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IDEAL AS AN INTERSECTION OF ZERO–DIMENSIONAL

IDEALS AND THE NOETHER EXPONENT

by Witold Jarnicki, Liam o’Carroll and Tadeusz Winiarski

Abstract. The main goal of this paper is to present a method of expressing
a given ideal I in the polynomial ring K[X1, . . . , Xn] as an intersection of
zero-dimensional ideals. As an application, we get an elementary proof for
some cases of the Kollár estimation of the Noether exponent of a polynomial
ideal presented in [6], [7]. Moreover, an outline of the effective algorithm
is given.

1. Introduction. Let K be an algebraically closed field. It is well known
that any radical ideal I can be expressed as I =

⋂
P∈V (I) mP , where mP is

the maximal ideal corresponding to P . A natural question arises whether such
an intersection is possible for an arbitrary ideal I, i.e. if we can attach an
mP -primary ideal AP to each P ∈ V (I) such that I =

⋂
P∈V (I) AP .

In this paper a positive answer to this question is given. Using primary
decomposition, we reduce the problem to the case where I is primary. This
case can be done easily and effectively, so finding the family {AP } is as difficult
as a primary decomposition is. The proof of the primary case is based on the
theory of Gröbner bases.

As an application we present a simple proof of Kollár’s Noether exponent
estimate for ideals in the polynomial ring of one and two variables and for
ideals without embedded primary components.

2. Notation. Let K be an algebraically closed field. For a given ideal I,
V (I) denotes its zero set in Kn.
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3. Zero-dimensional case. Let I = Id(f1, · · · , fm) be an ideal in the
polynomial ring K[X] = K[X1, · · · , Xn] generated by {f1, . . . , fm} ⊂ K[X].
For a given point P ∈ Kn we define

MP := {α ∈ Nn : (X − P )α ∈ IOP },(1)

DP := Nn \MP .(2)

Observe that

α ∈MP =⇒ α + Nn ⊂MP =⇒MP =
⋃

α∈MP

(α + Nn).

One can prove that there exists a unique finite set α(1), · · · , α(s) ∈ MP such
that

α(i) 6∈ (α(j) + Nn), for i 6= j,(3)

MP =
s⋃

j=1

(α(j) + Nn).(4)

Lemma 1. I is zero-dimensional if and only if #DP (I) < +∞ for every
P ∈ V (I).

Proof. It suffices to prove that P is an isolated point of V (I) if and only
if #DP (I) < +∞. Take a P ∈ V (I). We may assume that P = 0. Observe
that any of the conditions implies that for every j = 1, . . . , n, there exists a
nonzero polynomial fj ∈ I of the form fj = x

kj

j gj(x) with gj(0) 6= 0 and kj ≥ 1.
On the other hand, this fact implies that both P is an isolated point of V (I)
and (0, · · · , kj , · · · , 0) ∈ M0(I) for j = 1, · · · , n, which proves that D0(I) is
finite.

Definition 2. For a given isolated point P ∈ V (I), dP = dP (I) := 1 +
max{|α| : α ∈ DP (I)} is defined to be the d-multiplicity of I at P .

Remark 3. dP (I) = min{k ∈ N : mk ⊂ I}, where m = Id(X − P ) is the
ideal corresponding to the point P .

Proposition 4. The following conditions hold

1. P 6∈ V (I) ⇐⇒MP = Nn.
2. If P is an isolated point of V (I) and QP is the primary component of I

with associated prime I(P ), then

MP (I) = MP (QP ) and DP (I) = DP (QP ).

3. P is an isolated point of V (I) if and only if #DP (I) < +∞.
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Proof. To prove (1) it is enough to observe that if P 6∈ V (I) then 1 ∈
IOP .

Without loss of generality we may assume that P = 0. Since 0 is an isolated
point of V (I), Q0 does not depend on a primary decomposition of I (see e.g.
[1], Thm. 8.56). Thus I = Q0 ∩ J0, where J0 contains the rest of primary
components. Since Q0O0 = IO0, M0(Q0) = M0(I). To prove the opposite
inclusion, take β ∈ M0(I). Then there exists f = xβ(1 +

∑
α>0 aαXα) ∈ I.

Therefore, f ∈ Q0 and finally xβ ∈ Q0O0.
Because of (2) we may assume that I is zero-dimensional. Applying Lemma

1 finishes the proof.

Effective construction of DP . Again, it is enough to consider the case
P = 0. Let Jα = I : Id(Xα). Observe that

(5) M0(I) = {α ∈ Nn : ∃g ∈ K[X] : g(0) 6= 0, Xαg ∈ I}
= {α ∈ Nn : ∃g ∈ Jα, g(0) 6= 0}.

Now it suffices to compute the Gröbner basis Gα = {g(1)
α , · · · , g

(sα)
α } of Jα (see

e.g. [3] or [1]) for “all” α (because of (1) and Lemma 1 the computation ends
after a finite number of steps) and check whether there exists j ∈ {1, . . . , sα}
such that g

(j)
α (0) 6= 0.

Theorem 5. If I is a zero-dimensional ideal, then d(I) := maxP∈V (I)

dP (I) is the Noether exponent N(I) = min{k ∈ N : (rad(I))k ⊂ I}.

Proof. The proof that d(I) ≥ N(I) follows directly from the fact that for
every P ∈ V (I) we have mdP (I) ⊂ IOP . To prove the opposite, one can assume
that 0 ∈ V (I), d0(I) = d(I). Take an α ∈ D0 such that |α| = d0(I) − 1, and
g ∈ K[X] such that g(0) 6= 0 and g(P ) = 0 for all P ∈ V (I)\{0}. Observe that
Xjg(X) ∈ rad(I), j = 1, . . . , n, but (rad(I))d0(I)−1 3 Xα(g(X))|α| 6∈ I.

Lemma 6. Let I be a zero-dimensional ideal. Then d(I) ≤ dim K[X]/I.

Proof. Let V (I) = {P1, . . . , Ps} and let Q1, . . . , Qs be the primary de-
composition of I such that V (Qi) = Pi. Since I ⊂ Qi, dPi(I) = dPi(Qi) (by
Proposition 4) and dim K[X]/Qi ≤ dim K[X]/I, it suffices to prove the case
s = 1 and P := P1 = 0.

Let l = dim K[X]/I. To end the proof, it is enough to show that for
any a = (a1, . . . , an) ∈ Kn, (a1X1 + · · · + anXn)l ∈ IO0. Fix an a and
let T be a linear isomorphism such that T (X1) = a1X1 + · · · + anXn. Let
T ∗I ∩K[X1] = Id(f). Since I is primary, we may take f = Xk

1 . Observe that

k = dim K[X1]/(Xk
1 ) ≤ dim K[X]/T ∗I = dim K[X]/I = l

— this implies that X l
1 ∈ T ∗I.
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Lemma 7. Let I = Id(f1, . . . , fm) be an ideal, where the fi are non-zero
polynomials, and let 1 ≤ k ≤ n. Then there exist linear forms Lj ∈ L(Km, K),
j = 2, . . . , k such that for Ik = Id(f1, L2 ◦ f, . . . , Lk ◦ f) where f denotes the
m-tuple f1, . . . , fm, the components of V (Ik) not contained in V (I) are at most
n− k-dimensional.

Proof. The case k = 1 is trivial. Fix a k ≥ 2 and suppose than the
forms L2, . . . , Lk−1 are constructed. Let V1, . . . , Vs be components of V (Ik)
not contained in V (I). For each j = 1, . . . , s, there exist Pj ∈ Vj such that
the sequence f1(Pj), . . . , fm(Pj) has at least one non-zero element. Let Hj =
{α = (α1, . . . , αm) ∈ Km : α1f1(Pj) + . . . + αmfm(Pj) 6= 0}, j = 1, . . . , s.
Since the sets Hj are Zariski-open, the set H := ∩s

j=1Hj 6= ∅. Take α ∈ H and
let Lk(Y1, . . . , Ym) = α1Y1 + . . . + αmYm. Since V (Lk ◦ f) intersects each Vj

properly, the dimension decreases.

Corollary 8. Let I = Id(f1, . . . , fm) be an ideal and suppose the numbers
di := deg fi form a non-increasing sequence. Then there exists an ideal J ⊂ I
such that all components of V (J) not contained in V (I) are zero-dimensional,
J = Id(g1, . . . , gn), deg gn = deg fm, and deg gi ≤ deg fi for i = 1, . . . , n − 1,
where if n > m, set f(1) = · · · = fn−m−1 = 0.

Proof. If is enough to renumber the generators and apply Lemma 7 fol-
lowed by Gaussian elimination of the forms Li.

Theorem 9. Let I be as in Corollary 8. Then N(I) ≤ d1d2 · · · · · dn−1dm.

Proof. Let J be as in Corollary 8. Applying Lemma 5, Lemma 6, and
Bezout’s theorem, we get

N(I) = d(I) = dim K[X]/I ≤ dim K[X]/J ≤ g1g2 · · · · · gn ≤ f1f2 · · · · fn−1fm.

4. The case of one and two variables. In the ring of polynomials of
one variable all ideals are zero-dimensional.

Theorem 10. The estimate is true for ideals in the ring of polynomials of
two variables.

Proof. Take an ideal I = Id(f1, . . . , fm) as in Corollary 8 and assume that
I is one-dimensional. Let g1, . . . , gs be irreducible polynomials corresponding
to the hypersurfaces contained in V (I). Let r1, . . . , rs be such that g := gr1

1 ·
· · · · grs

s = GCD(f1, . . . , fm). Put f̃i := fi/g, i = 1, . . . ,m. Observe that
J := Id(f̃1, . . . , f̃m) is zero-dimensional.

Put d = (d1 − deg g)(dm − deg g) + max{r1, r2, . . . , rs} ≤ d1dm and let
p1, . . . , pd ∈ rad(I). Obviously, p1, . . . , pd ∈ rad(J) and, consequently, p1 · · · · ·
pd ∈ I.
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Remark 11. The above technique can be used to “remove” components
of codimension one during the effective calculation of the Noether exponent.

5. Higher-dimensional case. The main goal of this part is to present
a given ideal I as an intersection of primary ideals and then to use induction.
The proof does not work for ideals with embedded primary components.

Proposition 12. Let I = Id(f1, . . . , fm) be a primary ideal and let k ∈ N
such that for every y = (y1, . . . , yk) ∈ Kk the ideal Iy = Id(f1(y, Z), . . . ,
fm(y, Z)) in the ring K[Z] = K[Z1, . . . , Zn−k] is proper and zero-dimensional.
Let f ∈ K[X]. Then the following conditions are equivalent, writing X = Y ∪Z
in an obvious notation:

1. f ∈ I,
2. f ∈

⋂
y∈Kk(I + Id(Y − y)),

3. ∀y ∈ Kk : fy = f(y, Z) ∈ Iy,
4. there exists a nonempty Zariski-open set U ⊂ Kk such that ∀y ∈ U :

fy ∈ Iy.

Observe that the theorem is not true without the assumption that I is
primary. For example, take I = Id(Y Z, Z2) = Id(Z) ∩ Id(Y, Z2), k = 1 and
f = Z. Then f satisfies condition (4) with U = K \ {0}, but f 6∈ I.

Proof. The implications 1=⇒2=⇒3=⇒4 are trivial. To prove 4=⇒1 sup-
pose that G = (g1, . . . , gs), gi ∈ K[Y ][Z] is the comprehensive Gröbner basis
([10], see also [1]) of I for parameters y ∈ U . Observe that for y from a
Zariski-open set U ′ ⊂ U ⊂ Kk the division of f(y, Z) by (g1(y, Z), . . . , gs(y, Z))
is conducted the same way (i.e. before each step the multidegree of all the
polynomials involved do not depend on y). Since ∀y ∈ Kk, fy ∈ Iy, the
remainders of the divisions are 0. Let q1, . . . , qs ∈ K(Y )[Z] be such that
f(y, Z) =

∑s
i=1 qi(y, Z)gi(y, Z) for y ∈ U ′. Multiplying the equation by

the common denominator s(Y ) of coefficients of all qi we get s(Y )f(Y, Z) =∑s
i=1 ri(Y, Z)gi(Y, Z), where ri ∈ K[Y ][Z]. This implies that s(Y )f(Y, Z) ∈ I.

Since I is primary and I ∩K[Y ] = {0}, we get f ∈ I.

Theorem 13. The estimate is true for ideals without embedded primary
components.

Proof. We apply induction on the number of variables. The cases n = 1
and n = 2 are already solved.

Take n ≥ 3 and an I = Id(f1, . . . , fm) as in Corollary 8 and let d := d1d2 ·
· · · · dn−1dm. Let Q1 ∩ · · · ∩Qs be a primary decomposition of I. Observe that
for a generic linear isomorphism T , each of the components T ∗Q1, . . . , T

∗Qs

of T ∗I satisfies the hypotheses of Proposition 12. It suffices to prove that for
any p1, . . . , pd ∈ rad(T ∗I), p1 · · · · · pd ∈ T ∗Qi for any i = 1, . . . , s.
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Let Q be a primary component of T ∗I. If Q is zero-dimensional then it is
an isolated component and (radQ)d ⊂ Q since the multiplicity of Q does not
exceed d.

Assume now that k := dim Q > 0. Let U ⊂ Kk be such that, for
y ∈ U , T ∗Iy has no embedded primary components. Fix y ∈ U . Since
(p1)y, . . . , (pd)y ∈ rad(T ∗Iy) and T ∗Iy has no embedded primary components,
we get (p1 · · · · · pd)y ∈ T ∗Iy ⊂ Qy by the inductive hypothesis. Applying
Proposition 12 ends the proof.

6. Reducing the number of generators.

Lemma 14. Let I, J and Q be ideals such that V (I) ∪ V (Q) = V (J) and
V (I) ∩ V (Q) = ∅. Fix d ∈ N. If rad(J)d ⊂ J then rad(I)d ⊂ I.

Proof. Let I = Q1∩. . .∩Qk be a primary decomposition. For j = 1, . . . , k
there exists a polynomial hj ∈ Q \ rad(Qj). Let Pj ∈ V (Qj) be such that
hj(Pj) 6= 0. Using the construction in 7 we get a polynomial h ∈ Q such that
h(Pj) 6= 0 for j = 1, . . . , k.

Take p1, . . . , pd ∈ rad(I). Observe that hp1, . . . , hpd ∈ rad(J). It follows
that hdp1 · · · · · pd ∈ J . Assume that p1 · · · · · pd 6∈ Qj for some j ∈ {1, . . . , k}.
Since Qj is primary, hdn ∈ Qj for some n ∈ N. It follows that h ∈ rad(Qj) —
contradiction. This proves that rad(I)d ⊂ I.

Corollary 15. To prove the Kollár estimate it is enough to consider the
case of n generators.

Proof. It suffices to apply Corollary 8, take Q corresponding to the com-
ponents of V (J) not contained in V (I) and then apply Lemma 14.

7. Closing remarks. (1) Let A be a Noetherian ring. Then we note that:
0A is an intersection of ideals which are powers of maximal ideals (and so

are zero-dimensional).
For consider a ∈ A\{0A} and let I = 0 : a. Then I ⊂ M, for some

maximal ideal M. By Krull’s Intersection Theorem, there exists n ∈ N such
that a/1 /∈ Mn

M . Hence a /∈ Mn and the result follows.

(2) Let A be an excellent (or indeed J-2) ring. Then by a general version
of Zariski’s Main Lemma on holomorphic functions (see [5], [4]), 0A is an
intersection of ideals of the form me, where m is a maximal ideal and e is the
maximum of the Noether exponents of the primary components in a primary
decomposition of 0A.
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(3) We remark that Proposition 12 supplies a proof using comprehensive
Gröbner bases of the following striking result, which can be regarded as a
‘Nullstellensatz with Normalization’:

Let A be an affine ring over the field K with 0A a primary ideal. Via
Noether Normalization, write A = K[Y1, ..., Yk, z1, ..., zn−k] where Y1, ..., Yk are
algebraically independent and A is integral over K[Y1, ..., Yk]. Then if U ⊂ Kk

is a non-empty Zariski-open set,
⋂

y∈U Id(Y − y).A = 0A.

In this connection, we note the following proof of Theorem 13 in the un-
mixed case that avoids this result (for which it would be of interest to have a
‘classical’ proof).

Alternative proof of Theorem 13 in the unmixed case:
Let I be an ideal in K[X1, ..., Xn] with primary decomposition I = Q1∩...∩

Qs, with ht I = ht Qi, i = 1, ..., s. Set Pi = rad(Qi), i = 1, ..., s. Let A denote
K[X1, ..., Xn]/I, and for each i let pi denote Pi/I. Via Noether Normalization,
we have an integral extension B ⊂ A, with B a polynomial ring. By the basic
properties of integral extensions, pi ∩ B = 0, i = 1, ..., s. Hence, setting S =
B\{0}, S consists of non-zerodivisors in A. Then S−1A is a zero-dimensional
affine ring integral over L, the quotient field of B, and the Noether exponent of
0A is the same as the Noether exponent of 0S−1A. Moreover, the defining ideal
of S−1A arises from I by a linear (even triangular) transformation of variables,
so the degrees of the generators get no worse. Hence we have reduced the proof
to the zero-dimensional case.
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