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ON THE TANGENT
BUNDLE OF A SCHEME

BY ERNST KUNZ

Abstract. This is a survey on properties of tangent bundles of schemes which
are obtained by applying results of Avramov [2], Huneke [6], Huneke-Rossi
[7], Simis-Vasconcelos [9], [10] and Vasconcelos [12], [13] about the symmetric
algebra of a module to the module of Kaehler differentials and by rewriting
them in the language of schemes. For unexplained notions and notation as well
as for some results about schemes we refer the reader to [1]. As is now usual a
scheme is what was formerly called a prescheme.

1. Tangent bundles. Let f : X — Y be a morphism of schemes. For
z € X with y := f(z) the k(x)-vector space

Tx;y(z) := Dero, (O, k(z))

is called the (Zariski-)tangent space of X/Y at z. Its elements, the O,-
derivations 6 : O, — k(z), are called tangent vectors of X/Y at z.

Let Qﬁ(/y be the O x-module of Kaehler differentials of X/Y ([1], IV.16.3.1).
Then

Txyy(z) = Homk(x)(Q%’)z/Oy ®o, k(z),k(z)),

hence if T'x/y(z) is a finite dimensional k(z)-vector space its dimension is
n(Q, e ) where p denotes the length of a minimal system of generators of a
z/ Yy

module.
The tangent bundle T,y of X/Y is by definition the fibre bundle

V(Qy) = SpecSo, (/v ),



10

see [1, IV, 16.5], where also the formal properties of the tangent bundle are
“described. This notion of tangent bundle is analogous to the corresponding
concept of differential topology. For a different notion and its relation to the
present one, see [11].

The projection pr : T'xyy — X of the tangent bundle onto its basis X is a
morphism, which allows the following local description: Let V' = Spec A be an
affine open set in Y, U = Spec B an affine open set in X such that f(U) C V,
then

pr!(U) = SpecSp(Q 1),

where Sp(025 / 4) denotes the symmetric algebra of the differential module
Q}B/A of the algebra B/A. Moreover, the restriction of pr to pr=!(U) is the
morphism induced on the spectra by the canonical injection B — SB(Q}B/A).

In particular,
pr=H(U) = Ty,v.

Since the symmetric algebra is compatible with base change the inverse image
of Spec O, (z € X) by pr is Spec S@I(Q}gz/oy), and the fibre of pr at z is

pr-'(z) = SpecSk@) (o, j0, ®o, k().

By the universal property of the symmetric algebra the k(xz)-rational points of
pr~!(z) are in natural one-to-one correspondence with the k(z)-linear maps
Qém/oy ®o, k(z) — k(z), hence with the tangent vectors of X/Y at z. For
= fopr:Tx/y = Y and y € Y the fibre ¢)~"(y) is the tangent bundle
Ti-1(y)/k(y) Of the k(y)-scheme f~1(y).

A vector field on X/Y is by definition a section v : X — Tx/y in the
tangent bundle i.e. a morphism such that prov = idx. For V = Spec A,
U = Spec B as above the restriction v|y : U — Ty v is the map induced
by a B-algebra homomorphism SB(QlB/A) — B. By the universal property of
the symmetric algebra these homomorphisms are in one-to-one correspondence
with the elements of

Homp (Qp, 4, B) = Dera(B, B).

Thus for a morphism f : X — Y of affine schemes the vector fields are in
one-to-one correspondence with the T'(Y, Oy )-derivations of I'(X, Ox).

Similarly for £ € X, y = f(z) a vector field v induces a vector field v,
on the preimage Spec So, (sz/oy) of Spec O, in T'x/y which corresponds to
an Oy-derivation §; : Or — O,. Let v(z) be the composition of §, with the
canonical residue map O, — k(z). Then v(z) € Tx/y () is called the tangent
vector given by the vector field v at z.
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LEMMA 1.1. Let v,v" be vector fields of X/Y. Assume X is a reduced
“scheme. Then v =" if and only if v(z) = v'(x) for all z € X.

PrROOF. It suffices to prove the lemma for affine schemes X = Spec B and
Y = Spec A. Let 6,0’ be the A-derivations of B corresponding to v and v'. It
suffices to show that § =0 if v(z) =0 for all z € X.

Let b € B be given with image b, in O,. Let ¢, € Derp, (O, O,) be the
natural extension of d by the quotient rule for derivations. Then v(z)(b,) is
the residue class of d,(b,) in k(z). If v(z) = 0 this implies d,(b;) € m, and
6(b) € p where p is the prime ideal of B corresponding to z. Now, if v(z) = 0

for all z € X, we have 6(b) € () p, hence §(b) = 0 since B is reduced. It
pESpec B
follows that § = 0.

PROPOSITION 1.2. Assume X is an integral scheme. Then Tx/y 1s integral
if and only if for all i € N the Ox -module Si(Qﬁ(/Y) 15 torsion free.

PROOF. Let £ be the generic point of X, let n := f(£) and L := O the
field of rational functions on X. Then SL(Q}L/ON) is a polynomial algebra
over L. The condition of torsion freeness is equivalent with the canonical map
Si(QéI/Oy) - SZ-(Q%/O”) being injective for all z € X, y = f(z), hence with
S(Q%,)I/Oy) being an integral domain. But this is equivalent with T,y being
an integral scheme.

PROPOSITION 1.3. Assume Y s locally noetherian and X/Y is locally of
finite type. Then T'x;y 1s smooth over Y if and only if X/Y is. If X]Y is
smooth and equidimensional of dimension d then Tx;y /Y is equidimensional
of dimension 2d.

We shall use the following lemma (see [13], Prop. 1.1).

LEMMA 1.4. Let (R,m) be a noetherian local ring, M a finitely generated
R-module, S := Sp(M) and M := m & Sy where Sy := @ S;. Then Soy is

i>0
reqular if and only if R is regular and M a free R-module.

PrROOF. There are natural isomorphism
M/ = m/m® ® Sy /mSy + 52 =m/m? @ M/mM.

Consider M as a subset of S by the canonical injection M — S.

If Son is regular it follows from Nakayama’s lemma that each minimal sys-
tem of generators of M is part of a regular system of parameters of Soy.
Then R = Son/S+ - Sop = Sop/M Son is a regular local ring too. Moreover,
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(SP)m/(S4)s, = M is a free R-module as (S;)g is generated by an
Sop-regular sequence.

Conversely, if R is regular and M free, then it is clear that Soy is a regular
local ring, S being a polynomial algebra over R.

ProOF OF 1.3. For z € X, y = f(z) the Oy-module Qo /0, is finitely
generated and Sp, (be/oy) is an O,-algebra of finite type. If X/Y is smooth

at z then Qéz/oy is free of rank dim, f [1], IV.17.10.2), and SOI(Q%OI/Oy) is
a polynomial algebra over O,. It follows that T,y is smooth at any point
z lying over x. This shows that smoothness of X/Y implies the smoothness
of T'x;y /Y, and the assertion of the proposition about relative dimensions
follows.

Let O, := O,/myO,, and let W, be its maximal ideal. If T,y is smooth

over Y then with § := Sz— (Q%9 Ik )) and M := m,S & S; the local ring

Sop is regular, hence by 1.4 O, is regular and Qo k() is free. Again S is

a polynomial algebra over O, and the smoothness of Tx;y/Y implies the
smoothness of X/Y.

EXAMPLE 1.5. Let K be a field, and let X C A% be a closed subscheme
defined by an ideal Ix = (fi,..., fm) in the polynomial ring K[X;,...,X,].
Set B := K[X1,...,X,]/Ix = K[z1,...,2,], where z; is the image of X; in
B (t=1,...,n). Then

i=1,..,m)s

Op/x —EBBka/ Z
k=1 k=

where g% is the image of the partial derivative 2 5% /i in B. Therefore

(QB/K) [Xla"'7XnaY17'--7Yn]/({fi7 f

Y L= m
0Xy, kli=1m)
k=1

and Tx/x = Spec SB(QlB/K) is isomorphic to the closed subscheme of A3 de-
fined by the ideal Jx = ({f;, z SV Yi1,m) KXy, X, Ve, Yo,
By 1.3 this scheme is smooth over K if and only if X/K is.

In the following sections we are interested in the properties of T'x,y when
the fibres of the scheme X /Y have singularities.
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2. Dimension formulas. Asssume X/Y is locally of finite type. For
z € X,y = f(z) let ap : pr~(z) = Tx/y be the natural morphism. We
identify ima, set-theoretically with pr=!(z). Since

pr'(z) = Spec Sk(z)(Q}DI/Oy ®o, k(z)) = Al;:(mz) with f1; = N(Qéz/oy)

is an irreducible subset of T,y its topological closure pr=!(z) has a unique
generic point, which we denote by t(z).

Let U = Spec B be an affine neighbourhood of z such that f(U) is contained
in an affine subset V' = SpecA of Y. Let p € SpecB be the prime ideal
corresponding to z and set S := SB(Q};/A). Then pr~!(z) = Spec S, /pSy and
t(x) is the point of T'x/y corresponding to the homogeneous prime ideal

t(p) :=pSpy NS

of S. Obviously t(p) N B = p, hence

(1) pr(t(z)) =z and pr(pr~(z)) = {z}.

If z is a maximal point of X, i.e. p a maximal ideal of B, then t(p) = p.S since
S/pS — S,/pSy is injective, S/pS being a polynomial algebra over B/p. In
this case pr—'(z) is already a closed subset of T'x/y.

PROPOSITION 2.1. Let Y be locally noetherian and of finite dimension.
Assume that XY is locally of finite type. Then

dimpr~—1(z) = dim {z} + pg.

PrOOF. With the above notations we have to determine dim S/¢(p) where
A is a noetherian ring of finite Krull dimension and B/A an algebra of finite
type. Here S/t(p) is a graded integral domain of finite type over B/p whose
component of degree zero is B/p. With L := Q(S/t(p)) and K := Q(B/p) by
a general dimension formula ([10], 1.1.2)

dim S/t(p) = dim B/p + Trdeg(L/K).

Since S/t(p)®p/p K = S(Qpr/AQ@Bp K) is a polynomial algebra over Kﬂtm =
“(Q}ap/A) variables we have u, = Trdeg(L/K). Since dim B/p = dim {z} the
formula of the proposition follows.
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PROPOSITION 2.2. a) If z is the generic point of an irreducible component
‘of Txyy, then z = t(z) for some x € X. b) If € is the generic point of an
irreducible component of X, then {t(£)} = pr=1(£) is an irreducible component
Of TX/y.

PrOOF. We have Tx,y = | pr t(z) = U pr-i(z).

zeX zeX

a) Since z € pr'(z) for some z € X it is clear that {z} = pr—1(z), hence
z = t(z).

b) With the notations as above let p € Spec B be the minimal prime corre-
sponding to {. Let g C #(p) be a prime ideal of S. Then qN B C t(p) N B = p,
hence ¢ N B = p. The point of T,y corresponding to q belongs to pr—1(¢) =
{t(6)}, i.e. ¢ D t(p). This implies that ¢(p) is a minimal prime of S and {#(¢)}
an irreducible component of Ty, y.

In general it is difficult to decide for which z € X the set pr~!(z) is an
irreducible component of T'x/y, see [7], section 3, and the later example 3.4.
But for smooth points of X/Y we can apply the next lemma.

LEMMA 2.3. For z € X, y = f(x) assume that Q%Daz/Oy 15 a free Oy-

module. Then pr=1(z) is an irreducible component of Tx vy if and only if z is
the generic point of an irreducible component of X.

Proor. Let U,V,S and p be as above. Let & be the generic point of
an irreducible component which contains z, and q € Spec B the prime ideal
corresponding to £. Set 1 := f(&).

Then S, = SOI(Q}QZ/Oy) and S = 805(9%95/0,7) are polynomial algebras
over By resp. By in the same number of variables and the canonical map
Sp/aSy — Sq/qSy is injective. This implies qSq NS, = 45, C pS,, hence
t(q) =99 NS CpS, NS =t(p) and

pr=t(§) D pr-t(z)
with equality if and only if ¢(§) = #(z) i.e. if and only if £ = pr(t(£)) =
pr(t(z)) = =.
Prop. 2.1 and 2.2 immediately imply the following theorem which was first

proved for fibre bundles of arbitrary coherent sheaves by Huneke-Rossi with
analogous arguments ([7], Thm 2.6).

THEOREM 2.4. Let Y be a noetherian scheme of finite dimension, and let
X/Y be of finite type. Then

dimTx/y = l\dg{dimm + N(le/oy)}'
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We call for a coherent Ox-module G
fo = Mag{dim {z} + p(G.)}

the Forster number of G. If X = Spec B with a noetherian ring B of finite
Krull dimension then by a theorem of Forster ([5], Satz 1) the B-module
['(X,G) can be generated with fg global sections. Theorem 2.4 states that
dimTx /)y = fﬂk/y. In the following we will describe fﬂk/y more explicitely.

Let (R, m) and (S, n) be noetherian local rings with residue fields K resp. L.
Let R — S be a local homomorphism and assume S/R is essentially of finite
type. If Char K = p > 0 we set m’ := m N R[S?] and denote by deg,(L/K)
the p-degree of L/ K. Further edim denotes the embedding dimension of noe-
therian local rings.

DEFINITION 2.5. The number
insep(S/R) = deg,(L/K) — Trdeg(L/K) — (edim S/mS — edim S/m’S)
is called the inseparability of S/R. We set insep(S/R) = 0, if Char K = 0.

LEMMA 2.6. We always have insep(S/R) > 0, with equality when L/K is
a separable field extension.

PrOOF. It suffices to consider the case where Char K = p > 0. By [8], 6.4
and 6.7a) there is a commutative diagram with exact rows

T — T(L/0g) — n/n>+mS — Qg p/nQg p — Qe — 0
0 — /4 m'S — Qf /05, — Qp e — 0.

Here dimp T(L/éx) = deg,(L/K) — Trdeg(L/K) by Cartier’s equality
([8], 5.12b)), hence the diagram shows

edim S/mS < edim S/m’S + (deg,(L/K) — Trdeg(L/K)),

which implies insep(S/R) > 0.
On the other hand, the separability of L/K implies edim S/mS = edim S/m'S
([8], 6.5a)), hence insep(S/R) = 0.

We call the number
§(S/R) := edim S/mS — dim S/mS

the regularity defect of S/R. The following is a reformulation of [8], 6.5b)
resp. 6.7b):
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PROPOSITION 2.7. Under the assumptions of 2.6
M(QE/R) = 6(S/R) + dim S/mS + Trdeg(L/K) + insep(S/R).

For X/Y as in Section 1 assume that X is locally of finite type over Y. For
z€X,y=f(z) let

8(X/Y) := edim O, /m, O, — dim O, /m, O,

be the regularity defect of O, /O,. We call it also the regularity defect of X/V
at z. Since O, /m,O; is a localization of an affine k(z)-algebra we have

(2) Trdeg(k(z)/k(y)) = dim, (f 7 (y)) — dim O, /m, O,

Therefore 2.7 implies

COROLLARY 2.8. dimy(y) Tx/y (z) = u(Q}%/Oy)

= 0,(X/Y) + dim, f~*(y) + insep O, /O,

Now 2.1 and 2.4 yield

THEOREM 2.9. Let Y be noetherian of finite dimension and X/Y of finite

type.
a) Forallz € X, y = f(x)

dimpr=1(z) = 6,(X/Y) + dim {z} + dim, f~(y) + insep O,/ O,,
b) dim Ty = foy, =Max{0,(X/Y) +dim{z}+dim, f~(y)+insep O, /O, }.

Of course the irreducible components of Tx;y of maximal dimension are

the sets pr=1(z) for those z for which the number 6,(X/Y) + dim {z} +
dim, f~(y) + insep O, /O, is maximal.

Suppose now that X and Y are integral schemes and f : X — Y is domi-
nant. Let R(Y) C R(X) be the fields of rational functions on X resp. Y.
Taking for z the generic point £ of X, hence for y the generic point 7 of Y,
we see that

(3) dimTx;y > dim X + e + insep R(X)/R(Y),

where the expression on the right is dim pr=1(¢) and e := dim f~1(n) is the di-
mension of the generic fibre of X/Y". Since pr=1(¢) is an irreducible component
of T'x;y we obtain
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COROLLARY 2.10. If X and Y are integral schemes and f is dominant the
“ following assertions are equivalent:

a) Tx/y is equidimensional.

b) For allz € X, y = f(z)

6, (X/Y) + (dim, f~*(y) — e) + insep 0./0,
<dim X — dim {z} + insep R(X)/R(Y),

where the equality sign holds for exactly those x € X for which pr—1(z) is an
irreducible component of Txy .

Here dim, f~!(y) > e for all z € X ([1], IV, 13.1.6). If X is equicodimen-

sional and catenarian, then dim X — dim {z} can be replaced by dim O,, and
if in this case f is an equidimensional morphism (i.e. dim, f~1(y) = e for all
z € X)) then the formula of 2.10b) becomes

(4) 0:(X/Y) +insep O, /O, < dim O, + insep R(X)/R(Y).

3. Tangent bundles of algebraic K-schemes. Let X be an algebraic
scheme over a field K. We write d,(X) for the regularity defect 6,(X/K) =
0(04/K) at z € X. Then, since dim {z} = dim, X —dim O,, we have by 2.9b)

(5) dimTx x = Mea)z({Z dimg X + 0,(X) + insep O, /K — dim O, }

and, when X is equidimensional,

(6) dimTx g = 2dim X + Mea%{éz(X) +insep 0, /K — dim O, },

where this maximum is greater or equal 0. Thus if X is equidimensional
dimTx/x = 2dim X holds if and only if

0z (X) +insep O, /K < dim O,.

In particular, for the generic points & of the irreducible components of X it is
necessary that O¢ is a separable extension field of K.

ExAMPLE 3.1. Let X be a zero-dimensional algebraic K-scheme with
points z1, ..., zs, hence with irreducible components X; = {z;} (1 =1,...,s).
Then

Tx/gk =Tx, kY- UTx, /K,
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‘where Tx,/x = pr~'(z) are the irreducible components of T'x,x. They have
dimension

edim O,, + insep O,, /K (1=1,...,8).

If Char K = p > 0 a field Ky with K? C K, C K, [K : K] < oo is called
admissible for an algebraic K-scheme X ([8],6.19) if for all z € X

(7) 106,/ k,) = edim O, + Trdeg k(z)/K + deg, (K/Kj).

LEMMA 3.2. A field Ky with K? C Ko C K, [K : Ky] < oo is admissible
for X if and only f

insep O,/ Ko = deg,,(K/Ky)
foradlz e X.

PRrROOF. Compare the general formula ([8], 6.7b)
(8) w0, x,) = edim O, /m' O, + deg, (k(x)/ Ko),

where m’ := m, N Ky[OP] with formula (7). Then, since Trdegk(X)/Ko =
Trdeg k(X)/K, the assertion follows from the definition of the inseparability.

By [8], 6.24 for each algebraic K-scheme X there exists an admissible field
K. We set Ko = K when K has characteristic 0. The reason for introducing
the notion of admissible field is that assertions about Kaehler differentials
which can be made for a perfect ground field K remain true, if X/ K is replaced

If we write r = deg,(K/Ko) when CharK = p > 0 and 7 = 0 when
Char K = 0, then we obtain by (5) and (6)

(5") dim Tx/ 1, = Max{2dimg X +0,(X) — dim Ou} +7

and when X is equidimensional

(6”) dimTx/r, = 2dim X +r + Mea))(({éz(X) —dim O, }.

Here dimTx/x, = 2dim X + r if and only if §:(X) < dim O, for all z € X,
i.e. if the singularities of X are not “too bad” in terms of the regularity defect.
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PRrROPOSITION 3.3. Assume X is reduced and equidimensional, and let K
“be admissible for X/ K. Then the following assertions are equivalent:

a) Tx/r, is equidimensional.
b) For all x € X we have §,(X) < dim O,, where equality holds for exactly
those x € X for which pr—(x) is an irreducible component of X.

Moreover, Tx/k, is regular (i.e. all its local Tings are regular) if and only
if X is.

PrOOF. If £ is the generic point of an irreducible component of X, then
pr—1(¢) is an irreducible component of T'x, g, (2.2). By 2.1

dimpr—1(¢) = 2dim X +r

and (6’) shows that a) and b) are equivalent.
By [8], 7.5 the local ring O, of z € X is regular if and only if QEI/KO is
free. The assertion about regularity follows from lemma 1.4.

EXAMPLE 3.4. Let X = Spec B where B is a K-algebra of finite type and a
domain with quotient field L. Let z € X be a closed point and p the maximal
ideal of B corresponding to X. Assume z is the only singularity of X. Further
let ¢ be the generic point of X, and let K be an admissible field for X.

If §,(X) > dim O,, then Tk g, is not equidimensional by 3.3. Assume now
that 0,(X) < dimO,. Write S := SB(Q}B/KO). Then t(z) corresponds to the
prime ideal p.S and t(€) to the kernel of S — S ® g L which is also the torsion
of § as a B-module.

Thus we have

pr-t(z) C prt(¢),
if and only if for all ¢ € N the torsion of Si(Q%/KD) is contained in pSi(QlB/KO )
Since Q%DZ/KO is free for each z € X, z # z, this is equivalent to

Torsion Si(Qé’)I/KO) Cmy Si(Q%QI/KO ).

In order that Tx,k, be equidimensional this condition must be satisfied when
§.(X) < dimO,. Unfortunately, questions about the torsion of differential
modules and their symmetric powers are in general difficult to decide.
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4. Irreducibility of the tangent bundle. For results about irreduciblity
‘and integrality of symmetric algebras, see [9], [10]. Here we want to show

THEOREM 4.1. Let X and Y are integral schemes where Y is noetherian
and f : X — Y s of finite type, dominant and equidimensional. Further
assume that X 1s equicodimensional and catenarian, i.e. dim X = dimmqL
dim O, for all x € X. Then the following conditions are equivalent:

a) Txyy is irreducible.

b) Tx,y is equidimensional and for all x € X which are different from the
generic point of X

6:(X/Y) +insep O, /O, < dim O, + insep R(X)/R(Y).

PROOF. Let ¢ be the generic point of X. Since pr=1(¢) is always an ir-
reducible component of T'x/y the tangent bundle is irreducible if and only

if Tx/y = pr=1(£). The assertion follows from 2.10 in connection with for-
mula (4).

COROLLARY 4.2. Let X be an integral algebraic scheme over a field K, and
let Ko C K be admissible for X/K. Then Tx/k, is irreducible if and only if
Tx/K, 5 equidimensional and

5:(X) < dim O,

for each singular point  of X.

PRrROOF. Being an integral algebraic K-scheme X is certainly equicodimen-
sional and catenarian. Further insep O,/K, = insepR(X)/K, by 3.2. The
assertion follows from 4.1 since condition 4.1b) is obviously satisfied for regular
points & of X which are different from the generic point of X.

COROLLARY 4.3. Under the assumptions of 4.2 let dim X = 1. Then the
following assertions are equivalent:

a) Tx K, 15 trreducible.

b) X is regular.

c) Si(Q%ﬁx/Ko) is a torsion free Ox-module for all i € N .

d) Tx /K, 1 integral.

PROOF. a)—b). When T/, is irreducible, then §,;(X) < dimO, < 1

implies that all z € X are regular points.
b)—c) follows from the fact that Q}DX /K, 18 a locally free Ox-module

([8], 7.5).
c)—d) follows from 2.1.
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REMARK 4.4. If K is a perfect field Berger’s problem ([3]) asks whether it
“is enough to require instead of c) that QF /K be torsion free in order that X

is regular. A survey with positive results to this question is given in [4].

5. Tangent bundles of local complete intersections. Let f: X — Y
be a morphism of schemes where X is locally noetherian. We say that X/Y is
locally a complete intersection, if X/Y is flat and for each
r € X, y = f(z) the local ring O,/m,O, is a complete intersection, i.e.
its completion is a homomorphic image of a regular local ring modulo an ideal
generated by a regular sequence. In this section we consider the following
situation.

ASSUMPTIONS 5.1. Y is a regular noetherian scheme, X is reduced and
X/Y is locally of finite type and locally a complete intersection. For each
generic point ¢ of an irreducible component of X and n = f(¢) the field
extension O /O, is separable.

Notice that 7 is the generic point of an irreducible component of Y, since
X/Y is flat. Hence O, is a field.

Let y € f(X) and let x € X be a point which is closed on the fibre f~1(y).
Set O, := 0, /m,O,. Then we have a presentation

(9) OI:k(y)[XlaaXn]m/(ﬁaaf_m)m

with a maximal ideal m of k(y)[X1, ..., X,,] and a regular sequence {fi,o s fm}
in k(y)[X1,...,Xn]m consisting of polynomials f; € k(y)[X1,...,Xy]. f z is
a specialization of z' € f~!(y), hence O, is a localization of O, then

(10) n —m = dim O, + Trdeg k(z") /k(y)

in particular, n — m = dim Q.
Since O, is regular we have

OIK = Oy[Xla'"7Xn]937/(f17---=fm)9ﬂ

with a regular sequence { f1,..., fm} in Oy[X1,..., X, ], the f; being liftings
of the f; in Oy[X1,...,X,] and M a maximal ideal of J,[X1,...,X,] lying
over m,. For a generic point { of an irreducible component of X containing x
and n = f(£) we obtain

(11) n—m = Trdeg O¢/O,.
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Set I := (f1,..., fm)m. Then the sequence

----------

is exact since I/I? is a free O,-module of rank m and the localization of the
sequence with respect to the minimal primes of O, are exact by the separability
assumption of 5.1. Thus we have an exact sequence

0O 502 Qb 0 0,

where A = [ax)i=1,...,m is the Jacobian matrix of fi,..., f,, L.e. ajx = ng’i is
k

the image of the partial derivative in O,. Let ¢; :=

E
Then

aikYk (i = 1,...,m).
1

n

(12) §:=80,Q0,,0,) = 0uY1,..., Y]/ (1, . ).

v
The next theorem follows from a result of Avramov ([2], Prop.1). For more
in this direction, see also [12].

THEOREM 5.2. Under the assumptions 5.1 the following assertions are
equivalent:
a) Tx/y /Y is locally a complete intersection.

b) Forallz € X, y = f(x)

6z(X/Y) +insep O, /0O, < dim O, /m,O,.

PROOF. Assume Tx,y /Y is locally a complete intersection. Then Tx/y is
flat over Y and all localizations of S/m,S are complete intersections. Since
O, is regular, the ideal m,S is generated by a regular sequence in S, hence
also the localizations of S are complete intersections.

For z as above let P :=m, ® S, and Q :=m, + (Y1,...,Y,,), its preimage
in O.[Y1,...,Y,]. Then since

S{p = Oz[Yl,...,Yn]Q/(él,...,Em)g

is a complete intersection, the ideal (¢4,...,4,,)q is generated by a regular
sequence of O4[Y1,...,Y,]n. Moreover, Sy is equidimensional.

Let pr, be the projection of the tangent bundle of Spec O,/ Spec O,,. Then
for the generic point ¢ of an irreducible component of Spec O, we have by 2.1

dimprz ! (¢) = dim {¢} + Trdeg O¢ /O, = dim O, +n—m with n = f(¢). Thus
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(01,...,4ym)a is an ideal of height m and {{1,...,4,} a regular sequence in

O.[Y1,..., Y, ]a. Let £; = ZazkYk be the image of ¢; in O,[Y1,..., Yulg
=1

where Q denotes the image of 0 in O,[Y1,...,Y,] and @y the image of a;x in
O,. Tt follows that {f1,...,4,,} is a regular sequence in Og[Y1,... , Ynlg. But
then {/1,..., 4y} is already a regular sequence in O, [Ys, ... ,Y,.], the £; being
homogeneous polynomials of positive degree.

Conversely, assume that this is the case. Then for each z’ € f~1(y) of
which z is a specialization and each z € T'x,y lying over 2’ the local ring O,
of z on T,y is flat over Oy and O,/m, 0, is a complete intersection.

Thus in order that TX/y/Y be locally a complete intersection it is nec-
essary and sufficient that for each pair (z,y) as in formula (9) the sequence
{1,..., 0y} is regular in O,[Y1,...,Y,]. Remember that

0%~ /k(y)_@o Y/ (G, ).

Let A = [@;z)i=1,...,m and let I, be the ideal generated by the s-minors of 4, in
k=1,...,n
other words: the Fitting ideal of order n — s of Q-— or Kaehler different

- Oz /k(y)

Vn—s(Oz /K (y))-

By [2], Prop.1 the following assertions are equivalent:

1) {¢1,...,€,} is a regular sequence in O,[Y1,...,Y,].

2) (Is)py = (O), for each p € SpecO, with dim(O;), = m — s
(s=1,...,m).

Notice that the height and the grade of an ideal in O, are the same, since
O, is a Cohen-Macaulay ring. It is easily seen ([8], D.9) that 1) and 2) are
also equivalent to

1 _ . A - .
3) ((QO /k(y)) ) < n—m + dim(Og), for all p € SpecO, with

dim(0,), < m. o o
Let 2’ € X be the point corresponding to p € Spec O,. Then (O,), = Oy
and by 2.8 and (10)

= O (X/Y) + d1m(9 /my(’) + Trdeg k(z')/k(y) + insep Oy /Oy
05 (X/Y) +n—m+insep O, /O,.

Since p(Q2, ,/Oy) < n by (12) we have for all 2’ with dim O, > m,

62 (X/Y) +insep Op /O, <n— (n—m) =m < dimO,.
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For 2’ with dim @, < m the condition

6z (X/Y) + insep Oy /O, < dim O/

is equivalent to 3). That this condition holds for all 2’ € X, y = f(2') is
therefore equivalent to T'x/y /Y being locally a complete intersection.

10.

11.

12.

13.
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