AN EXAMPLE CONCERNING THE EMBEDDED PRIMES ASSOCIATED WITH AN IDEAL IN THE RING OF POLYNOMIALS

BY KRZYSZTOF JAN NOWAK

Abstract. This paper presents an ideal I, generated by three elements in the ring $\mathbb{C}[x_1, x_2, x_4, x_5]$ of polynomials in four variables, which has the maximal ideal $\mathfrak{m} := (x_1, x_2, x_4, x_5)$ of height 4 among its associated (necessarily embedded) primes.

It is well-known that the height of the minimal primes of an ideal, generated in a noetherian ring by n elements, cannot be greater than n (see e.g. [2], Chapt. V). No such bound exists for the embedded primes, irrespective of any assumptions imposed on the ambient ring (whether Cohen-Macaulay or regular). Below, we wish to demonstrate this by giving an example concerning the ring of polynomials.

¹⁹⁹¹ Mathematics Subject Classification. 13C15.

 $Key\ words\ and\ phrases.$ polynomials, minimal and embedded primes associated with an ideal, Veronese embedding.

We first consider the commutative diagram of polynomial mappings

where

$$\phi(u,v) = (u^4, u^3v, u^2v^2, uv^3, v^4), \quad \psi(u,v) = (u^4, u^3v, uv^3, v^4)$$

and $\pi(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, x_4, x_5)$ is the canonical projection. Observe that ϕ is the homogeneous polynomial mapping which determines the 4-fold Veronese embedding (see e.g. [1], Chap. I, § 2):

$$\mathbb{P}_1(\mathbb{C}) \longrightarrow \mathbb{P}_4(\mathbb{C})$$

The above mappings induce the ring homomorphisms ϕ^*, ψ^* and π^* :

Clearly, the kernel of ϕ^* is the ideal

 $\ker \phi^* = (x_1x_5 - x_2x_4, x_1x_5 - x_3^2, x_1x_4 - x_2x_3, x_1x_3 - x_2^2, x_2x_5 - x_3x_4, x_3x_5 - x_4^2)$ in the ring of polynomials $\mathbb{C}[x_1, x_2, x_3, x_4, x_5]$, and

$$\ker \psi^* = (\pi^*)^{-1} (\ker \phi^*) = \ker \phi^* \cap \mathbb{C}[x_1, x_2, x_4, x_5].$$

194

It follows, by a standard elimination of the variable x_3 , that the prime ideal $\mathfrak{p} := \ker \psi^*$ is of the form

$$\mathbf{p} = (x_1 x_5 - x_2 x_4, \, x_1^2 x_4 - x_2^3, \, x_2 x_5^2 - x_4^3, \, x_1 x_4^2 - x_2^2 x_5).$$

Now, let $I \subset \mathfrak{p} \subset \mathbb{C}[x_1, x_2, x_4, x_5]$ be the ideal generated by the first three generators of the ideal **p**:

$$I := (x_1 x_5 - x_2 x_4, x_1^2 x_4 - x_2^3, x_2 x_5^2 - x_4^3).$$

The homogeneous polynomial

$$s = s(x_1, x_2, x_4, x_5) := x_1 x_4^2 - x_2^2 x_5 \in \mathfrak{p} \setminus I$$

does not belong to the ideal I. Otherwise, taking $x_1 = x_4 = 0$, one would obtain $x_2^2 x_5 \in (x_2^3, x_2 x_5^2)$, which is impossible. Further, an easy computation shows that

$$s \cdot x_1 = s \cdot x_2 = s \cdot x_4 = s \cdot x_5 \equiv 0 \pmod{I}.$$

Hence

$$I: s = (x_1, x_2, x_4, x_5),$$

and thus the maximal ideal

$$\mathfrak{m} := (x_1, x_2, x_4, x_5) \subset \mathbb{C}[x_1, x_2, x_4, x_5],$$

being obviously of height 4, is an associated prime of I (see e.g. [2], Chap. III). Moreover, since $s^2 \in I$ and

$$\mathfrak{p} = I + s \cdot \mathbb{C}[x_1, x_2, x_4, x_5],$$

the prime ideal \mathfrak{p} coincides with the radical of $I: \sqrt{I} = \mathfrak{p}$, and consequently \mathfrak{p} is the unique minimal prime of I.

Notice that the ideal I has the two associated primes p and m only. Indeed, the associated primes of I are exactly the prime ideals of the form I: a, where $a = a(x_1, x_2, x_4, x_5)$ is a polynomial. If $a \notin \mathfrak{p}$, then

$$I: a \subset \mathfrak{p}: a = \mathfrak{p},$$

and therefore the prime ideal $I: a = \mathfrak{p}$. If $a \in \mathfrak{p}$, then $a = b + c \cdot s$ with $b \in I$, whence

$$I: a = I: cs \supset I: s = \mathfrak{m},$$

and thus the prime ideal $I: a = \mathfrak{m}$.

REMARK. All the above reasoning will remain valid when we consider polynomials over an arbitrary ground field k.

References

- Hartshorne R., Algebraic Geometry, Springer-Verlag (1977).
 Matsumura H., Commutative Algebra, Benjamin/Cummings Publishing Co., New York (1980).

Received April 13, 2000

Jagiellonian University Institute of Mathematics Reymonta 430-059 Kraków Poland e-mail: nowak@im.uj.edu.pl

196