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SPECIATION: A CASE STUDY IN SYMMETRIC

BIFURCATION THEORY

by Ian Stewart

Abstract. Symmetric bifurcation theory is the study of how the trajec-
tories of symmetric vector fields behave as parameters are varied. We
introduce some of the basic ideas of this theory in the context of dynam-
ical system models of speciation in evolution. Abstractly, these models
are dynamical systems that are equivariant under the natural permutation
action of the symmetric group SN on RkN for some integers N, k ≥ 1.
The general theory, which is group-theoretic in nature, makes it possible
to analyse such systems in a systematic manner. The results explain sev-
eral phenomena that can be observed in simulations of specific equations.
In particular, in steady-state bifurcation, primary branches involve bifur-
cation to two-species states; such bifurcations are generically jumps; and
the weighted mean phenotype of the organisms changes smoothly, whereas
the standard deviation jumps. In particular, classical mean-field genetics,
which focusses on allele proportions in the population, cannot detect this
kind of speciation event.

1. Introduction

About 5 million years ago, a small number of finches belonging to the same
species arrived on the Galápagos Islands, probably blown there by a storm,
Lack [32]. In the absence of their usual predators, this ‘founder population’ of
finches diversified into 13 species, plus a 14th on the Cocos Islands. Figure 1
shows the currently accepted phylogeny of these species. Grant [22] provides
an accessible introduction to Darwin’s finches and their evolutionary history,
along with pictures of the different species.

Some species now specialize in feeding on seeds, some on insects, some on
cactus. This kind of process, known as speciation, is fundamental to evolution-
ary biology, and was the central point of Darwin’s On the Origin of Species
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Figure 1. Phylogeny of Darwin’s finches, after Lack [32].

of 1859. The finches of the Galápagos were a key example in his thinking,
and they are known as ‘Darwin’s finches’. Their continuing evolution has now
been observed for several decades, Grant et al. [24, 23], and it turns out that
one of the most important features is climate. Changes to the climate affect
the availability of food, and the finches evolve rapidly. The climatic changes
are chaotic, and effectively unpredictable, but the evolutionary response of the
birds to these changes is to some extent deterministic and predictable, Grant
et al. [23]. It is therefore reasonable to study models of species change in which
changing ‘environmental’ parameters drive a deterministic dynamical system.

Some recent models suggest that symmetry (which arises because different
organisms in the same species are nominally identical) plays a significant role
in the dynamics, and affects the generic behaviour. We focus on the underlying
mathematical techniques of symmetric (or equivariant) bifurcation theory. We
show how group-theoretic methods organize calculations in symmetric dynam-
ical systems, and examine what results these methods yield in the speciation
models.

Genotype and Phenotype. For a systematic exposition of modern evo-
lutionary biology, see Ridley [40]. Deterministic models do not conflict with
the widespread view in biology that mutations or other genetic factors in spe-
ciation are random, because natural selection within a given context is not
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random — the central point made by Grant et al. [23]. However, the mod-
els described here are based on the possibly controversial assumption that the
main role of the genes is to make it possible for phenotypes to change, while
placing constraints (currently poorly understood) on what range of phenotypes
may occur. In a physical analogy, the random movement of water molecules
makes it possible for water to flow; but it is the surrounding landscape that
determines where it flows. Thus the dynamics of rivers and lakes is predictable
if we know enough about the landscape, but the motion of any given molecule
of water is dominated by random fluctuations. In this analogy, the water mole-
cule corresponds to a gene in an organism, and the role of selection corresponds
to the landscape. See Cohen and Stewart [4] for further discussion. Here, our
main aim is to describe the mathematics of the models, and their analysis, as
a case study in symmetric bifurcation theory.

In most traditional models of speciation, the dynamical variables are pro-
portions of alleles (alternative genes) in a mean-field gene-pool, see for ex-
ample Maynard Smith [34]. More modern studies, under the name ‘adaptive
dynamics’, introduce nonlinear effects and incorporate selection as an explicit
dynamic mechanism (see for example Kisdi and Geritz [30]) but still make
allele frequencies the key variables. Hofbauer and Sigmund [26] discuss many
gene-based dynamic models of evolution. An alternative approach (Cohen and
Stewart [4], Elmhirst [9, 10], Vincent and Vincent [47], Stewart et al. [44],
Dias and Stewart [6]), which we focus on here, works with the phenotype, not
the genotype. (The phenotype of an organism is its bodily form, markings,
and behaviour. Its genotype is the DNA code in its genome.) The phenotype
of a given organism is represented as a vector x = (x1, . . . , xm) in a pheno-
typic space Rm, and the dynamic describes how x changes on an evolutionary
timescale. More generally, we can replace Rm by a manifold: the assumption
here is that we are considering continuous characters, well modelled by vari-
ables taking values in R. Discrete characters are another matter, and we do
not consider them here.

In principle, there could be many different ways for speciation to occur. For
example recent work on wallabies, Fox [16], suggests that sometimes disease
organisms shuffle the genome. There is no reason to suppose that all instances
of speciation fit into the same pattern; the current evolution of Darwin’s finches
may not be what was involved in the appearance of Tyrannosaurus rex, or
the divergence of chimpanzees and humans from a common ancestral species.
So we should seek to understand possible mechanisms of speciation, and not
expect to find a single mechanism. However, there is some prospect of finding
generalities if we focus on abstract features of the process (such as ‘instability’)
instead of fine details (the precise cause of the instability). For example, disease
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organisms shuffling the genome is, for present purposes, just another way to
render the genome ‘fluid’.

In general terms, biologists distinguish two main types of speciation pro-
cess: ‘allopatric’ and ‘sympatric’, Mayr [35, 36]. For a finer classification,
see Rice and Hostert [39]. In allopatric speciation some subpopulation of a
single species becomes isolated geographically from the main population, and
evolves separately under different environmental conditions. If the separation
continues for long enough, eventually the two populations become unable to
interbreed (Mayr’s test for ‘different species’). If, much later, the two groups
end up in the same habitat, they will constitute two distinct species in the
same location.

Sympatric speciation is less intuitive. Now the original population remains
a single geographical group, but for some reason this group (which previously
had cohered as one species) separates into two distinct phenotypic classes, even
though all organisms are potentially able to interbreed. Eventually, reinforced
by other factors such as ‘assortative mating’ — preference for a mate from the
same subpopulation — the two types again become separate species. See for
example Dieckmann and Doebeli [7], Higashi et al. [25], Kawecki [29], Kon-
drashov and Kondrashov [31], Rundle et al. [41], Tregenza and Butlin [45].
The challenge to intuition here is: if it makes evolutionary sense for one or-
ganism to evolve towards a particular new phenotype, why doesn’t it make the
same sense for all the others to evolve towards the same phenotype? Especially
when interbreeding stirs the gene-pool, just as it did when there was only one
species.

Our general answer to this challenge is that it ignores issues of collective
behaviour and context. It also ignores the question of stability. It therefore
ignores the phenomenon of symmetry-breaking, in which symmetric causes
produce less symmetric (including possibly asymmetric) effects, [21, 20].

The main aim of this paper is to summarize recent research on dynami-
cal systems models of sympatric speciation, which represents this process as
a symmetry-breaking bifurcation. The conclusion is that speciation (in some
sense, possibly a rather limited one) is triggered when a diverse population is
able to exploit its environment more effectively (as ‘observed’ by each individ-
ual, not just the collective) than a uniform population. In this case, selection
on individual organisms drives the entire population towards a split into several
(usually two) subpopulations, each representing a separate cluster in pheno-
typic space. Once this initial separation is established, other factors (such as
assortative mating) can then reinforce this split, until eventually it becomes
irreversible and the species become separate.

Of course, the biological details of this reinforcement are important. But
it is the initial separation that gives evolution a ‘foot in the door’ to prise one
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species apart into several, and it is this separation that is conceptually the
most puzzling feature. The intuition that symmetry should be preserved is
strong — and wrong.

2. An Idealized Model

In order to motivate the model, we start by representing the population
of organisms by a probability density function P on phenotypic space Rm.
We assume that the population is large enough for a continuum model to be
appropriate, in which case the probability that a randomly chosen organism
has phenotype y belonging to some (measurable) subset Y of Rm is

p(y ∈ Y ) =
∫

y∈Y
P (y)dy,

where the integral is the Lebesgue integral. In order to perform simulations
and analysis, we discretize this model. Choose a positive integer N and a
‘coarseness’ ε > 0. For any x ∈ Rm let sx(y) be a step function, constant on
the ball of radius ε centred at x and zero outside that ball, with total measure
1/N . Approximate P by a finite sum

P (y) ∼
N∑

j=1

sxj (y).

Intuitively, each component sxj (y) of this sum represents a randomly chosen
sample of the population, within tolerance ε of the phenotype y. By taking N
such samples (named ‘PODs’ in [4] — Placeholders for Organism Dynamics
— and ‘tokens’ by Elmhirst [10]) we obtain a coarse-grained representation of
the probability density function P .

As P evolves with time, the approximation evolves with it. So we can hope
to replace the time-evolution of P by the time-evolution of representatives
x1, . . . , xN . We assume that the xj change according to a dynamical system:

dx1

dt
= f1(x1, . . . , xN , λ),

dx2

dt
= f2(x1, . . . , xN , λ),
· · ·

dxN

dt
= fN (x1, . . . , xN , λ),

where for the moment we leave the vector field f = (f1, . . . , fN ) unspecified.
The parameter λ represents the effect of ‘environment’, and for simplicity we
assume λ is 1-dimensional. For example, λ might be annual rainfall.
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We also assume that the system can be modelled on two distinct timescales.
The xj change rapidly; the parameter λ changes ‘quasi-statically’, that is, so
slowly that the x-dynamic treats λ as being constant while x responds to the
current value of λ.

What constraints should we put on f? The most important one stems from
mathematical considerations rather than specific biological needs. It is a sym-
metry constraint. In sympatric speciation, the initial population is nominally
identical, so all the xj are equal. Thus the dynamics should be symmetric
under all permutations of the indices 1, . . . , N . Another and perhaps more
compelling way to say this is that the time-evolution of P should not depend
on the labels j that we assign to the representatives xj .

We therefore arrive at the idea that the interaction network, a graph whose
nodes represent PODs and whose edges represent interactions between them,
should be all-to-all coupled, as in Figure 2.
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Figure 2. All-to-all coupled network with 8 PODs.

The symmetry of the network corresponds to a symmetry property of the
Lebesgue integral. Suppose that P is an integrable function defined on a
subset Y . Decompose Y into a finite set of almost disjoint measurable subsets
Y1, . . . , Ys. (By ‘almost’ disjoint we mean that intersections have measure zero.)
Let Zj = Yj + zj be a translate of Yj , for each j, and suppose that the Zj are
also almost disjoint. Finally, define a function Q by

Q(z) = P (z − zj) if z ∈ Zj

with Q(z) = 0 otherwise. That is, Q is a ‘shuffle’ of P . Then trivially∫
Zj

Q(z)dz =
∫

Yj

P (y)dy.

In particular, this formula holds if the Yj are congruent boxes, and the map
Yj 7→ Zj permutes them. Thus the Lebesgue integral has an equivariance prop-
erty under permutations of almost disjoint subsets of its domain. Permuting
tokens should respect this equivariance.
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Figure 3. Simulation of speciation for N = 100 clumps of
organisms. Note division of population into two species of 16
and 84 clumps each. Time series of all cells are superposed,
with λ horizontal and xj vertical for each j.

Either way, we deduce that f must be equivariant under the action of the
symmetric group SN ; that is,

fσi(x1, . . . , xN , λ) = fi(xσ−11, . . . , xσ−1N , λ)

for all σ ∈ SN . Again, see [4]. Equivalently,
1. fi(x) is invariant under all permutations that fix i.
2. fj(x) is obtained from fi(x) by interchanging i and j.

For example, one possible choice of f takes the form

(2.1)

dx1

dt
= x1 − x3

1 + λ(x1 + · · ·+ xN ),

dx2

dt
= x2 − x3

2 + λ(x1 + · · ·+ xN ),
· · ·

dxN

dt
= xN − x3

N + λ(x1 + · · ·+ xN ).

This is a typical example of an SN–equivariant vector field. Below, we consider
more examples. But already this example illustrates some key ideas.

Figure 3 shows a typical numerical simulation of (2.1) when N = 100.
When λ < 0 there is a unique equilibrium in which all xj = 0. When λ > 0
the xj make a rapid jump away from 0: either to a positive value or a negative
value. Once the transients associated with the jump have settled down, only
two possible values of the phenotypic variables occur. In this particular case,
16 PODs take the positive value and 84 take the negative one.
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The bifurcation appears to happen at λ ∼ 40, which is the result of ‘slow
passage effects’. Because of the way the simulation is performed, the xj become
extremely small, at an exponential rate, as λ increases towards 0. Once λ
becomes greater than zero, it takes many iterations before the instability in
the xj becomes visible to the eye. See Neihstadt [37, 38].

The general theory of equivariant dynamical systems shows that typically,
when there is a symmetry-breaking bifurcation of this kind, the system bifur-
cates to a state in which all entries xi of x take one or other of two particular
values u, v, where u > 0 and v < 0. This result does not depend on the specific
form of the ODE: just on its symmetries. We now explain how this behaviour
comes about.

3. Equivariant Bifurcation Theory

In this section, we describe the underlying mathematical generalities: equi-
variant bifurcation theory. We then specialize the results to the model (2.1),
and thereby explain its behaviour.

3.1. Group-Theoretic Formalism. The general context for a symmetry-
based analysis of pattern formation in equivariant dynamical systems is sym-
metric (or equivariant) bifurcation theory. This is surveyed in Golubitsky et
al. [21, 20]. We briefly summarize the main ideas, which are group-theoretic
in nature.

Let Γ be a (compact) Lie group of linear (without loss of generality, or-
thogonal) transformations of Rn. If γ ∈ Γ, x ∈ X we denote the action of γ on
x by γx. We say that a smooth vector field f : Rm×R → Rm is Γ–equivariant
if

(3.1) f(γx, λ) = γf(x, λ)

for all γ ∈ Γ. Such an f determines a Γ–equivariant ODE

(3.2)
dx

dt
+ f(x, λ) = 0,

where x ∈ Rn, λ ∈ R. Steady states are zeros of f . The symmetry of f implies
that for fixed λ, the zeros of f come in symmetrically related sets. Specifically,
if x ∈ Rn then the orbit of x under Γ is

Γx = {γx : γ ∈ Γ}

and if x(t) is a solution, then so is γx(t).
The isotropy subgroup of x ∈ V is

Σx = {σ ∈ Γ : σx = x}.
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If H ⊂ Γ is any subgroup, then its fixed-point subspace is

Fix(H) = {x ∈ V : γx = x ∀γ ∈ H}.
The isotropy subgroup of x captures the symmetry of the state x. The

fixed-point subspace is a ‘dual’ notion, and describes all x with a given sym-
metry group H.

If x, y lie in the same Γ-orbit, then their isotropy subgroups are conjugate:

Σγx = γΣxγ−1.

Conversely, conjugate H have fixed-point subspaces in the same Γ-orbit:

Fix(γHγ−1) = γFix(H).

For many purposes we do not need to distinguish between the conjugates of a
given subgroup.

The (conjugacy classes) of isotropy subgroups of Γ form a partially ordered
set, conventionally called the isotropy lattice of Γ, even though it is often not a
lattice in the usual technical sense. The isotropy lattice provides a useful guide
to the probable sequence of symmetry-breaking events: roughly speaking, each
successive loss of stability results in an isotropy subgroup that is lower down
in the lattice — often, but not always, one step lower down. See Field [12]
and Field and Richardson [13, 14, 15]. In any case, the isotropy lattice can
be used to organize computations in terms of restrictions to successively larger
fixed-point subspaces. This can be done because fixed-point subspaces have a
simple but crucial property: if f is Γ–equivariant and H is any subgroup of Γ,
then

f(Fix(H)) ⊆ Fix(H).
Therefore we can consider the restriction

f |Fix(H) : Fix(H) → Fix(H)

which defines a dynamical system in its own right. Moreover, Fix(H) contains
any trajectory x(t) that has symmetry H. The restriction f |Fix(H) satisfies an
equivariance condition: it is equivariant under the action of N(H)/H where
N(H) is the normalizer of H in Γ. Sometimes it satisfies further constraints,
called ‘hidden symmetries’, see [20].

3.2. Local Bifurcation. Next, we summarize the local bifurcation theory
of symmetric vector fields. That is, we examine qualitative changes in the
topology of the phase portrait (system of trajectories) as the parameter λ
varies.

For simplicity, assume that f(0, λ) ≡ 0, so there exists a ‘trivial branch’ of
solutions x = 0. The linearization of f is the derivative

Lλ = Dxf |0,λ
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Local bifurcation at λ = 0 occurs when the trivial branch undergoes a change
of linear stability, so that L0 has eigenvalues on the imaginary axis (often called
critical eigenvalues). There are two cases:

1. Steady-state bifurcation: L0 has a zero eigenvalue.
2. Hopf bifurcation: L0 has a complex conjugate pair of purely imaginary

eigenvalues.
Hopf bifurcation leads to time-periodic solutions and will not be considered
in this paper. A bifurcating branch breaks symmetry if the corresponding
isotropy subgroup is not the whole of Γ. The critical eigenspace is the real
generalized eigenspace E for the critical eigenvalues. By equivariance, E is
a Γ–invariant subspace of Rn. For steady-state bifurcation, generically E is
absolutely irreducible: the only equivariant linear maps are scalar multiples of
the identity. Centre manifold reduction, Carr [2], reduces the problem to one
posed on E.

The simplest and most widely used existence theorem for steady-state
branches is the Equivariant Branching Lemma. To state it we require the
concept of an axial subgroup: this is an isotropy subgroup Σ for which
dim Fix(Σ) = 1.

Theorem 3.1. (Equivariant Branching Lemma). Let f(x, λ) = 0
be a Γ–equivariant bifurcation problem where Fix(Γ) = 0. Let Σ be an axial
subgroup. Then generically there exists a branch of solutions to f(x, λ) = 0
emanating from the origin with symmetry group Σ.

This theorem is originally due to Vanderbauwhede [46] and Cicogna [3].
For a proof see Golubitsky et al. [21] Chapter XIII Theorem 3.3 p.82.

4. The Symmetric Group

Now we specialize the above algebraic constructions to the symmetry group
of the speciation models, which is the symmetric group SN acting on RN by
permutation matrices.

We can compute the isotropy subgroups of SN acting on RN . If σ ∈ SN

and σx = x, then the only entries xi, xj of x that can be permuted by σ
are those with equal values, xi = xj . We therefore partition {1, . . . , N} into
disjoint blocks B1, . . . , Bk so that xi = xj if and only if i, j belong to the same
block. Now

Σx = Sb1 × · · · × Sbk

where b` = |B`| and Sb`
is the symmetric group on block B`.

Conjugacy classes of isotropy subgroups of SN are in one-to-one correspon-
dence with partitions of N into nonzero natural numbers arranged in ascending
order. The isotropy lattice is isomorphic, as a partially ordered set, to the set
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Figure 4. Isotropy lattice of S5.

of all such partitions, with the ordering being defined by refinement, [20]. For
example the isotropy lattice of S5 is shown in Figure 4.

Suppose that Σ is an isotropy subgroup corresponding to the simplest
nontrivial partition P = {p, q} where p + q = N , and to avoid ambiguity
p ≤ N/2. Then Fix(Σ) consists of all vectors

(u, . . . , u︸ ︷︷ ︸
p

, v, . . . , v︸ ︷︷ ︸
q

)

for real numbers u, v. Therefore dim Fix(Σ) = 2. Similarly, if Σ corresponds
to a partition of N into k blocks, then dim Fix(Σ) = k. Finally, we restrict the
action of SN onto the standard irreducible RN−1, by imposing the relation x1+
· · ·+ xN = 0. The isotropy subgroups remain the same, but the dimension of
every fixed-point subspace is reduced by 1. In particular the isotropy subgroups
Sp × Sq, where p + q = N , are axial. By the Equivariant Branching Lemma,
generically there exist branches of equilibria with isotropy subgroups Sp × Sq.
We call these the primary branches. Such solution branches correspond to a
split of the population of N identical PODs into two distinct species consisting
of p and q PODs respectively, having respective phenotypes u and v. So in all
SN–equivariant ODEs, speciation (in this sense) is a consequence of symmetry-
breaking.

Already we can make an interesting quantitative prediction: on the above
branches the mean value of the phenotypic variables changes smoothly during
the bifurcation. The fixed-point space of Sp × Sq is spanned by all vectors of
the form

(u, . . . , u; v, . . . , v)
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where there are p u’s and q v’s. In the irreducible (N − 1)–dimensional repre-
sentation of SN , the entries sum to zero:

(4.1) pu + qv = 0.

Therefore the mean value of the phenotypic variable after bifurcation is (pu +
qv)/N = 0. Before bifurcation it is also 0, because we are looking for bifurca-
tions from the trivial equilibrium and have normalised the phenotypic variables
to be zero for the original single species. Now, we are working with the centre
manifold reduction, which involves a nonlinear change of variables (via a dif-
feomorphism). Therefore the mean varies smoothly in the original phenotypic
variables.

4.1. Example: Darwin’s Finches. The process of speciation cannot
be observed directly on very long timescales, but is sometimes observable on a
shorter timescale: one example is Darwin’s finches. As a substitute for evolu-
tion, we can observe two related species or subspecies that sometimes coexist
in the same environment, and sometimes do not. When they do not coexist,
their phenotypes should correspond to an allopatric context, without specia-
tion; has occurred. When they coexist, their phenotypes should correspond to
a sympatric context, after speciation.

With this interpretation, the ‘constant mean’ prediction is consistent with
several field studies, normally interpreted as evidence for character displace-
ment, Salthe [42]. See [4, 44, 43]. We mention just one example here: Dar-
win’s finches. In this case, the relevant phenotypic variable is beak size. The
species G. fortis and G. fuliginosa occur in both sympatric and allopatric pop-
ulations. G. fortis is allopatric on Daphne, and G. fuliginosa is allopatric on
Crossman. Moreover, the two species are sympatric on a number of islands,
which occur in three groups: Abingdon, Bindloe, James, Jervis; Albemarle, In-
defatigable; and Charles, Chatham. Figure 5, adapted from Lack [32], shows
the differences in beak size between these species on these groups of islands.
The mean beak sizes of G. fortis and G. fuliginosa are approximately 10mm in
the allopatric case. In all three sympatric populations, the mean for G. fortis
is about 12mm, while that for G. fuliginosa is about 8mm. Thus they diverge
in opposite directions with a constant mean of about 10mm.

4.2. The General Cubic Truncation. The model (2.1) is extremely
special, and we seek a more general family of models that displays typical
behaviour. We approach this problem through the Taylor series of the vector
field near the bifurcation point.

A standard way to analyse bifurcations is to expand the Taylor series of the
vector field and then truncate at some (low) degree, see for example Iooss and
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Figure 5. Beak sizes in allopatric and sympatric populations
of Geospiza in the Galápagos Islands. After Lack [32].

Joseph [27]. Using methods from singularity theory or topology, it is some-
times possible to justify this truncation rigorously, but for present purposes we
consider the truncation process as a way to write down a simple but interesting
model. For speciation models, truncation at cubic order is highly informative.
(The quadratic truncation has too low a degree to be representative.)

Cohen and Stewart [4] study the Taylor series of an SN–equivariant vec-
tor field f , and show that the general symmetry-breaking bifurcation can be
transformed (by centre manifold reduction) to the form

(4.2)
dxi

dt
= λxi + B(Nx2

i − π2) + C(Nx3
i − π3) + Dxiπ2

plus higher order terms, for i = 1, . . . , N . Here λ, B, C,D ∈ R are parameters,
and

π2 = x2
1 + · · ·+ x2

N ,

π3 = x3
1 + · · ·+ x3

N .

In a sense that can be made precise, (4.2) is the simplest interesting equa-
tion of the type we wish to consider. It has the virtue that it can be analyzed
more or less explicitly, and we summarize the results.

Primary branches and their stabilities have been analysed by Elmhirst [9].
By the Equivariant Branching Lemma, primary branches of equilibria occur
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on the spaces Wp = Fix(Sp × Sq) where p + q = N and 1 ≤ p ≤ N/2. We
coordinatize Wp by α ∈ R, corresponding to the point

α(q, . . . , q︸ ︷︷ ︸
p

;−p, . . . ,−p︸ ︷︷ ︸
q

).

Define

n = N(N − 2p),
c = C(N2 − 3Np + 3p2),
d = D(N2 −N(N + 3)p + (N + 3)p2).

Then the branching equation on Wp is

λ = −αn− α2N(c− d),

which is a parabola passing through the origin. Together with the trivial
solution, the bifurcation diagram on Wp looks like Figure 6.

λ

x
JUMP

JUMPB

A

Figure 6. Bifurcation diagram illustrating jumps and hysteresis.

Let α0 be the α–coordinate of the other point at which the parabola crosses
the α–axis, and let (λc, αc) be the coordinates of the vertex of the parabola.
Then

α0 =
n

N(d− c)
,

αc =
n

2N(d− c)
,

λ0 =
n2

4N(c− d)
.

Stability of a branch of equilibria depends on the eigenvalues of the lin-
earization Df along the branch. For the primary branches, these eigenvalues
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are:

(4.3)
µ0 = αn + 2α2N(c− d)
µ1 = αN2 + α2N2(2N − 3p)(C −D)
µ2 = −αN2 + α2N2(3p−N)(C −D)

with multiplicities 1, p− 1, q − 1 respectively. Note than when N = 3 we have
p = 1 so µ1 does not occur.

Near the origin, the eigenvalues µ1 and µ2 have opposite signs. There-
fore the bifurcating branches are always unstable near the origin. This is why
we must work with (at least) the cubic truncation, which permits primary
branches to re-stabilize, for example by ‘turning round’ at a saddle-node bi-
furcation. There is a general reason for the instability near the origin: see
subsection 4.3 below.

Simulations of 4.2 for many values of the parameters can be found in Stew-
art et al. [44] and Stewart [43].

4.3. Local Instability of Secondary Branches. Some features of the
secondary branches in this problem can be ‘predicted’ on general grounds of
symmetry. Computations (Dias and Stewart [6]) provide considerable extra
detail, but these generalities put the results in context.

It is known that generically, all primary branches of equilibria in an SN–
equivariant system of ODEs that can be found by applying the Equivariant
Branching Lemma (that is, the branches with ‘axial’ isotropy subgroups) are
locally unstable, that is, unstable close enough to the bifurcation point. Call
these axial branches. This result applies when SN acts in its standard (N −1)-
dimensional irreducible representation, and can be traced to the existence of a
non-trivial quadratic equivariant mapping. See Golubitsky et al. [21] Theorem
XIII 4.4 and Golubitsky and Stewart [20].

We have seen that primary branches in SN–equivariant systems (in the
stated representation) are axial, with isotropy subgroups of the form Sp × Sq

with p + q = N . Moreover, the representation of this subgroup decomposes
into three irreducible subspaces, of dimensions 1, p− 1, q − 1 respectively: call
these W0,W1,W2. Both Sp and Sq act trivially on W0. On W1, the subgroup
Sq acts trivially and Sp acts by its standard irreducible representation; and
the same goes with p, q interchanged for W2.

Follow a primary branch until an eigenvalue of the Jacobian changes sign.
Generically, the kernel (eigenspace) is one of W0,W1,W2. If it is W0 then the
symmetry remains unbroken, and we expect a fold point in the branch. If it
is W1 then the Sq symmetry remains unbroken, but the Sp symmetry breaks;
correspondingly for W2. Consider the case W1. Centre manifold reduction
near this bifurcation point, Carr [2], reduces the problem to a bifurcation
problem on W1. The primary branch for the original problem becomes the
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‘trivial’ branch for this reduced problem, and the secondary branch becomes a
primary branch in the reduced problem.

The reduced problem is equivariant under the normalizer quotient N(Σ)/Σ
where Σ = Sq, and this is quotient is easily seen to be isomorphic to Sp. There-
fore we expect to find a generic Sp–equivariant bifurcation in the reduction.
But now the theory of SN–equivariant bifurcations applies (with N replaced
by p). We predict the occurrence of branches for all axial subgroups of Sp;
that is, all subgroups Sa × Sb with a + b = p. Moreover, generically all such
branches should be locally unstable.

Lifting back to the original space, we obtain the generic existence of sec-
ondary branches, with isotropy subgroups Sa × Sb × Sq with a + b = p, so
a + b + q = N . Again, generically all such branches are locally unstable.
Figure 7 illustrates the geometry in a schematic manner.

x
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Sa x S x Sq

SxbSxpS

p-a

q-b

Figure 7. Schematic bifurcation diagram showing expected lo-
cal geometry of secondary branches.

In order to make this argument rigorous we must show that there are no
hidden symmetries in the sense of Dias and Stewart [5], and check that the
relevant genericity conditions hold. There seems to be no obstacle to carrying
out such an analysis, but the results would still be local near the secondary
bifurcation points. We therefore prefer to analyse the cubic truncation from a
global point of view. This also provides explicit expressions for the eigenvalues
along the secondary branches and reveals phenomena that cannot be found by
a purely local analysis.

Figure 8 illustrates the results that can be obtained analytically using
equivariant bifurcation theory. It shows three primary branches, with isotropy
subgroups Σ1 = S6 × S19, Σ2 = S2 × S23, and Σ3 = S8 × S17. A secondary
branch, shown shaded, links all three primary branches, and corresponds to the
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isotropy subgroup Σ = S6×S2×S17. All branches are parabolic in projection,
because of the cubic truncation. The equations for these branches, and their
stabilities, are computed analytically in Dias and Stewart [6].
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Figure 8. Branches of steady-state solutions of (4.2) projected
on the (x, λ)-plane. N = 25, a = 6, b = 2, c = 17 and
the parameter values are B = 1, C = −0.8, D = −5. Here
Σ = S6 × S2 × S17, Σ1 = S6 × S19, Σ2 = S2 × S23 and Σ3 =
S8 × S17.

4.4. Trimorphism in Biology. Our results do not completely rule out
the stable occurrence of 3–species states (‘secondary’ equilibria) in SN–equi-
variant ODEs. Our arguments merely show that such states do not occur
for ODEs that are small perturbations of the cubic truncation (4.2). Large
perturbations, or models unrelated to the cubic truncation, may in principle
possess stable secondary branches.

In the context of polymorphism, we note that stable trimorphic states are
sometimes observed experimentally. For example, Kashiwagi et al. [28] ob-
serve ‘balanced polymorphisms’ with three coexisting morphs at the genetic
locus glnA of E. coli bacteria. This locus encodes the enzyme glutamine syn-
thetase, which transforms glutamate into glutamine. A diverse population of
randomly mutated bacteria was repeatedly selected for the ability to survive in
a glumatate-limited environment— three rounds of mutagenesis and about 100
generations of adaptation per round. The anticipated outcome was the evo-
lution of a population with one novel glutamine-synthesizing enzyme and no
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other alleles at that locus. Instead, in several distinct experiments, trimorphic
balanced polymorphisms occurred. See Lenski (2002) for a brief summary.

5. Variations on a Theme

The symmetry assumption that underlies our analysis (namely, SN–equi-
variance) is too neat and tidy to be totally realistic. Real organisms in the same
species are not identical. In a sense, this is an irrelevant objection: all models
are idealizations. But we can ask whether exact symmetry is a reasonable
idealization.

Its theoretical justification is straightforward. A good way to understand
the dynamics of almost-symmetric systems is to view them as perturbations
of exactly symmetric ones. Any robust phenomena that occur in the exactly
symmetric system tend to occur in any small perturbation — usually at the
expense of fine details regarding symmetries, but not much else. However, it
is informative to consider some explicit variations on the idealized model, in
which the exact symmetry is broken in specific ways.

Such variations are discussed in [43] and we merely mention them here.
They include:

1. Converting deterministic ODEs onto stochastic ones by adding random
noise.

2. Forcing the symmetry of the model to break by perturbing the deter-
ministic dynamics.

3. Making the interaction network asymmetric by choosing its connections
at random.

4. Randomly choosing the interaction network at each iteration of the dy-
namics.

5. Combining some of the above.

In each case, simulations show that the main conclusions of the idealized
model are replicated in the more realistic one. In particular ‘speciation’ is
robust; the typical end result is a two-species state; phenotypic means vary
smoothly but the bifurcation is a jump.

Recently, a new technique has been developed to study pattern formation
in networks of dynamical systems (‘coupled cell systems’) without assuming
the presence of a symmetry group. Instead, attention focuses on the sym-
metry groupoid, which is a systematic way to describe relationships between
subnetworks. This approach, initiated in [17], is likely to have widespread
repercussions.
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6. Is This Speciation?

From the biological point of view, there is one glaring omission from the
model: the vital role of the gene.

We have chosen to present the model as a dynamic in phenotypic space,
arguing that on this level of modelling the role of the gene is to allow the
phenotype to change in response to selection. However, the same modelling
methods can be adapted to include the effects of genetics (by, in effect, treating
each allele as a ‘phenotypic’ variable in its own right). The BirdSym model of
Elmhirst [10] is an example. Again, the main conclusions listed above remain
valid. Indeed, Elmhirst relates his model analytically to SN–equivariant ODEs,
and uses the results to explain certain features that appear in the simulations.

In particular, for genes that contribute to continuous characters we find
that the mean value fails to detect the bifurcation. That is, mean field genetics
is insensitive to this kind of speciation event. The standard deviation, in
contrast, increases dramatically at bifurcation — an interesting instance of the
principle that dispersion about the mean (‘error bar’) can be more significant
than the mean itself. What changes is not the proportions of alleles in the
population’s gene-pool, but how those alleles are associated in adults that
survive to reproduce: see Cohen and Stewart [4], Stewart et al. [44]. In the
jargon of equivariant bifurcation theory, the mean is not a detective for the
primary bifurcation, but the standard deviation is, Barany et al. [1].

Because our models are abstract, they have many interpretations. They
may be considered as models of ‘character displacement’, Salthe [42]; as models
of phenotypic polymorphism (subspecies rather than species); or as models of
full-blown evolutionary speciation. In all cases, they model the dynamics of
the process on some coarse-grained scale, but not the fine detail.

We have chosen to ‘define’ species in terms of clustering in phenotypic
space. The traditional biological meaning of ‘species’ is stronger, and its def-
inition is not entirely satisfactory even now. The essential idea is that two
species are distinct if their members cannot interbreed to produce fertile off-
spring, Mayr [35, 36]. However, this feature is not observed in many real
species. For example, distinct species of Darwin’s finches often interbreed,
with entirely fertile and viable offspring. Such interbreeding contributes to the
finches’ ongoing evolution. Moreover, many recent papers exhibit mechanisms
that can reinforce an initial phenotypic splitting, and, in effect, prevent or re-
duce mating between the two subpopulations. So what matters is not whether
the organisms can potentially interbreed, but whether in practice they do.

A topical example here is the African forest elephant. Until recently, the
conventional wisdom was that there are two species of elephant, African and
Indian. For about a century, some zoologists believed that the African elephant
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consisted of two species: one inhabiting the savannah, the other inhabiting the
forest. There are significant differences in phenotype: the savannah elephants
are big (‘robust’) whereas the forest elephants are smaller (‘gracile’). Nonethe-
less, most zoologists expected them to be part of just one species, because the
forests are adjacent to the savannahs, and interbreeding should create gene-
flow and keep the species united. Genetic studies show that this expectation is
false: the two are as distinct, genetically, as either is from the Indian elephant.
Gene-flow is disrupted because either the opportunities for interbreeding are
rare, or because the animals in the two species prefer not to interbreed anyway.
Some zoologists now think that there may be at least five species of elephant.

At any rate, it is probably asking too much to have a definition of species
that not only is valid at the start and end of the speciation process, but also
holds during the sensitive and unusual period in which the nascent species are
separating. Too strong a definition implies, for purely verbal reasons, that
species can never split. Analogously, a single stick can never break: either it
is still in one piece, in which case it hasn’t broken yet, or it’s in two pieces,
in which case it’s not a single stick. Any sensible definition of ‘species’ has to
avoid this linguistic trap.

We therefore contend that it is reasonable to consider the above bifurcation
as some primitive step towards genuine speciation. And it demonstrates one
important idea: that speciation results from the collective response of a group
of organisms: to their environment, but also to each other. This statement, by
the way, does not conflict with the belief — almost dogma — that selection acts
on organisms, not on species. In our models, the selection process does act on
organisms, or at least on their representative PODs. That is to say, there is an
ODE for each POD variable xj , and that equation determines how xj changes.
However, the way it changes depends on the current state of the other PODs.
So the model merely affirms that the selection process on organisms depends
not only on the environment, but on the behavioural strategies adopted by
competing organisms [43]. There is nothing controversial about this statement.
Indeed, unless there are interactions with other organisms, there can be no
competition.
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