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DIFFERENTIABLE SEMIFLOWS FOR DIFFERENTIAL

EQUATIONS WITH STATE-DEPENDENT DELAYS

by Hans-Otto Walther

Careful modelling of systems governed by delayed feedback often leads to
delay differential equations where the delay is not constant but depends on the
state of the system and its history. In typical, not too complicated cases one
arrives at equations of the form

(1) ẋ(t) = g(x(t− r(xt))),

with a map g : O → Rn, O ⊂ Rn open, and with a delay functional r which is
defined on some set of functions φ : [−h, 0] → Rn and has values in [0, h], for
some h > 0. The function xt in eq. (1) is defined by

xt(s) = x(t+ s) for − h ≤ s ≤ 0

as usual. In more general cases, the right hand side of the differential equation
contains more arguments. It also happens that the delay is given only im-
plicitly by an equation which involves the history xt of the state. Differential
equations with state-dependent delay share the property that the results on the
uniqueness and dependence on initial data from the theory of retarded func-
tional differential equations (RFDEs) on the state space C = C([−h, 0],Rn),
with

‖φ‖ = max
−h≤t≤0

|φ(t)|,

are not applicable. For data in C, the initial value problem (IVP) for eq. (1)
given by

x0 = φ

is not well-posed. Also, the linearization at a stationary solution seemed im-
possible [2]. In the present paper we describe results which overcome these
difficulties, explain an estimate from the proof of the main theorem, and give
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an example which is based on elementary physics and satisfies the hypothe-
ses we need. A particular feature is that we find a semiflow with optimal
smoothness properties not on an open subset of a Banach space, but on an
infinite-dimensional submanifold which is defined by the differential equation.

Let us first see why for the IVP associated with eq. (1) the results from,
e.g., [3, 5] on the uniqueness and dependence on initial data for RFDEs

(2) ẋ(t) = f(xt)

with a functional f : U → Rn, U ⊂ C, fail to apply. If the delay functional is
a map

r : U → [0, h]
and if g is defined on Rn (for simplicity) then eq. (1) has the form (2) for

f = g ◦ ev ◦ (id× (−r)),
where

ev : C × [−h, 0] → Rn

is the evaluation map given by

ev(φ, s) = φ(s).

The problem is now that except for the cases which are not of interest here
(e.g., r constant) f does not satisfy the hypotheses required for the associated
IVP to be well-posed. In general, f is not even locally Lipschitz continuous,
no matter how smooth g and r are. A ‘reason’ for this may be seen in the fact
that the middle composite ev is not smooth: Lipschitz continuity of ev would
imply Lipschitz continuity of elements φ ∈ C. Differentiability would imply
that

D2ev(φ, s)1 = φ̇

exists.
If C is replaced with the smaller Banach space C1 = C1([−h, 0],Rn) of

continuously differentiable functions φ : [−h, 0] → Rn, with the norm given by

‖φ‖1 = ‖φ‖+ ‖φ̇‖,
then the smoothness problem disappears, since the restricted evaluation map

Ev : C1 × [−h, 0] → Rn

is continuously differentiable, with

D1Ev(φ, s)χ = Ev(χ, s) and D2Ev(φ, s)1 = φ̇(s).

So, for g : Rn → Rn and r : U → [0, h], U ⊂ C1 open, both continuously
differentiable, the resulting functional

f = g ◦ Ev ◦ (id× (−r))
is continuously differentiable from U to Rn.
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Let us now abandon the special case of eq. (1) and consider eq. (2), with
f : U → Rn, U ⊂ C1 open, continuously differentiable.

A look at the associated IVP

ẋ(t) = f(xt), x0 = φ

reveals that also this problem is not well-posed for arbitrary data in the open
subset U ⊂ C1: A solution x : [−h, te) → Rn, 0 < te ≤ ∞, would have
continuously differentiable segments xt, 0 ≤ t < te. Hence the solution itself
would be continuously differentiable, and the curve [0, te) 3 t 7→ xt ∈ C1 would
be continuous. Continuity at t = 0 yields

φ̇(0) = ẋ(0) = f(x0) = f(φ),

an equation which is in general not satisfied on the entire set U . In any case,
we are led to consider the closed subset

X = Xf = {φ ∈ U : φ̇(0) = f(φ)}
of U ⊂ C1.

Notice that X is a nonlinear version of the positively invariant domain

{φ ∈ C1 : φ̇(0) = Lφ}

of the generator G of the semigroup defined by the linear autonomous RFDE

ẏ(t) = Lyt

on the larger space C, for L : C → Rn linear continuous.
For a class of differential equations with state-dependent delay, Louihi,

Hbid, and Arino [10] identified the set X as the domain of the generator of a
nonlinear semigroup in a state space different from C1. They mention without
proof that X is a Lipschitz manifold. In [9] a complete metric space analogous
to X serves as a state space for neutral functional differential equations.

Notice also that in the case of a locally Lipschitz continuous map f∗ : U∗ →
Rn, U∗ ⊂ C open, all solutions x : [−h, b) → Rn, h < b, of the RFDE

ẋ(t) = f∗(xt)
satisfy

xt ∈ Xf∗ = {φ ∈ U∗ ∩ C1 : φ̇(0) = f∗(φ)} for h ≤ t < b.

Thus the set Xf∗ absorbs all flowlines on intervals [−h, b) which are long
enough. In particular, Xf∗ contains all segments of solutions on intervals
(−∞, b), b ≤ ∞ – equilibria, periodic orbits, local unstable manifolds, and
the global attractor if the latter is present.

In order to have a semiflow on X with differentiability properties, we need
X to be smooth. This requires an additional condition on f . A suitable
condition, which is satisfied in a variety of examples coming from differential
equations with state-dependent delay, is that
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(P1) every derivative Df(φ), φ ∈ U , has a linear extension

Def(φ) : C → Rn

which is continuous with respect to the norm on C.
Property (P1) is a special case of the condition used in Krisztin’s recent

work on local unstable manifolds [7]. Earlier, it appeared under the name of
almost Frechet differentiability in Mallet-Paret, Nussbaum, and Paraskevopou-
los’s work [12] on the existence of periodic solutions.

It is then easy to prove that in case (P1) holds and X 6= ∅ the set X is a
continuously differentiable submanifold of C1 with codimension n.

The argument is the following. We have

X = (p− f)−1(0),

with the continuous linear map

p : C1 3 φ 7→ φ̇(0) ∈ Rn.

The Implicit Function Theorem yields local graph representations of X, pro-
vided all derivatives D(p − f)(φ) are surjective. Proof of this, for n = 1: Let
φ ∈ X be given. Due to (P1) there exists δ > 0 such that

|Def(φ)ψ| < 1 for all ψ ∈ C with |ψ‖ < δ.

There exists ψ ∈ C1 with ‖ψ‖ < δ and ψ̇(0) = 1. Hence

0 < ψ̇(0)−Df(φ)ψ = D(p− f)(φ)ψ,

R ⊂ D(p− f)(φ)C1.

For t0 < te ≤ ∞ we define a solution of eq. (2) on [t0 − h, te) to be a
continuously differentiable map x : [t0 − h, te) → Rn such that xt ∈ U for
t0 ≤ t < te and eq. (2) is satisfied for 0 < t < te. We also consider solutions
on unbounded intervals (−∞, te). Maximal solutions of IVPs are defined as
usual.

In order to obtain maximal solutions for data in X and a nice semiflow on
X we need a local Lipschitz condition on f , namely that for every φ ∈ U there
exist a neigbourhood N of φ in C1 and L ≥ 0 with

(P2) |f(ψ)− f(ψ)| ≤ L‖ψ − ψ‖ for all ψ,ψ in N.

Notice that this Lipschitz estimate involves the smaller norm

‖ · ‖ ≤ ‖ · ‖1

on the larger space C ⊃ C1; it is not a consequence of continuous differen-
tiability of f . Property (P2) is closely related to the idea of being locally
almost Lipschitzian from [12]. In [13] it is used in a proof that certain dif-
ferential equations with state-dependent delay generate stable periodic motion.
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Theorem 1. [14] Suppose X 6= ∅, and (P1) and (P2) hold. Then the
maximal solutions xφ : [−h, te(φ)) → Rn of eq. (2) which start at points
xφ

0 = φ ∈ X define a continuous semiflow

F : Ω → Xby
F (t, φ) = xφ

t , 0 ≤ t < te(φ).
All solution maps

Ft : {φ ∈ X : 0 ≤ t < te(φ)} 3 φ 7→ F (t, φ) ∈ X, t ≥ 0,

on nonempty domains are continuously differentiable. For all φ ∈ X, t ∈
[0, te(φ)), and χ ∈ TφX,

DFt(φ)χ = vφ,χ
t

with a continuously differentiable solution vφ,χ : [−h, te(φ)) → Rn of the IVP

v̇(t) = Df(Ft(φ))vt, v0 = χ.

A condition which implies both (P1) and (P2) and which can be verified
for a large variety of differential equations with state-dependent delay is that
(P) each map Df(φ), φ ∈ U, has a linear extension Def(φ) : C → Rn, and the
map

U × C 3 (φ, χ) 7→ Def(φ)χ ∈ Rn

is continuous.
Let us mention that the simpler and stronger condition of continuity of

the map U 3 φ 7→ Def(φ) ∈ Lc(C,Rn) is typically violated by differential
equations with state-dependent delay.

For a proof that (P) implies (P1) and (P2), see [15]. The main result of
[15] says that under hypothesis (P) the restriction of the semiflow to the open
subset {(t, φ) ∈ Ω : h < t} of (0,∞)×X is continuously differentiable, with

D1F (t, φ)1 = ẋφ
t ∈ C1.

A comparison with results for RFDEs shows that a better smoothness can not
be expected.

Comments on Theorem 1. (1) The first remark concerns linearization at
a stationary point φ0 ∈ X. We know from Theorem 1 that time-t maps can be
differentiated and that their derivatives are given by a variational equation on
the tangent bundle TX. When Theorem 1 was not available, authors studying
solutions close to equilibria used an auxiliary linear RFDE on the space C
instead of the variational equation on TX. See, e.g., Cooke and Huang’s
work [2] on the principle of linearized stability, [12], and Krishnan’s [6] and
Krisztin’s [7] works on local unstable manifolds. The method to obtain this
auxiliary equation is heuristic: In equations like (1), where the delay appears
explicitly, one can freeze the delay at the equilibrium and linearize the resulting
RFDE with constant delay. The question arises how the auxiliary equation is
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related to the variational equation from Theorem 1. A look at the relevant
examples shows that the auxiliary equation on the space C coincides with the
equation

(3) v̇(t) = Def(φ0)vt

in our framework. In other words, the true linearization is given by the restric-
tion of the auxiliary equation to the tangent bundle of X.

It is also true that Tφ0X coincides with the domain of the generator G of
the semigroup (Tt)t≥0 on C defined by the solutions of eq. (3), and

DFt(φ0)χ = T (t)χ on Tφ0X.

(2) Theorem 1 yields continuously differentiable local unstable, center, and
stable manifolds

Wu, Wc, Ws

of the solution maps Ft at fixed points; in particular, at stationary points
φ0 of the semiflow. In the last case the tangent spaces of the local invariant
manifolds at φ0 are the unstable, center, and restricted stable spaces

Cu, Cc, and Cs ∩ Tφ0X

of the generator G, respectively. At a stationary point φ0, the local unstable
and stable manifolds Wu, Ws of the time–t maps coincide with local unstable
and stable manifolds of the semiflow F . For center manifolds the analogue of
the previous statement is in general false [8], and continuously differentiable
local center manifolds for the semiflow from Theorem 1 have not yet been
obtained.

The approach to local invariant manifolds via Theorem 1 obviously avoids
any additional spectral hypothesis, while the results on unstable manifolds in
[6, 7] require that the auxiliary linear RFDE be hyperbolic. Hyperbolicity is
also necessary for Arino and Sanchez’s recent result [1], which captures a part
of the saddle point behaviour of solutions close to an equilibrium, for certain
differential equations with state-dependent delays.

Let us turn to the proof of Theorem 1. An essential part is solving the
equation

x(t) = φ(0) +
∫ t

0
f(xs)ds, 0 ≤ t ≤ T,

x0 = φ ∈ X,
by a continuously differentiable map

x : [−h, T ] → Rn,

with φ ∈ X given; x should also be continuously differentiable with respect to
φ. In order to achieve this, we first rewrite the fixed point equation so that
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the dependence of the integral on φ becomes explicit. For φ ∈ C1, let φ̂ denote
the continuously differentiable extension to [−h, T ] given by

φ̂(t) = φ(0) + φ̇(0)t on [0, T ].

Set u = x − φ̂. Then u belongs to the Banach space C1
0T of continuously

differentiable maps y : [−h, T ] → Rn with

y(t) = 0 on [−h, 0];
the norm on C1

0T is given by

‖y‖C1
0T

= max
−h≤t≤T

|y(t)|+ max
−h≤t≤T

|ẏ(t)|.

u and φ̂ satisfy

u(t) + φ̂(t) = φ(0) +
∫ t

0
f(us + φ̂s)ds

and
φ̂(t) = φ(0) + φ̇(0)t = φ(0) + t f(φ)

(since φ ∈ X)

= φ(0) +
∫ t

0
f(φ)ds.

For u ∈ C1
0T this yields the fixed point equation

u(t) =
∫ t

0
(f(us + φ̂s)− f(φ))ds, 0 ≤ t ≤ T,

with a parameter φ ∈ X.
Now let some φ0 ∈ X be given. For φ ∈ X close to φ0, u ∈ C1

0T small, and
0 ≤ t ≤ T with T > 0 small, define

A(φ, u)(t)

to be the right hand side of the latest equation. Property (P2) is used to
show that the maps A(φ, ·) are contractions with respect to the norm on C1

0T ,
with a contraction factor independent of φ: Let v = A(φ, u), v = A(φ, u). For
0 ≤ t ≤ T ,

|v̇(t)− v̇(t)| = |f(ut + φ̂t)− f(ut + φ̂t)| ≤ L‖ut − ut‖
(due to (P2), L may be large)

≤ L max
0≤s≤T

|u(s)− u(s)|.

We exploit the fact that the last term does not contain derivatives. For 0 ≤
s ≤ T ,

|u(s)− u(s)| = |0− 0 +
∫ s

0
(u̇(r)− u̇(r))dr| ≤ T‖u− u‖C1

0T
.

Hence
|v̇(t)− v̇(t)| ≤ LT ‖u− u‖C1

0T
.
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Also,

|v(t)− v(t)| = |
∫ t

0
(f(us + φ̂s)− f(us + φ̂s))ds| ≤ LT max

0≤s≤t
‖us − us‖

≤ LT ‖u− u‖C1
0T
.

(Property (P2) is not necessary here. Alternatively, the local Lipschitz conti-
nuity of f with respect to the norm on C1 can be used to find a suitable upper
estimate.)

For 2LT < 1, the map A(φ, ·) becomes a contraction.
One finds a closed ball which is mapped into itself by each map A(φ, ·). The

formula defining A can be used to show that A is continuously differentiable.
It follows that for each φ the ball contains a fixed point uφ of A(φ, ·) which is
continuously differentiable with respect to φ. This completes the first essential
step in the proof of Theorem 1.

Example. Consider the motion of an object on a line which attempts to
regulate its position by echo. The object emits a signal which is then reflected
by an obstacle. The reflected signal is detected and the signal running time is
measured. From this, a position is computed; this position is not necessarily
the true one. The computed position is followed by an acceleration towards a
preferred position, e.g., to an equilibrium position at a certain distance from
the obstacle.

Let c > 0 denote the speed of the signals, −w < 0 the position of the
obstacle, and µ > 0 a friction constant. The acceleration is given by a function
a : R → R; one may think of negative feedback with respect to the position
ξ = 0 as expressed by the relations

a(0) = 0 and ξ a(ξ) < 0 for ξ 6= 0.

Let x(t) denote the position of the object at time t, v(t) its velocity, p(t) the
computed position, and s(t) the running time of the signal which has been
emitted at time t− s(t) and whose reflection is detected at time t. The model
equations then are

ẋ(t) = v(t)
v̇(t) = −µv(t) + a(p(t))

p(t) =
c

2
s(t)− w

c s(t) = x(t− s(t)) + x(t) + 2w.
Here the solutions with

−w < x(t)
are only considered. The justification for the formula defining p(t) is that it
yields the true position if

x(t) = x(t− s(t)),
which holds at least at equilibria.
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Let w+ > 0. We restrict our attention further to bounded solutions with

−w < x(t) < w+ and |ẋ(t)| < c.

Then necessarily

0 < s(t) ≤ 2w + 2w+

c
= h.

The model has not yet the form (2) considered in Theorem 1. In order to
reformulate the model, take h as just defined, consider the space

C1 = C1([−h, 0],R2),

and the open convex subset

U = {φ = (φ1, φ2) ∈ C1 : −w < φ1(t) < w+, |φ̇1(t)| < c for − h ≤ t ≤ 0}.

Each φ ∈ U determines the unique solution s = σ(φ) of

s =
1
c
(φ1(−s) + φ1(0) + 2w),

as the right hand side of this fixed point equation defines a contraction on
[0, h]. The Implicit Function Theorem shows that the resulting map

σ : U → [0, h]

is continuously differentiable.
If the response function a : R → R is continuously differentiable. then the

map
f : U → R2

given by
f1(φ) = φ2(0)

and

f2(φ) = −µφ2(0) + a(
c

2
σ(φ)− w) = −µφ2(0) + a

(
φ1(−σ(φ)) + φ1(0)

2

)
is continuously differentiable, and for bounded solutions as above the model
can be rewritten in the form of eq. (2).

In [14, 15] it is verified that condition (P) holds. One can easily show that
the map U 3 φ 7→ Def(φ) ∈ Lc(C,Rn) is not continuous. In the case a(0) = 0,
it becomes obvious that the auxiliary linear RFDE at the zero solution is the
same as eq. (3) with φ0 = 0.

Let us mention that the above model is related to the more complicated
equations of motion for two charged particles, which were first studied by
Driver [4]. Recent work [16] shows that for suitable parameters our model has
a periodic solution whose orbit is exponentially attracting. The analysis makes
use of Theorem 1 and of the smoothness result from [15].



66

References

1. Arino O., Sanchez E., A saddle point theorem for functional state–dependent delay equa-
tions, Preprint, 2002.

2. Cooke K., Huang W., On the problem of linearization for state-dependent delay differen-
tial equations, Proc. Amer. Math. Soc., 124 (1996), 1417–1426.

3. Diekmann O., van Gils S.A., Verduyn Lunel S.M., Walther H.O., Delay Equations:
Functional-, Complex- and Nonlinear Analysis, Springer, New York, 1995.

4. Driver R.D., Existence theory for a delay-differential system, Contrib. Differential Equa-
tions, 1 (1963), 317–336.

5. Hale J.K., Verduyn Lunel S., Introduction to Functional Differential Equations, Springer,
New York, 1993.

6. Krishnan, H.P., An analysis of singularly perturbed delay-differential equations and equa-
tions with state-dependent delays, Ph.D. thesis, Brown University, Providence (R.I.),
1998.

7. Krisztin T., An unstable manifold near a hyperbolic equilibrium for a class of differential
equations with state-dependent delay, Discrete and Continuous Dynamical Systems, 9
(2003), 993–1028.

8. , Invariance and noninvariance of center manifolds of time–t maps with respect
to semiflows, Preprint, 2002.

9. Krisztin T., Wu J., Monotone semiflows generated by neutral equations with different
delays in neutral and retarded parts, Acta Math. Univ. Comenian., 63 (1994), 207–220.

10. Louihi M., Hbid M.L., Arino O., Semigroup properties and the Crandall-Liggett approx-
imation for a class of differential equations with state-dependent delays, J. Differential
Equations, 181 (2002), 1–30.

11. Mallet-Paret J., Morse decompositions for differential delay equations, J. Differential
Equations, 72 (1988), 270–315.

12. Mallet-Paret J., Nussbaum R.D., Paraskevopoulos P., Periodic solutions for functional
differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear
Anal., 3 (1994), 101–162.

13. Walther H.O., Stable periodic motion of a system with state-dependent delay, Differential
Integral Equations, 15 (2002), 923–944.

14. , The solution manifold and C1-smoothness of solution operators for differential
equations with state dependent delay, J. Differential Equations, to appear.

15. , Smoothness properties of semiflows for differential equations with state depen-
dent delay, Proceedings of the International Conference on Differential and Functional
Differential Equations, Moscow, 2002, to appear.

16. , Stable periodic motion of a system using echo for position control, J. Dynamics
Differential Equations, to appear.

Received December 10, 2002
Universität Giessen
Mathematisches Institut
Arndtstr. 2
D 35392 Giessen, Germany
e-mail : Hans-Otto.Walther@math.uni-giessen.de

mailto:Hans-Otto.Walther@math.uni-giessen.de

	References

