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SYMMETRIES IN 4-DIMENSIONAL LORENTZ MANIFOLDS

by G. S. Hall

Abstract. This paper presents a brief discussion of the description of sym-
metries in 4-dimensional Lorentz manifolds (with a view to the space-time
of general relativity). The orbit structure in terms of foliations is particu-
larly stressed. The main symmetry discussed is local isometry, but other
symmetries are briefly mentioned.

1. Introduction. The aim of this paper is to present a brief, reasonably
modern approach to the study of symmetry in general relativity theory, that
is, on a 4-dimensional manifold admitting a Lorentz metric. Throughout, M
will be a smooth, connected, Hausdorff manifold admitting a smooth, Lorentz
metric g of signature (−,+,+,+) (and hence M is paracompact [3]). If m ∈
M,TmM will denote the tangent space to M at m. A Lie derivative is denoted
by L. When component notation is used, a partial derivative and a covariant
derivative with respect to the Levi-Civita connection Γ associated with g are
denoted, respectively, by a comma and a semi-colon.

In Einstein’s general relativity theory, M plays the role of the space-time
and the geometrical objects g, Γ and the curvature tensor on M derived from
Γ collectively describe the gravitational field. Einstein’s equations provide the
physical restrictions on these objects. However, they will not be required in
this paper.

Of course, there are many different types of symmetry studied in general
relativity, for example, (local) isometries, homotheties, conformal isometries,
affine and projective collineations and symmetries of the curvature and related
tensors (for reviews see [1, 4]). The purpose of this paper, however, is more
general, and will concentrate on techniques rather than the specific symmetry
involved. Nevertheless, local isometries will finally be studied as an application.
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So far as the present author is aware, the mathematical study of symmetry in
general relativity theory has not taken into account the progress made in the
recent studies of the integrability of vector fields and foliations. The main
purpose of this paper is to attempt a small step in this direction and to set
on a more rigorous basis the general theory of symmetries and their associated
orbits.

2. Space-Time Geometry and Decomposition. Let m ∈M and 0 6=
v ∈ TmM . Then v is called spacelike (respectively, timelike or null) if g(v, v) >
0 (respectively, g(v, v) < 0 or g(v, v) = 0). A 1-dimensional subspace of TmM
is called a direction (at m), and is referred to as a spacelike (respectively,
timelike or null) direction if it is spanned by a spacelike (respectively, timelike
or null) vector at m. If U is a 2-dimensional subspace of TmM , then U is
called spacelike (respectively, timelike or null) if all non-zero members of U
are spacelike (respectively, if U contains exactly two distinct null directions or
if U contains exactly one null direction). If U is a 3-dimensional subspace of
TmM , the same definitions as in the 2-dimensional case apply except that in
the timelike case, one insists that at least two (or, equivalently, infinitely many)
distinct null directions are contained in U . These definitions are exclusive and
exhaustive of all non-zero members of TmM and all 1-, 2- and 3-dimensional
subspaces of TmM . A (smooth) submanifold N of M of dimension 1, 2 or 3
is called spacelike at m ∈ M if its tangent space is a spacelike direction or
subspace of TmM and spacelike if it is spacelike at each m ∈M (and similarly
for timelike and null). If N is a spacelike (respectively, timelike) submanifold
of M , then g induces a positive definite (respectively, Lorentz) metric on N .

It should be pointed out here that the term (smooth) submanifold of M
means what is sometimes referred to as a (smooth) immersed submanifold of
M . Thus, if M ′ is a submanifold of M , then M ′ is a subset of M which has
a manifold structure, and is such that the inclusion map i : M ′ → M is a
(smooth) immersion. If, in addition, the manifold topology (from the manifold
structure) on M ′ equals its subspace topology as a subspace of M when the
latter has its manifold topology, then M is called a regular or embedded sub-
manifold. One of the advantages of regular submanifolds is that if M1 and M2

are smooth manifolds and f : M1 →M2 is a smooth map whose range f(M1)
lies inside a smooth regular submanifold N2 of M2, then the map f : M1 → N2

is also smooth. If N2 is not regular, this latter map may not even be contin-
uous (but if it is continuous then f : M1 → N2 is smooth). There is a type
of submanifold introduced, as far as the author is aware, by Stefan [13, 14],
and which is intermediate between submanifolds and regular submanifolds. A
leaf of M is a connected (immersed) submanifold N of M with the additional
property that, if T is any locally connected topological space, and f : T →M
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is a continuous map whose range lies inside N , then the map f : T → N is
continuous. It follows [13] that if M1 and M2 are smooth manifolds and N2

is a leaf of M2, and f : M1 → M2 is a smooth map whose range lies in N2,
then the map f : M1 → N2 is continuous, and hence smooth. If N is a subset
of M admitting two structures N1 and N2 as smooth regular submanifolds of
M , then, from earlier remarks in this paragraph, the identity maps N1 → N2

and N2 → N1 are each smooth and so N1 = N2 and the regular submanifold
structure is unique (see, e.g. [2]). The same uniqueness conclusion also holds if
regular submanifold is replaced by leaf [13]. Clearly, every connected regular
submanifold is a leaf, but the three types of (connected) submanifold struc-
tures (immersed, embedded and leaf) are distinct since the irrational wrap on
the torus is a leaf which is not regular [13], whilst the well known figure of
eight in R2 (see, e.g. [2]) is a connected submanifold which is easily shown not
to be a leaf.

Now let A be a vector space of global, smooth vector fields on M and define
the distribution ∆ on M associated with A by [5]

(1) m→ ∆(m) = {X(m) : X ∈ A} ⊆ TmM.

Then, for i = 0, 1, 2, 3, 4 and p = 1, 2, 3, define subsets Vi, Sp, Tp and Np by

Vi = {m ∈M : dim ∆(m) = i}(2)

Sp = {m ∈M : dim ∆(m) = p and ∆(m) is spacelike}
Tp = {m ∈M : dim ∆(m) = p and ∆(m) is timelike}(3)
Np = {m ∈M : dim ∆(m) = p and ∆(m) is null}.

Thus, M = ∪4
i=0Vi and Vp = Sp ∪ Tp ∪Np (p = 1, 2, 3). This decomposition of

M can be refined topologically by appealing to the rank theorem to see that
M = ∪4

i=kVi is open in M for k = 0, . . . , 4. This can then be used to reveal
the following disjoint decompositions of M [5]

(4) M = V4 ∪
⋃3

i=0
intVi ∪ Z1

(5) M = V4 ∪
⋃3

p=1
intSp ∪

⋃3

p=1
intTp ∪

⋃3

p=1
intNp ∪ intV0 ∪ Z

where int denotes the topological interior (and intV4 = V4) and where Z and
Z1 are closed subsets of M each with empty interior.

3. Local Space-Time Symmetries. With A as in the last section, let
A1, . . . , Ak ∈ A and let φ1

t1 , . . . , φk
tk

be the smooth, local diffeomorphisms
associated with them, for appropriate values of t. Then consider the set of all
such local diffeomorphisms (where defined) of the form

(6) m→ φ1
t1(φ

2
t2(· · ·φ

k
tk

(m) · · · )) (m ∈M)
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for each choice of k,X1, · · · , Xk and admissible (t1, · · · , tk) ∈ Rk. There is an
equivalence relation on M given by m1 ∼ m2 if some local diffeomorphism of
the form (6) maps m1 into m2. The associated equivalence classes in M are
called the orbits of A and it is known that these orbits can each be given the
structure of a connected, smooth submanifold of M [15, 13, 14]. In fact, Stefan
has shown that these submanifolds constitute a foliation with singularities, so
that each has the extra property of being a leaf. He also showed that if O is
any such leaf and m ∈ O, then the tangent space to O at m is the subspace
{f∗v : v ∈ ∆(m′)} of TmM for each f of the form (6) and each m′ ∈ M such
that f(m′) = m. This subspace need not equal ∆(m). The condition that
it does so for each m ∈ M is equivalent to the condition that the orbits are
integral manifolds of the set A and then A is integrable [15, 13, 14].

In general relativity, the situations of interest occur when A is a Lie algebra
(under the Lie bracket operator) of global, smooth vector fields on M and then
attention is directed to the nature of the orbits of the symmetries represented
by A and whether they are integral manifolds of A. If dim ∆(m) is constant
on M , the Fröbenius theorem (see e.g. [2]) guarantees that the orbits are
submanifolds and, in fact, integral manifolds of A. The work of Stefan then
ensures that the orbits are leaves of a foliation on M . If dim ∆(m) is not
constant, then integrability need not follow. If, however, A satisfies the locally
finitely generated condition (i.e. that each m ∈M has an open neighbourhood
U and a finite subset A′ of A such that each X ∈ A, when restricted to U ,
is a combination of members of A′ (restricted to U) with coefficients which
are smooth maps U → R), then Hermann [10] has shown that A is integrable
(in fact, he showed more than this). Thus, if A is a finite-dimensional Lie
algebra, it is integrable and, again [13, 14], the orbits are leaves of a foliation
with singularities.

The symmetries usually studied in general relativity are described by a
Lie algebra of global, smooth vector fields on the space-time M , with each
particular symmetry being characterised by insisting upon the appropriate
property being possessed by the resulting local diffeomorphisms of the type
(6) (see, e.g. [1, 4]). Thus, projective symmetry is defined by insisting that
each map (6) takes geodesics to geodesics and the resulting Lie algebra A, now
labelled P (M), is the set of all global, smooth vector fields on M with this
property. The vector fields in P (M) are called projective and are characterised
by the condition that, in any chart of M

Xa;b =
1
2
hab + Fab (hab = hba, Fab = −Fba)

hab;c = 2gabψc + gacψb + gbcψa

(7)
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for some closed 1-form field ψ and 2-form field F on M . Special cases are
the affine vector fields (for which ψ ≡ 0 on M and whose associated maps
(6) preserve also the geodesic affine parameter), the homothetic vector fields
(which are affine and satisfy hab = cgab, c ∈ R) and the Killing vector fields
which are homothetic with c = 0 and so LXg = 0 (and for which each map
(6) is a local isometry). The sets of all affine, homothetic and Killing vector
fields on M are labelled A(M),H(M) and K(M) respectively, and K(M) ⊆
H(M) ⊆ A(M) ⊆ P (M), with each being a subalgebra of P (M). Conformal
symmetry is defined by insisting that each map f in (6) is a local conformal
diffeomorphism, that is, f∗g = αg for some appropriate local, smooth real
valued function α. The resulting set of all global, smooth vector fields on M
with this property is labelled C(M) and its members are called conformal.
Then X ∈ C(M) is characterised in any chart of M by

(8) Xa;b = φgab + Fab (Fab = −Fba)

where φ : M → R and F is a 2-form field on M . The set C(M) is a Lie
algebra and H(M) and K(M) above are subalgebras of it. Now it is well-
known that P (M) and C(M) are finite-dimensional with dimP (M) ≤ 24 and
dimC(M) ≤ 15 and so it follows from the discussion above that the orbits of
P (M) and C(M) are each foliations with singularities and are integral man-
ifolds of P (M) and C(M), respectively, and similarly for their subalgebras
mentioned above. [It is remarked that the local action on M provided by the
local diffeomorphisms described in the above Lie algebras need not lead to a
global Lie group action on M . This occurs if and only if each vector field in
the Lie algebra is complete [12].]

4. The Killing Algebra K(M). Consider the finite-dimensional Lie al-
gebra of Killing vector fields K(M) on M . The material of section 3 shows
that the orbits associated with K(M) are leaves of a foliation with singulari-
ties and are integral manifolds of K(M). It also shows that, if O is any orbit
of K(M), and f any associated local isometry of K(M) whose domain and
range are the open subsets U and U ′ of M , then f gives rise to a smooth map
U ∩ O → U ′ whose range lies in the leaf O. Hence, it gives rise to a smooth
map U ∩ O → U ′ ∩ O, since U ′ ∩ O is an open and hence, regular subman-
ifold of O. Then if m ∈ U ∩ O, f∗(TmO) = Tf(m)O. The definitions at the
beginning of section 2 then show that, since f is a local isometry, O is either
spacelike, timelike or null. If O is spacelike (respectively, timelike), then g in-
duces a metric h = i∗g on O which is positive-definite (respectively, Lorentz).
If X ∈ K(M) then X is tangent to O and so there is a unique smooth, global
vector field X̃ on O such that i∗X̃ = X. If O is non-null with induced metric
h, then the condition that X ∈ K(M), that is LXg = 0, is easily shown to
imply that LX̃h = 0 and so X̃ is a Killing vector field on O with metric h, that
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is, X̃ ∈ K(O). In fact, the map k : X → X̃ is a Lie algebra homomorphism
K(M) → K(O).

In general, the map k is neither injective nor surjective. That the map k is
not surjective can be seen from the space-time metric given in a global chart
on {(x, y, z, t) ∈ R4 : t > 0} ≡M by

(9) ds2 = −dt2 + tdx2 + e2tdy2 + e3tdz2.

Here K(M) is 3-dimensional, being spanned by the vector fields ∂
∂x ,

∂
∂y and

∂
∂z . However, each subset O of constant t is an orbit of K(M) and is, with its
induced metric, flat Euclidean 3-space and so dimK(O) = 6.

To investigate whether k is injective or not, let 0 6= X ∈ K(M) and let
m ∈ M with X(m) = 0. Then the local isometries φt associated with X
satisfy φt(m) = m and m is called a zero of X (or a fixed point of each φt).
If U is a coordinate neighbourhood of m with coordinates ya, then the linear
isomorphism φt∗ : TmM → TmM is represented in the basis ( ∂

∂ya )m by the
matrix

(10) etB = exp t
(∂Xa

∂yb

)
m

where Ba
b ≡

(
∂Xa

∂yb

)
m

is the linearisation of X at m. Thus, since X ∈ K(M),

it follows from (7) that Ba
b = (F a

b)m. Also, since X is affine, if χ is the usual
exponential diffeomorphism from some open neighbourhood of 0 ∈ TmM onto
some open neighbourhood V of m, then [11]

(11) φt ◦ χ = χ ◦ φt∗.

It is easily checked from this that, in the resulting normal coordinate system
xa with domain V about m, the components Xa of X are linear functions of
the coordinates xa. Since Ba

b = (F a
b)m is skew self- adjoint with respect to

g(m), it follows that the rank of B is even. If B = 0 then X ≡ 0 on M and so
B has rank 2 or 4. The zeros of X in V have coordinates satisfying Ba

bx
b = 0

and so, if rankB = 4, the zero m is isolated, whereas if rankB = 2, the zeros
of X in V can be given the structure of a 2-dimensional, regular submanifold
N of the open submanifold V [6, 7]. Now return to the map k and suppose
it is not injective. Let O be the orbit of K(M) through m. Then there exists
X ∈ K(M), X 6≡ 0, such that X vanishes on O, that is, X̃ = 0. Since m is thus
not isolated, rankB = 2, and so the zeros of X in V are exactly the points on
the 2-dimensional regular submanifold N of V . Let O′ = O ∩ V . Then O′ is
an open subset (and hence an open submanifold) of O. It follows that O′ is a
submanifold of M contained in the open (hence regular) submanifold V of M
and hence O′ is a submanifold of V [2]. But then O′ ⊆ N ⊆ V , with O′ and
N submanifolds of V with N regular. It follows that O′ is a submanifold of
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N and so dimO′ ≤ dimN and hence dimO(= dimO′) ≤ 2. Hence, if dimO
is 3 or 4, k is injective. If, however, dimO ≤ 2, k can fail to be injective, as
the following example shows. Let M1 and M2 be 2-dimensional, connected,
smooth manifolds with M2 = R2. Let g1 be a positive definite metric on
M1 with K(M1) 1-dimensional and spanned by a Killing vector field with a
single zero at m ∈ M1. Let g2 be the usual Minkowski metric on M2, so that
dimK(M2) = 3. Then the space-time M1 ×M2 with metric g1 ⊗ g2 is such
that dimK(M) = 4 and O = {m1} ×M2 is a 2-dimensional, timelike orbit of
K(M) with dimK(O) = 3. Thus, the map K(M) → K(O) is not injective.

If O is an orbit ofK(M), it was pointed out above that O is either spacelike,
timelike or null. Thus, if dimO = p (1 ≤ p ≤ 3) and O ∩ Sp 6= ∅, then O ⊆ Sp

(and similarly for Tp and Np). It is convenient at this point to distinguish
between orbits which are, in some sense, stable with respect to their type and
dimension and those which are not. Thus, an orbit is called stable if it is
contained in one of the subsets intSp, intTp or intNp(1 ≤ p ≤ 3). Actually,
since the inner product of a Killing vector field and the tangent vector to an
affinely parameterised geodesic is constant along the geodesic, an argument
based on the normal geodesics to orbits contained in S3 and T3 and an appeal
to the rank theorem similar to that made at the end of section 2 shows that
S3 and T3 are open. Thus, all orbits in S3 and T3 are stable. Regarding the
stability of orbits, it is easy to show that, if O is any orbit of K(M) such that
O ∩ intSp 6= ∅ (1 ≤ p ≤ 3), then O ⊆ intSp (and similarly for Tp and Np).
It is now possible to prove a number of results about how the existence of a
certain type of stable orbit restricts the dimension of K(M). These results
are often used in the relativistic literature without justification. Some similar
(but, as yet, incomplete) results are available in a similar context for unstable
orbits [8].

In summary then (see [8, 9] for further discussion), the Lie algebra K(M)
of global, smooth Killing vector fields on a space-time M with smooth, Lorentz
metric g is finite-dimensional and the orbits resulting from the maps (6) con-
stitute a foliation with singularities. The maps (6) are smooth (local) maps
M → M (and also O → O, for any orbit O) and give rise to a Lie group
(global) action on M if and only if each member of K(M) is complete. A
convenient decomposition of M with respect to the Lorentz metric g on M
is provided by (2)-(5). The tangency of the members of K(M) to an orbit
leads to a natural Lie algebra homomorphism K(M) → K(O) which is easily
seen to be not necessarily surjective and which is, perhaps less obviously, not
necessarily injective, but is injective if dimO ≥ 3. This latter remark stems
from a study of the zeros of the members of K(M). The orbits of K(M) were
then divided into stable and unstable ones and the known (and used) results
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in orbit theory in general relativity can then be shown to apply to the stable
orbits.
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