A SIMPLE PROOF OF THE EXISTENCE OF THE ALGEBRAIC CLOSURE OF A FIELD

BY ZBIGNIEW JELONEK

The aim of this note is to give a simple proof of the existence of the algebraic closure of a field. Several proofs of this theorem are known (see e.g. [1], [2]) but our proof is very short and its idea is very simple. Let us recall the theorem the proof of which we will give.

THEOREM. Let K be a field. Then there exists a field L which is an algebraic extension of the field K and every non-constant polynomial from L[x] has a zero in L.

PROOF. We need only one simple algebraic fact:

LEMMA. Let K be a field and let $f \in K[x]$ be a non-constant polynomial. Then there exists an algebraic extension L of the field K in which the polynomial f has a root.

PROOF. To prove the lemma we may assume that f is irreducible and now it is enough to take L = K[x]/(f). Then is x + (f) a root of f in L. \square

Now let S be a set such that 1) $K \subset S$, 2) card $S > \max(\aleph_0, \operatorname{card} K) := \mathcal{N}$. Let $\mathcal{R} = \{L \subset S : L \text{ is an algebraic extension of } K\}$. Let us introduce an order in \mathcal{R} by putting $L_2 > L_1$ iff $L_1 \subset L_2$ is an algebraic extension. By the Kuratowski-Zorn lemma there exists a maximal element $L_0 \in \mathcal{R}$. We will show that L_0 is an algebraic closure of the field K. Indeed, let us assume the converse, i. e. that there exists a non-constant polynomial $f \in L_0[x]$ which has no zero in L_0 . By our lemma there exists an algebraic extension W of the field L_0 in which f has a root. Since W is an algebraic extension of the field K, we have $\operatorname{card} L_0 \leq \operatorname{card} W \leq \mathcal{N}$, hence $\operatorname{card}(S \setminus L_0) = \operatorname{card} S > \operatorname{card}(W \setminus L_0)$. Thus there exists an injection $i \colon W \longrightarrow S$ such that i(x) = x for $x \in L_0$. If we implant by i an algebraic structure from W onto i(W) we obtain a new maximal element in \mathcal{R} which is grater than L_0 . This contradiction finishes the proof. \square

References

- 1. Lang S., Algebra, PWN, Warszawa, 1973.
- 2. Browkin J., Teoria ciał, PWN, Warszawa, 1977.

Received November 7, 1991