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SYMPLECTIC FIELD THEORY APPROACH TO STUDYING

ERGODIC MEASURES RELATED WITH NONAUTONOMOUS

HAMILTONIAN SYSTEMS

by Anatoliy K. Prykarpatsky

Abstract. An approach to studying ergodic properties of time-dependent
periodic Hamiltonian flows on symplectic metric manifolds is developed.
Such flows have applications in mechanics and mathematical physics. Based
both on J. Mather’s results [9] about homology of probability invariant
measures minimizing some Lagrangian functionals and on the symplectic
field theory devised by A. Floer and others [3]–[8],[12, 15] for investigating
symplectic actions and Lagrangian submanifold intersections, an analog of
Mather’s β–function is constructed subject to a Hamiltonian flow reduced
invariantly upon some compact neighborhood of a Lagrangian submanifold.
Some results on stable and unstable manifolds to hyperbolic periodic orbits
having applications in the theory of adiabatic invariants of slowly perturbed
integrable Hamiltonian systems are stated within the Gromov-Salamon-
Zehnder [3, 5, 12] elliptic techniques in symplectic geometry.

Introduction. The past years have given rise to several exciting devel-
opments in the field of symplectic geometry and dynamical systems [3]–[12],
which introduced new mathematical tools and concepts suitable for solving
numerous problems wich were earlier intractable. When studying periodic so-
lutions to non-autonomous Hamiltonian systems, Salamon & Zehnder [3] de-
veloped a proper Morse theory for infinite dimensional loop manifolds based on
previous results on symplectic geometry of Lagrangian submanifolds of Floer
[4, 6]. Investigating at the same time ergodic measures related with Lagrangian
dynamical systems on tangent spaces to configuration manifolds, Mather [9]
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devised a new approach to studying the correspondingly related invariant prob-
abilistic measures based on a so called β–function. The latter made it possible
to describe effectively the so called homology of these invariant probabilistic
measures minimizing the corresponding Lagrangian action functional.

As one can easily see, Mather’s approach does not allow any direct ap-
plication to the problem of describing the ergodic measures naturally related
to a given periodic non-autonomous Hamiltonian system on a closed symplec-
tic space. Thereby, to overcome constraints to this task in the present work
we suggest some new way to imbedding the non-autonomous Hamiltonian case
into the Mather β–function theory picture, making use of the mentioned above
Salamon & Zehneder and Floer [3, 4, 6] loop space homology structures. Fur-
ther, the Gromov elliptic techniques in symplectic geometry make it possible to
construct the invariant submanifolds of our Hamiltonian system, naturally re-
lated to the corresponding compact Lagrangian submanifolds, and a β–function
analog on them.

1. Symplectic and analytic problem setting. Let (M2n, ω(2)) be a
closed symplectic manifold of dimension 2n with a symplectic structure ω(2) ∈
Λ(M2n) being weakly exact, that is ω(2)(π2(M2n)) = 0. Every smooth enough,
time-dependent 2π–periodic function H : M2n× S1 → R gives rise to the non-
autonomous vector field XH : M2n × S1 → T (M2n) defined by the equality

(1) iXH
ω(2) = −dH,

where, as usual, (see [1, 2]), the operation “iXH
” denotes the intrinsic deriva-

tion of the Grassmann algebra Λ(M2n) along the vector field XH . The corre-
sponding flow on M2n × S1 takes the form:

(2) du/ds = XH(u; t), dt/ds = 1,

where u : R →M2n is an orbit, t ∈ R/2πZ ' S1 and s ∈ R is an evolution
parameter. We shall assume that solutions to (2) are complete and determine
a one-parametric ψ–flow of diffeomorphisms ψs : M2n× S1 →M2n× S1 for all
s ∈ R which, due to (1), are evidently symplectic, that is ψs∗

t0 ω
(2) = ω(2) where

ψs
t0 := ψs|M2n at any fixed t0 ∈ R/2πZ ' S1. Now take an (n+1)–dimensional

submanifold Ln+1 ⊂ M2n × R such that for any closed contractible curve γ
with γ ⊂ Ln+1 the following integral equality

(3)
∮

γ
(α(1) −H(s)ds) = 0

holds, where α(1) ∈ Λ1(M 2n) is such a 1–form on M2n which satisfies the
condition

∫
D2(ω(2) − dα(1)) = 0 for any compact two–dimensional disk D2 ⊂

M2n due to the weak exactness of the symplectic structure ω(2) ∈ Λ2(M2n)
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and existing globally on Ln+1 due to Floer results [4, 6]. Assume now also that
for the flow of symplectomorphisms ψs

t0 : M2n →M2n, s ∈ R, the condition

(4) {(ψs
t0L

n
t0 , t0 + s) : s ∈ R} ⊂ Ln+1

holds for some compact Lagrangian submanifold Ln
t0 ⊂ M2n upon which

ω(2)
∣∣
Ln

t0

= 0. Condition (4) in particular means [2] that the following ex-

pression

(5) α(1) −H(s)ds = dA(s),

s ∈ R, holds in some vicinity of the Lagrangian submanifold Ln
t0 ⊂ M2n,

where a mapping A : R → R is the so called [1, 2] generating function for
the defined above continuous set of diffeomorphisms ψs

t0 ∈Diff(M2n), s ∈ R.
Expression (5) makes it possible to define naturally the following Poincare-
Cartan type functional on a set of almost everywhere differentiable curves
γ : [0, τ ] →M 2n × S1

(6) A(τ)
t0

(γ) :=
1
τ

∫
γ
(α(1) −H(s)ds),

with end points { γ(τ) = ψτ (γ(0)) }, supp γ ⊂ U(Ln
t0

)× S1 for all τ ∈ R and
U(Ln

t0
) is some compact neighborhood of the Lagrangian submanifold Ln

t0 ⊂
M2n satisfying the condition ψs

t0U(Ln
t0

) ⊂ U(Ln
t0

) for all s ∈ R.
Let us denote by Σt0(H) the subset of curves γ with support in U(Ln

t0
)×S1

and fixed end-points as before minimizing the functional (6). If the infimum
is realized, one easily shows that any such curve γ ∈ Σt0(H) solves the system
(2). For the above set of curves Σt0(H) to be specified more suitably, choose,
following Floer’s ideas [3]–[8],[12], an almost complex structure J : M2n →
End(T (M2n)) on the symplectic manifold M2n, where by definition J2 = −I,
compatible with the symplectic structure ω(2) ∈ Λ2(M2n). Then the expression

(7) < ξ, η >:= ω(2)(ξ, Jη),

where ξ, η ∈ T (M2n), naturally defines a Riemannian metric on M2n. Subject
to the metric (7) our Hamiltonian vector field XH : M2n × S1 → T (M2n) is
now represented as XH = J∇H, where ∇ : D(M2n) → T (M2n) denotes the
usual gradient mapping with respect to this metric.

Consider now the space Ω := Ω(M2n × S1) of all continuous curves in
M2n × S1 with fixed end-points. Then one can similarly define the gradient
mapping grad A(τ)

t0
(γ) : Ω → T (Ω) as follows:

(8) (grad A(τ)
t0

(γ), ξ) :=
1
τ

∫ τ

0
ds < J(γt0)γ̇t0(s) +∇H(γt0 ; s+ t0), ξ >,
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where γ = {(γt0(s); t0 + s(mod 2π)) : s ∈ [0, τ ]} ∈ Ω as before, and ξ ∈ T (Ω).
Since all critical curves γ ∈ Σt0(H) minimizing the functional (6) solve (2),
this fact suggests a way to construct an invariant subset ΩH ⊂ Ω such that
ΩH := Ω(U(Ln

t0
)×S1). Namely, define a curve γ ∈ ΩH(γ(−)) ⊂ ΩH as satisfying

[3] the following gradient flow in U(Ln
t0)× S1 :

(9) ∂γt0/∂z = −grad A(τ)
t0

(γ), ∂t/∂z = 0

for all z ∈ R and any τ ∈ R under the asymptotic conditions

(10) lim
z→−∞

γt0(s; z) = γ
(−)
t0

(s), lim
z→∞

γt0(s; z) = γt0(s)

with the corresponding curves γ(−)
t0

, γt0 : R →M2n satisfying system (2), and

moreover, with the curve γ(−)
t0

: R →M2n being taken to be hyperbolic [1, 2]

with supp γ
(−)
t0

⊂ Ln
t0 . Now we can construct a so called [1] unstable manifold

W u(γ(−)
t0

) to this hyperbolic curve γ(−)
t0

defined for all τ ∈ R, varying smoothly a

supp γ
(−)
t0

⊂ Ln
t0 . Thus, due to the above construction, the functional manifold

W u(γ(−)
t0

), if subject to weak Whitney topology it is compact, can be imbedded
as a point compact submanifold into M2n, thereby interpreting supports of all
curves solving (9) and (10) where supp γt0 ⊂ Ln

t0 , as a compact neighborhood
L(−)

t0
(H) ⊂ U(Ln

t0) of the compact Lagrangian submanifold Ln
t0 ⊂ M2n looked

for above.
The same construction can evidently be made in the case of conditions (10)

replaced with either

(10a) lim
z→+∞

γt0(s; z) = γ
(+)
t0

(s), lim
z→−∞

γt0(s; z) = γt0(s),

or

(10b) lim
z→−∞

γt0(s; z) = γ
(−)
t0

(s), lim
z→∞

γt0(s; z) = γ
(+)
t0

(s),

where γ(−)
t0

: R →M2n and γ
(+)
t0

: R →M2n are some strictly different hyper-

bolic curves on M2n with supp γ
(±)
t0

⊂ Ln
t0 and solving (2). Based on (10a)

one similarly constructs the stable manifold W s(γ(+)
t0

(s)) to a hyperbolic curve

γ
(+)
t0

and further the corresponding compact neighborhood L(+)
t0

(H) ⊂ U(Ln
t0)

of the compact Lagrangian submanifold Ln
t0 ⊂M2n which is of crucial impor-

tance when studying intersection properties of stable W s(γ(+)
t0

) and unstable

W u(γ(−)
t0

) manifolds. Similarly based on (10b), one constructs the neighbor-
hood Lt0(H) ⊂ U(Ln

t0) of the compact Lagrangian submanifold Ln
t0 ⊂ M2n

being of interest when investigating so called adiabatic perturbations of inte-
grable autonomous Hamiltonian flows on the symplectic manifold M2n.
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Now we make use of some statements [3, 5, 12] about the properties
of the set ΩH constructed above. For a generic choice of the Hamiltonian
function H : M2n × S1 → R, the functional space of curves ΩH is proved
to be finite–dimensional and compact which instantly gives rise to hereditary
finite–dimensionality of the compact neighborhood L(−)

t0
(H) with the compact

manifold structure. To see this, linearize equation (9) in the direction of a
vector field ξ ∈ T (ΩH). This leads to the linearized first-order differential
operator :

(11) Ft0(u)ξ := ∇zξ + J(u)∇sξ +∇ξJ(u)∂u/∂s+∇ξ∇H(u; t0 + s),

where an element u ∈ ΩH |M2n is bounded and satisfies the following equation
stemming from (1.9):

(12) ∂u/∂z + J(u)∂u/∂s+∇H(u; s+ t0) = 0

and ∇z, ∇s and ∇ξ denote here the corresponding covariant derivatives with
respect to metric (7) on M2n. If u ∈ ΩH satisfies (12), a curve γt0 in M2n

has supp γt0 ⊂ Ln
t0 and a curve γ(−)

t0
in Ln

t0 is hyperbolic and nondegenerate
[3], then the operator Ft0(u) : T (ΩH) → T (ΩH) defined by (12) is a Fredholm
operator [12] between appropriate Sobolev spaces. The corresponding pair
(H,J) with J : M2n → End(T (M2n)) satisfying (7) is called regular [3] if every
hyperbolic solution to (2) is nondegenerate [1, 3] and the operator Ft0(u) is
onto for u ∈ ΩH . In general one can prove that the space (H,J )reg ⊂ (H,J )
of regular pairs (H,J) ∈ (H,J ) is dense with respect to the C∞–topology.
Thus, for the regular pairs, it follows from an implicit function theorem [1]
that the space ΩH(γ(−)

t0
) is indeed, for any curve γt0 with supp γt0 ⊂ Ln

t0 ,
a finite–dimensional compact functional submanifold whose local dimension
near u ∈ ΩH(γ(−)

t0
) is exactly the Fredholm index of the operator Ft0(u). As

a simple inference from the finite–dimensionality and compactness of the set
ΩH(γ(−)

t0
), there follows compactness one gets that the corresponding point set

L(−)
t0

(H) is a finite–dimensional and compact submanifold smoothly imbedded

into M2n. The same is evidently true for the point manifolds L(+)
t0

(H) and
Lt0(H) supplying us with compact neighborhoods of the compact Lagrangian
submanifold Ln

t0 ⊂M2n. Let us specify the structure of the manifold L(−)
t0

(H)
more exactly making use of the Floer type analytical results [3, 8, 12] about
the space of solutions to problem (9)–(10). There follows that for any two
curves γ(−), γ : [0, τ ] → Ln

t0 ×S1 satisfying system (2), the following functional

(13) Φ(τ)
t0

(u) :=
1
τ

∫ τ

0
ds

∫
R
dz(|∂u/∂z|2 + |∂u/∂s−XH(u; s+ t0)|2),
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if bounded, satisfies the characteristic equality

(14) Φ(τ)
t0

(u) = A(τ)
t0

(γ(−))−A(τ)
t0

(γ)

for any τ ∈ R. Thereby, in the case of a nonvanishing right hand side of (14),
the functional space ΩH(γ(−)) will not be a priori nontrivial. Similarly, for
any bounded u ∈ L(+)

t0
(H), one finds that

(14a) Φ(τ)
t0

(u) = A(τ)
t0

(γ)−A(τ)
t0

(γ(+)),

where the corresponding curve γ
(+)
t0

: [0, τ ] → M2n satisfies system (2), is

hyperbolic having supp γ
(+)
t0

⊂ Ln
t0 , and the curve γt0 : [0, τ ] → M2n also

satisfies system (2), having supp γt0 ⊂ Ln
t0 , and finally, for u ∈ Lt0(H)

(14b) Φ(τ)
t0

(u) = A(τ)
t0

(γ(−))−A(τ)
t0

(γ(+)),

where γ(±) : [0, τ ] →M2n×S1, τ ∈ R, are taken to be strictly different, hyper-
bolic and with varying supports supp γ(±) ⊂ Ln

t0 . The case of γ(+)
t0

= γ
(−)
t0

needs
some modification of the construction presented above; we shall not dwell on
this here. Thus we have constructed the corresponding neighborhoods L(±)

t0
(H)

and Lt0(H) of the compact Lagrangian submanifold Ln
t0 ⊂M2n consisting of all

bounded solutions to the corresponding equations (9), (10) and (10a,b). Now
based on this fact and analytical expressions (14) and (14a,b) the following
important lemma may be proved.

Lemma 1.1. All neighborhoods L(±)
t0

(H) and Lt0(H) constructed via the
scheme presented above are compact and invariant with respect to the Hamil-
tonian flow of diffeomorphisms ψs ∈Diff(M2n)× S1, s ∈ R.

Let us now consider the case of the neighborhood Lt0(H) ⊂ M2n. The
preceding characterization of the space of curves ΩH leads us, using Mather’s
approach [9], to another description important in applications of the compact
neighborhood Lt0(H), by means of the space of normalized probability mea-
sures Mt0(H) := M(T (Lt0(H))×S) with compact support and invariant with
respect to our Hamiltonian ψ–flow of diffeomorphisms ψs ∈Diff(M2n)×S1, s ∈
R, naturally extended on T (Lt0(H))× S. Due to Lemma 1.1 the Hamiltonian
ψ–flow can be reduced invariantly upon the compact submanifold Lt0(H)× S
⊂ M2n × S. For the properties of this reduced ψ–flow upon Lt0(H) × S to be
studied in more detail, let us assume that our extended Hamiltonian ψ∗–flow
on T (Lt0(H)) × S is ergodic, that is the limτ→∞A(τ)

t0
(γ) doesn’t depend on

initial points (u0, u̇0; t0) ∈ T (Lt0(H))× S.
Recall now that a basic result [13] of functional analysis (the Riesz rep-

resentation theorem) states that the set of Borel probability measures on a
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compact metric space X is a subset of the dual space C(X)∗ of the Banach
space C(X) of continuous functions on X. It is obviously a convex set and
it is well known [13] to be metrizable and compact with respect to the weak
topology on C(X)∗ defined by C(X), also called the weak (∗)–topology. The
restriction of this topology to the set of Borel measures is frequently called
the vague topology on measures [9]. Since the space Pt0 := T (Lt0(H)) × S is
metrizable and can be as well compactified, it follows that the set of Borel
probability measures on Pt0 is a metrizable, compact and convex subset of the
dual space to the Banach space of continuous functions on Pt0 . The correspond-
ing set Mt0(H) is then evidently a compact, convex subset of this set. The
well known result of Kryloff and Bogoliuboff [14] states that any ψ–flow on a
compact metric space X has an invariant probability measure. This result one
can suitably adapt [9] to our metric compactified space Pt0 := T (Lt0(H))× S
as follows. Take a trajectory γ ∈ ΩH of the extended ψ∗–flow on Pt0with
supp γ ⊂ Lt0(H) × S defined on a time interval [0, τ) ⊂ R and let a measure
µτ on T (Lt0(H)) × S be evenly distributed along the orbit γ. Then evidently
||ψs

∗µτ − µτ || ≤ 2s/τ for all s ∈ [0, τ). Denote by µ a point of accumulation of
the set {µτ : τ ∈ R+} as τ → ∞ with respect to the vague topology before
mentioned. For any continuous function f ∈ C(Pt0), any s ∈ [0, τ) and any
τ0, ε > 0, there exists τ > τ0 such that |

∫
Pt0

f ◦ ψs̄
∗dµ−

∫
Pt0

f ◦ ψs̄
∗dµτ | < ε for

all s̄ ∈ {0, s}. Then it follows from the above estimations

|
∫
Pt0

f ◦ ψs
∗dµ−

∫
Pt0

fdµ| ≤ |
∫
Pt0

f ◦ ψs
∗dµ−

∫
Pt0

f ◦ ψs
∗dµτ |

+ |
∫
Pt0

f ◦ ψs
∗dµτ −

∫
Pt0

fdµτ |+ |
∫
Pt0

fdµτ −
∫
Pt0

fdµ|

≤ 2ε+ ||f || ||ψs
∗µτ − µτ || ≤ 2ε+ 2s||f ||/τ,

that is |
∫
Pt0

f ◦ ψs
∗dµ −

∫
Pt0

fdµ| = 0 since ε > 0 can be taken arbitrarily
small and τ0 > 0 arbitrarily large. Thereby one sees that the constructed
measure µ ∈Mt0(H) is normalized and invariant with respect to the extended
Hamiltonian ψ∗–flow on Pt0 .

Thus, in the case of the ψ∗–flow ergodic on T (Lt0(H)) × S, the above
mentioned limit exists

(15) lim
τ→∞

A(τ)
t0

(γ) =
∫
Pt0

(α(1) −H)dµ

with a 1–form α(1) ∈ Λ1(M2n) being considered above as a function α(1) :
Pt0→ R, since the submanifold Lt0(H) is by construction compact and in-
variantly imbedded into M2n, due to Lemma 1.1. So, it is natural to study
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properties of the functional

(16) At0(µ) :=
∫
Pt0

(α(1) −H)dµ

on the space Mt0(H), where we for brevity omitted the natural pullback of
the 1–form α(1) ∈ Λ1(M2n) upon the invariant compact submanifold Lt0(H) ⊂
M2n. Being interested namely in ergodic properties of ψ∗–orbits on T (Lt0(H))×
S), we shall below develop an analog of the J. Mather Lagrangian measure ho-
mology technique [9, 10] for a more general and complicated case of the
reduced Hamiltonian ψ–flow on the invariant compact submanifold Lt0(H) ⊂
M2n. In particular, we shall construct an analog of the so called Mather β–
function [9] on the homology group H1(Lt0(H); R). The corresponding linear
domains of the Mather β–function generate exactly ergodic components of a
measure µ ∈ Mt0(H) minimizing functional (16), being of great importance
for studying regularity properties of ψ∗–orbits on T (Lt0(H)) × S. The results
can be further extended to adiabatically perturbed integrable Hamiltonian
systems depending on a small parameter ε ↓ 0 via the continuous dependence
H(t) := H̃(εt), where H̃(τ + 2π) = H̃(τ) for all τ ∈ [0, 2π]. It also makes also
possible to state the existence of so called adiabatic invariants with compact
supports in Lt0(H) with numerous applications in mathematical physics and
mechanics. Some of the results can also be applied to investigating the problem
of transversal intersections of the corresponding stable and unstable manifolds
to hyperbolic curves or singular points, connected closely with the existence of
highly irregular motions in a periodic time–dependent Hamiltonian dynamical
system under regard.

2. Invariant measures and Mather’s type β–function. Before study-
ing average functional (16) on the measure space Mt0(H), let us first analyze
properties of the functional

(17)
∮

σ
a(1) :=≺ a(1), σ �

on H1(Lt0(H); R) at a fixed σ ∈ H1(Lt0(H); R). Since the 1–form a(1) ∈
H1(Lt0(H); R) in (17) can be considered as a function a(1) : Pt0→ R, by virtue
of the Riesz theorem [13], there exists a Borel measure µ : Pt0 → R+ (still not
necessary ψ–invariant), such that

(18) ≺ a(1), σ �=
∫
Pt0

a(1)dµ.

The following lemma characterizing the right hand side of (18) holds.
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Lemma 2.1. Let a 1–form a(1) = dλ(0) ∈ Λ1(Lt0(H)) be exact, that is the
cohomology class [dλ(0)] = 0 ∈ H1(Lt0(H);R). Then for any µ ∈Mt0(H)

(19)
∮

σ
a(1) = 0.

Proof. Indeed, for a(1) = dλ(0), where λ(0) : Lt0(H) → R is an absolutely
continuous mapping, the following holds for any τ ∈ R+ due to the Fubini
theorem:

|
∫
Pt0

dλ(0)dµ.| = |1
τ

∫ τ

0
ds

∫
Pt0

dλ(0)(ψs
∗dµ)|(20)

= |1
τ

∫
Pt0

dµ

∫ τ

0
dsd(λ(0) ◦ ψs

∗)/ds|

= |1
τ

∫
Pt0

dµ[λ(0) ◦ ψτ
∗ − λ(0) ◦ ψ0

∗]| ≤ 2||λ(0)||/τ,

as τ → ∞, the latter inequality gives rise to required equality (19), which
proves the lemma.

Thus, the right hand side of (18) defines a well defined functional

(21) H1(Lt0(H); R) 3 a(1) →
∫
Pt0

a(1)dµ ∈ R

on the cohomology space H1(Lt0(H); R). All the above can be formulated as
the following theorem.

Theorem 2.2. Let an element σ ∈ H1(Lt0(H); R) be fixed. Then there
exists a ψ–invariant probability measure (not unique) µ ∈ Mt0(H) such that
representation (18) holds and, vice versa, for any measure µ ∈ Mt0(H) there
exists the homology class σ := ρt0(µ) ∈ H1(Lt0(H); R) such that

(22) ≺ a(1), ρt0(µ) �=
∫
Pt0

a(1)dµ

for all a(1) ∈ H1(Lt0(H); R).

Definition 2.3. ([10]) For any measure µ ∈ Mt0(H) the homology class
ρt0(µ) ∈ H1(Lt0(H); R) is called its homology.

Corollary 2.4. The homology mapping ρt0 : Mt0(H) → H1(Lt0(H); R)
defined within Theorem 2.2 is surjective.

Sketch of a proof of Theorem 2.2. The fact that for each µ∈Mt0(H)
there exists the unique homology class σ := ρt0(µ) ∈ H1(Lt0(H); R) is based on
the well known Poincaré duality theorem [1]. The inverse statement is about
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the surjectivity of the mapping ρt0 : Mt0(H) → H1(Lt0(H); R). For it to be
stated, consider, following [8, 9, 10], a covering space L̄t0(H) over Lt0(H)
defined by the condition that π1(Lt0(H)) = kerht0 , where ht0 : π1(L̄t0(H)) →
H1(Lt0(H); R) denotes the Hurewicz homomorphism [10]. Since the functional
(22) is actually defined on the covering space L̄t0(H), it is necessary to lift all
curves γ ∈ ΩH on Lt0(H)× S to curves γ̃ ∈ Ω̃H on Lt0(H)× S. In the case of
the abelian homotopy group π1(Lt0(H)), the covering space L̄t0(H) becomes
universal, but in general it is obtained as some universal covering of Lt0(H)
factorized further with respect to the action of the kernel of the corresponding
Hurewicz homomorphism ht0 : π1(L̄t0(H)) → H1(Lt0(H); R).

Take now any element σ ∈ H1(Lt0(H); R) and construct a set of so called
Deck transformations τ−1στ ∈ Im ht0 ⊂ H1(Lt0(H); R), τ ∈ R+, approxi-
mating it in such a way that weakly limτ→∞ τ−1στ = σ holds. Put further
x̃τ := στ ◦ x̃0 ∈ Lt0(H)× S, τ ∈ R+, where x̃0 ∈ Lt0(H)× S is taken arbitrary
and consider such a curve γ̃ : [0, τ ] → Lt0(H) × S with end-points γ̃(0) = x̃0,
γ̃(τ) = x̃τ whose projection on Lt0(H)×S is the curve γ ∈ Σt0(H) minimizing
functional (6). Consider also a set {µτ : τ ∈ R+} of probability measures on
Pt0 evenly distributed along corresponding curves γ ∈ Σt0(H) for each τ ∈ R+

and denote by µ a point of its accumulation as τ → ∞. Due to the uniform
distribution of measures µτ , τ ∈ R+, along curves γ ∈ Σt0(H) having the end-
points agreed with above chosen Deck transformations στ ∈ H1(Lt0(H); R),
τ ∈ R+, it immediately follows from the Birkhoff–Khinchin ergodic theorem
[1, 2] that

(23)
∫
Pt0

a(1)dµτ =≺ a(1), τ−1στ ) �

for any a(1) ∈ H1(Lt0(H); R). Passing now to the limit in (23) as τ →∞ and
taking into account that weakly limτ→∞ τ−1στ = σ, one gets right away that
the equality (22) holds for some measure µ ∈ Mt0(H) such that ρt0(µ) =
σ ∈ H1(Lt0(H); R), thereby proving the surjectivity of the mapping ρt0 :
Mt0(H) → H1(Lt0(H); R) and this theorem.

Return now to treating average functional (16) subject to the space of all
invariant measures Mt0(H). Namely, consider the following β–function βt0 :
H1(Lt0(H); R) → R defined as

(24) βt0(σ) := inf
µ
{At0(µ) : ρt0(µ) = σ ∈ H1(Lt0(H); R)}

It will be further called a Mather type β–function, due to its analogy to the
definition before given in [9, 10]. The following lemma holds.



133

Lemma 2.5. Let a 1–form a(1) ∈ H1(Lt0(H); R) be taken arbitrary. Then
the Mather type β–function

(25) β
(a)
t0

(σ) := inf
µ
{A(a)

t0
(µ) : ρt0(µ) = σ ∈ H1(Lt0(H); R)},

where, by definition

(26) A(a)
t0

(µ) :=
∫
Pt0

(α(1) + a(1) −H)dµ,

satisfies the following equation:

(27) β
(a)
t0

(σ) = βt0(σ)+ ≺ a(1), σ) � .

Proof. The proof easily follows from definition (25) and equality (22).

Assume now that the infimum in (24) is attained at a measure µ(σ) ∈
Mt0(H). Then evidently, ρt0(µ(σ))=σ for any homology class σ∈H1(Lt0(H); R).
Denote by M(σ)

t0
(H) the set of all measures in Mt0(H) minimizing the func-

tional (24). In the next chapter we shall proceed to studying its ergodic and
homology properties.

3. Ergodic measures and their homologies. Consider the introduced
above Mather type β–function β

(a)
t0

: H1(Lt0(H); R) → R for any a(1) ∈
H1(Lt0(H); R). It is evidently a convex function on H1(Lt0(H); R), that is
for any λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, and σ1, σ2 ∈ H1(Lt0(H); R) the following
inequality holds:

(28) β
(a)
t0

(λ1σ1 + λ2σ2) ≤ λ1β
(a)
t0

(σ1) + λ2β
(a)
t0

(σ2).

As usually dealing with convex functions, one says that an element σ ∈
H1(Lt0(H); R) is extremal point [13] if β(a)

t0
(λ1σ1 + λ2σ2) < λ1β

(a)
t0

(σ1) +

λ2β
(a)
t0

(σ2) for all λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1, and σ = λ1σ1 + λ2σ2. Ac-
cordingly, we shall call a convex set Zt0(H) ⊂ H1(Lt0(H); R) a linear domain
of the Mather type function (25) if

(29) β
(a)
t0

(λ1σ1 + λ2σ2) = λ1β
(a)
t0

(σ1) + λ2β
(a)
t0

(σ2)

for any σ1, σ2 ∈ Zt0(H) and λ1, λ2 ∈ R. It is now easy to see that if σ ∈
H1(Lt0(H); R) is extremal, then the set M(σ)

t0
(H) contains [15] ergodic min-

imizing measure components. Namely, following [9, 10] one states that if
Zt0(H) is a linear domain and P(σ)

t0
⊂ Pt0 is the closure of the union of the

supports of measures µ(σ) ∈ M(σ)
t0

(H) with σ ∈ Zt0(H), then the set P(σ)
t0
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is compact and the inverse mapping (pt0 |P(σ)
t0

)−1 : pt0(P
(σ)
t0

) → P(σ)
t0

is Lips-

chitzian, where pt0 : Pt0 → Lt0(H) × S is the standard projection, being in-
jective upon P(σ)

t0
. Moreover, one can show [9] that if a measure µ ∈M(σ)

t0
(H)

is minimizing functional (26), then its support supp µ ⊂ P(σ)
t0

and all its
ergodic components {µ̄} are minimizing this functional too, and the convex
hull of the corresponding homologies conv{ρt0(µ̄)} is a linear domain Z(σ)

t0
(H)

of the Mather type β–function (25). These results are of much inportance
for a number of applications in dynamics. In particular, ergodic measures are
well known to possess the crucial property that every invariant Borel set has
measure either 0 or 1, giving rise to the following important equality:

(30) lim
τ→∞

A(τ)
t0

(γ) = At0(µ̄))

uniformly on (γt0,(0), γ̇t0(0); t0) ∈ Pt0∩ supp µ̄, where γ ∈ Σt0(H). All of the
properties formulated above are inferred from the following theorem modelling
the similar one in [10].

Theorem 3.1. Let a measure µ ∈ Mt0(H) be minimizing functional (26)
and satisfying the condition β

(a)
t0

(ρt0(µ)) = At0(µ). Then supp µ ⊂ Σt0(H)
and the convex hull of the set of homologies ρt0(µ̄) ∈ H1(Lt0(H); R), where
{µ̄} ⊂ Mt0(H) are the corresponding ergodic components of the measure µ ∈
Mt0(H), is a linear domain Zt0(H) of Mather type β–function (25).

Sketch of a proof. Let ht0 : π1(Lt0(H)) → H1(Lt0(H); R) be the cor-
responding Hurewicz homomorphism and take some basis σk ∈ im ht0 ⊂
H1(Lt0(H); R), k = 1, r, where r = dim im ht0 , with its dual basis a(1)

j ∈
H1(Lt0(H); R), j = 1, r. Then for any points x̃, ỹ ∈ Lt0(H)× S one can define
an element ξ(τ)(x̃, ỹ|γ̃) ∈ H1(Lt0(H); R) as the sum

(31) ξ(τ)(x̃, ỹ|γ̃) :=
1
τ

r∑
j=1

σj

∫ τ

0
ã

(1)
j (γ̃),

where γ : [0, τ ] → Lt0(H) × S is any continuous arc joining these two chosen
points x̃, ỹ ∈ Lt0(H) × S, and ã

(1)
j ∈ H1(Lt0(H); R) are the corresponding

liftings of 1–forms a(1)
j ∈ H1(Lt0(H); R), j = 1, r, to L̄t0(H). One can then

show that if µ ∈ Mt0(H) is ergodic and supp µ ⊂ Σt0(H), the measure
µ is minimizing functional (26). Put σ := ρt0(µ) and let a set Zt0(H) ⊂
H1(Lt0(H); R) be a supporting domain containing this homology class σ ∈
H1(Lt0(H); R). Thus, one can see that the extremal points of the convex set
Zt0(H) are also extremal points of Mather type β–function (25). Next expand
the homology class σ = ρt0(µ) as a convex combination of extremal points
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σ̄j ∈ Zt0(H), j = 1,m, for some m ∈ Z+. Then, since elements σ̄j ∈ Zt0(H),
j = 1,m, are extremal, there exist ergodic measures µ̄j ∈M

(σj)
t0

(H), j = 1,m,

such that ρt0(µ̄j) = σ̄j , j = 1,m. Moreover, since Z(σ)
t0

(H) is a linear domain,
there easily follows that

(32) β
(a)
t0

(σ) =
m∑

j=1

cjβ
(a)
t0

(σ̄j) =
m∑

j=1

cjA(a)
t0

(µ̄j),

where σ =
∑m

j=1 cj σ̄j with some real coefficients cj ∈ R, j = 1,m. Due to the
ergodicity of the measure µ ∈ Mt0(H) from the Birkhoff–Khinchin ergodic
theorem [1], one derives that there exists such an orbit γ̃ : [0, τ} → Lt0(H)×S
with the supp γ ⊂ supp µ such that property (30) and the equality

(33) σ := ρt0(µ) = lim
τ→∞

ξ(τ)(x̃, ỹ|γ̃)

hold. Further, there exist curves γ̃j ∈ Σt0(H), supp γj ⊂ supp µ̄j , j = 1,m,
such that the equalities

(34) σ̄j := ρt0(µ̄j) = lim
τ→∞

ξ(τ)(x̃, ỹ|γ̃j)

as well as β(a)
t0

(σ̄j) = A(a)
t0

(µ̄j) = limτ→∞A(τ)
t0

(γ̃j) hold for every j = 1,m.
Under conditions (14b) applied to the invariant neighborhood Lt0(H), one
shows that for any measure µ ∈Mt0(H) such that ρt0(µ) = σ, the inequality
A(a)

t0
(µ) ≤ β

(a)
t0

(ρt0(µ)) holds, thereby proving its minimality. Suppose now
that the measure µ ∈ Mt0(H) has all its ergodic components with supports
contained in Σt0(H) and the convex hull of its homologies is a linear domain of
Mather type function (25). One can approximate a measure µ ∈ Mt0(H) (in
the weak topology) by means of a convex combination µ̂ :=

∑m
j=1 ĉjµ̄j , where

ĉj ∈ R and µ̄j ∈ Mt0(H), j = 1,m, are ergodic components of the measure
µ ∈ Mt0(H). Then supp µ̄j ⊂ Σt0(H), implying that all µ̄j ∈ Mt0(H),
j = 1,m, are minimizing (26), that is they are minimal. Therefore, since the
convex hull of homologies {ρt0(µ̄j) ∈ H1(Lt0(H); R) : j = 1,m} is a linear
domain due to its minimality, then

A(a)
t0

(µ̂) =
m∑

j=1

ĉjA(a)
t0

(µ̄j) =
m∑

j=1

ĉjβ
(a)
t0

(ρt0(µ̄j))(35)

= β
(a)
t0

(ρt0(
m∑

j=1

ĉjµ̄j)) = β
(a)
t0

(ρt0(µ),

obviously meaning that the measure µ̂ ∈Mt0(H) is minimal too. Now making
use of the fact that limits of minimizing measures are minimizing too, one
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finally obtains that the measure µ ∈ Mt0(H) is minimizing the functional
(26), thereby proving the theorem.

Consider some properties of a so called [10] supporting domain

(36) Z
(a)
t0

(H) := {σ ∈ H1(Lt0(H); R) : β(a)
t0

(σ) =≺ a(1), σ � +c(a)
t0
}

for Mather type β–function (25) at some fixed a(1) ∈ H1(Lt0(H); R) with
c
(a)
t0
∈ R properly defined by (27). Define also by P(a)

t0
:= ∪

σ∈Z
(a)
t0

(H)
supp µ(σ),

where µ(σ) ∈ Mt0(H) and ρt0(µ(σ)) = σ ∈ Z
(a)
t0

(H). Now using expression

(27), describe a supporting domain Z(a)
t0

(H) ⊂ H1(Lt0(H); R) as follows:

(37) Z
(a)
t0

(H) = {σ ∈ H1(Lt0(H); R) : β(0)
t0

(σ) = c
(a)
t0
},

where the function β(0)
t0

: H1(Lt0(H); R) being bounded from below is chosen in

such a way that β(0)
t0

(σ) ≥ c
(a)
t0

for all σ ∈ H1(Lt0(H); R). Now take a measure

µ ∈ Mt0(H) and suppose that supp µ ⊂ Σt0(H). Since β(0)
t0

(σ) ≥ c
(a)
t0

for all

σ ∈ H1(Lt0(H); R) and due to (37) Z(a)
t0

(H) = (β(0)
t0

)−1{c(a)
t0
} at some fixed

a(1) ∈ H1(Lt0(H); R), which evidently implies that the measure µ ∈ Mt0(H)
is minimizing functional (26) and ρt0(µ) ∈ Z

(a)
t0

(H). Thereby the following
theorem has been proved.

Theorem 3.2. Suppose that Z(a)
t0

(H) ⊂ H1(Lt0(H); R) is a supporting do-
main of Mather type function (27) and a measure µ ∈ Mt0(H) satisfies the
condition supp µ ⊂ Σt0(H). Then this measure µ ∈Mt0(H)is minimizing and
ρt0(µ) ∈ Z(a)

t0
(H).

The following corollaries from the Theorem 3.2 hold. (cf. [10])

Corollary 3.3. The minimizing measure µ ⊂ Mt0(H) with supp µ ⊂
Σt0(H) satisfies the condition A(0)

t0
(µ) = c

(a)
t0
. By means of choosing the element

a(1) ∈ H1(Lt0(H); R) one can assume the value c(a)
t0

= 0.

Corollary 3.4. For any strictly extremal closed curve σ ∈ H1(Lt0(H); R),
the following properties take place:

i) there exists an ergodic measure µ̄(σ) ∈Mt0(H) whose support is a min-
imal set and ρt0(µ̄(σ)) = σ;

ii) for every closed 1–form a(1) ∈ H1(Lt0(H); R) the equality ≺ a(1), σ �=
limτ→∞

1
τ

∫ t0+τ
t0

a(1)(γ̇)ds holds uniformly for all (γt0(0), γ̇t0(0); t0) ∈ Pt0∩
supp µ̄(σ), ρt0(µ̄(σ)) = σ and γ ∈ Σt0(H);
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iii) if (γt0(0), γ̇t0(0); t0) ∈ Pt0∩ supp µ̄(σ), ρt0(µ̄(σ)) = σ and γ ∈ Σt0(H) is

the corresponding orbit in Lt0(H) × S, then β
(a)
t0

(σ) = limτ→∞A(τ)
t0

(γ)
uniformly.

The above formulated statements can be effectively used for studying dy-
namics of many perturbed integrable Hamiltonian flows and their regularity
properties. As it is well known, they are strongly based on the intersection
theory of stable and unstable manifolds related with either hyperbolic closed
orbits or singular points of a Hamiltonian system under regard. These aspects
of our study of ergodic measure and homology properties of such Hamiltonian
flows will be assumed in another paper under preparation.
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