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ON BERTINI-TYPE THEOREM FOR WEAKLY-NORMAL
COMPLEX ANALYTIC SETS

BY SLAWOMIR CYNK

1. Introduction. The aim of the paper is to present an elementary proof
of the following Bertini-type theorem for weakly-normal complex analytic sets

THEOREM 1. If X is a weakly-normal locally analytic subset of C™ then
there exists a fat subset M of the space of all affine hyperplanes in C™ such
that for every H € M the intersection X N H is again weakly-normal.

In [M, Corollary II1.6] an analogous Bertini-type theorem for normal and
reduced locally analytic sets in C™ is proved.

Proofs for normal and reduced complex analytic sets are very similar, a
Bertini-type theorem is deduced from two facts: a Sard-type theorem and the
openness condition for the given property. In [M1, Thm. 18.] Manaresi proved
that this kind of arguments may be applied to any local property of complex
spaces (not being only reduced and normal).

The Sard-type theorem for reduced and normal complex analytic sets fol--
lows from the homological characterization of those properties, openness con-
ditions were proved by Banica in ([Ba]). Using a similar characterization
Manaresi (in [M, Thm. 1.12]) proved a Sard-type theorem for weakly-normal
complex analytic sets. The proof of the openness condition for weakly-normal
complex analytic sets turned out to be much more difficult. Bingener and
Flenner in [B-F] proved the openness condition for local properties satisfying
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certain conditions and verified these conditions for weakly-normal complex an-
alytic sets. The proof is very complicated, it is based on the method of Stein
compacts and uses a lot of algebraic geometry.

Our proof of the Bertini-type theorem for weakly-normal complex analytic
sets is completely elementary and in fact is based on a careful examination of
the proof of the Sard-type theorem (given by Manaresi), especially the class
of “wrong fibers”.

2. Homological characterization of reduced and normal complex
spaces. Let X be a complex space. For k =0,1,2,..., denote

Sk(OX) = {p € X : prof OX,p < k‘} C X.

In this situation Sx(Ox) is an analytic subset of X, for any k ([S-T]). These
“singular subsets” Sy, give a lot of information about the space X. In partic-
ular, we have the following characterization of reduced and normal spaces

LEMMA 1 [S-T]. X is reduced iff
dim(Sing X N Sk (Ox)) <k -1,

for any k > 0.
LEMMA 2 [M]. X is normal iff

dim(Sing X N Sx(Ox)) < k -2,
for any k > 1.

3. Weakly-normal complex spaces. A complex space X is said to be
weakly-normal (or maximal) if every c-holomorphic function on X is holomor-
phic. Detailed information on weakly normal complex spaces may be found in
[F] (see also [A-N]), we shall only give the following characterization here.

Let ()~( ,m), where m: X —» X is a finite map, be a normalization of X.
Consider the reduction of the fiber product R := (X Xx X)rea, ' : R = X.

Denote by g1, g2: (X' xx X )red —> X the mappings induced by the projec-
tions pi, po: XxxX—X. Let O x and Oy denote the structure sheaves of
X and X.

LEMMA 3, [M, (0.4.II)]. The complez space (X,Ox) is weakly-normal iff
the sequence
0— Ox — W*OX — WLOR
7r*

s ezact.
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4. Bertini-type theorems for reduced and normal complex ana-
lytic sets. Now, let f € Ox(X) be a holomorphic function on a complex
space X. We shall denote X; := f~1(0) and Ox, = Ox/(f - Ox). In this
situation (Xy,Ox,) is a complex space. We shall denote it by X 7.

Following the ideas of [M] we can give a proof of a version of a Bertini-type
theorem for reduced and normal complex analytic sets.

LEMMA 4. Let X be a reduced (resp. normal) complez space. If f € Ox(X)
s such that

(1) SingXy C SingX

and N
(2) Xy does not contain any irreducible component of sets Sing XNSk(Ox)
then the complex space Xy is reduced (resp. mormal).

PROOF. We shall prove the lemma for a reduced complex space. By the
assumption (2) the germ of f is not a zero divisor in any local ring @ Xz, SO
for every x € Xy we have prof (Ox,,) = prof (Ox, ) + 1 and consequently
Sk(Ox;,z) C Sk+1(Ox) so by (1), we have Sing X; N Sk(Ox,;) C Sing X N
Sk+1(0Ox) N Xy,

By assumption (2) and Lemma 1 this gives dim(Sing Xy N Sx(Ox,)) <
dim(SingX N Sx41(0x)) =1 < k+1—-1-1 =k —1. By Lemma 1, this
completes the proof.

The proof for a normal space is similar (we use Lemma 2 instead of Lemma 1).

From this lemma, there easily follows Bertini—type Theorem for normal and
reduced complex analytic sets.

THEOREM 2, [M, Cor. IL6]. If X is a normal (resp. reduced) locally
analytic subset of C™ then there exists a fat subset M of the space of all affine
hyperplanes in C™ such that for every H € M the intersection X N H is again
normal (resp. reduced).

5. Bertini-type theorem for weakly-normal analytic sets. We shall
preserve the notation introduced in previous sections. Moreover, for simplicity
we shall denote Xy := Xfor, Ry 1= Ryop.

LEMMA 5. Let (X,0x) be a complex space, and let
0—F —¢g ? H
(07
be an ezact sequence of coherent analytic sheaves. Then there exists a se-

quence of analytic subsets {X;}icr of X such that for any holomorphic function
f € Ox(X) satisfying condition.:

Xy does not contain any of the sets X;
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the sequence
0 — F ®ox Ox, T) G Qo Oxf 7 H Qo Oxf

18 exact.

PROOF. Take as X; all analytic varieties associated with the sheaves
G/a(F), H/Imp ([S]) and irreducible components of space X. Then apply
the proof of [M (1.8.)].

LEMMA 6. Let X be a weakly-normal complex space. There exists a se-
quence of analytic subsets {X;} of X such that if f € Ox(X) is such that
(1) f is not zero on any of sets X;,
(2) Sing Rgx CSing R,
(3) Sing X CSing X,
then the complez space (X¢,Ox,) is weakly-normal.

PROOF. Let us take the exact sequence

0— Ox - W*OX— — ’IF,I,,OR.
n (91~92)"

There exists a sequence of analytic subsets {X;} of X such that for any holo-
morphic function f € Ox(X) which is not zero on any of sets X; we have
(a) the sequence

O — OX ®OX OXf _‘”T) W*OX ®(’)x OXf ( ——_)) WLOR ®0x OXf
91—92)*

is exact,
(b) the space (X, OXf) is normal,
(c) the space (Ry, Og,) is reduced,
(d) the set Xy contains no irreducible component of X and SingX.

Now, we have
OX ®Ox OX, = OXfa

7(',.0)“( Koy Oxf = mng,
T.Or ®0x Ox; = m,OR,.
In this situation, by (b) and (d)

TrIXf:Xf —)Xf
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is a normalization.
Using the universal property of the fiber product and (c) we get

(Xf XXf Xf)red = Rf.
Consequently, we can write the exact sequence (a) in the following form
0— OXf — Oxf — (OXfofo)red

which completes the proof.

PROOF OF THEOREM 1. Let X be a weakly-normal analytic subset of
C™. From the Sard theorem it follows that there exists a fat family M; of
hyperplanes in C™ such that for any H € M; we have

Sing (XN H) C Sing XN H.

Now, let {X;} be a sequence of analytic subsets of X satysfying the assertions
of Lemma 6. The family M, of those affine hyperplanes in C™ which do not
contain any X; is fat.

Then the intersection M := M; N M, is also fat. Take any H € M and
let f be an equation of H. Since the mappings 7 and 7‘ are biholomorphisms
outside the singular locus Sing X of X, we have Sing X 5 C Sing X and
Sing Ry C Sing R. Therefore, by Lemma 6, the set X N H = X is weakly—
normal. This proves the Theorem.
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