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HOLOMORPHIC FUNCTIONS WITH SINGULARITIES ON

ALGEBRAIC SETS

by Józef Siciak

Abstract. The aim of the paper is to prove the following Theorem:
Let P be a non-zero polynomial of two complex variables. Put A :=

{(z1, z2); P (z1, z2) = 0}, A1
z2 := {z1; P (z1, z2) = 0}, A2

z1 := {z2; P (z1, z2) =
0}. Let E1, E2 be two closed subsets of C with positive logarithmic capaci-
ties. Put X := (E1×C)∪(C×E2). Let f : X \A 3 (z1, z2) 7→ f(z1, z2) ∈ C
be a function separately holomorphic on X \ A, i.e. f(z1, ·) ∈ O(C \ A2

z1)

for every z1 ∈ E1, and f(·, z2) ∈ O(C \A1
z2) for every z2 ∈ E2.

Then there exists a unique function f̃ ∈ O(C2 \ A) with f̃ = f on
X \A. Theorem remains true for all n ≥ 2.

If E1 = E2 = R and P (z1, z2) = z1 − z2, we get the result due to O.

Öktem [5].

1. Introduction. The aim of this paper is to prove the following theorem.

Theorem 1.1. Given n ≥ 2, let Ej (j = 1, . . . , n) be a closed subset of the
complex plane C of the positive logarithmic capacity. Put
(*) X := (C×E2×· · ·×En)∪(E1×C×E3×· · ·×En)∪· · ·∪(E1×· · ·×En−1×C).

Let P be a non-zero polynomial of n complex variables. Put
(**) A := {z ∈ Cn;P (z) = 0}, Aj

z1,...,zj−1,zj+1,...,zn
:= {zj ∈ C; z ∈ A}

for (z1, . . . , zj−1, zj+1, . . . , zn) ∈ Cn−1, j = 1, . . . , n. Let f : X \A 7→ C be a
function separately holomorphic on X \A in the sense that

f(z1, . . . , zj−1, ·, zj+1, . . . , zn) ∈ O(C \Aj
z1,...,zj−1,zj+1,...,zn

),

if zk ∈ Ek(k 6= j), j = 1, . . . , n.
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Then f ∈ O(Cn \ A), i.e. there exists a unique function f̃ ∈ O(Cn \ A)
with f̃ = f on X \A.

If n = 2, E1 = E2 = R and P (z1, z2) = z1 − z2, we get the result due to O.
Öktem [5]. Properties of separately holomorphic functions of the above type
were used by O. Öktem ([5, 6]) to characterize the range of the exponential
Radon transform (which in turn is of interest for mathematical tomography).
Theorem 1.1 shows that the Main conjecture of paper [6] is true at least for a
class of special cases interesting for applications in mathematical tomography1.

Let D1 and D2 be two domains in Cn with D1 ⊂ D2. In the sequel we
shall say that a function f defined and holomorphic on D1 is holomorphic on
D2, if there exists a unique function f̃ holomorphic on D2 such that f̃ = f on
D1.

We shall need the following three known theorems.

Theorem 1.2. Let Fj be a nonpolar relatively closed subset of a domain
Dj on the complex zj-plane, j = 1, . . . , n. Let f : X 7→ C be a function of n
complex variables separately holomorphic on the set X := D1×F2×· · ·×Fn ∪
. . . ∪ F1 × · · · × Fn−1 ×Dn.

Then the function f is holomorphic on a neighborhood of the set

D1 × (F2)reg × · · · × (Fn)reg ∪ . . . ∪ (F1)reg × · · · × (Fn−1)reg ×Dn,

where (Fj)reg is the set of points a of Fj such that Fj is locally regular (in the
sense of the logarithmic potential theory) at a.

Theorem 1.3. Let D ⊂ Cm (resp. G ⊂ Cn) be a domain with a pluripolar
boundary. Let E (resp. F ) be a non-pluripolar relatively closed subset of D
(resp. G).

Then every function f : X 7→ C separately holomorphic on the set X :=
E ×G ∪ D × F is holomorphic on D ×G.

Theorems 1.2 and 1.3 are direct consequences of (e.g.) the main result
of [4].

Theorem 1.4. [1] Let A be an analytic subset (of pure codimension 1) of
the envelope of holomorphy D̂ of a domain D ⊂ Cn.

Then D̂ \A is the envelope of holomorphy of D \A.

2. Proof of Theorem 1.1. We shall show that our theorem follows from
the following Lemma.

Lemma 2.1. There exists a function g holomorphic on the domain Cn \A
such that g = f on F1 × · · · × Fn, where F1 × · · · × Fn ⊂ Cn \ A and Fj is a
non-polar subset of Ej (j = 1, . . . , n).

1M. Janicki and P. Pflug [2] have shown that for n = 2 the Main Conjecture is true with
no additional assumptions.
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In order to prove Theorem 1.1 it is sufficient to show that g = f on X \A.
First we shall consider the case of n = 2. Fix (a1, a2) ∈ X \ A. We need

to show that g(a1, a2) = f(a1, a2). Without loss of generality we may assume
that a1 ∈ E1.

For a fixed z2 ∈ F2 the functions f(·, z2) and g(·, z2) are holomorphic in
the domain C \A1

z2
and identical on the nonpolar subset F1. Therefore

f(z1, z2) = g(z1, z2), z1 ∈ C \A1
z2

, z2 ∈ F2.

Let G2 be a non-polar subset of F2 such that P (a1, z2) 6= 0 for all z2 ∈
G2. Then a1 ∈ C \ Az2 for all z2 ∈ G2. Hence f(a1, z2) = g(a1, z2) for all
z2 ∈ G2. The functions f(a1, ·) and g(a1, ·) are holomorphic on the domain
C \ A2

a1
and identical on the nonpolar subset G2 of the domain. Therefore

f(a1, z2) = g(a1, z2) for all z2 ∈ C \ A2
a1

. In particular, f(a1, a2) = g(a1, a2)
because a2 ∈ C \A2

a1
.

Now consider the case of n > 2 and assume that Theorem 1.1 is true in Ck

with 2 ≤ k ≤ n− 1. Fix a = (a1, . . . , an) ∈ X \ A. Without loss of generality
we may assume that a1 ∈ E1. Put a = (a1, a

′) with a′ = (a2, . . . , an). Observe
that A

(2,...,n)
a1 := {z′ ∈ Cn−1;P (a1, z

′) = 0} 6= Cn−1.
It is clear that f(z1, z

′) = g(z1, z
′) if z1 ∈ C \ A1

z′ and z′ ∈ F2 × · · · × Fn.
Let Gj (j = 2, . . . , n) be a non-polar subset of Fj such that P (a1, z

′) 6= 0 for
all z′ = (z2, . . . , zn) ∈ G2× · · ·×Gn. Then the function g(a1, ·) is holomorphic
in Cn−1 \A

(2,...,n)
a1 , and

f(a1, z
′) = g(a1, z

′), z′ ∈ G2 × · · · ×Gn ⊂ E2 × · · · × En \A(2,...,n)
a1

.

Put
X ′ := C× E3 × · · · × En ∪ · · · ∪ E2 × · · · × En−1 × C.

Then the function f(a1, ·) is separately analytic on X ′ \A
(2,...,n)
a1 , and the func-

tion g(a1, ·) is holomorphic on

Cn−1 \A(2,...,n)
a1

.

Moreover, f(a1, z
′) = g(a1, z

′) for all z′ ∈ G2 × · · · × Gn. By the induction
assumption we have f(a1, z

′) = g(a1, z
′) for all z′ ∈ Cn−1 \A

(2,...,n)
a1 . It is clear

that a′ ∈ Cn−1 \A
(2,...,n)
a1 . Therefore f(a) = g(a). The proof is concluded.

3. Proof of Lemma 2.1. For each k with 1 ≤ k ≤ n the polynomial P
can be written in the form

(?) P (z) =
dk∑

j=0

pkj(z1, . . . , zk−1, zk+1, . . . , zn)zj
k,

where dk ≥ 0 and pkdk
6= 0(k = 1, . . . , n). It is clear that dk = 0 iff P does not

depend on zk. If P = const 6= 0 then A = ∅.
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Put
Ak := {z ∈ Cn; pkdk

(z1, . . . , zk−1, zk+1, . . . , zn) = 0}, k = 1, . . . , n.

Then the set
B := A ∪A1 ∪ · · · ∪An

is pluripolar. We know that the set (Ej)reg is not polar. Therefore the cartesian
product (E1)reg × · · · × (En)reg is not pluripolar, and hence

(E1)reg × · · · × (En)reg \B 6= ∅.
Fix

zo = (zo
1, . . . , z

o
n) ∈ (E1)reg × · · · × (En)reg \ (A ∪A1 ∪ · · · ∪An).

Then there exists ro > 0 such that

(??) (B̄(zo
1, 2ro)× · · · × B̄(zo

n, 2ro)) ∩ (A ∪A1 ∪ · · · ∪An) = ∅,
where B(zo

j , 2ro) := {zj ∈ C; |zj − zo
j | < 2ro}. In particular, pkdk

(z1, . . . , zk−1,

zk+1, . . . , zn) 6= 0 on B̄(zo
1, 2ro) × · · · × B̄(zo

k−1, 2ro) × B(zo
k+1, 2ro) × · · · ×

B̄(zo
n, 2ro).
We shall show that Lemma 2.1 follows from the following Main Lemma.

Main Lemma 3.1. Given δ with 0 < δ < min{1, r0}, put

Ωk := B(zo
1, δ)× · · · ×B(zo

k−1, δ)×C×B(zo
k+1, δ)× · · · ×B(zo

n, δ) 1 ≤ k ≤ n.

If δ is sufficiently small then for each k = 1, . . . , n there exists a function fk

holomorphic on Ωk \A such that fk(z) = f(z) on the set F1 × · · · × Fn, where

Fj := Ej ∩B(zo
j , δ), j = 1, . . . , n.

In order to prove Lemma 2.1 let us observe that by (??) fj = fk = f on
the non-pluripolar subset F1×· · ·×Fn of the domain (Ωj ∩Ωk) \A. Therefore
the function

fo := f1 ∪ · · · ∪ fn

is well defined and holomorphic on Ω \ A with Ω := Ω1 ∪ · · · ∪ Ωn. Moreover
fo = f on F1×· · ·×Fn. The set Ω is a Reinhardt domain with centre zo whose
envelope of holomorphy is Cn. Therefore by the Grauert-Remmert Theorem
1.4 there exists a function g holomorphic on Cn \A such that g = fo on Ω \A;
in particular g = f on F1 × · · · × Fn. The proof of Lemma 2.1 is finished.

4. Proof of the Main Lemma. Fix integer k with 1 ≤ k ≤ n. We shall
consider two cases.

Case 1o. The polynomial P depends on zk, i.e. dk ≥ 1.
Without loss of generality we may assume that k = 1. Let {a1, . . . , as} :=

{z1 ∈ C;P (z1, z
o
2, . . . , z

o
n)= 0} be the zero set of the polynomial P (·, zo

2, . . . , z
o
n).

By (**) the number m given by
2m := min{|p1d1(z

′)|; |zj − zo
j | ≤ ro(j = 2, . . . , n)}

is positive.
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Let Ro > max{1, ro} be so large that B(aj , 2) ⊂ B(0, Ro) (j = 1, . . . , s)
and

(4.0) |P (z)| ≥ m|z1|d1 for all |z1| ≥ Ro, |zj − zo
j | ≤ ro(j = 2, . . . , n).

Fix ε with 0 < ε < 1 so small that

B̄(zo
1, ro) ∩

(
∪s

j=1B̄(aj , ε)
)

= ∅, B̄(aj , ε) ∩ B̄(al, ε) = ∅ (j 6= l)

Without loss of generality we may assume that ro is so small that P (z) 6= 0
for all z with |z1 − aj | ≥ ε

4 (j = 1, . . . , s), |zj − zo
j | ≤ ro (j = 2, . . . , n).

Now given R > Ro there exists δ such that 0 < 2δ < ro and f is bounded and
holomorphic on the set

{z ∈ Cn; ε < |z1 − aj | < 3
2R (j = 1, . . . , s), |zl − zo

l | < δ(l = 2, . . . , n)}.
Indeed, f is separately holomorphic on the set

(\) D1 × F2 × · · · × Fn ∪ · · · ∪ F1 × · · · × Fn−1 ×Dn

with F1 := E1 ∩ B̄(zo
1, ro), Fj := Ej ∩ B(zo

j , ro) (j = 2, . . . , n), D1 := C \(
B̄(a1,

ε
4) ∪ · · · ∪ B̄(as,

ε
4)

)
, Dj := B(zo

j , ro) (j = 2, . . . , n). For each j the
set Fj is locally regular at zo

j . Hence by Theorem 1.2 there exists δ such that
O < 2δ < ro and f is holomorphic on the domain

(†) {z ∈ Cn; ε
2 < |z1− aj | < 2R(j = 1, . . . , s), |z` − zo

` | < 2δ (` = 2, . . . , n)}.
Observe that the function

W (ω, z) :=
P (ω, z′)− P (z1, z

′)
ω − z1

≡
d1∑
l=1

p1l(z′)[ωl−1 + ωl−2z1 + · · ·+ zl−1
1 ]

is a polynomial of n + 1 variables ω, z1, . . . , zn.
It is clear that for every j ∈ Z the function

(&) Φj(ω, z) := W (ω, z)
f(ω, z′)

P (ω, z′)j+1

is holomorphic on the set {(ω, z) ∈ Cn+1; ε
2 < |ω−aj | < 2R (j = 1, . . . , s), z1 ∈

C, z′ ∈ B(zo
2, 2δ)× · · · ×B(zo

n, 2δ)}.
Therefore the function

(4.1) c1j(z) := 1
2πi

∫
C(0,R)

Φj(ω, z)dω

is holomorphic on the set C×B(zo
2, 2δ)× · · ·×B(zo

n, 2δ); here C(0, R) denotes
the positively oriented circle of centre 0 and radius R. Moreover, by (4.0) for
every compact subset K of C there exists a positive constant M = M(K, R)
such that

(4.2) |c1j(z)| ≤ M |j|

for all j ∈ Z and z ∈ K ×B(zo
2, δ)× · · · ×B(zo

n, δ).
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For a fixed z′ ∈ F2×· · ·×Fn with Fj := Ej∩B(zo
j , δ) the function Φj(·, ·, z′)

is holomorphic on {ω ∈ C;P (ω, z′) 6= 0} × C. Hence, by the Cauchy residue
theorem,

(4.3) c1j(z) =
1

2πi

∫
∂D+(z′,ρ)

Φj(ω, z)dω, z ∈ C× (F2 × · · · × Fn),

where ρ is any positive real number and

D+(z′, ρ) := {z1 ∈ C; |P (z1, z
′)| < ρ}.

In the formula (4.3) the integration is taken over the positively oriented bound-
ary of the open set D+(z′, ρ) (the interior of the lemniscate on the z1-plane).

We claim that the required function f1 may be given by the formula (a
generalized Laurent series)

f1(z) :=
∞∑
−∞

c1j(z)P (z)j , z ∈ Ω1 \A,

where c1j is defined by (4.1). It remains to show that the series is convergent
locally uniformly in Ω1 \A, and f1 = f on F1 × · · · × Fn.

We already know that the functions c1j are holomorphic on Ω1 := C ×
B(zo

2, δ)× · · · ×B(zo
n, δ). Passing to the proof of our claim let us observe that,

given z′ ∈ F2 × · · · × Fn and 0 < r < 1, we have

f(z) =
1

2πi

∫
∂D(z′,r)

f(ω, z′)
ω − z1

dω, z1∈D(z′, r) := {z1 ∈ C; r < |P (z1, z
′)| < 1

r
}.

Hence

f(z) =
1

2πi

∫
∂D+(z′, 1

r
)

f(ω, z′)
ω − z1

dω − 1
2πi

∫
∂D−(z′,r)

f(ω, z′)
ω − z1

dω

for all z1 ∈ D(z′, r), where D+(z′, 1
r ) := {z1 ∈ C; |P (z1, z

′)| < 1
r}, D−(z′, r) :=

{z1 ∈ C; |P (z1, z
′)| > r}.

Observe that

f(ω, z′)
ω − z1

=
P (ω, z′)− P (z1, z

′)
ω − z1

· f(ω, z′)
P (ω, z′)− P (z1, z′)

=
∞∑

j=0

Φj(ω, z)P (z)j

for all ω ∈ C with |P (ω, z′)| = 1
r and all z1 ∈ D+(z′, 1

r ) , the series being
uniformly convergent with respect to ω ∈ ∂D+(z′, 1

r ).
Similarly,

f(ω, z′)
ω − z1

= −
∞∑

j=1

Φj(ω, z)P (z)−j

for all ω ∈ ∂D−(z′, r) and all z1 ∈ D−(z′, r), the series being uniformly con-
vergent with respect to ω ∈ ∂D−(z′, r).
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By (4.3) it follows that

(4.4) f(z) =
∞∑

j=−∞
c1j(z)P (z)j , z1 ∈ D(z′, 0), z′ ∈ F2 × · · · × Fn.

Moreover, for every ρ > 0, for every z′ ∈ F2 × · · · × Fn, and for every
compact subset K of C there exists M = M(ρ, z′,K) > 0 such that

|c1j(z)| ≤ Mρ−j , j ∈ Z, z1 ∈ K, z′ ∈ F2 × · · · × Fn.

Hence for all r > 0, z1 ∈ C, z′ ∈ F2 × · · · × Fn one gets the inequalities

|c1j(z1, z
′)| ≤ M(

1
r
, z′, {z1})rj , j ≥ 0,

|c1j(z1, z
′)| ≤ M(r, z′, {z1})r|j|, j ≤ 1.

By the arbitrary nature of r > 0 it follows that

lim sup
|j|→∞

1
|j|

log |c1j(z)| = −∞, z1 ∈ C, z′ ∈ F2 × · · · × Fn.

By (4.2) the sequence { 1
|j| log |c1j |} is locally uniformly upper bounded on

Ω1. Put u(z) := lim sup 1
|j| log |c1j(z)|, z ∈ Ω1. Then the upper semicontinuous

regularization u∗ of u is plurisubharmonic in Ω1, and by the Bedford-Taylor
theorem [3] on negligible sets the set {z ∈ F1 × · · · × Fn;−∞ = u(z) = u∗(z)}
is non-pluripolar. Therefore u∗ ≡ −∞ in Ω1.

Given a compact subset K of Ω1 \A, there exists r = r(K) with 0 < r < 1
such that r < |P (z)| < 1

r for all z ∈ K. Fix k > 0 so large that 1
re−k < 1

2 . By
the Hartogs Lemma there exists jo = jo(k, K) such that

1
|j|

log |c1j(z)P (z)j | ≤ −k + log
1
r
, z ∈ K, |j| > jo,

i.e.
|c1j(z)|P (z)j | ≤ 2−|j|, z ∈ K, |j| > jo.

It follows that the series
∑∞

j=−∞ c1j(z)P (z)j is uniformly convergent on
every compact subset of Ω1 \A. Its sum f1 is holomorphic on Ω1 \A. By (4.4)
f1 = f on F1 × · · · × Fn. The proof of Case 1o is completed.

Case 2o. The polynomial P does not depend on zk.
Without loss of generality we may assume that k = n. Now the function f is

separately holomorphic on the set (\) with Dj := B(zo
j , ro), Fj := Ej∩B(zo

j , ro)
(j = 1, . . . , n−1, Dn := C, Fn := En∩B̄(zo

n, ro). Given R > 0, by Theorem 1.2
there exists sufficiently small δ > 0 such that f is holomorphic on the domain

(‡) {z ∈ Cn; |zj − zo
j | < 2δ (j = 1, . . . , n− 1), |zn| < 2R.
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The function

(a) cnj(z) ≡ cnj(z′) := 1
2πi

∫
C(0,R)

f(z′, ω)
ωj+1

dω, j ≥ 0,

with z′ := (z1, . . . , zn−1), is holomorphic on the set B(zo
1, 2δ)×· · ·×B(zo

n−1, 2δ)×
C. Moreover, for every compact subset K of C there exists a positive constant
M = M(K, R) such that

(b) |cnj(z)| ≤ MR−j , j ≥ 0, z ∈ Ωn := B(zo
1, δ)× . . . B(zo

n−1, δ)×K.

It is clear that for every ρ > 0

(c) cnj(z) = 1
2πi

∫
C(0,ρ)

f(z′, ω)
ωj+1

dω, z ∈ F1 × · · · × Fn−1 × C,

where Fj := Ej ∩B(zo
j , δ). Moreover,

(d) f(z) =
∞∑

j=0

cnj(z)zj
n, z ∈ F1 × · · · × Fn−1 × C.

Put uj(z) := 1
j log |cnj(z)|. The sequence {uj} is locally uniformly upper

bounded on Ωn , and lim supj→∞ uj(z) = −∞ for all z ∈ F1 × · · · × Fn−1 ×C.
Hence by the Hartogs Lemma and by the Bedford-Taylor theorem on negligible
sets, the series

∑∞
j=0 cnj(z)zj

n is locally uniformly convergent on Ωn, and its
sum fn is identical with f on F1 × · · · × Fn. The proof of case 2o is finished,
and so is the proof of the Main Lemma.
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