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TOTAL SEPARATION AND ASYMPTOTIC STABILITY

by Barnabas M. Garay and József Garay

Abstract. The main goal of this paper is to weaken the invariance assump-
tions in Liapunov’s direct method. Various geometric conditions resembling
those provided by the collection of level surfaces of Liapunov functions are
investigated. They are used to derive necessary resp. sufficient conditions
for the asymptotic stability of equilibrium points of dynamical systems
in Banach spaces. The main result — which does not hold true in the
infinite–dimensional setting — is a consequence of the Zubov–Ura–Kimura
Theorem.

1. The concept of total separation. Let (X, ‖ · ‖) be a Banach space
and let Φ : R × X → X be a dynamical system on X. The origin of X is
denoted by 0X . Throughout this paper, we assume that 0X is an equilibrium
point of Φ. With respect to the dynamical system Φ and its equilibrium point
0X , we say that a family of triplets {(Ox,Sx, Ix)}x∈X\{0X} is a total separation
in X if

(i) for each x ∈ X \ {0X}, Ox, Sx and Ix are nonempty, pairwise disjoint
subsets of X, Ox and Ix are open, Sx is closed,

(ii) for each x ∈ X \ {0X}, Ox ∪ Sx ∪ Ix = X and 0X ∈ Ix, and
(iii) for each x ∈ X \ {0X}, Φ((−∞, 0), x) ⊂ Ox, x ∈ Sx and Φ((0,∞), x) ⊂

Ix.

A total separation is called dynamically strong if Ix is positively invariant for
each x ∈ X \ {0X}. A total separation is called weakly nested if Sx = Sy or
Sx ∩ Sy = ∅ whenever x, y ∈ X \ {0X}. If, in addition, Ix 6= Iy implies that
either Ix ⊂ Iy or Ix ⊃ Iy for each x, y ∈ X \ {0X}, then a weakly nested
total separation is termed nested.
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For each x, y ∈ X \ {0X}, weak nestedness of a total separation implies
that Sx ∩ Φ(R, y) is either the empty set or a single point and thus Sx is the
common boundary of Ox and Ix. Note that weakly nested total separations
are dynamically strong. As it is demonstrated below, the converse assertion
does not hold true.

Example 1. Let X = Rn, equipped with the standard scalar product 〈·, ·〉.
Consider the linear dynamical system Λ : R×X → X, (t, x) → e−tx. For each
x ∈ X \ {0X} and parameter p ∈ [0, 1), set Sx

p = X \ (Ox
p ∪ Ix

p ) where

Ox
p = {y ∈ X | 〈y − x, x〉

‖y − x‖ · ‖x‖
< −p} , Ix

p = {y ∈ X | 〈y − x, x〉
‖y − x‖ · ‖x‖

> p}.

It is obvious that the family of triplets {(Ox
p ,Sx

p , Ix
p )}

x∈X\{0X}
, p ∈ [0, 1) is a

dynamically strong, but not weakly nested total separation (with respect to
the dynamical system Λ and its equilibrium point 0X) in X = Rn.

The total separations in Examples 2 and 3 below are weakly nested but
not nested. (Actually, the total separation in Example 2 is ‘nowhere nested’.
On the other hand, the total separation in Example 3 is ‘locally nested’ at 0X .
For a precise formulation, see Theorem 2.C below.)

Example 2. Let X = R and consider the linear dynamical system
Λ: R×X → X, (t, x) → e−tx. For x > 0, set Sx = {−x−1, x}, Ix =
(−x−1, x), and Ox = X \ (Sx ∪ Ix). Similarly, for x < 0, set Sx = {x,−x−1},
Ix = (x,−x−1), and Ox = X \ (Sx ∪ Ix). It is clear that the family of triplets
{(Ox,Sx, Ix)}x∈X\{0X} is a weakly nested total separation. Note that Ix ⊂ Iy

if and only if Ix = Iy whenever 0X 6= x, y ∈ X = R.

Example 3. Let X = R2 and consider the linear dynamical system
Λ: R × X → X, (t, x) → e−tx. For brevity, we write Γ = {x = (x1, x2) ∈
X : |x1x2| = 1}. It is easy to construct a weakly nested total separation (with
respect to the dynamical system Λ and its equilibrium point 0X) in X = R2

with the property that Γ = S(1,1). In fact, the Sx’s ‘inside’ Γ are simple closed
curves around 0X , Γ = S(1,1), the Sx’s ‘outside’ Γ look like double hyperbolas
and consist of four unbounded arcs. With a little more care, these double hy-
perbolas can be chosen in such a way that, given any two points x, y ‘outside’
Γ, Ix ⊂ Iy if and only if Ix = Iy.

As shown by Theorems 1 and 4 below, the concept of nested total sepa-
ration describes the level surface structure of a Liapunov function from the
viewpoint of inclusion properties. The concept of total separation itself is
obtained by weakening the invariance requirements to, in our opinion, an un-
usually large extent (see hypothesis (iii)) but still implying asymptotic stability
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in Theorem 2.A, the main result of this paper. The proof of Theorem 2.A is
based on the

Zubov–Ura–Kimura Theorem. (see e.g. Corollary 6.1.2 in [4]) Let
(W,d) be a locally compact metric space and let Θ be a dynamical system on
W . Finally, let ∅ 6= M be a compact isolated Θ–invariant set in W . Suppose
that M is not asymptotically stable. Then ∅ 6= α(x) ⊂ M for some x /∈ M .

A modified Bebutov shift in Egawa [7] demonstrates that the Zubov–Ura–
Kimura Theorem does not hold true without the local compactness condi-
tion. Actually, the Zubov–Ura–Kimura Theorem is false in every infinite–
dimensional Banach space [8]. Essentially the same method shows in Theorem
3 below that also Theorem 2.A is false in every infinite–dimensional Banach
space.

We use standard notation and terminology. In particular, B(x, ε) stays for
the open ball {y ∈ X : ‖y−x‖ < ε} of radius ε centered at x ∈ X. The alpha–
limit set of the trajectory through x is denoted by α(x). For basic references
in stability theory and topological dynamics, see [1], [4], [12], [14].

2. Nested separations via Liapunov functions. We begin with the
simple result that global asymptotic stability implies the existence of a nested
separation. The definition of asymptotic stability is recalled for convenience.
The equilibrium point 0X is asymptotically stable if, given an arbitrary ε >
0, there exists a δ > 0 with Φ(R+,B(0X , δ)) ⊂ B(0X , ε) and its region of
attraction A = {y ∈ X | Φ(t, y) → 0X as t → ∞} is a (necessarily open)
neighborhood of 0X in X. Asymptotic stability is global if A = X. The
definition of (global) asymptotic stability for a nonempty compact invariant
set follows a similar pattern and is omitted.

Theorem 1. Assume that 0X is globally asymptotically stable. Then there
is a nested total separation in X.

Proof. This follows immediately from a well–known result in converse
Liapunov theory. By Theorem 2.7.14 in [4], there exists a continuous function
V : X → [0,∞) with the properties that V −1(0) = {0X} and, given an arbi-
trary x ∈ X \ {0X}, t → V (Φ(t, x)) defines a decreasing homeomorphism of R
onto (0,∞). For each x ∈ X \ {0X}, set

Ox = V −1((V (x),∞)) , Sx = V −1(V (x)) , Ix = V −1((0, V (x))).

It is clear that the family of triplets {(Ox,Sx, Ix)}x∈X\{0X} is a nested total
separation in X. Geometrically, Sx is the level surface of V through x ∈
X \ {0X}, and Ox and Ix stay for the corresponding outer and inner regions,
respectively.
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Theorem 1 holds true if X is replaced by an arbitrary metric space and,
of course, 0X is replaced by a globally asymptotically stable point (or, more
generally, by a nonempty compact invariant subset) of this metric space. No
alterations in the proof are needed.

It is natural to ask if the Sx’s of a nested total separation can be represented
as level surfaces of a suitable Liapunov function. A partial answer is given in
Theorem 4 below.

3. Asymptotic stability via total separations. Throughout this sub-
section, we assume that X is finite dimensional and establish some dynamical
consequences implied by the existence of total separations with increasingly
finer properties.

Theorem 2.A. Let X be finite–dimensional and let {(Ox,Sx, Ix)}x∈X\{0X}
be a total separation (with respect to a dynamical system Φ and its equilibrium
point 0X) in X. Then 0X is asymptotically stable.

Proof. We first point out that, given an arbitrary x ∈ X \ {0X}, the
alpha–limit set of x is either empty or unbounded. To the contrary, assume that
∅ 6= α(z) is bounded for some z ∈ X \{0X}. By a standard application of Zorn
Lemma, α(z) contains a nonempty compact minimal invariant set, say Mz.
Pick a point w ∈ Mz. We distinguish two cases according to whether w = 0X or
not. If w = 0X , then 0X ∈ cl(Φ(−∞, 0), z)) ⊂ cl(Oz) ⊂ X\Iz, a contradiction.
If w 6= 0X , then w is a nonequilibrium point and w ∈ α(w). Consider a time
sequence tn → −∞ for which Φ(tn, w) → w. Since Φ(−(tn − 1), w) → Φ(1, w)
and Φ(−(tn−1), w) ∈ Ow for n large enough, it follows that Φ(1, w) ∈ cl(Ow) ⊂
X \ Iw. But Φ(1, w) ∈ Iw, a contradiction.

As a by–product, we obtain that {0X} as an invariant set is isolated (i.e.
{0X} is maximal invariant set within a neighborhood of itself) and {0X} = α(x)
for no x ∈ X \ {0X}. Thus all conditions of the Zubov–Ura–Kimura Theorem
are satisfied. Consequently, 0X is asymptotically stable.

Theorem 2.B. Assume, in addition, that the total separation is dynami-
cally strong. Then α(x) = ∅ for each x ∈ X \ {0X}.

Proof. To the contrary, assume that α(p) 6= ∅ for some p ∈ X \ {0X}.
Pick a q ∈ α(p) and consider a time sequence tn → −∞ for which Φ(tn, p) →
q as n → ∞. We may assume that tn+1 < tn − 2 for each n. Note that
Φ(tn − 1, p) → Φ(−1, q) and Φ(tn + 1, p) → Φ(1, q). Since Φ(−1, q) ∈ Oq and
Φ(1, q) ∈ Iq, it follows for n large enough, say n ≥ No, that Φ(tn − 1, p) ∈ Oq,
Φ(tn + 1, p) ∈ Iq and Φ(τn, p) ∈ Sq for some (not necessarily unique) τn ∈
(tn − 1, tn + 1). By the construction, tNo − 1 > tNo+1 + 1. Now we make
use of the additional assumption. The positive invariance of Iq implies that
Φ(tNo − 1, p) ∈ Iq ⊂ X \ Oq, a contradiction.
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Theorem 2.C. Assume, in addition, that the total separation is weakly
nested. Then there exists a z0 ∈ A \ {0X} such that cl(Iz0) = Sz0 ∪ Iz0 is
compact and connected in A. Moreover, if dim(X) ≥ 2, then the family of
triplets {(Ox,Sx, Ix)}x∈X\{0X} is nested at 0X in the sense that (for any z0

having the properties as above) Sx ∪ Ix ⊂ Iz0 whenever x ∈ Iz0 \ {0X} and
Sy ∪ Iy ⊂ Ix whenever y ∈ Ix \ {0X}.

Proof. We already know from Theorem 2.A that 0X is asymptotically
stable. Let A denote the region of attraction of 0X . Applying Theorem 2.7.14
of [4] again, there exists a continuous function W : A → [0,∞) such that
W−1(0) = 0X and, given an arbitrary x ∈ A \ {0X}, t → W (Φ(t, x)) defines
a decreasing homeomorphism of R onto (0,∞). Set S = W−1(1). In view
of Corollary 2.11.38 of [4], an easy consequence of Theorem 2.7.14 via local
compactness, S is a compact global section for Φ|A\{0X}. In other words,
S is a compact subset of A \ {0X} and, given an arbitrary x ∈ A \ {0X},
there exists the unique τ(x) ∈ R such that Φ(τ(x), x) ∈ S and the function
τ : A \ {0X} → R is continuous. Also projection Π : A \ {0X} → S, x →
Φ(τ(x), x) is continuous.

The first assertion of Theorem 2.C is trivial if dim(X) = 1. (As it is
demonstrated by Example 2 above, the second assertion is false if dim(X) = 1.)

From now on, assume that dim(X) ≥ 2. Note that both A \ {0X} and, a
fortiori, its projective image Π(A\{0X}) are connected and arcwise connected.

Claim 1. For z ∈ A\{0X}, let c(Sz∩A; z) denote the connected component
of Sz ∩ A containing z. Then Π(c(Sz ∩ A; z)) is an arcwise connected open
subset of S.

Proof of Claim 1. Fix a z ∈ A \ {0X} and choose ε > 0 in such a way
that

B(Φ(−1, z), ε) ⊂ Oz ∩ A and B(Φ(1, z), ε) ⊂ Iz ∩ A.

By continuity, there exist positive constants η < ε and δ such that

Φ(−τ(z)− 1,B(Π(z), δ)) ⊂ B(Φ(−1, z), η)

and
Φ(2,B(Φ(−1, z), η)) ⊂ B(Φ(1, z), ε),

Φ(−τ(z) + 1,B(Π(z), δ)) ⊂ B(Φ(1, z), ε).

Consider a point q ∈ S ∩ B(Π(z), δ). By the construction, there exists the
unique σz = σz(q) ∈ (−τ(z) − 1,−τ(z) + 1) for which Φ(σz(q), q) ∈ Sz ∩ A
and Π(Φ(σz(q), q)) = q. It follows that Π(Sz ∩ A) is open in S. As a direct
consequence of weak nestedness, Π is a bijection between Sz∩A and Π(Sz∩A).
For s ∈ Π(Sz ∩ A), there exists a unique σz(s) ∈ R with Φ(σz(s), s) ∈ Sz ∩ A
and τ(Φ(σz(s), s)) = −σz(s). A standard compactness argument shows that
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the mapping σz : Π(Sz ∩A) → R is continuous. Hence Π is a homeomorphism
between the components of Sz ∩A and those of Π(Sz ∩A). Together with the
components of Π(Sz ∩ A), also Π(c(Sz ∩ A; z)) is open in S.

In order to prove arcwise connectedness of Π(c(Sz ∩A; z)), we return to a
q ∈ S ∩B(Π(z), δ). Consider the straight line segment γ connecting the points
Φ(−1, z) = Φ(−τ(z)−1,Π(z)) and Φ(−τ(z)−1, q) in B(Φ(−1, z), η) ⊂ Oz∩A.
By the construction Π(γ) is an arc connecting Π(z) and q in Π(Sz ∩ A). The
desired arcwise connectedness follows immediately.

Claim 2. For some t > 0 and z ∈ A \ {0X}, let w = Φ(t, z). Then
Π(c(Sw ∩ A;w)) ⊃ Π(c(Sz ∩ A; z)). Moreover, given an arbitrary r ∈ c(Sz ∩
A; z), there exists a σ > 0 such that Φ(σ, r) ∈ c(Sw ∩ A;w).

Proof of Claim 2. To the contrary, assume that the first assertion is
false. Pick a point q ∈ Π(c(Sz∩A; z)) \ Π(c(Sw∩A;w)). Since Π(c(Sz∩A; z))
is arcwise connected, there exists a continuous function Γ : [0, 1] → Π(c(Sz ∩
A; z)) ⊂ S such that Γ(0) = Π(z) = Π(w), Γ(µ) ∈ Π(c(Sw ∩ A;w)) for each
µ ∈ [0, 1) but p = Γ(1) 6∈ Π(c(Sw ∩ A;w)) for some p ∈ S.

For brevity, set L = liminfµ→1σw(Γ(µ)) where (with z replaced by w)
the continuous function σw : Π(Sw ∩ A) → R is defined as in the proof of
Claim 1. We next point out that L = −∞. By a simple compactness argument,
attraction is uniform and thus Φ([T ∗,∞), S) ⊂ Iw for some T ∗ > 0. This
makes L = ∞ impossible. Suppose that L is finite. By the construction,
Φ(L − 1,Γ(µ)) ∈ Ow for each µ ∈ [0, 1) and thus Φ(L − 1,Γ(1)) ∈ cl(Ow) =
X \ Iw. On the other hand, Φ(R,Γ(1)) = Φ(R, p) ⊂ Iw. In particular,
Φ(L− 1,Γ(1)) ∈ Iw, a contradiction.

The remaining task is easy. Suppose that the second assertion is false. In
other words, suppose that σz(Π(r)) ≥ σw(Π(r)). Let ∆ : [0, 1] → Π(c(Sz ∩
A; z)) ⊂ Π(c(Sw ∩ A;w)) ⊂ S be a continuous function with ∆(0) = Π(z) =
Π(w) and ∆(1) = Π(r). Note that σz(∆(0)) < σw(∆(0)). In view of the
Bolzano Theorem, there exists a µ0 ∈ (0, 1] with σz(∆(µ0)) = σw(∆(µ0)).
Thus Sz = Sσz(∆(µ0)) = Sσw(∆(µ0)) = Sw, a contradiction.

Now we are in a position to finish the proof of Theorem 2.C.
By compactness, there is a finite collection of points Z = {z0, z1, . . . , zK}

in A \ {0X} such that {Π(c(Szk ∩A; zk)) | k = 0, 1, . . . ,K} is an open cover of
S. There is no loss of generality in assuming that Szk ∩ Sz` = ∅ for k 6= `.
For zk, z` ∈ Z chosen arbitrarily, we say that zk is not greater than z` and
write zk ⇑ z` if Π(c(Szk ∩ A; zk)) ∩ Π(c(Sz` ∩ A; z`)) 6= ∅ and, for some r
∈ Π(c(Szk ∩ A; zk)) ∩ Π(c(Sz` ∩ A; z`)), σzk

(r) ≤ σz`
(r). Note that zk ⇑ zk

for each k. As a direct consequence of Claim 2, zk ⇑ z` and z` ⇑ zk imply
that zk = z`, k = `. Similarly, zk ⇑ z` and z` ⇑ zm imply that zk ⇑ zm.
Thus ⇑ defines a partial ordering on Z. For brevity, we say that z ∈ Z is
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a maximal element if zk ⇑ z for each k = 0, 1, . . . ,K. We claim that there
exists a maximal element. Suppose not. By a repeated application of Claim 2,
it follows then that there is a subset of Z, say {z1, z2, . . . , zM}, M ≥ 2 such
that Π(c(Szk ∩A; zk)) ∩ Π(c(Sz` ∩A; z`)) = ∅ for k 6= `, k ∈ {1, 2, . . . ,M} and
{Π(c(Szm∩A; zm))|m = 1, 2, . . . ,M} is an open cover of S. This contradicts the
connectedness of S. The maximal element, say z = z0, is unique and satisfies
Π(c(Sz0 ∩A; z0)) = S. Further, s → Φ(σz0(s), s) defines a homeomorphism of
S onto c(Sz0∩A; z0) = Sz0∩A = Sz0 . This ends the proof of the first assertion
of Theorem 2.C.

The second assertion follows by a double application of Claim 2.

In general, asymptotic stability of 0X ensured by Theorem 2 is only local.

Example 4. Let X = R2. For brevity, we write L = {x = (x1, x2) ∈
X |x2 = −2} and Γ = {x ∈ X : |x1| < π/2 and x2 = −2+1/cos(x1)}. It is easy
to construct a C∞ dynamical system Φ0 on X with the following properties:
1. The origin 0X is asymptotically stable and its region of attraction is the
vertical strip A0 = {x ∈ X : |x1| < π/2}; 2. Trajectories outside A0 are
upward vertical straight lines; 3. With the exception of 0X and of the single
‘entirely downward’ trajectory γ0 = {(0, x2) ∈ X |x2 > 0}, all other trajectories
in A0 intersect curve Γ at exactly one point; 4. Trajectory segments below
the horizontal line L are upward straight line segments. Having done this, it is
not hard to construct a nested total separation (with respect to the dynamical
system Φ0 and its equilibrium point 0X) in X = R2. In fact, the Sx’s below L

are horizontal lines, L = S(0,−2), the Sx’s between L and Γ look like parabolas,
Γ = S(0,−1), the Sx’s above Γ are simple closed curves around 0X .

Theorem 2.A holds true if the pair (X, 0X) is replaced by (X , x0) where
X is a locally compact metric space and x0 ∈ X . If, in addition, X \ {x0} is
connected and locally arcwise connected, then also Theorem 2.C remains valid.
No essential alterations in the proofs are needed.

With a slight abuse of terminology, the global section S we used in proving
Theorem 2.C is called a Liapunov sphere in A \ {0X}. It is immediate that
any two Liapunov spheres (for Φ|A\{0X}) in A \ {0X} are homeomorphic. If
dim(X) ≥ 4, Liapunov spheres of abstract dynamical systems (for which 0X

is an asymptotically stable equilibrium) need not be topological manifolds [6].
For dim(X) ≥ 1, Brown Theorem [5] (quoted as Theorem 2.8.10 in [4]) states
that the region of attraction itself is homeomorphic to X. On the other hand,
Liapunov spheres in infinite-dimensional Banach spaces are homeomorphic to
the unit sphere {x ∈ X | ‖x‖ = 1} and regions of attractions of asymptotically
stable equilibria themselves are homeomorphic to X [9]. (Recall that, by a
famous result in infinite-dimensional topology [3], {x ∈ X : ‖x‖ = 1} and X
are homeomorphic.)
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4. A negative result in infinite dimension. On the other hand, as
it is demonstrated by Theorem 3 below, Theorem 2 does not remain valid in
infinite-dimensional Banach spaces.

Theorem 3. Let X be an infinite-dimensional Banach space. Then there
is a dynamical system Ψ and a nested total separation {(Ox,Sx, Ix)}x∈X\{0X}
(with respect to the dynamical system Ψ : R×X → X and its equilibrium point
0X) in X such that ∩{Ix | x ∈ X \ {0X}} = {0X} but 0X is unstable.

Proof. Fix an ‘upward’ unit vector e0 ∈ X. In view of the Banach–Hahn
Theorem, X can be represented as X = {x = y + λe0 | y ∈ Y and λ ∈ R}
where Y is a suitably chosen ‘horizontal’ codimension one subspace. There is
no loss of generality in assuming that ‖x‖ = ‖y‖ + |λ| whenever x = y + λe0

with y ∈ Y and λ ∈ R. Note that Y is an infinite-dimensional Banach space
with origin 0Y and X = Y ×R.

Consider now the system of ordinary differential equations

ẏ = 0Y & λ̇ = ‖x‖ on Y ×R = X.

Since the right–hand side is Lipschitz continuous and linearly bounded, the
solutions of ẏ = 0Y & λ̇ = ‖x‖ define a dynamical system Θ : R × X → X.
Geometrically, Θ is an ‘upward vertical’ flow. Note that 0X is an equilibrium
point of Θ. For brevity, we write γ− = {νe0 | ν < 0} and γ+ = {νe0 | ν > 0}.
All trajectories outside γ−∪{0X}∪γ+ are ‘upward vertical’ straight lines. The
trajectories through −e0 and e0 are γ− and γ+, respectively.

For c > 0, the formula hc(y) = −c + c−1‖y‖ defines a continuous function
hc : Y → R. A direct computation shows that, given an arbitrary y + λe0 =
x ∈ X \ ({0X} ∪ γ+), there is the unique c(x) > 0 for which hc(x)(y) = λ. For
x ∈ X \ {0X}, define

ox = {z = w + µe0 | w ∈ Y, µ ∈ R and hc(x)(w) < µ},

sx = {z = w + µe0 | w ∈ Y, µ ∈ R and hc(x)(w) = µ},
ix = {z = w + µe0 | w ∈ Y, µ ∈ R and hc(x)(w) > µ},

and observe that ∩{ix | x ∈ X \ ({0X} ∪ γ+)} = {0X} ∪ γ+.
The construction of Ψ is based on the concept of deleting homeomorphisms

of Y , i.e. of homeomorphisms of Y onto Y \ {0Y }. By the main result in [3],
there exists a deleting homeomorphism H : Y → Y \ {0Y } such that H(y) = y
whenever ‖y‖ ≥ 1. By putting

G(x) =
{

λH(y/λ) + λe0 if x = y + λe0 with λ > 0
x if x = y + λe0 with λ ≤ 0,

a homeomorphism G of X onto X \ γ+ is defined. The desired dynamical
system is defined by Ψ(t, x) = G−1(Θ(t,G(x))), (t, x) ∈ R × X. Finally, for
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x ∈ X \ {0X}, define

Ox = G−1(oG(x)) , Sx = G−1(sG(x)) , Ix = G−1(iG(x)).

By the construction, it is readily checked that ∩{Ix | x ∈ X \ {0X}} = {0X}
and that the triplet {(Ox,Sx, Ix)}x∈X\{0X} is a nested total separation with
respect to the dynamical system Ψ : R×X → X and its equilibrium point 0X .
In addition, we show that ‖Ψ(t, x)‖ → ∞ as t →∞ for each x 6∈ γ− ∪ {0X}, a
very strong form of instability of 0X .

The existence of deleting homeomorphisms is one of the central results in
the topology of infinite-dimensional Banach spaces. It shows immediately that
Borsuk’s nonretractibility theorem for n–dimensional spheres does not remain
valid in the infinite-dimensional setting. Deleting homeomorphisms/diffeomor-
phisms were used in explaining why results like the n–dimensional Rolle The-
orem [13], [1], or a great part of the theory of ordinary differential equations
including Peano’s existence theorem fail in infinite-dimensional Banach spaces,
see [11], [10].

5. Liapunov functions via nested separations. Concluding this pa-
per, we present sufficient conditions ensuring that the Sx’s of a nested total
separation can be represented as level surfaces of a suitable Liapunov function.

Theorem 4. Assume that X is finite dimensional, 0X is globally asymptot-
ically stable and that the family of triplets {(Ox,Sx, Ix)}x∈X\{0X} is a nested
total separation (with respect to the dynamical system Φ and its equilibrium
point 0X) in X. Then there exists a continuous function V : X → R+ which
is strictly decreasing along nontrivial trajectories, V (0X) = 0, and satisfies
V (x̃) = V (x) whenever x̃ ∈ Sx, x ∈ X \ {0X}.

Proof. The family of closed sets F = {Sx ⊂ X | X \ {0X}} defines a
decomposition of X \ {0X}. For brevity, we write Sx ≤0 Sy if Ix ⊂ Iy and
Sx <0 Sy if Ix∪Sx ⊂ Iy. It is easily checked that Sx <0 Sy if and only if x ∈ Iy

and thus Sx ≤0 Sy if and only if Sx <0 Sy or Sx = Sy. We conclude that ≤0

defines a total ordering on F . Note that ≤0 is a closed relation, i.e. Sxk ≤0 Syk

and xk → x ∈ X \ {0X}, yk → y ∈ X \ {0X} imply that Sx ≤0 Sy. In fact,
the opposite relation Sy <0 Sx implies that Sy <0 SΦ(−δ,y) <0 SΦ(δ,x) <0 Sx

for some δ > 0. Hence yk ∈ IΦ(−δ,y) and xk ∈ OΦ(δ,x) for k large enough, a
contradiction.

By letting {0X} = S0X ≤̂0Sx for each x ∈ X, the order relation ≤0 extends
to F̂ = F ∪ {0X}. It is crucial that also the extended order relation ≤̂0 is
closed. In fact, the required closedness property is equivalent to pointing out
that Ixk ⊂ Iyk , k = 1, 2, . . . and yk → 0X as k →∞ imply xk → 0X . With z0

as in Theorem 2.C, observe that Iyk ⊂ Iz0 for k large enough. Thus {xk}∞k=1
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is contained in a compact subset of X and we may assume that xk → x for
some x ∈ X. Suppose that x 6= 0X . Then xk ∈ OΦ(1,x) for k large enough. On
the other hand, xk ∈ cl(Iyk) ⊂ cl(IΦ(1,x)) = X \ OΦ(1,x) for k large enough, a
contradiction.

Set w1 = z0, U1 = Iw1 . As a direct consequence of Claim 2, U1 \ {0X} =
∪{SΦ(t,w1) | t ≥ 0}. By letting

V1(x) =
{

e−t if x ∈ SΦ(t,w1) for some t ≥ 0
0 if x = 0X ,

a function V1 : cl(U1) → [0, 1] is defined. We claim that V1 is continuous.
In fact, by letting Φ̂(∞, w1) = 0X , a continuous extension of Φ(·, w1) to the
extended line R̂ = R ∪ {∞} is defined. In order to prove continuity at some
x ∈ SΦ̂(t,w1) ⊂ cl(U1), consider a sequence xk ∈ SΦ̂(tk,w1) ⊂ cl(U1) with xk →
x. It is enough to prove that tk → t in R̂. Suppose not. By passing to
a subsequence, we may assume that tk → t∗ for some t∗ 6= t in R̂. Since
Φ̂(tk, w1) → Φ̂(t∗, w1) as k → ∞ and xk ∈ Sxk = SΦ̂(tk,w1) for each k, the
closedness ot the extended order relation ≤̂0 implies that x ∈ Sx = SΦ̂(t∗,w1).
Hence t = t∗, a contradiction. Note that cl(U1) \ U1 = Sw1 and V1(w1) = 1.
By the construction, V1(x̃) = V1(x) whenever x̃ ∈ Sx, x ∈ cl(U1).

Set z1 = Φ(−1, w1). Since ≤0 is a total ordering on F and ∪{Ix | x ∈
X \ {0X}} is an open cover of the compact ball Bk = {x ∈ X : ‖x‖ ≤ k − 1},
there exists a zk ∈ X \ {0X} for which Bk ⊂ Izk , k = 2, 3, . . . . There is no loss
of generality in assuming that Szk <0 Szk+1 , k = 1, 2, . . . .

Our strategy is to construct a sequence of points w1, w2, . . . in X \ {0X},
an accompanying sequence of open subsets U1 ⊂ U2 ⊂ . . . of X, and an
accompanying sequence of continuous functions Vk : cl(Uk) → [0, k] such that
zk ∈ Uk = Iwk , Vk(wk) = k, cl(Uk) ⊂ Uk+1, Vk+1|cl(Uk) = Vk, k = 1, 2, . . .

and, last but not least, ∪∞k=1Uk = X and function V : X → R+ defined by
V (x) = Vk(x) for x ∈ Uk satisfies V (x̃) = V (x) whenever x̃ ∈ Sx, x ∈ X.

We proceed by induction on k. The starting case k = 1 is already settled.
Suppose that wm, Um, and Vm are already constructed for some m ≥ 1 in such
a way that Vm(x̃) = Vm(x) whenever x̃ ∈ Sx, x ∈ cl(Um). By the construction,
z` /∈ cl(Um) and Bm+1 ⊂ Iz` for some ` = `(m) ∈ {m + 2,m + 3, . . . }. Let
wm+1 = z` and let Um+1 = Iwm+1 . Observe that zm+1 ∈ Izm+2 ⊂ Iz` = Um+1.
There exists a unique Tm+1 > 0 for which Φ(Tm+1, wm+1) ∈ Swm . Recall that
Vm(wm) = m. By letting

Vm+1(x) =
{

m + 1− t/Tm+1 if x ∈ SΦ(t,wm+1) for some t ∈ [0, Tm+1]
Vm(x) if x ∈ cl(Um),
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a continuous function Vm+1 : cl(Um+1) → [0,m+1] is defined. Continuity is an
immediate consequence of the closedness of ordering ≤0. It is also clear that
Vm+1(wm+1) = m+1 and Vm+1(x̃) = Vm+1(x) whenever x̃ ∈ Sx, x ∈ cl(Um+1).
Since Bm+1 ⊂ Um+1 for m = 1, 2, . . . , the construction ends in a countably
infinite number of steps and leads to the desired function V .

The connectedness assumptions on X in Theorem 4 can be weakened to
the same extent as they were weakened in Theorem 2.C to. In particular,
Theorem 4 remains valid if X is replaced by a locally compact metric space X
such that X \ {x0} is connected and locally arcwise connected. Here of course
x0 ∈ X is assumed to be a globally asymptotically stable equilibrium.

Finally, we return to the sequence w1, w2, . . . constructed in the proof of
Theorem 4. Suppose there exists such an index i∗ that Φ(R, wi∗)∩ Sx 6= ∅ for
each x ∈ X \ {0X}. Then the construction of V can be finished in i∗ steps.
Moreover, starting with wi∗ directly, the number of construction steps reduces
to one. Unfortunately, as it is demonstrated by a careful choice of the Sx’s
‘outside’ Γ in Example 3, there exist nested total separations for which

{w ∈ X | Φ(R, w) ∩ Sx 6= ∅ for each x ∈ X \ {0X}} = ∅.

This explains the role of the sequences {wk}∞k=1, {Uk}∞k=1, and {Vk}∞k=1 in the
proof of Theorem 4.
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