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STRONG OPERATOR CONVERGENCE
AND SPECTRAL THEORY OF ORDINARY
DIFFERENTIAL OPERATORS

BY JOACHIM WEIDMANN

Abstract. If A, and A are self-adjoint operators such that A, converges
to A in the sense of strong resolvent convergence, then it is a classical result
for the corresponding spectral resolutions E, and E, that En(\) > E(\) for
every A which is not an eigenvalue of A. An extended version of this result,
where A, and A may operate on different Hilbert spaces, is used to show that
isolated eigenvalues of singular Sturm-Liouville operators can be approximated
by the eigenvalues of regular operators generated by the same differential ex-
pressions on smaller intervals. Counterexamples demonstrate that the choice
of the boundary conditions for the regular operators is crucial. The abstract
result is also used to develop a technique (related to the subordinacy method)
for the proof of absolute continuity of the spectrum in certain intervals. —
Similar results can be proved for discrete operators (Jacobi matrices) and for
ordinary differential operators of any order and dimension.

1. Motivation. What can be said about the spectrum of a “complicated”
self-adjoint operator by approximating it by “simple” operators, i.e. by oper-
ators with well known spectral properties? More concrete: what can be said
about the spectrum of a singular differential operator approximated by regular
operators.

To understand, what approximating should mean, we have first to talk
about convergence. For bounded operators A,, A € B(H) in a Hilbert space
H , we have mainly the following notions of convergence

— norm convergence, A, — A, if |4, — A|| =0,
— strong convergence, A, — A, if ||A,f — Af]| =0 Vf¢e H,
— weak convergence, A, 3 A,if (A,f - Af,9) >0 Vf,ge H.
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~ For self-adjoint operators A, and A these notions of convergence have quite
different spectral implications:

— norm convergence implies o(A,) — o(A); isolated eigenvalues A of
A of finite multiplicity are exactly the limits of eigenvalues of A,
(including multiplicity); the corresponding eigenprojections converge
in norm.

— strong convergence implies E, () —3 E()\) if X is not an eigenvalue
of A (see below); every A € o(A) is the limit of a sequence (An)
with A\, € 0(4,).

But: Not every limit of (\,) with X\, € 0(A4,) liesin o(A) (neither
if )\, are [isolated] eigenvalues of Ay, nor if X\, € 0(An)\opp(An)
cf. Example 2).

— for weak convergence no reasonable spectral implication holds, as is

shown by the following example:

EXAMPLE 1. Let {e,} be an orthonormal basis (ONB) of H, A, the
orthogonal projection onto the subspace spanned by e1 +en,

1
Apnf = 5(61 + en, f)(e1 +en) = Pe1+enf7

then ] !

o(4A,) = {0,1}, A, =5 A:= 5Pers bu o(A) = {0,5},
i.e. 1 is an eigenvalue of every A, but not in the spectrum of A, while 1/2
is an eigenvalue of A, but not a limit of eigenvalues A, of A,. #

In order to study differential operators, these notions are not useful in the
form explained so far, since all these operators are unbounded. For self-adjoint
operators reasonable notions appear to be the corresponding convergence no-
tions for the resolvents,

(Ap—2)" 1 ™24 (A= 2)7" for z€ C\R.

Actually these notions are still not wide enough, since there are many in-
teresting cases, where the operators A, A are defined on varying Hilbert
spaces H,, H. For this reason we come to the following definition: Assume
that H,, H are subspaces of one “large” Hilbert space K, P, := Py,
and P := Py the corresponding orthogonal projections. We say that A,

converges to A in the sense of

nrc
— norm resolvent convergence, A, — A,

src
— strong resolvent convergence, An, — A,
wrs
— weak resolvent convergence, A, — A,
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if (A4, —2)"1P, Al (A—2z)"1P with respect to norm / strong / weak con-
vergence.

Norm resolvent convergence has the same nice properties as norm conver-
gence. But, for most of the interesting questions it is too restrictive.

Weak resolvent convergence cannot be expected to be useful (after knowing
the above example). In contrast to the other two cases it is not even true that,
for bounded self-adjoint operators, A, — A is equivalent to (4, —z)~! —
(A—2)"! for z € C\ R (as again the above example shows), and we
even do not know, if (4, —2)"! == (A — 2)~! implies (4, —2)~! -5
(A—2)7! for z # 2. Anyhow it is noteworthy that sometimes under
weak additional conditions weak (resolvent) convergence might imply strong
(resolvent) convergence.

Therefore all our hope for reasonable applications lies on the notion of strong
resolvent convergence. A useful criterion for strong resolvent convergence is:

THEOREM 1. Assume the above situation for H,, H, P,, P and let A,
and A be self-adjoint operators in H, and H , respectively. If there exists
a core Dy of A such that for every f € Dy there exists an n(f) such that
fe€D(A,) for n>n(f) and Anf — Af for n— oo, then A, =5 A.

PROOF. For g =(A—2)f € (A—z)Dy and sufficiently large n we have

((4n =)' Pa = (A= 2)'P)g = (An = 2) (A - A)(A=2) (A~ 2)f
(An — z)‘—l(A - An)f —0,

I

since (A— Ap)f = 0 for f € Dy and |(An — 2)71| < |S2|~t. Since
(A—2)Dy isdensein H and (A, —2)"! is uniformly bounded, this implies
the result. O

The following fundamental result is essentially due to F. RELLICH [4] (1937)
(see also T. KATO [2]).

THEOREM 2. Let A,, A be self-adjoint operators, A, =5 A in the sense
of the above definition. Then

E,(NP, =5 E(\)P if X\ is not an eigenvalue of A.

PROOF. The main steps of the proof are as follows: By definition

(A, —2)"'P, 25 (A~2)"'P for z€ C\R.
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-With the Stone—Weierstrafl Theorem it follows that
@(An)P, — p(A)P  for ¢ € Cx(R),

where Cu(R) is the space of complex valued continuous functions ¢ on
R with lim,, ¢(z) = 0. For intervals I with boundaries which are
not eigenvalues of A this result can be extended to xj, i.e. E,(I)P, =
x1(An)Pn — x1(A)P = E(I)P. O

For A, =5 A this result easily implies that for every A € o(A) there are
An € 0(A,) with A, — X. But, on the other hand, from X\, € 0(A4,) with
An = A it does not follow, that A € o(A); this also does not hold if the
An are required to lie in o0.(A,), 04.(An) or o.(A,). This follows from the
following example:

EXAMPLE 2. Define in L?(R) the operators A;, by

d? .
Aj’n:“w‘i“/}"n (neN, j=1,2)
with
-1 ifn<z<n+1, -1 ifz>n,
Vin() = { . Van(z) = { |
0  otherwise, 0 otherwise.

srec d2
Then Aj, — A = ) for n = 00 (j =1,2), and 0(A4) = 0..(4) =
[0,00), while o(A1n) = [0,00) U{p} with a simple eigenvalue p € [—1,

0
and 0(Az2,) = 04c(A2,) =[—1,00). #

2. Regular approximations of singular operators. In what follows,
we shall study the following interesting problem: Let

i = -Gy +af} on (ab)

T

with r,p >0, rq,1/p€ Lioc(a, b) (the reader might think of 7,p,q to be
locally “nice” functions on (a,b)), T the maximal operator generated by 7
in L%(a,b;7).

We say that 7 1is in the limit point case (Ip) (limit circle case (Ic)) at aq,
resp. b, if for every z € C at most one solution (all solutions) of (7—2z)u =20

lies (ly) left, resp. right, in L2(a, b;r).
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~ All self-adjoint realizations A,, ., (with separated boundary conditions)
can be given as restrictions of T with domains

D(A,, »,) = {f €ED(T): [vg, fla=0 if 7 islcat a,
[vs, flo=0 if 7 islcat b}

with no boundary condition at a/b, if 7 is Ip at a/b; the Lagrange bracket
[v, flz is defined by [v, fl, = v(z)pf'(z) — pv'(z)f(z) for z € (a,b), for
T = a/b this expression is defined as a limit (here and in what follows we
use “a/b” as an abbreviation for “a resp. b”). w, and v, are non-trivial
real solutions of (7 — Ag/p)v =0 with )./, € R (or, alternatively, v, /b are
real functions from D(T) such that [v,/s, fla/s =0 does not hold for every
feD(T)).

Let now (an,b,) C (a,b) with a, \,a, b, 7b.

QUESTION: Is it possible to choose self-adjoint realizations A, of 7 in

8rc

L?*(an,bn;7) such that A, =5 A and (if possible) suitable spectral implica-
tions hold?

If we denote by T, the maximal operator generated by 7 in L2(ay,,b,;r),
then the following general result holds (cf. G. STOLZ and J. WEIDMANN [6]):

THEOREM 3. Define A, in L2%(an,bn;r) by
D(A,) = {f € D(T,,) : arbitrary self-adjoint boundary condition
at an/b,, if 7 islp at a/b,

[va/b,f]a,ﬂ/bn =0 if 7 islc at a/b},

where v,y are the functions defining the above boundary conditions of A
at a/b. Then A, X5 A. (If 7 islcat a and b, then (A, —2)7 1P, —
(A —2)"1 with respect to Hilbert-Schmidt norm; the same holds if b, = b
and 7 islcat a, or a, =a and 7 islc at b. This implies nice spectral

convergence results, but it is, of course, not very interesting for applications.)

The PROOF follows easily from the above mentioned criterion (Theorem 1)
by noticing that

Dy = {feD(T) : £ =0 near a/b, if 7 islp at a/b,
f =ca/p ey mear a/b, if 7 is Ic at a/b}

isacoreof A.
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3. Applications to the absolutely continuous spectrum. In this form
the result had been used long time ago (see e. g. J. WALTER (8}, J. WEIDMANN
[9], [10], [12]) in order to prove absolute continuity of the spectrum of certain
classes of Sturm-Liouville operators in an interval I by showing that for
f € L?(a,b;r) with compact support in (a,b)

I(BOX") = EN)DFIP < Cp]\" = X] for X, A" el

The PROOFS of these results used

(i) the eigenfunction expansion of the finite dimensional projections
En(XI) - En()‘l) 3
(i) estimates for the eigenfunctions of A, corresponding to eigenvalues
in (M,X\’] (uniformely in n and for A in compact subintervals of
I), and
(iii) estimates for the number of eigenvalues of A, in (X', A"], which
follow from oscillation theory.
Recently the author proved a result, which extends the just mentioned ones,
by a somewhat different, but similar method (cf. J. WEIDMANN [15], here only
(i) and a more general version of (ii) are used, (iii) is not needed any more):

THEOREM 4. Assume that 7 is lp at b, and that for some c € (a,b)
and I C R there exists a ¥ >0 and a function k: (c,b) = R such that
for all solutions uw of (T —A)u=0 with

lu(c)? + lpu'(c)> =1 and Ael
we have

d
dk(d) S/Iu(a:)lzr(:v)dm < k(d) for d>c

(in short: for all X\ € I all solutions are of the same size near b ). Then the
spectrum of every self-adjoint realization of T is purely absolutely continuous
in I ; actually the spectral measure is equivalent to the Lebesque measure.

PROOF. The assumption that all solutions are of the same size at b implies
that either non or all solutions of (1 — A)u = 0 for A € I lie in L*(a,b;7).
Since T is Ip at b, the second alternative holds, which implies that every self-
adjoint realization has purely continuous spectrum in I (cf. [14], Theorem

11.5).
The essential part of the proof is, to prove the statement for the case where
7 is regular at a: If A, is defined by means of the boundary condition

u(a) cos o + pu'(a) sina =0, (o)



159

and ug(A,-) is the solution of (7 —A)u =0 satisfying the normalized initial
‘conditions
us(A,a) = sina, pu, (A\,a) = —cosa

(i.e. u, satisfies the above boundary condition at a) then A, has a spectral
representation

d
Uy : La(a,b;7) — La(R, pa), Uaf(A) = l;ii;r)rg./ua()\,m)f(x)T(m)dw

with a uniquely determined Borel measure p, on R.

We approximate A, in the above sense by operators A, 4 on (a,d) with
d /' b. These have similar spectral representations with pure point measures
fio concentrated on the eigenvalues of A, q (since the A, 4 have discrete
spectra) with pqa(J) = pa(J) for d — b and every interval J C I
(notice that — as mentioned above — A, has no eigenvalues in I). From
the eigenfunction expansion of the spectral resolutions FE, g4 it follows that
for every eigenvalue A of A,q we have

o, d({A}) = llualX, )”;Z )
and therefore for every « € [0, 7)

N(J,d) +1

NEd =1 ) < 9k(d)

Kd)

where N(J,d) ~ #{eigenvalues of Ay,q in J } This implies for d — b
(where we use that from J C 0(A,) it follows that N(J,d) — oo for d —b)

K
< pe(d) < K(J) for all « € [0,7), J CI.

K(J) -

Hence all the measures p,(-) are uniformely equivalent on I.

Together with a result due to S. KOTANI 3], which tells that fow peo()da is
equivalent to the Lebesgue measure, this implies that every p, is equivalent
to the Lebesgue measure.

For the general case (7 singular at a) an additional limit procedure is
needed (cf. [15]). O

4. Approximation of the discrete spectrum. In order to prove con-
vergence results for isolated eigenvalues we cannot — as above — work with
arbitrary boundary conditions for A, , as is demonstrated by the following
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EXAMPLE 3. Let 7f=—f"+¢qf on R with ¢(z) 50 for |z|] & .
“There is a unique self-adjoint realization A with o.(A) = [0, 00) and possibly
infinitely many negative eigenvalues accumulating at most at 0. Choose any
real solution u of (7—pu)u =0 for some p < 0, and define A, in L%(—n,n)
by

D(4n) = {f € D(Ta) : [, f1-n = [, fln =0}

Then for every n p is an eigenvalue of A,, although in general p is not
an eigenvalue (and even not in the spectrum) of A. #

On the other hand, if we choose suitable boundary conditions for A, , then
the isolated eigenvalues and the corresponding eigenfunctions converge:

EXAMPLE 4. For the above 7 and A define A, by means of the
Dirichlet boundary condition at —n and n,

D(4,) = {f € D(T) : f(=n) = f(n) =0}.

Then A, > A,+1 > A (in the sense of quadratic forms) and A4, &5 A
(cf. [6]). This implies

E,(\)P, - E()) if X is not eigenvalue of A, and
dimE,(\) = dimE,(A\)P, <dimFE(\) forall nand .

Using the simple lemma (cf. T. KATO [2], Lemma VIIL.1.24) “Q,,Q or-
thogonal projections, Q, — @, dimQ@, < dimQ < co = dimQ,, = dimQ
for large n and ||Q, — Q|| — 0 this implies ||E,(A\)P, — E()\)| - 0 for
n — oo if A <0 is not an eigenvalue of A; therefore the negative eigenval-
ues of A are exactly the limits of the negative eigenvalues of A, , and the
corresponding eigenprojections converge in norm. #

The following example shows that the choice of boundary conditions in the
above example is not suitable in all cases.

EXAMPLE 5. Let A be the unique self-adjoint operator generated by

f = —f"+qf+qf on R

with ¢, periodic and g¢(z) — 0 for |r| — co. Then the spectrum of
A consists of bands with (probably) isolated eigenvalues in the gaps between
the bands. If the A, are defined as in the preceeding example, then all
eigenvalues A;c") are travelling downwards to fill up the bottom band of the
spectrum of A; convergence is impossible (cf. the figure in G.STOLZ and
J. WEIDMANN [6]). #
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QUESTIONS: In Example 4 monotonicity was an important argument; on
the other hand this monotonicity makes convergence impossible in Example
5. Which other boundary conditions are possible in Example 4 in order to
approximate the discrete eigenvalues below 07 Can one, in general, approx-
imate the eigenvalues below the essential spectrum? How is it possible to
approximate eigenvalues in gaps of the essential spectrum (as in the problem
of Example 5)?7 — The answers to these questions might allow to apply the
corresponding results to Dirac systems; in fact they do:

THEOREM 5. (G.STOLZ and J. WEIDMANN [6]) Let 7 belp at a and b,
A the unique self-adjoint realization, I = [a, 3] a compact interval contained
in a gap of the essential spectrum of A, Ay € I and wuqg solutions of
(T = Xapp)u =0 with ug left/right in L?(a,b;7), [an,b,) C (a,b),

D(4,) = {f € D(T2) : o, flan, = [us, flu, =0}

Then the eigenvalues of A in I are exactly the limits of eigenvalues of A,
in I. The eigenfunctions converge in norm.

Proor. Without restriction we may assume that the boundary points of
I are not eigenvalues of A, hence E,(I)P, - E(I). Below we prove
dim E,, (I) < dim E(I). This implies ||E,(t)P,—E(t)|| = 0 and dim E,(I) =
dim E(I) < oo for large m, which implies the statement easily.

Let A1,...,Ax (k= k(n)) be the eigenvalues of A in I, ¢y,...,p; the
corresponding orthonormal eigenfunctions (this is an ONB of R(E, (I))). The
functions ¢; on (an,b,) can be extended to (a,b) by

Ca,jUa(z) fora<z <a,,
PYi(z) = w;(x) for a, <z < b,,
cyjup(z) for b, <z <b

in such a way that ¢; € D(A). Then the span M of {¢1,...,9¥x} is
k-dimensional. Every % € M is of the form

Calig () for a < z < a,,
Y(z) = Yioicipi(@) foran <z < by,
coup(T) forb, <z <b.

and therefore, by an easy calculation,

[(4- 252y < 22200l for wem.
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_This implies the desired inequality dim E(I) > k = dim E,(I). O

REMARKS. (i) The case of lc at both end points is not interesting, since in
this case we have (for every suitable approximation in the sense of strong re-
solvent convergence) automatically norm resolvent convergence (cf. G. STOLZ
and J. WEIDMANN [6]).

(ii) The case of (singular) lc at one end point and lp at the other end
point is proved in two steps (cf. again [6]), the first step uses norm resolvent
convergence and the second one is similar to the above proof.

(iii) It is of course in general a problem to find (numerically) the L?-solution
of (1—Agp)u=0.1f ¢g=¢qo+q with q1(z)/r(z) = 0 for z — a/b, then
the solution g/, in Theorem 5 can be replaced by corresponding solutions
of (70— A)u =0, where 70 =7 —q1/r (cf. [6], Corollary 3).

(iv) The situation is much easier in the case of one regular end point (say
a) and one limit point end point (say b). In this case for the approximat-
ing operators A, we may use intervals (a,b,) with b, / b. The natural
choice of the boundary condition at b, (corresponding to Theorem 5) would
be [u, f]p, =0 with an L2-solution u of (1—X)u =0, X in the gap. But, as
mentioned in (iii), the difficulty is to find (numerically) this L2-solution. If we
simply choose u to be the solution of (7 —A)u = 0 satisfying the boundary
condition at a, then there are two possibilities:

(a) If u is in L? (by accident), then by Theorem 5 the eigenvalues of A,
converge to the true eigenvalues of A (in the gap).

(B) If u is not in L2, then X is an eigenvalue of every A, although A is not
an eigenvalue of A. By a simple dimensional argument this is the only addi-
tional limit occuring. Therefore after applying this method for two different
A from the gap, we are able to tell which are the true eigenvalues of A.

(v) In the special case of 7f = —f"+¢qf on [0,00) with g(z) — 0 for
7 — 0o the above question “Which other boundary conditions are possible in
Example 4 in order to approximate the discrete eigenvalues below 077 can
now be answered by using (iii): For the boundary condition at b, every
L2-solution of (1o —A)u = —u" =X =0 with A <0, u(z) = exp(—v =),
may be used, i.e. the boundary condition pf(by) + f'(bp) = 0 for every
s = /=X > 0. The Dirichlet boundary condition of Example 4 is not included,
but it is the limit case for A — —o0.

5. Concluding remarks. The same proofs with only obvious changes
hold for Dirac systems and for discrete operators (Jacobi matrices). A full
generalization of the results concerning the approximation of isolated eigen-
values to arbitrary singular ordinary differential operators of any order and
any dimension is given in G. STOLZ and J. WEIDMANN [7].
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In a similar way it is possible to study partial differential operators (espe-

cially —A + ¢) on varying domains  in R™ in order to prove that the
spectrum, the eigenvalues and the eigenfunctions depend continuously on (2
(cf. P. STOLLMANN [5] and J. WEIDMANN [15]).
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