(zg, 1) := {z€C": ||z—zl| <1}, 2o C", >0,

liz]] being the Euclidean norm in C”.
For a function f: C*"> S5 —» C we write

1flls = sup{{f(): ze S}.
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P¥(C", C) denotes the set of all homogeneous polynomials from C" to C of degree v
(v=0,1,2,..). ‘

If /1 @ - C is analytic in Q, then T, f denotes the Taylor series of the function f centred
in o e Q, o(T,f) denotes the radius of convergence of this series.

Let f be holomorphic in a domain Q. We say that f continues through a point z, € 022
if there exists a point @ € Q such that o(7,f) > [|zot—a||. A holomorphic function f: Q- C
which continues through a point of 9Q is called continuable beyond .

2. Generalization of the theorems of Hausdorff and Polya. Let 2 = C" be a bounded
balanced domain of holomorphy. Let 0y = {f: Q - C: f is analytic}. For every je 0,
we have the only representation

J(@ = ZZOfV(Z), zeQ, 2.1)

where f, e PY(C",C) for v =0,1,2, ...
For fe 0, we put

v (z) = lim sup \v/[fv z)|

and
i (z) = lim supu () .

=z

Then Q< {ze C™: uj(z) <1}
Following Hausdorff we introduce in €, a topology defined by a fundamental system
of neighbourhoods. Let & = (g,);o be a sequence of positive real numbers such that

lim \v/é: = | and let fe O,. By an ¢-neighbourhood of f we mean the set

Vo f) = {g €lln: sup (lim sup /2)~9,2) )< 1}.

zef2 vy &y

Now we define an equivalence relation in €, as follows: let two functions f, g € Oq
be in relation (f~g) if and only if f—g € Og; where 0z = ind lim .

Voo, ?open

2.1 PRrOPOSITION, Let f, g€ Cq. Then [~ g if and only if uj_(2) <1 for every z € 0.
Proof. Let f,ge 0y and f—ge 0gz. Then there exists a number r >0 such that
f—g € Oqu, where
Q" = {zeC": dist(z, Q) <r},

dist(z, Q) denotes the distance between the point z and the set @ in Fuclidean norm in C”.
Since Q" is a balanced neighbourhood of zero in C" the incquality uf- ,(2) <1 holds for
ze Q" and, in particular, for z € dQ.

Suppose now that uf_,(z) <1 for every ze 09. Then 02 so Q is contained in the

e8]

domain of convergence of series » (f,—g,). Therefore f~g.
v=0
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2.2, Now let us consider the topological space Z = O, . with the quotient topology.
Let A" = {[f]1e€ & f is noncontinuable beyond Q}.

2.3. THEOREM (tor n = 1 sce Theorem 4.2.1, in [2]). Let Q be a bounded balanced
domain of holomorphy in C". Suppose that there exists a family P of homogeneous poly-
nomials such that

Q=int{zeC": [p(2)l<1, peP}.

Then the set N is dense in X.
Proof. 1°, Choose an arbitrary sequence & = (g,);=o of positive real numbers such

that \v/ a:;——>1_, with v > oo." We shall find a series of homogeneous polynomials » g,,
v=0

g, € P'(C", C), convergent in Q to a function g noncontinuable beyond 2 and such that
lgllo<e, v=10,1,2,.. ‘

By hypothesis there exists a countable set A = {a,, a,, ...} contained in C™\Q satistying
the two following conditions: :

(i) 0Q < A, ,

(i1) for every z e A there exists a homogencous polynomial p, not identically equal

to | such that [p(z)] = 1 and ||p]lo < 1.
Let (b)), .n be a sequence of elements of 4 such that each element of A is repeated

in (b,)scy infinitely many times. By virtue of (ii) for every s € N we can choose a homogene-
ous polynomial p; # 1 such that [|pJl, <1 and |p(b,)| = 1. Given a sequence of positive
integers (m,),.n such that m degp,>2m,_,degp,_,, §=2, put

fl =P

fs =05, 522
and write v, := deg f, = m,degp,. For an arbitrary integer v 0, we define

_ o, if v {v;: se N}
gy = ‘Svsf.;" if Vo= Vg for some seN.

Observe that for every z e 08
. v Y A
lim sup \/Igv(z)l < lm~eg, = 1.

vV—= w0 Voo

v 8]

Hence the series ) g, converges in Q. Moreover,
v=0

lim supi/@@}], ce A.

! Vo0

g,. Let

I
118

So Q is the domain of convergence of

¥

9) = ¥ 0.0, 7€ 9.

Since the series under consideration is a lacunary one, the function g cannot be continued
beyond Q ([13]).
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2°, Let fe Oy. Given g, constructed in 1°, let us consider the family of functions

0

=v;)(fv+agv), ae(0,1).

Note that for any e (0, 1).f, ¢ [f] Indeed,
lim sup \/Ig Ja) =1, aeAd.

v— o0

Hence, in view of (i),

ui_ r(z) = limsup (lim sup \v/; :/féj@) >1, ze0Q.

frz v oo

So, by Proposition 2.1, f, ¢ [f]. As a consequence of the construction of g we obtain

faGVQ,a(f)a {XG(O, 1)

We claim that at least one of the functions f, cannot be continued beyond Q. Otherwise
for every a e (0, 1) there would exist a point z€ Q and a positive integer k such that
o(T.1) = dist(z, 3Q)+1/k. Let D be a countable subset of &, dense in Q. To every
¢ (0, 1) there corresponds a pair (z, k)€ Dx N such that o(T,f,) = dist(z, 082)+1/k.
In view of the countability ot D x N and the uncountability of (0, 1) we can find two
different numbers o4, @, €(0, 1) and a pair (z, k) € D x N such that

o(T.1.) = dist(z, 0Q)+1/k (i =1,2).
Therefore o(T.(f,,—/f.,) = dist(z, éQ)+ 1 /k.

But (.fal _faz)(z) = (Otl __Ot2) Z(')gV(Z) = (O('l —“2)9(2)9 ze Q.

This leads to a contradiction since g is noncontinuable beyond Q. The proof is ended.
A class of domains which satisfy the hypothesis of Theorem 2.3 is given by the
following

2.4, PROPOSITION. Let Q be a bounded balanced domain of holomorphy in C". Assume
that 8Q does not contain a ring (i.e. the intersection of 0Q with any complex vector line is
a circle). Then there exists a family P of homogeneous polynomials from C* to C such that

Q = int{zeC": |p(2)i <1, peP}.

Proof. We define P := {p: C"— C: p is a homogeneous polynomial, |{p|la =1,

degp = 1}. Then
QcQ :=int({zeC" |p(2)| <1}.
pefP

We shall prove that Q' < Q. With this aim in view fix zy € Q' and take a number r > 1
such that rz, € Q. Then for every pe P |p(rzy)| < 1. Therefore the point rz, belongs to
the hull of @ convex with respect to homogeneous polynomials. By hypothesis Q is
a compact subset of Q. But rQ, as a balanced domain of holomorphy, is convex with
respect to homogeneous polynomials. Hence rz, € rQ, so z, € 2. The proof is completed.



11

2.5. Remark. Note that there exist balanced domains of holomorphy of the form

=it fre C" |p(2)] <1},

peP

the boundaries of @ contain rings, P being a family of homogeneous polynomials (see
Theorems 3.1 and 4.1 in {11}).

2.6. LEMMA. Let Q be a bounded balanced domain in C" such that 0@ does not contain

a ring. Assume that fe Oy is noncontinuable beyond Q. Put s = {z€ 0Q: [, continues
analytically through 1}, where f,: A€l — f(Az)e C, z€ Q. Then & = € N 0Q, € being
a pluripolar cone in C".

Proof. By hypothesis Q is the Mittag-Leffler star of the function f (for definition
see [5]). Let

@) = Y f2), z€Q; £, PYC,C), v=0,1,2,.
v=0

For every k € N let us consider the k-th function associated with f given by the formula

o

_ RES e
fula) = Z i °<€

v=0

and its regularized radial indicator

Hy(2) = lim sup H({) ,

{—z
where

H,(0) = lim supt *In|F (t0)], L e C".
o
Note thet tor n = 1 the tunction H, is continuous ([6]), so in that case H, = HY,
k=1,2,

- We claim that & = U A, where 4, = {z € 0Q: Hk(é)< H(2)}. Indeed, given any

k=1
7€ 0Q, we have: f, continues analytically through 1 if and only if there exists k € N such

that H,(z) < 1. This fact 1s a consequence of Theorem 4 in [5] tor n = 1 (since Hy(z) is
the value at I of the indicator of k-th function associated with f). Furthermore, by the
assumptions on 2 and by Theorem 4 in [5] we obtain Q = - {zeC: Hi(n) <1}, k =1,2,
and H(2)= 1,z 8Q, k= 1,2,.... Hence, for z e 0Q, f. continues analytically through l
if and only if there exists ke N such that H,(z) < H(2).

Let ¥ = | . Then ¢ = \J {ze C": Hfz) < H{(2)}, since the functions Hy

1e(0, ) k=1
and H are positively homogeneous (of order k). Hence ¢ is negligible (see [9]) a.nd thus

pluripolar ([1].
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2.7. PROPOSITION, Let Q and fe Oq satisfy the assumptions of Lemma 2.6. Put
&: = {z€09Q: f, continues analytically beyond AY. Then the cone \) 18 is pluripolar.

te (0, o)
Proof. Let {6,,0,,...} = O 1[0, 27) where O denotes the set of rational numbers.
Given any je N we write
(D) fi2) = f(¢™2), ze @,
(2) £, = {zedQ: f;, - continues analytically through 1},
where f; .0 Aed — fi(Az)e C.

Then & = |J E;. By Lemma 2.6 the set 4, = | tE; is pluripolar for every je N.
=1

ji= te (0, w)

Hence |J 16 =

12(0, w) J

%; is pluripolar as a countable union of pluripolar sets.

8

1

2.8. Remark. Since the set & is of the type F, it is of the first category in ¢0Q. In the
case when € is a ball in C” this fact was proved (in another way) by Cima and Glo-

bevnik ([4]).

2.9. COROLLARY. Let Q satisfy the ussumptions of Lemma 2.6 dnd let fe Og. Then f is
noncontinuble beyona Q if and orly if there exists a subset Z of 0Q dense in 6Q and such
that f. is noncontinuable beyond A for every ze 7.

2.10. THEOREM (for n = 1 sec Theorem 4.2.2 in [2]). Let Q be a bounded balanced downain
of helomorphy in C* such that 0Q does not contuin a ring. Then A" is open in X .

Proof. Let f'e 0, be noncontinuable beyond Q. We shall find a neighbourhood of £
consisting of functions which are not continuable beyond Q.

Let Z = {z, z,,...} be a countable subset of ¢Q, dense in 6Q and such that f. 1s non-
continuable beyond 4 for every ze Z. By Theorem 4.2.2 in [2] for cach ke N we can
choose a sequence ¢ = (2 of positive real numbers satisfying the following con-
ditions

() lim Y& =1,

Lhngvel

(2) for every @ e V, ,(f.) ¢ is noncontinuable beyond 4.
Now let us take a strictly increasing sequence (y,),%, of positive integers such that for
any ke N

VP z - it je{l,2, .k v,

Finally we define a new sequence & = (¢,)™, as follows

& =& = ..=¢, (=1,

> 1 2 k
g, = min{el", ? ... &l N <v<p... keN.
Then lim \"/ev = 1 and for cach ke N

v=o

e, <&, v p,. (2.2)
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We claim that any function g € V, (f) is noncontinuable beyond Q. Indeed, let

0eV (). Thenforevey ke N, Vo ) By QO V() eV, lf.). Hence g,

does not continue beyond A. Since Z is dense in dQ g is noncontinuable beyond €.

3. Generalization of the theorem of Ryll-Nardzewski and Steinhaus. Siciak observed
that the n-dimensional version of the theorem of Ryll-Nardzewski and Steinhaus may
be proved by the same method as that of one variable.

3.1. Let X be a Fréchet space. Given a domain Q = C", let 4 be a countable subset
of @, dense in Q. Assume that a function F: X x Q — C satisfies the following conditions

1) For any x e X the function F: @35 — F(x,{) e C is analytic in £. |

2) For any { € Q the function F,: X 2x - F(x, {) € C is linear and continuous in X.

We say that.a point (a,p)e A x Q is regular with respect to F if p > dist(a, 0Q)
and (T, F,)=p for all xe X.

Let R denote the set of all pairs (@, p) € A x Q regular with respect to F. Set

T := {(a,p)e (A x Q\R: p>dist(a, 0Q)} .
We define

Mv(aap) = {XEX: Q(Tan)>p7 ”T HB(a p)y == V} VEN (a p)EAXQ’

where
”T FxHB(a Py — Sup{lT Fx(C)la CE B(a:p)}:

J—U U M(ap) 2= X\Z;

v=1 (a,p)eT .
4 .= ) Bla,p)n 02, K = (0QNY.

(a,p)eR

With this denotations we have

3.2. THEOREM (for n = | Theorem 4.3.1 in [2]; comp. Theorem 4 in [10], Theorem 10.1
in [12] and § 4.5 in [7]).

(1) The set P is of the first category in X.

(ii) For every { €9 and x € X there exists a point ae€ A such that o(T,F,)> |la— CI]

(i) For every (e, xed, ae A, o(T,F,) < |la={|l. '

Proof. (i) By virtue of the Vitali Theorem the sets M,(a, p) are closed in X. So it
suffices to prove that int M(a, p) is empty if (a, p) e T, ve N. Suppose it is not true and
choose ve N and (a, p) € T such that int M, (a, p) # O. Let x, € int M (a, p). By definition
of T'we can find a point x € X such that o(7,F,) < p. For a suitable r > 0 we have x,+rx

1
eint M (a, p). As a consequence of 2) we receive F(x,{) = — [F(xo+rx, )—F(xy, ),
| r

{ € Q. Hence o(T,F,) > p. Contradiction.
(ii) This part of the theorem is an immediate consequence of the definition of the
set ¥.
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(iif) Suppose that there exist (€, x€2 and ae A such that o(T,E) > |la={]l-

Then we can choose such numbers pe 0 and ve N that xc M,,(a, p), KE B(a, p) Smce
x e 2 and { € 6Q the pair (a, p) belongs to R. Hence { € 4. But this is in contradiction
with hypothesis ({ € #). The proof is concluded.

Let O be a domain in C". Let us consider the Fréchet space ¢, with the topology of
uniform convergence on compact subsets of Q. From Theorem 3.2 we derive

3.3, COROLLARY. Let Q be a domain in C" and let A be a cougtable dense subset of Q.
Assume that for every { € 08 there exists a function g € Ogsuch that 9(T,g) <||{—all, a€ 4.
Then Q is the domain of holomorphy and the set {g e Oy g is noncontinuable beyond Q}
is of the second category in 0.

Proof. Put X = 0y, F: XxQ3(g,0) — g()eC. Then F satisfies the hypothesis
of Theorem 3.2. In the case under consideration the set ¢ is empty. Hence # = dQ and
by (iii) of Theorem 3.2 all functions belonging to 2 are noncontinuable beyond £2.

3.4. Given a bounded balanced domain of holomorphy Q< C”, let us consider the
two following Banach spaces: |

X, = {f = Lhi HEePUCHO) v =0, 1, 2 N Hlle < o0},
y= v=0

X, = = LI L€ P'C ), v = 0, 1, ...; supllfilla < o0}

¥

with norms

1l = ;ll.ﬁ:llg, feX,
and

1F1ls = supllfillas f€Xa.

3.5. THEOREM. The following conditions are equivalent

1) There exists a series f € X, that converges in Q 1o a function noncontinuable beyond Q.
2) There exists a series f€ X, that converges in Q to a function noncontinuable beyond §.
3) There exists a family P of homogeneous polynomials such that

Q@ =int{zeC": |p(z)| <1, peP}.

Proof. 1) = 2). This implication is obvious. 2) = 3). Suppose that fe X, is non-
continuable beyond €. Set |

1
P, =<~ v N, f, # 0,
s {nfvugf veN. fi ¥ }

Q =int{zeC": |p()| <1, peP,}.
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We claim that 2 = Q'. Suppose it is not true, i.e. Q < @'. Then we can find a point
{o € 02 and a number r > 0 such that B = B({,,r) =< Q. Now ||p|llz<[Iplloo-< 1, pe Py
Hence

A< IAle <A < fll2 veN.
Choose te(0,1) so as to {,€tB. Then

Al < 1AM < YA

Therefore the series Y f, converges in a neighbourhood ¢B of the point {,. This leads
v=0
one to contradiction.

3) = 1). Given a family P of homogeneous polynomials such that
Q =int{zeC": |p(2)| <1, peP}

one may obtain a series fe€ X; noncontinuable beyond Q by repeating the construction

from the point 1° of the proof of Theorem 2.3 for the sequence &, = 1/v%, ve N.
Assume that a bounded domain Q satisfies the condition 3) of Theorem 3.5. Then,

as an immediate consequence of Theorems 3.2 and 3.5, we obtain the following corollaries

3.6. COROLLARY. The set { f€ X;: f is noncontinuable beyond Q} is of the second category
in X; (i=1,2).

3.7. COROLLARY. There exists a function fe O, continuous in Q and noncontinuable
beyond £2.

3.8. Remark. There exist bounded balanced domains of holomorphy which do not
satisfy the condition 3) of Theorem 3.5. They are the domains of the form
Q=1{zeC" &(z)< 1} (3.1)

where @ is plurisubharmonic in C" with nonpluripolar set of discontinuities and such,

that ¢(1z) = [ @(2) for Le C, ze C".
]ndeed let Q be of the torm (3.1) and suppose that Q2 satisfies 3) of Theorem 3 5.

Then there exists a bounded function fe 0, noncontinuable beyond Q. Let f = Z S
f,e P’(C", C). Then v

¢ = (limsup/| £,))*

V=@

= sup - N
veEN

where M = || f||, (see [14]). But the last function admlts discontinuitics at most at the
points of a pluripolar set.

and by boundedness of f

I owe Remark 3.8 to Professor Jézef Siciak whom I wish to thank for discussions:
concerning the subject of this paper.
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