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ON THE WAZEWSKI EQUATION

BY CzEst.Aw OLECH

1. Introduction. In 1947 Tadeusz Wazewski published a paper [1] whose
aim was to give an estimate for the domain of existence of the implicit func-
tions, and of the inverse maps as a special case. The paper appeared in the
same volume of Annales de la Société Polonaise de Mathématique which con-
tains his celebrated retract method. In this note we discuss only this special
case of the inverse map. Wazewski’s main idea was to apply the theory of ODE
for that purpose. Namely, he suggested to study the differential equation

(W) &= Df(z) " w,

where f is a continuously differentiable map from an Euclidean space E into
itself, D f(z) stands for the derivative - jacobian matrix of f, and the parameter
w is a vector in E. The equation (W) is well defined in the domain where
Df(z) is not singular. A solution z(t) of (W) is the function whose image by
f is linear:

(1) f(z(t)) = f(2(0)) + wt.

We fix the initial condition z(0) = a and denote by z(t,a,w) the solution
of (W) with this initial condition and by T'(a,w) the right-hand end of the
maximal interval on which z(¢,a,w) exists. It follows from (1) that z(t, a, w)
is uniquely defined and thus depends continuously on a and w and therefore
T(a,w) is lower semi—continuous with respect to both variables. By (1) the
map

(2) 9(y) = z(1,a,y — f(a))
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_is the inverse map of f. That is, f(9(y)) = f(z(1,a,y — f(a)) = f(a) +y —
f(a) = y. Clearly, g is defined on the set

(3) S(a) ={y: T(a,y — f(a)) > 1}.

Notice that S(a) is the maximal star shaped set with respect to f(a) on which
the inverse map exists. Another way the set S(a) can be represented is:

(3) S(a) ={y:y = fla) +wt, |lw|| =1, 0 <t <T(a,w)}.

The equation (W) is now known in the literature as the Wazewski equation
and this name was first given to it by J. Sotomayor [2]. If we restrict ourselves
to w from the unit sphere then any two solutions of (W) are either identical,
or cross each other at only one point or are disjoint. If we assume that

(4) det Df(z) > 0 for each z
then for any a and w # 0, z(t,a,w) — oo if t = T'(a,w). Denote by
Qa) ={p:p=12(taw), 0<t<T(a,w), |[w]|=1}

the emission zone from a of the equation (W), in terminology of Wazewski. It
is open and simply connected set. We notice that from (1) fin(a) is injective,
f(Q(a)) = S(a) and f~! = g, where g is given by (2). In particular, if we are
able to estimate from below T'(a,w) by r then the radius of a ball centered
at f(a) on which the inverse map f~! exists is at least r. Such estimates has
been obtained by Wazewski in [1].

This idea of Wazewski gives a short proof (see [1]) of the following clasical

HADAMARD THEOREM. For a class C* map f : E — E assume (4) and
(5) 1f (@] = oo if [|z|| = o0

then f is a diffeomorphism.

PRrROOF. From (5) it follows that f(z(t,a,w)) = oo if t = T'(a,w). From
(1) we have f(z(t,a,w)) = f(a) + T(a,w)w. Thus T'(a,w) = 400 for each w
and hence S(a) = E. Therefore f is one-to-one and onto E which completes
the proof.

2. The Fessler—Gutierrez result. The aim of this note is to give another
example where this simple idea of Wazewski could be applied. It concerns
the recent result independently obtained by Robert Fessler [3] and Carlos
Gutierrez [4].
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- THE FESSLER—-GUTIERREZ THEOREM. For E two dimensional if a class
C! map f : E — E satisfies ({) and

(6) for ||z|| > M > 0 the eigenvalues of Df(x) are negative if they are real,

where M is a fized constant, then f is injective.

Both authors prove this theorem by analyzing a non-injective map f satisfying
(4). We will do the same using the Wazewski equation (W). This will serve us
to explain the main idea of these two different proofs of Fessler and Gutierrez.
By proving the theorem they solved the problem posed in 1960 by L. Markus
and H. Yamabe [5] concerning global asymptotic stability of an autonomous
ODE system on the plane. Let us mention at this point that there are two
other papers [6] and [7] offering still different solutions of Markus—Yamabe
problem.

3. Non-injective local diffeomorphism of the plane. From now on
we assume that E is of dimension two, f : E — E is of class C'!, not injective
and (4) holds. Without loss of generality we may assume that there are two
different points a and b and a not crossing itself smooth curve ¢ : [0,1] = E,
such that

(7) ©(0) = a,(1) =b, f(a) = f(b) =0 and f(p(s)), 0 < s < 1, is injective.

PROPOSITION 1. Conditions (4) and (7) imply that Q(a) N Q(b) = @.

PROOF. Suppose the opposite. That is, there exist wy, wa, 1,2, ||ws|| = 1,
t; > 0, 1 = 1,2 such that

(8) fL'(tl,a,’wl) =$(t2,b,’U)2)-

Then by (1) f(a)+ti1w1 = f(b)+t2wz and by (7) tyw; = taws, hence w; = Hw,
and t; = 6t,, where § = +1. The latter, the uniqueness property of (W), the
identity z(t,b,w;) = z(6t,b,0w,) and (8) implies that z(t,a,w;) = z(t,b,w1)
for 0 <t < t; and in particular a = b. Hence a contradiction and the proof is
complete.

From Proposition 1 it follows that both sets have nonempty boundary. We
denote the trajectory of (W) passing through d by I(d,w) = {z(¢,d,w) :
—T(d,—w) <t < T(d,w)} and by I(d,w), I_(d,w) we denote the positive
and negative half-trajectory, respectively.

DEFINITION 1. A trajectory I(d, w) is an extension of I (a,w) if there exist
sequences wx — w, ax — a and 0<tx <T'(ak,wy) such that z(tx,ar, wx) — d.
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PROPOSITION 2. Let d € bdQ2(a). Then

(i) I(d,wq) is an extension of I(a,wy), where wg = ﬁj—%ﬂ;
(i) I(d,wq) C bd(a),
(iii) [|f(d)]| > T(a,wa) and for any s, ||f(d)|| > s > T(a,wq),
swq € bdS(a).

PROOF. Let zx € Q(a) and z — d if k — oo, that is zx = z(t,a, wy) — d.
Then by (1) f(zx) = trwy — f(d) and if we assume that ||wg|| = 1 then the
latter means that wx — wq, tx — ||f(d)||. Thus (i) holds. From the continuity
of solutions of (W) with respect to the initial condition and the parameter w
it follows that ||f(d)|| < T'(a,wy) for k big enough and z(||f(d)||,a,ws) — d.
The same holds also for z(t + || f(d)|], a, wx) — z(¢,d,wq) if T(d,wg) >t >
~T(d, —wq). If z(¢t,d,wy) € Q(a) for some ¢ then this would mean that d =
z(|| f(d)]|, a,wq) and consequently that d is an interior point of Q(a), thus (ii) is
proved. Notice also that f(z(t,a,wy)) = twqg for 0 <t < T(d,wq) + ||F(d)]].
Therefore this implies that z(¢,d,wq) € bdQ(a) if 0 < t < T(d,wq), that
f(d)|| — T(d,—wq) > T(a,wq) and that for any fixed s,swy € bdS(a), if
s > T'(a,wq) since swq € S(a). This completes the proof.

REMARK. Notice that the argument of wy is “on one side” of that of wy.
Notice also that for ||f(d)|| — T(d, —wq) >t > T(a,wyq), z(t,a,wy) converges
too but the limit may be infinity. If it is finite, then between I(d,wy) and
I (a,wq) there is another trajectory which is also an extension of I, (a,wy).

COROLLARY 1. The boundary of Q(a) is composed of full trajectories of
(W), each unbounded at both ends. To each such boundary trajectory I(d) there
corresponds one connected component of E \ Q(a), whose boundary is I(d).

Therefore there is a uniquely defined boundary trajectory of Q(a) correspond-
ing to b. Namely, the one which is the boundary of the connected component
of E\ Q(a) containing b. It is crossed by the curve ¢ at a point d = o(s1),
0 < s; < 1. We denote it shortly by I(d). The corresponding boundary
trajectory of ©(b) we denote by I(e), e = p(s2), s1 < s2 < 1. The image
of I(d) by f is contained in the ray r(wg) = {p : p = swq, s > 0}. Con-
sider the set A of all trajectories I(p(s), wq) such that f(p(s)) € r(wy); that
is such that f(I(p(s),wq)) C r(wg). We notice that the set A is not empty
since I(d) € A and finite since for any converging sequence sy — s such that
fo(sk)) € r(wa) and f(p(s)) € r(wa) all but finite (s) € I(p(s), wa); that
is I(p(sk), wq) = I(v(s), wq) if k is big enough.
Next we will prove a lemma which will allow us to correct the curve ¢ con-
necting a with b to make the global picture simpler. Denote by

K ={v(s) = f(p(s)): 0<s<1}
By (7) K is a Jordan closed curve passing through zero.
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LEMMA. Suppose that there erist w € E, 0 < sq < sg < 1 such that
B = x(to, a,w), where 0 < t, < T(a,w), @ = p(sq), B = ¢(sg) and assume
that

(9) [F(a), FBINK C {f(p(s)) : sa < s < 55}

where [f(a), f(B)] is the closed interval on the straight line passing through
the end points. Put

V() =p(s) f0<s<sq 0rs5<s<1

and
$— 84

0« (s) = z( to, o, W) if Sq <5< 8

S8 — Sq
then f(p«(s)) is injective for 0 < s < 1.

PROOF. Assume that 0 < u < v < 1. If both u and v are either inside or
outside [sq,sg] then clearly f(p«(u)) # f(p«(v)) because of (1) and (7). If
u € [Sa,sp] then f(ps(u)) # f(p«(v)) because of (7) and (9).

(
DEFINITION 2. We say that I(d) is transversal to ¢ if (9) holds for « and 8
belonging to I(d) and such that ¢(s) € Q(a) for s < s, and ¢(s) € Q(a)UI(d)
for s > sg.

PRrROPOSITION 3. If I(d) is transversal to ¢ then there is injective
¢« ¢ [0,1] = E satisfying the same condition (7) as ¢, and crossing I(d)
only once.

PROOF. Since a and g belong to the same trajectory of (W) thus for small
enough € > 0 the points a. = p(so — €) and B = p(spg — €) can be joined in
a unique way by a solution curve of (W) and [f (), f(B«)] N K C {f(¢(s)) :
Sq —€ < s < sg+ec}. The latter follows from the continuity of solutions
of (W) with respect to the initial condition and the parameter w. In other
words, since 8 € Q(a) then [, € Q(a.) provided € is small enough. The
Lemma completes the proof.

It is obvious that if both I(d) and I(e) are transversal to ¢ then the global
picture is simpler and easier to deal with. Thus the next proposition is of
interest.

First we define for given ¢ a class of curves W.

DEFINITION OF W. A curve % belongs to ¥ = ¥U(p) if it is composed of a
segment A of ¢,
A={p(s):0<s; <s<s,<1}
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~and a segmeqt B of the solution curve
B = {a(t,p(s:),w) : 0<t <to}, i=1o0r2,
such that
ANB = {p(s;)} and f(p(s;)) = f(z(to, p(si),w)), where j is different from 4.

Notice that f(v) is a closed Jordan curve; that is, f(1) is one-to-one except
at the end points. In other words, ¥ is the class of regular injective maps
from an interval into E whose images by f are close curves obtained from K
by taking a segment of the latter and, if the segment is a proper subset of K,
closing it by the interval of the straight line passing through the end points
provided that this interval does not have other points in common with the
segment of K in question and f~1(f(1(s;))) N Q((si)) \ ¥(s;) # D, i equals
either 1 or 2 and j different from 3.

Notice that ¢ € ¥. For ¢ € ¥ we denote by a(1) and b(¢)) the end points
of it and by I(d, ) the boundary trajectory of Q(a()) separating b(+)) from
a(v) and by I(e,) the boundary trajectory of Q(b(¢)) separating a(1)) from
b(1). Each ¢ can be oriented and the orientation we choose is that of . Our
nearest aim is to prove the following.

PROPOSITION 4. For given @ satisfying (7) there is ¢ € U(yp) such that
both 1(d,) and I(e,1) are transversal with respect to 1.

PROOF. Suppose now that either I(d,) or I(e,v), say I(d,), is not
transversal to 1. Then there exist three points «,F and ¢ belonging to
such that « is the first point ¢ meets I(d,%), B is the last point and § is
the first after § such that f(J) belongs to the interval [f(a), f(5)]; that is
f(6) = AMf(a) + (1 = N f(B), 0 < A < 1. The latter is a consequence of the
assumption that the inclusion (9) does not hold. We obtained in that way a
curve ¥; € ¥ whose component A is the segment of ¢ between 8 and § and
B is the segment of I(d,1) between 8 and v where v is the unique point of
I(d,) such that f(vy) = f(8). If I(e,v) is not transveral to 1 then 3 and
§ are the first and the last point in common of ¢ and I(e,%) and « is such
that f(a) = Af(d) + (1 — A)f(B), 0 < X <1 and no other point of 1 between
a and (B has this property. The curve 1; is now composed of the segments
[a, B8] of @ and [B,7] of I(e,)), where v € I(e,¥) and f(y) = f(a). We claim
that all three points a, 8 and ¢ belong to the segment A of %; that is, belong
to . Without loss of generality we may assume that the segment B of 9
is first. Since B is a piece of a trajectory of (W) passing through a(t) thus
f(B) C Q(a(®)) hence o € B and the same holds for 3 and ¢ provided I(d, )
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was used to define these three points. If I(e,) is used and a were in B then
there would exist a v in B different from a(y) such that either f(y) = f(0)
or f(y) = f(8) which contradicts the asumption that f(¢) is a Jordan curve.
The latter holds because both f(B) and [f(d), f(8)] lie in a straight line pass-
ing through f(a(¢)) and therefore non-empty intersection implies that one of
the end point of [f(d), f(B)] belongs to f(B). We can repeat this construc-
tion and obtain a sequence 1, contained in ¥ provided one of the separating
trajectories I(d,¥x—1) or I(e,¢x—1) is not transversal to 1x—;. Thus to prove
Proposition 4 it is enough to show that this sequence is finite. Suppose it is
not finite then we have three sequences {ax}, {fx} and {dx} contained in ¢
and satisfying the following relations

ag < B < ok,
and either
(10) [ok, 0] C [ak—1,Bk-1], flar-1) = Af(Br—1)+(1=A)f(dk-1), 0 <A< 1

(11)
[ak, 0k] C [Br—1,0k-1], f(6k-1) = pf(ar—1) + (1 = p)f(Br-1), 0 <p <1

In both cases we conclude that oy and d; are monotone hence convergent and
we denote the limits by ay and d4, respectively. If (10) holds for infinitely
many k then from the inequality dx < Br—1 < dx—1 there is a subsequence
for which also Bx_1 converges to dx. Then from the second part of (10) we
obtain that f(ag) = f(6%). The latter, injectivity of f(p(s)) if 0 < s <1
and ay # a, 04 # b we conclude that ay = d4. Hence B — ag = dy, too.
This implies that for k big enough ay, Bk, dx and the segment |G, 6] of the
trajectory of (W) uniquely determined by those two points are all contained
in Q(ay) on which f is injective. Therefore the second part of (10) implies
that oy belongs to the trajectory of (W) passing through 8 and d; which
contradicts the definition of a. If (11) holds for infinitely many k then the
proof is quite analogous and we omit it.

4. Conclusions. We assume now that both I(d) and I(e) are crossed by
¢ only once and the crossing points are d and e, respectively. Because of
Propositions 3 and 4 this assumption does not restrict the generality of our
consideration. We describe the picture of ¢ in this case in some more details
and point out the connections with the proofs of Fessler and Gutierrez of their
result we mentioned. We have three subcases to consider: 1. e = d hence also
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I(d) = I(e) and w, = wgq, 2. we # wy, 3. we = wy but I(d) different from
1),

Case 1, e = d. Denote by dy = ¢(sx), where 0 < syx < s1, f(dg) € r(wqg)
while f(p(s)) € r(wq) if sg < s < s1. In an analogous way we define e# =
o(s%), s2 < s* < 1. We add the trajectory I_(d, wq) to the curve L composed
of the curve ¢(s), s4 < s < s* and two half trajectories I, (dy,w,) and
I (e*,wq). The foliation given by trajectories of (W) with fixed w = wy
on the set D bounded by L and containing I_(d, wq) gives us two half-Reeb
components of (W) both on the same side of ¢. Let us recall that A C R? is a
half-Reeb component of (W) if the foliation on A determined by trajectories
of (W) (with fixed w) is topologically equivalent to the foliation on B =
{(z,y) : =1 <z <1,y > 0} given by the one parameter family of functions:

y = ¢+ —z—. This follows from Proposition 2. Indeed I_(d,w) is an extension

of both I (d4,wq) and I (e*,w,) which means that a trajectory starting in D
near I, (dg,w,) or near I, (e# w,) stays near I_(d,wg), also. In particular,
each such trajectory tends to infinity at both ends on the other side of ¢
(outside L). The main tool of Gutierrez proof of the theorem is a proposition
(see [4, Proposition 2.1, p.631]) that (6) rules out the existence of such two
half-Reeb components of the phase portrait of (W) for any fixed w.

Case 2, wy # w,.. Consider the curve K. Both f(dsx) and f(d) belong to K
and either f(Iy(dg,wq)) or f(I4+(d,wy)) is contained in the interior of K and
only one has this property. Hence the other is in the exterior of K. Denote by
d, that point, of the two d and d. Such that f(I4(d,,wq)) is contained in the
interior of K. Put dy = d if d, = dy. If d, = d; then we put d; € ¢ such that
f(d1) = Tmwa, where 7, = max{7|Twy € K}. We notice that the segment
of K between f(d,) and f(d;) not containing f(a) lays on “one side” of the
ray 7(wgq); by that we mean that the tangent vectors to K at f(d,) and f(d;),
which without loss of generality can be assumed to be perpendicular to the
ray, have opposite orientation. Therefore the rotation of the tangent vector to
K between f(d,) and f(d) is equal . Similarly we denote by e, one of the
two points e and e# namely, the one for which f(I (e,, w.)) is contained in
the interior of K and by e; € ¢ such point that e; = e ife, = e#; ife, = €
then e; € ¢ and f(e;) € K Nr(we) and it is the last with these properties
above f(e,). We denote by L the curve composed of ¢ between d, and e, and
two half trajectories I (d,,wq) and I (e,, we). The curve L is an injective
proper piecewise smooth image of R into E. By a local change of the curve L
we can make the crossings of f(L) with the rays r(wy) = {p: p = swq, s > 0}
and r(we) = {p: p = swe, s > 0} perpendicular. Let us fix the orientation of
@ such that the orientation of K is positive hence the rotation of the tangent
vector to K is +2n. The orientation of f(L) is determined by that of K.
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Both rays are crossed in the positive direction. Therefore the rotation of the
tangent vector to f(L) from f(d;) to f(e1) is either a or 2m — o where « is
the angle between wy and we; from f(d,) to f(d;) equals 7 between any point
of the intersection f(L) Nr(wq) and f(d;) is equal to 37” and the same is the
rotation between f(e;) and any point of the intersection f(L)Nr(we). Hence
we have:

PROPOSITION 5. The rotation of the tangent vector to f(L), where L is
the curve described above, from any point of f(L) N r(wg) to any point of
f(L) Nr(we) is constant and greater than 3.

The main idea of Fessler’s proof is to show that a curve L, having the properties
described in Proposition 5, exists if f satisfying (4) is not injective (see [3],
Theorems 2 and 3, p.69). He proves that on such curve there is a point p € L
such that the tangent vector v to f(L) at the point f(p) is equal pu where u
is the tangent vector to L at p and p > 0. This leads him to the contradiction
with (6).

Case 3, e #d, w, = wg. We assume that f(d) < f(e) with respect to the
order in r(wy) induced by wy. Consider the part P of K between f(d) and
f(e). As before we assume that the tangent vectors to K at f(d) and f(e)
are perpendicular to r(wg). First we consider the case where the direction
of crossing r(wq) at f(e) is opposite to that at f(d). We assume also that
Pnr(wg) = {f(d), f(e)}. If this assumption is not satisfied then replacing
f(d) by the maximum of (PNr(wq))\ f(e) we make it hold true. Denote by D
the set bounded by P and the interval [f(d), f(e)] of r(wg4) and by ¥ the union
of intervals [f(d), p] contained in D where p € P and p # f(d). If ¥ C f(2(d))
then the picture is like in the case 1. The trajectory I(e,wq) is an extension
of both I (e#,wq) and I(d, wg). Thus the phase portrait of (W) for w = wq
gives two half-Reeb components of (W) on one side of ¢. If the above inclusion
does not hold then there is a w, such that f(I;(d,w,))\ f(d) C intD and the
curve L composed of the segment of ¢ between d and e# and two trajectories
I, (d,w,) and I, (e*,wy) have the same properties as the one in the case 2.
That is the rotation of the tangent vectors to L between any two points close
to infinity and at opposite ends of it is constant and greater than 37. Thus
Fessler’s arguments applies. Other possible configurations of K in this case
can be dealt with in an analogous way and we omit the details.

REMARK. The sketch of the proof of the Fessler—Gutierrez result we pre-
sented is not complete. We left untouched the problem of moving the curve
L outside a fixed compact set so that (6) can be applied. It seems that this
problem is more complicated in the Fessler case, however, the tool Gutierrez
works with, that is that existence of two half-Reeb components of (W) con-
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tradicts (6), needs more effort to be established. On the other hand, if there
were a common Fessler-Gutierrez proof then it should be simpler since one
could avoid extra effort to proving the existence of Gutierrez two half-Reeb
components of (W) picture while the Fessler curve L is easy to establish and
vice versa.
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