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NORMAL FUNCTORS AND RETRACTORS
IN CATEGORIES OF ENDOMORPHISMS

BY MARIAN MROZEK

Abstract. We introduce normal functors in categories of endomorphisms. We
prove the isomorphisms-inducing property of normal functors from the cate-
gory of endomorphisms over an arbitrary category £ into its subcategory of
automorphisms. We show the existence of special normal functors called re-
tractors in endomorphisms categories over categories admitting direct or inverse
limits. We give further examples in the category of modules over a fixed ring R.

0. Introduction

The Leray functor introduced in [Mr1,§4], is defined on the category of
endomorphisms over the category of modules and takes values in its full sub-
category: the category of automorphisms. An important property of the Leray
functor is the isomorphisms inducing theorem, which is used in [Mr1] to con-
struct the Conley index for discrete dynamical systems. Another property
useful in applications is the fact that, when restricted to the category of au-
tomorphisms, it is equivalent to the identity functor.

. In the present paper we consider the two mentioned features of the Leray
functor purely in the category theory setting. In order to prove the abstract
version of the isomorphisms inducing theorem we introduce normal functors
in the category of endomorphisms over an arbitrary category £. We show
that normal functors exist whenever the category £ admits direct or inverse
limits of certain sequences. Moreover, they can be chosen so that, like the
Leray functor, they are identity functors, when restricted to the subcategory
of isomorphisms. Though interesting in itself, from the point of view of topo-
logical dynamics this means that various, non-equivalent Conley indices can
be constructed (see [Mr2]).

We assume the reader knows only basic notions of the category theory; the
general reference being [ML)]. The concepts of (co)products, direct and inverse
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The organisation of the paper is as follows. The first paragraph contains

. preliminaries. In the second paragraph we define the category of endomor-

phisms. In the following paragraph we introduce normal functors and prove

the general isomorphisms inducing theorem. A special kind of functors, called

retractors is introduced in the fourth paragraph. In the next paragraph we

study normal retractors in the category of modules. Various retractors are
compared in the last paragraph.

1. Preliminaries.

The set of natural numbers, including zero, will be denoted by N and the
set of integers by Z. R will denote a fixed ring. If A, B are modules over R
and ¢: A — B is a morphism of modules, then ker ¢ and im ¢ will denote the
kernel and the image of ¢ respectively.

B,C and £ will stand for categories. We will write A € B to denote that A
is an object of the category B. We will write ¢ € B(A, B) or, more frequently,
¢: A — B in B to denote that ¢ is a morphism in B from A to B. If A, B,
CeBandp: A— B,y: B— C are morphisms in B then their composition
will be denoted by ¢ and id4 will stand for the identity morphism in A.

Assume B is a category and {A;|j € J} C B. We recall that B € B with
a family of morphisms {g;: B — A;|j € J} is a product of {A4;} in B iff for
every object X € B and morphisms {n;: X — A;} there exists exactly one
morphism 6: X — B satisfying n; = 0,0 for j € J. If {A;|j € J}, {B;|j € J}
are two families of objects in £, A’, B’ with {a;}, {b;} are their products in £
and {p;: A; — Bj|j € J} are morphisms in £, then, by the definition of the
product, there is exactly one morphism ¢: A’ — B’ such that bjp; = @a for
j € J. It is called the product of morphisms {¢;}.

In the dual way one defines coproducts.

A direct sequence in B is a sequence of objects A,, € B and morphisms
Qg Ap = Apqq of the form

(1.1) Ao — Ay 24, 2

We say that the family of morphisms {¢,: A, — X|n € N} coincides with

the sequence (1.1) or is a cone from {A,} to X, iff ¢, = pn410a, foralln € N.
The object A’ € B with the cone {a;} from {A;} to A’ is the direct limit of

the sequence (1.1) iff it satisfies the following universal factorization property:

for each object B € B and every family of morphisms

(12) {pi: A > B| i€ N} coinciding with (1.1) there

) exists exactly one morphism ¢: A’ — B such that

pi=wa;forie N
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In the dual way one defines dual notions: the inverse sequence and the
inverse limit.

The universal factorization property implies that the direct and inverse lim-
its, if exist, are unique up to an isomorphism.

Assume B € B. A morphism 7: B — By in B is called a reflect of B with

respect to the subcategory By C B iff By € By and the following property
(universal factorization property for reflects) is satisfied

for each object B € By and each morphism £: B — X in B
(1.3) there exists exactly one morphism 6: By — X in By
satisfying 01 = §.

A functor ®: B — By is called a reflector iff it admits a family of morphisms
{rB: B — ®(B) | B € B} such that for each B € B g is a reflect of B with
respect to By and for each morphism 8: A — B in B we have 788 = ¢(8)74.

The dual definitions of coreflect and coreflector are left to the reader.

The following theorem is a special case of a theorem on preserving (general)
limits by functors admitting adjoints (see [ML], Chpt. V.5, Th. 1). However,
for the reader not familiar with adjoint functors it may be easier to prove the
special case as a not difficult excercise.

THEOREM 1.1. Reflectors transform coproducts in B into coproducts in Byg.
Coreflectors transform products in B into products in By. §

The following simple facts from the category theory are recalled for refer-
ence. )

ProrosiTION 1.1. Assume By is a full subcategory of B and a is a mor-
phism in By. Then a is an isomorphism in By iff a is an isomorphism in B. §

ProrPosITION 1.2. (see [Ry, Lemma 12.4]). Assume a, 3,7 are morphisms
in the category B. If fa and «f are defined and isomorphisms then all three
morphisms a, 8,4 are isomorphisms. R

2. The category of endomorphisms and limit functors

Let £ be an arbitrary category. The category of endomorphisms over the
category £, denoted by Endo(£) is defined as follows. The objects of Endo(£)
are pairs (A,a), where A € £ and a € (A, A) is a distinguished endomorphism
of A. The set of morphisms from (A,a) € £ to (B,b) € £ is the subset
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of £(A, B) consisting of exactly those morphisms ¢ € £(A, B) for which the
_diagram

A—— A

o| l¢
commutes.

We will write ¢: (A,a) — (B, b) to denote that ¢ is a morphism from (A, a)
to (B, b) in Endo(£).

It is straightforward to verify that Endo(£) satisfies the axioms of the cat-
egory. In particular, note that identity id4 € £(A, A) is also the identity in
Endo(¢).

We define the category of automorphisms of £ as the full subcategory of
Endo(€) consisting of pairs (A,a) € Endo(€) such that a € £(A4, A) is an
automorphism, i.e. both an endomorphism and an isomorphism in £. The

category of automorphisms of £ will be denoted by Auto(£).
There is a functorial embedding

£3 A (A,idy) € Auto(€),
E(A,B) 3 ¢ — ¢ € Auto(£)(A, B)

hence we can consider the category £ as a subcategory of Auto(£).
The proof of the following not difficult proposition is left to the reader.

ProposITION 2.1. If £ admits (co)products then also Endo(€) admits
(co)products. The (co)product of isomorphisms is an isomorphism. Hence
the (co)product in Auto(€) is also a (co)product in Endo(£). I

To each object (A, a) € Endo(£) one can assign a direct system of morphisms
a a a
(2.1) A—-A—-A—...
and an inverse systems of morphisms
a a a
(2.2) .o Ao A A

If (2.1) (or (2.2)) admits the direct (inverse) limit, it will be called the direct
(inverse) limit of (A, a).

Denote by Endog(€) (Endo;(£)) the full subcategory of Endo(€) consisting
of those objects (A, a) € Endo() for which the sequence (2.1) (or (2.2)) admits
the direct (inverse) limit.

It is straightforward to verify that if (4,a) € Auto(£) then A is the direct
and inverse limit of (A.a). Hence we have the following



185

ProPOSITION 2.2. Auto(€) is a full subcategory of both Endoy(€) and
Endo;(é'). B

Consider (4, a),(B,b) € Endog(£) and denote the corresponding direct lim-
its with their cones by A', {a;: A — A'|i € N}, B, {b;: B — B'|i € N}
respectively. Assume ¢: (4,a) — (B,b) is a morphism in Endoy(€). Then
the family {b;} coincides with (A,a). Thus there exists a unique morphism
¢: A" - B' such that bj¢ = pa; . It will be called the (direct) limit morphism
induced by .

It follows from the universal factorization property that the limit morphism
induced by identity is the identity in the limit space. Moreover, the limit
morphism of a composition of morphisms in Endogy(£) is the composition of
the corresponding limit morphisms. Hence the formulae

(Aja) = A, o—¢

define a functor Ld : Endo4(£) — &, which will be called the direct
limit functor. In the dual way one defines the inverse limit functor
Li: Endo;(€) — €.

3. Normal functors and the isomorphisms inducing theorem
We begin this paragraph with the following

ProPOSITION 3.1. Assume (A,a),(B,b) € Endo(€). Then ¢: A — Bisan
isomorphism in Endo(&) iff ¢ is a morphism in Endo(£) and an isomorphism
in €.

ProoF: If ¢ is an isomorphism in Endo(£) then obviously it is also an
isomorphism in £. Hence assume that ¢: A — B is a morphism in Endo(&)
and an isomorphism in £. Then there exists a morphism ¢ : B — A in £ such
that ¢t = idg, 9 = id4. All what we need is to show that 9 is a morphism
in Endo(£). Since ¢ is a morphism in Endo(€), we have pa = bp. It follows
that av = Ypap = Ybpyp = Yb. Thus 9 is a morphism in Endo(€) and the
proof is finished. B

ProrposITION 3.2. Assume (A,a) € Endo(£). Then a: A — A is also a
morphism in Endo(&).

PRroorF: The proof reduces to the trivial equality aa = aa for the edomor-
phisma: A — A. §

Assume C is a full subcategory of Endo(€) and F: C — Auto(&) is a functor
Let (A,a) € C . Then F(A,a) is an object of Auto(£). Let a’ denote the
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automorphism distinguished in F((4, a). By Proposition 3.2 a: (4,a) — (4, a)
- is a morphism in Endo(£) and since C is a full subcategory of Endo(€) it is also
a morphism in C . Hence F(a) is defined and it is a morphism from F(A,a)
to F(A,a) in Auto(£). However, it need not be F(a) = a' in general. F(a)
need not be even an isomorphism in Auto(£).

DEriNITION 3.1. We will say that F: C — Auto() is normal, if for each
(A,a) € C the morphism F(a) is equal to the automorphism distinguished in
F(A,a).

We have now the following

THEOREM 3.1. (on inducing isomorphisms). Assume C is a full subcategory
of Endo(£), F: C — Auto(£) is a normal functor, (A,a), (B,b) € C and a
commutative diagram

A-——a———>A

(3.1) «vl ' 1«’
in € are given. Then we have also the commutative diagram

(A,a) SN (A,a)

(3.2) el le

(B,b) —— (B,b)
in C . Moreover, applying functor F to the above diagram we obtain the
commutative diagram

F(a)
F(A,a) —— F(A,a)

(33) | Flo)| | P

in Auto(€), in which all morphisms are isomorphisms.

Proor: The commutativity of the diagram (3.1) in particular means that-
¢, ¥ are not only morphisms in £ but also in Endo(£). Hence the diagram (3.2)
makes sense. Its commutativity follows from the commutativity of diagram
(3.1). Hence also diagram (3.3) is commutative. Since F is normal, it follows
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that F(a) coincides with the morphism distinguished in F(A,a) € Auto(&).
Hence F(a) is an isomorphism in £. By Proposition 3.1 it is an isomorphism
in Endo(&)and by Proposition 1.1 also an isomorphism in Auto(£). The same
argument shows that F(b) is an isomorphism in Auto(£). It follows from
Proposition 1.2 that also F(¢) and F(t) are isomorphisms. §

Assume C C Endo(£) is a full subcategory and L: C — £ is a functor.
Assume (A, a), (B,b) € Endo(£) and ¢: (A,a) — (B,b) is a morphism in
Endo(£). Put

(3.4) Ll(Aa a) = (L(A’ a),L((I’)),
(3.5) L'(¢) := L(#)-

THEOREM 3.2. Formulae (3.4)—(3.5) define a normal functor
L': C — Endo(¢).

ProoF: The only thing we need is to verify that L(¢) is a morphism in
Endo(£) but this follows from

L(¢)L(a) = L(pa) = L(bp) = L(b)L(¢p).

The functor L' given by (3.4) and (3.5) will be called the functor associated
with the functor L.

Let Frgt: End(§) — £ denote the forgetful functor which maps
(A,a) € End(€) into A € £ and preserves morphisms. The careful reader
have probably noted that we have also the following converse of Theorem 3.2,
which fully characterizes normal functors.

TrEOREM 3.3. If L: C — End(£) is a normal functor then it is associated
with the composite functor FrgtoL. §

4. Retractors in arbitrary categories of endomorphisms

Our aim now is to show that, under suitable assumptions about the cat-
egory &, normal functors F: Endo(£) — Auto(£) exist. Obviously one can
give trivial examples: If 0 € £ is the zero object in £, then one can define
the zero functor from Endo(€) to Auto(£) by assigning (0,id) to each object
(A,a) € Endo(€) and the identity map in 0 to each morphism ¢: A— Biné.
It is straightforward to verify that the zero functor is a normal functor. We
are interested, however, in less trivial examples.
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A good condition for nontriviality, which is also useful in applications, is to
assume that F restricted to the subcategory Auto(£) is naturally equivalent
" to the identity functor. Hence we introduce the following

DEFINITION 4.1. Assume B is a category and B, is its subcategory. The
functor F: B — By will be called a retractor iff F restricted to By is naturally
equivalent to the identity functor on By.

From the universal factorization property of reflectors and coreflectors we
get the following

ProrosITION 4.1. Each reflector (coreflector) is a retractor.

It turns out that the functors associated with limit functors are normal
retractors:

THEOREM 4.1. The functor LD := (Ld)’ : Endoy(£) — Auto(€) is a normal
reflector. In particular it is a retractor and it maps coproducts in Endoy(€)
into coproducts in Auto(£).

Proor: It follows from Theorem 3.2 that
LD : Endog(€) — Endo(£)

is a normal functor. Fix (4,a) € Endo(£), put A’ := Ld(A, a) and @' := Ld(a).
We need to show that LD(4, a) € Auto(€), i.e. that a’ is an isomorphism in £.

A’, as the direct limit of (A, a), admits a cone {a: A — A’} with the univer-
sal factorization property. The family of morphisms {s; := a;4;]i € N} is also
a cone, hence the universal factorization property implies that there exists a
morphism u: A" — A’ such that s; = ua; for i € N. Observe that

a'ua; = a's; = a'ajyy = ajq0 = a;.

Hence the family {a;} factorizes both through a'u and identity. The unique-
ness of factorization implies a'u = id. Similarly,

ua'a; = uaia = s;a = ajy1a = q;

and also ua’ = id. This shows that a’ is an isomorphism, i.e. LD is indeed a
functor from Endogy(€) into Auto(£).

We will show that 74 := ag: (4,a) — (A’,a') is a reflect. For this end
assume that (C,c) € Auto(£) and fix a morphism ¢: (4,a) — (C,c). Put
ti == c*¢ for i € N. Then tia = c~fa = c~icf = c~i+l¢ = ti_1, ie.
the family {t;} coincides with the sequence (2.1) and we have a morphism’
¢: A" > C such that t; = (ay, in particular £ = t = Cag = (T4. Observe that

cfa; = cti = cc™€ = c e = c'a = tia = Caja = Cd'a; .
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The uniqueness of factorization implies that ¢( = (a’, i.e. ( is also a mor-

_phism in Endo(£). Assume 0: (A',a') — (C, c) is another morphism such that
& = 6r4. We have

ba; = c*c'fa; = c~*0(a’) a; = c*0a;a’
=c"0ag = ¢ 01y = ciE=1t; = (a;
and the uniqueness of factorization implies that § = ¢ which proves that
TA = ag is the reflect of (A, a) with respect to Auto(£).
Moreover, if ¢: (4,a) — (B,b) is a morphism in Endoy(£) then, by the
definition of Ld(¢), we have
TBY = boy = ¢'ag = LD(p)74,

which proves that LD is a reflector. The remaining part of the theorem follows
from Proposition 4.1 and Theorem 1.1. §

In the dual way we obtain

THEOREM 4.2. The functor LI := (Li)': Endo;(§) — Auto(€) is a normal
coreflector. In particular it is a retractor and it maps products in Endo;(£)
into products in Auto(£). i ‘

From Proposition 2.1 we obtain the following

CoROLLARY 4.1. If £ admits products (coproducts) then LI(LD) maps

products (coproducts) in Endo;(£)(Endoy(€)) into products (coproducts) in
Endo(€). 1

5. Retractors in the category of modules

From now on we assume that £ = Mod(R), the category of modules over a
fixed ring R. First we recall the concept of the generalized kernel (see [Le]).
Assume an endomorphism a: A — A of module A is given. Put

gker(a) := U {ker(a™) | n € N}.
The dual notion is the generalized image of a:
gim(a) := (| {im(a") | n € N}.

From the point of view of Theorem 5.1 below, however, the role dual to gker(a)
plays the set

sim(a) := {z € A|3{z,}%; C A s.t. a(zn41) = T, for n € N,z = 2},
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which will be called the sequential image of a.

We define the category Mono(€) as the full subcategory of Endo(£) which
objects have a monomorphisms as the distinguished endomorphism. Similarly,
by distinguishing epimorphisms, we define the category Epi(&).

Assume (A, a),(B,b) € Endo(€) and ¢: (A,a) — (B,b) is a2 morphism in
Endo(€). Put

(5.1) Lm(A,a) := A/ gker(a),

(52) Lm(p) = (4/ gker(a) 3 [z] - [p(2)] € B/ gkex(b)),
(5.3) Le(A,a) := gim(a),

(5.4) Le(g) = (gim(a) 3 2 — (z) € gim(a)),

(5.5) Ls(4,a) := sim(a),

(5.6) Ls(y) := (sim(a) 3 z — ¢(z) € sim(b)).

One can easily verify that formulae (5.1) — (5.6) define three functors
Lm,Le,Ls : Endo(£) — €. By Theorem 3.2 we have also functors

LM := (Lm)', LE := (Le)’, LS := (Ls)' : Endo(£) — Endo(£).

Assume (A;,a;) € Endo(&) for ¢ = 1,2,..n. It is straightforward to verify
that

(5.7) gker(a; X a3 X -+ X a,,) = gker(a;) x gker(a) X - - - X gker(as)
and
(5.8) sim(a; X ag X - -+ X a,) = sim(a;) X sim(az) X - -+ X sim(ay).

From the above formulae one can easily obtain the following

PROPOSITION 5.1. Both LM and LS map finite (co)products in Endo(£)
into (co)products in Endo(£). i

Also the following proposition is not difficult to verify.

PROPOSITION 5.2. Lm(a) is a monomorphism in £ and it is an isomorphism
in & whenever a is an epimorphism in €. Ls(a) is an epimorphism in £ and it
is an isomorphism in £ whenever a is a monomorphism. §

It follows that LM takes values in Mono(€) and LS in Epi(£). More precisely
we have the following
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THEOREM 5.1. LM: Endo(£) — Mono(€) is a normal reflector and
-LS: Endo(£) — Epi(€) is a normal coreflector.

Proor: Fix (A4,a) € Endo(£) and put o' := Lm(a), a”’ := Ls(a). By
Proposition 3.2 a' is a monomorphism and a” is an epimorphism. Hence

LM(A,a) = (Lm(A, a),Lm(a)) € Mono(€)

and
LS(A,a) = (Ls(A, a),Ls(a)) € Epi(€£).

By Theorem 3.2 LM and LS are normal functors. We shall show that LM is a
reflector. For this end denote by 74 the morphism

T4: A3z — [z] € Lm(A4,a).

It is straightforward that 74 is also a morphism in Endo(£). To prove the
universal factorization property consider (B, b) € Mono(£) and assume a mor-
phism £: (A,a) — (B,b) in Endo(€) is given. We shall prove that there exists
exactly one morphism ¢: LM(A,a) — (B,b) in Endo(€) such that {74 = ¢,
i.e.

(5.9) ¢([z]) = &(z) for all z € A.

Uniqueness follows at once from (5.9). Assume z,z’ € A and [z] = [z/]. Then
a™(z) = a™(z') for some n € N and

(7)(z - 2') = (£a™)(z - 2') = £(0) = 0.

Since (Bv, b) € Mono(£), b is a monomorphism. It follows that
f(z—2') = 0,ie £(z) = £(z'). This shows that formula (5.9) defines a
morphism ¢: Lm(A,a) — B in £. We have

¢(a'([=])) = (([a(=)]) = £(a(=)) = b(&(2)) = b(¢([=])),

which implies that ¢ is a morphism in Endo(€). Hence we have proved that 7,
is the reflect of (A, a) with respect to Mono(£). It is straightforward to verify
that if : (A,a) — (B,b) is a morphism in Endo(£) then LM(p)r4 = T4¢,
which proves that LM is a reflector.

Now consider LS. Let 04: Ls(A,a) — A denote the inclusion. Take
(B, b) € Epi(£) and assume a morphism £: (B, b) — (4, a) in Endo(&) is given.
We shall prove that there exists exactly one morphism (: (B,b) — LS(4,a)
such that 04z = £, i.e.

(5.10) ¢(z) = &(z) for all z € B.



192

Again uniqueness is straightforward. To show that (5.10) defines a morphism
.(: (B,b) — LS(A,a) it suffices to prove that £(z) € Ls(A,a) for all z € B.
Hence take z € B. Since b is an epimorphism, we can define recursively
a sequence (2,)3%, such that b(zp41) = 2, for ¢ € N and 2o = z. Put
Un := &(z5). Then

a(yn) = aé(zs) = Eb(zn) = €(Zn-1) = Yn-1-

This shows that yo = &(zo) = £&(z) € sim(a). Thus (5.10) indeed defines a
morphism (: B — Ls(A4,a) in £. Since a"é(z) = £b(z) for all z € B, we
have also a'’((z) = (b(z), which shows that ( is also a morphism in Endo(£).
Hence 0 4 is the coreflect of (A, a) with respect to Epi(&). It is straightforward
that wo4 = 04 LS(p) for any morphism ¢: (4,a) — (B,b) in Endo(£). This
shows that LS is a coreflector and finishes the proof. §

REMARK 5.1. It should be noted that Le(a) for an endomorphism
a: A — A need not be an epimorphism (see Example 6.3). This causes that
the functor LE can be considered only as a functor from Endo(€) into Endo(£).
However, it is obvious that LE and LS are equal on the subcategory Mono(£).
In particular LEo LM = LS o LM. The composite functor LE o LM was intro-
duced in [Mr1] and called the Leray functor, since the idea of a generalized
kernel comes from the paper [Le] of Leray.

From Theorem 5.1 we get the following

COROLLARY 5.1. The composite functors LMS := LMoLS and
LSM := LSoLM are retractors from Endo(£) to Auto(£). They map finite
(co)products in Endo(€) into (co)products in Endo(£).

Proor: Let (4,a) € Endo(£). Then LS(a) is an epimorphism in £ and,
by Proposition 5.2, LM(LS(a)) is an isomorphism in ¢£. Hence
LM(LS(A,a)) € Auto(£). It is straightforward to verify that LMoLS re-
stricted to Auto(&) is naturally equivalent to the identity functor. Hence
LMS is a retractor from Endo(€) into Auto(£). Similarly one can prove that
LSM is a retractor.

The remaining part of the assertion follows from Proposition 5.1. i

6. Comparision of various retractors

In case of the category £ = Mod(R) we defined four retractors
LI, LD,LMS,LSM from Endo(&) into Auto(£). The following three exam-
ples show that they are all different. (R(A) in the examples below denotes the
free module over R with basis A). :
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EXAMPLE 6.1. Let A be a free module over R with basis N. Leta: A — A
be an endomorphism of A defined on the basis by a(n) := n+1for n € N
(comp. Fig. 1a). One can easily verify that LD(A) is non-zero (precisely
Ld(A,ae) = R(Z) and Ld(a) is an endomorphism induced by a shift), whereas

LI(A,a) = LMS(A, a) = LSM(4,a) = 0.

EXAMPLE 6.2. Let A be as in the above example but take the endomor-
phism a: A — A defined by (comp. Fig. 1b)

0 forn=0
n—1 forn>0.

a(n) := {

Then Li(A, a) = R(Z),Li(a) is again a shift automorphism, hence LI(A4,a) # 0
but LD(4,a) = LMS(A, a) = LSM(A,a) = 0.

ExaMPLE 6.3. Take
§:={(mn)€ZxN|n=0andm >0 orn>0and —n<m<0}
A := R(S) and define a: A — A on S by (comp. Fig. 1c) -

(m+1,n) form#0

a(m, n) := { (1,0) for m = 0.

Then LSM(A,a) = LD(A,a) = (R(Z),s) with s denoting a shift automor-
phism and LMS(A4,a) = LI(4,a) = 0.

Note that Le(4,a) = {(n,0)|n € {1,2,...}} and (1,0) ¢ im(Le(a)), which
shows that Le(a) need not be an epimorphism.

Despite the above examples, under some restrictions all four retractors
LI, LP,LMS, LSM coincide, as shows the following

THEOREM 6.1. Assume R is a field and (A,a) € Endo(€) is a finite di-
mensional vector space with a distinguished endomorphism. Then LI(A,a),
LP(A,a), LMS(A,a), LSM(A, a) are all isomorphic.

Proor: Fix (4,a) € Endo(€). Denote a' := LM(a), a” := LS(a), i.e.

a': LM(4,a) = A/ gker(a) 3 [z] — [a(z)] € LM(A,a).
a": LS(A,a) = sim(a) 3 z — a(z) € LS(4, a).
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Fig. 1.a
4 3 2 1 0
P——).———)O—-;.——)O
Fig. 1.b

©0) (1) (02 (03 (04)
Fig. 1.c

Fig; 1. Graphs of the endomorphism a restricted to basis in Examples
6.1, 6.2 and 6.3 (on Fig. 1.a, 1.b and 1.c respectively)
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Since A is finite dimensional, so are LS(A,a) and LM(A,a). Moreover a’
and a” are isomorphisms in £ as a monomorphism or epimorphism of finite
dimensional vector spaces into itself. It follows that

(6.1) LSM(4,a) = LM(A,a) and LMS(A,a)=LS(A,a).

One can easily verify that {kera™}, {ima™} are monotone sequences of sub-
spaces of the finite dimensional vector space A. It follows that there exists
p € N such that kera™ = kera? and ima™ = ima? for all n > p. In particular

gkera = Ukera” = kera?,
gima = nima" = imaP.
We will show that under the assumptions of the theorem
(6.2) sima = gima.

Obviously sima C gima. To show the opposite inclusion take zo € gima.
Then there exists w; € A such that 29 = a?*!(w;). Put z; := aP(w).
Then a(z;) = zo and z; € ima? = gima. Hence we can find w; € A such
that z; = aPt!(w;). Put z; := aP(w;). Proceeding recursively we define a
sequence {z,} such that a(2,4+1) = z for n € N. This shows that z¢ € simea
and (6.2) is proved.

Put ¢ := a?. Since ker(y) = gker(a), we have an induced isomorphism

¢': A/ gker(a) = A/ ker(¢p) 3 [z] = ¢(2z) € im ¢ = sim(a).

Moreover, one can easily verify that the diagram

A/ gker(a) —— sim(a)

d L

A/ gker(a) 7 sim(a)

is commutative, which means that ¢' is a morphism in Endo(£). It follows
from Proposition 3.1 that ¢ is an isomorphism in Endo(£), i.e. LM(A, a) and
LS(A,a) are isomorphic. In view of (6.1) we see that also LMS(A,a) and
LSM(A, a) are isomorphic.

We will show that

(6.3) A= gker(a) @ gim(a) (direct sum).
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First observe that z € gker(a) N gim(a) implies 0 = a™(z) = (a”)™(z). But
~a" is an isomorphism, hence z = 0. Thus gker(a) N gim(a) = 0 and

dim(gker(a) + gim(a)] = dim(gker(a)) + dim(gim(a))
= dim(ker(a?)) + dim(im(a?)) = dim A.

It follows that gker(a) + gim(a) = A and (6.3) is proved.
In order to show that LD(A, a) is isomorphic to LM(A, a) define the family

of maps
pn: A3z — (a')""([z]) € A/ gker(a) for n € N.

It is straightforward to verify that
Ynt16 = fork=0,1,2,..

i.e. the family {¢} coincides with the sequence (2.1).
Assume Z € £ and 7;: A — Z is a cone in £ from (2.1) to Z. If
O: A/ gker(a) — Z is a morphism in £ such that

(6.4) - Oy =7 fori=0,1,2,...
then, in particular, for each z € A we have
(6.5) 0([z]) = (0po)(z) = 70(2),

i.e. © is uniquely determined by (6.4).

Assume that [z] = [z]. Then there exists m € N such that a™(z) = a™(z’)
and vo(z) = (Yma™)(z) = (Yma™)(z') = yo(z’). This shows that (6.5) defines
a morphism ©: A/gker(a) — Z. We will show that © satisfies (6.4). Let
z € A. By (6.3) we can find w € gker(a) = ker(a?) and y € A such that
z = w + ak(y). Then [¢] = [a*(y)], a*(w) = 0,

Opi(z) = 0((a')~*([z]) = O((a")*([a*(¥)))) = O([y]) = Y0(y)
and
1r(2) = Te(w + *(9)) = 11 (w) + 10(¥) = Tr4p(aP(w)) + Y0(¥) = 70(¥)-

Hence O¢(z) = vx(z) for all z € A. This shows that A/ gker(a) is the direct-
limit of the sequence (2.1). Moreover, we have

a'o, =ppa forallneN
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and it follows from the uniqueness of factorization that
LM(A,a) = (A/ gker(a),a’) = LD(A4, a).

It remains to show that LS(A, a) = LI(A, a). For this end define the family
of maps
o: gim(a) 3 ¢ — (a")"*(z) € gim(a).
Then agi4+1 = ok for k € N, i.e. the family {gx} coincides with the sequence
(2.2). Assume Z € £ and 7;: Z — A is another family of morphisms which
coincide with (2.2). If §: Z — gim(a) is a morphism in £ such that

(6.6) o€ =7 forke N
then, in particular for z € Z
(6.7) §(z) = eo(£(2)) = 7o(2),

i.e. ¢ is uniquely determined by (6.6). Observe that for each z € A,
Tk(2) € gim(a), because 7i(z) = a!(7x4i(z)) for all | € N. Hence (6.7) deter-
mines a morphism £: Z — gim(a) and

7o(z) = a¥((z)) = (a")*(7i(2))
implies
eé(z) = (a")7*(ro(2)) = 7u(2).
This shows that gim(a) is the inverse limit of (2.2). Since also
ora"” = apy forallk € N,
the uniqueness of factorization applied to {agy} implies
LS(A,a) = (gim(a),a") ~ LI(4, a),
which finishes the proof. &
Note that in view of (6.2) we have also

THEOREM 6.2. Functors LS and LE are equal on finite dimensional vec-

tor spaces. In particular, the same applies to compositions LMo LS and
LMoLE. 8

We finish the paper with some open questions. The results of §5-6 are
restricted to the category of modules over a fixed ring. It would be interesting
to know whether they can be carried over to more general categories, for
instance to abelian categories.

Another question is whether retracts and coretracts could provide retractors
in general categories in a way similar to that described in §5. Finally we would
like to have a classification of retractors, at least in certain categories, though
it may be a difficult task.
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