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MINIMAL NILPOTENT BASES FOR GOURSAT

DISTRIBUTIONS OF CORANKS NOT EXCEEDING SIX

by Piotr Mormul

Abstract. After bringing in some basic notions of the theory of nilpotent
approximations, we first give a new proof, this time entirely independent
of the work [12], of a result proved in [19] (and earlier still in [18]) that
Goursat distributions of arbitrary corank locally possess nilpotent bases
of explicitly computable orders of nilpotency of the generated Lie algebras
(KR algebras). Recalling that the germs of such distributions are stratified
into geometric classes of Jean, Montgomery and Zhitomirskii, in certain
geometric classes termed tangential, the computed nilpotency orders of KR
algebras turn out to coincide with the nonholonomy degrees, computed by
Jean, at the reference points for germs. In the tangential classes, then,
the nilpotency orders of KR algebras are minimal among all possible nilpo-
tent bases. As regards the remaining (non-tangential) classes, it is a vast
standing Question whether the KR algebras realize the minimum of pos-
sible nilpotency orders; the difference between their nilpotency orders and
nonholonomy degrees is unbounded as corank/length tends to infinity. In
small lengths – through 5 inclusively, and also for 8 non-tangential classes
in length 6 (out of altogether 18 non-tangential existing in that length 6)
– we show that the answer is yes: the nilpotency orders of KR algebras
cannot be lowered. This extended experience makes plausible a general
answer to Question in the affirmative.

1. Nilpotent approximation of a distribution at a point. We want
to start from some notions related to the nilpotent approximations of geometric
distributions. For any distribution D of rank d on an n–dimensional, smooth
or real analytic, manifold M (i. e., a rank–d subbundle in the tangent bundle
TM) its small flag is the nested sequence

V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ · · ·
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of modules (or: presheaves of modules) of vector fields (of the same category
as M) tangent to M : V1 = D, Vj+1 = Vj +[D, Vj ] for j = 1, 2, . . . The small
growth vector at p ∈ M is the sequence (nj) of linear dimensions at p of the
modules Vj : nj = dimVj(p). Naturally, n1 = d independently of p.

D is completely nonholonomic when at every point of M its small growth
vector attains (sooner or later) the highest value n = dimM . Once this value
is attained, we truncate the vector after the first appearance of n in it. The
length dNH of thus truncated vector is called the nonholonomy degree of D
at p.

In the theory that we only sketch here (cf. [9], [1], [4], [5], [10], [3]; this list
of references is not complete) important are the weights wi related to the small
flag at a point: w1 = · · · = wd = 1, wd+1 = · · · = wn2 = 2 (no value 2 among
them when n2 = n1 (= d), and generally

(1) wnj+1 = · · · = wnj+1 = j + 1

(no value j + 1 among the w’s when nj = nj+1) for j = 1, 2, . . .

Definition 1. For a completely nonholonomic distribution D on M ,
coordinates z1, z2, . . . , zn around p ∈ M are linearly adapted at p when
D(p) = (∂1, . . . , ∂d), V2(p) = (∂1, . . . , ∂d, . . . , ∂n2), and so on until VdNH

(p) =
(∂1, . . . , ∂n) = TpM . Here and in the sequel we skip writing ‘span’ before a set
of v. f. generators.
For such linearly adapted coordinates we define their weights w(zi) = wi,
i = 1, . . . , n.

On the other hand, having a completely nonholonomic D, every smooth
function f on M near p has its nonholonomic order wrt D at p (+∞ is not
excluded). It is the minimal number of differentiations of f along the local
generators of D that give at p a nonzero result.
It follows directly from the above definitions that, for linearly adapted coor-
dinates, their nonholonomic orders do not exceed their weights. Linearly
adapted coordinates z1, . . . , zn are adapted (or: privileged ) when the non-
holonomic order of zi equals w(zi), i = 1, . . . , n. (In particular, adapted
coordinates must vanish at p; one says that they are centered at p.)

It is not immediate to show, but adapted coordinates always exist, and
can even be algorithmically constructed from any à priori given coordinates,
even in a polynomial way, as is done, e. g., in [1] or [3]. They are not unique,
there remains plenty of liberty behind the requirement that the nonholonomic
orders (of linearly adapted coordinates) be maximal possible. In adapted coor-
dinates it is purposeful to attach quasihomogeneous weights also to monomial
vector fields (this definition goes back to the 1970s, to the theory of differential
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operators; for geometric distributions, see in this respect [1], p. 215),

(2) w(zi1 · · · zik∂j) = w(zi1) + · · ·+ w(zik)− w(zj) .

Proposition 1. Every smooth vector field X with values in D has in its
Taylor expansion in arbitrary coordinates adapted for D terms only of weights
not smaller than −1 that can be grouped in homogeneous summands X =
X(−1) + X(0) + X(1) + · · ·

(superscripts mean the weights defined by (2)). We denote by X̂ the lowest
(‘nilpotent’) summand X(−1). That is, X̂ = X(−1).
When a distribution D has local generators (vector fields) X1, . . . , Xd around
p, then

Definition 2. The distribution D̂ =
(
X̂1, . . . , X̂d

)
is called the nilpotent

approximation of D at p.

This object D̂ is invariantly defined, independently of the used adapted
coordinates, see Prop. 5.20 in [3]. Its basic properties are included in the
following proposition.

Proposition 2. The nilpotent approximation D̂ of D has at p the same
small growth vector as D (and hence the same nonholonomy degree dNH).
Moreover, the real Lie algebra generated by X̂1, . . . , X̂d is a nilpotent Lie alge-
bra of nilpotency order dNH.

(The nilpotency order of a Lie algebra is the minimal number of multipli-
cations in that algebra yielding always zero, cf. p. 239 in [14].)

Definition 3 ([2]). Distribution D is strongly nilpotent at a point p when
its germ at p is equivalent to its nilpotent approximation D̂ at p.

Definition 4 ([11], [19]). Distribution D is weakly nilpotent at a point
p when D possesses, locally around p, a basis generating over R a nilpotent
(real) Lie algebra of vector fields.

Strong nilpotency clearly implies the weak one (cf. Prop. 2). In the found-
ing work [11], and posterior control theory literature, weakly nilpotent distri-
butions are called nilpotentizable. Nilpotent approximations, and in particular
strongly nilpotent distributions play a growing role in sub-Riemannian geom-
etry ([3], [2], also recent works by Bonnard, Chyba, Trelat, Sachkov, to name
but few).

2. Kumpera–Ruiz algebras of Goursat distributions. In the sequel
we deal with Goursat distributions – a rather restricted class of objects for
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which preliminary (local) polynomial normal forms of [13] exist with real pa-
rameters only, and no functional moduli. Their definition requires that the
sequence of consecutive Lie squares of the original rank–2 subbundle of TM
consist of regular distributions of ranks 3, 4, . . . until n = dimM . In [20]
we already recalled a basic partition of Goursat germs into disjoint geometric
classes encoded with words of length n− 2 over the alphabet G, S, T, with the
first two letters always G and such that never a T goes directly after a G. Their
construction was done by Montgomery and Zhitomirskii; it is reproduced in
Sec. 1.3 of [17]. (Implicitly these classes are already present in a pioneering
work [12], in which the author uses a trigonometric presentation of Goursat
objects.)

In dimension 4, there is but one class GG, in dimension 5 – GGG and GGS
only, in dimension 6 – GGGG, GGSG, GGST, GGSS, GGGS.

The union of all geometric classes (‘quarks’) of fixed length with letters
S in fixed positions in the codes is called, after [15], a Kumpera–Ruiz class
(a ‘particle’) of Goursat germs of that corank. For instance, in dimension
6, the two geometric classes GGSG and GGST build one KR class ∗ ∗ S ∗.
In dimension 7 the geometric classes GGSGG, GGSTG, and GGSTT build
∗ ∗ S ∗ ∗.

What are the mentioned polynomial (local) presentations of Goursat ob-
jects? The essence of the contribution [13], given in the notation of vector fields
and taking into account posterior works, is as follows. Let us construct first a
(not unique, depending on a number of real parameters) rank–2 distribution
on (Rn(x1, . . . , xn), 0) departing from the code of a geometric class C.

When the code starts with precisely s letters G, one puts
1
Y = ∂1,

2
Y =

1
Y +x3∂2 , . . . ,

s+1
Y =

s
Y +xs+2∂s+1. When s < n− 2, then the (s+1)-th letter

in C is S. More generally, if the mth letter in C is S, and
m
Y is already defined,

then
m+1
Y = xm+2

m
Y + ∂m+1 .

But there can also be T’s or G’s after an S. If the m-th letter in C is not S,

and
m
Y is already defined, then

m+1
Y =

m
Y +

(
cm+2 + xm+2

)
∂m+1 ,

where a real constant cm+2 is not absolutely free but

• equal to 0 when the m-th letter in C is T,
• not equal to 0 when the m-th letter is G going directly after a string

ST. . .T (or after a short string S).
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Now, on putting X = ∂n and Y =
n−1
Y , and understanding (X,Y) as the

germ at 0 ∈ Rn, we may recall the following theorem.

Theorem 1 ([13]). Any Goursat germ D on a manifold of dimension n,
sitting in a geometric class C, can be put (in certain local coordinates) in a
form D = (X, Y), with certain constants in the field Y corresponding to G’s
past the first S in C.

Definition 5. The real Lie algebra LR(X, Y) generated by X and Y is
called the KR algebra of the germ D. This algebra does not depend on the
choice of coordinates in Thm. 1, although the constants in Y do.

Remark 1. A short analysis shows that this algebra depends only on the
Kumpera–Ruiz class C of D; henceforth we will write it as LR(C).
Indeed, take two KR pseudo-normal forms (X,Y) and (X, Ỹ) of two germs D

and D̃, resp., sitting in C; these germs may well belong to different geometric
classes. Only the alternatives (•), (••) occur one and the same at a time,
simultaneously in the stepwise construction of both Y and Ỹ – the block
structures of these fields are the same, but they differ in constants. We will
construct an ‘inner’ isomorphism of LR(X, Y) and LR(X, Ỹ) induced by a
diffeomorphism φ of the underlying space Rn into itself sending X to itself,
and Y to Ỹ. To this end, denote the constants in Y (resp., Ỹ) by cj (resp.,

c̃j ; cf. the recursive definition of Y =
n−1
Y ), j ∈ J , zero values not excluded.

Then a simple φ = Tv does, where Tv means the translation in Rn by the
vector v =

∑
j∈J (cj − c̃j)∂j . (This translation replaces the constants in Y by

those in Ỹ.)

In 2000 we proved, answering a 1998 question of Sussmann, the following.

Theorem 2 ([19]). The KR algebra of any Kumpera–Ruiz class of length
r encoded with the word C, LR(C), is nilpotent of nilpotency order OC = dr,
where dr is the last term in the sequence d1, d2, . . . , dr defined as follows:
d1 = 2, d2 = 3, dj+2 = dj + dj+1 when the (j + 2)-th letter in C is S, and
dj+2 = 2dj+1 − dj when the (j + 2)-th letter in C is ∗ .

Note that, in [22], a weaker result stating just the nilpotency of the algebras
LR(X, Y) – the existence of finite nilpotency orders for them – is given (with
the last, fifth item of the relevant proof on p. 631 being, besides, incorrect
– implying by far unrealistically small, sublinear in function of the length
r, nilpotency orders), and no discussion of more universal objects – algebras
depending only on KR classes – is undertaken.
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In the present paper we propose, in Sec. 4, a new proof of this theorem.
This proof, in contrast to the original one in [18] and [19], is more algebraic
and entirely independent of the results of [12]. Cf. also Rem. 2 in this respect.

Definition 6. We call tangential geometric classes whose codes possess
letters G only at the beginning, before the first S (if any) in the code. Tan-
gential Goursat germs are those sitting in the tangential classes.

Example 1. Up to dimension 5, all geometric classes are tangential. The
first and unique non-tangential class in dimension 6 is GGSG. In dimension 7,
there are eight tangential classes and five non-tangential: GGSGG, GGSTG,
GGSGS, GGGSG, GGSSG. In dimension 8, there are sixteen tangential and
eighteen non-tangential geometric classes (cf. Thm. 4 below). In a general
dimension n, there are as many tangential classes as KR classes, that is to
say, 2n−4 (one replaces all ∗’s past the first S in the code of a KR class with
letters T).

Tangential classes become clearly visible when one uses the polynomial
presentation of Kumpera–Ruiz.

Observation 1. A Goursat germ D is tangential ⇐⇒ in any KR presen-
tation (X, Y) of D there is no non-zero constant

(so tangential germs are easily given local models with no parameters).

3. Minimality of KR algebras in Goursat germs of small coranks.
How to compute the degree of nonholonomy of Goursat germs? The answer
(given by Jean originally only for the car systems) is, after all, included in [12],
because the car systems are universal models for germs of Goursat distributions
(i. e., for the Goursat objects understood locally). In fact, it is proved in [15]
that the car model with r−1 trailers is the r times Cartan prolongation of the
tangent bundle to a plane, and hence is modelling all corank–r Goursat germs.
A key underlying structural theorem in this respect is Thm. 4.1 in [6], see [21]
for (much) more comments on that. The essence of Jean’s results in [12] can
be conveyed – after taking into account the above remarks – as follows.

Theorem 3 ([12]). The nonholonomy degree dG of any corank–r Gour-
sat germ in the geometric class G equals the last term br in the sequence
b1, b2, . . . , br defined only in terms of G: b1 = 2, b2 = 3,
bj+2 = bj + bj+1 when the b(j + 2)-th letter in G is S,
bj+2 = 2bj+1 − bj when the (j + 2)-th letter in G is T,
bj+2 = 1 + bj+1 when the (j + 2)-th letter in G is G.

The formulas in Thm. 2 have much in common with the ones in this the-
orem, so that it imposes by itself to ask about the relationship between the
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nonholonomy degrees and nilpotency orders. It is a general geometric fact
that, whenever they both exist, the former do not exceed the latter. And this
is clearly visible on the level of Goursat distributions, for the sequences b in
Thm. 3 grow not faster (and often slower) than the sequences d in Thm. 2.
This is due to the third alternative bj+2 = 1 + bj+1 being absent in the defini-
tion of the sequences d.
In fact, within any fixed KR class C, the nonholonomy degrees dG associated
to geometric classes G sitting in C clearly do not exceed OC , and are equal to
OC only when the mentioned third alternative is not applied past the first (if
any) letter S in G. That is, only when G is the tangential class in C.

So within tangential classes, the KR algebras cannot be improved in the
sense of lowering nilpotency orders. (Also, the germs in tangential classes
are all strongly nilpotent, cf. [19], and thus the KR algebras have realizations
already on the level of nilpotent approximations – of certain Goursat germs.)

Question. How is it in non-tangential classes? Do there exist there Gour-
sat germs with better nilpotent bases – with lower nilpotency orders?

This Question makes sense from dimension 6 onwards (see Ex. 1). We
announce below the full answer in dimensions 6 and 7 (addressing all non-
tangential classes in these dimensions; it is an improvement over [18] where the
dimension 7 was not yet completely settled), and a partial answer in dimension
8, addressing eight out of eighteen non-tangential classes of corank–6 Goursat
distributions.

Theorem 4.
A. In dimension 6, for the germs in the class GGSG, the nilpotency order
O = 7 is minimal among all possible local nilpotent bases for them, despite the
fact that the nonholonomy degree d = 6 for these germs.

B. In dimension 7, for the germs in the geometric classes in the left column:

Geometric class G dG Encompassing KR class C OC

GGSGG 7 ∗ ∗ S ∗ ∗ 9
GGSTG 8 ∗ ∗ S ∗ ∗ 9
GGGSG 8 ∗ ∗ ∗ S ∗ 10
GGSSG 9 ∗ ∗ SS ∗ 11
GGSGS 11 ∗ ∗ S ∗ S 12

their respective KR algebras are of minimal possible nilpotency orders.

C. In dimension 8, for the germs in the non-tangential classes in the left
column:
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Geometric class G dG Encompassing KR class C OC

GGSGGG 8 ∗ ∗ S ∗ ∗ ∗ 11
GGSTGG 9 ∗ ∗ S ∗ ∗ ∗ 11
GGSTTG 10 ∗ ∗ S ∗ ∗ ∗ 11
GGSGSG 12 ∗ ∗ S ∗ S ∗ 17
GGSTSG 13 ∗ ∗ S ∗ S ∗ 17
GGSGST 16 ∗ ∗ S ∗ S ∗ 17
GGGSGS 15 ∗ ∗ ∗ S ∗ S 17
GGSSGS 17 ∗ ∗ SS ∗ S 19

their respective KR algebras are of minimal possible nilpotency orders, too.

These first results show that belonging to a specific geometric class, as far
as nilpotency orders are concerned, is not additionally advantageous. There
seems to be one common nilpotent algebra covering all ‘quarks’ – geometric
classes building one ‘particle’ – a KR class of Goursat germs. We do not yet
know the answer for the remaining ten non-tangential classes in dimension 8.
In Sec. 5 below, a proof of the part A is given. Proofs of parts B and C,
using the local models found in [13], [8], will be presented elsewhere. They
are ideologically similar, but much longer in some fragments.

Corollary 1. In dimension 6 and 7, for all Goursat germs in the non-
tangential geometric classes, their nilpotent approximations are not equivalent
to the departure germs. The same concerns the germs in dimension 8 sitting
in the eight non-tangential classes listed in Thm. 4,C. Thus those germs are
not strongly nilpotent.

(It is so because of the second property of nilpotent approximations recalled
in Prop. 2.) The weak form of nilpotency – possession of a nilpotent basis –
thus appears much weaker than the strong form of nilpotency of a distribution
germ.

Making a point now, Question formulated after Thm. 3 specifies to two
conjectures:1 the strong one says that the pattern emerging from Thm. 4 is valid
for all non-tangential geometric classes in all dimensions: that KR algebras
are always optimal. The weak one, implied by the strong, is that the notions
‘tangential’ and ‘strongly nilpotent’ simply coincide for Goursat objects.

4. A new proof of Theorem 2. By Rem. 1, we can work with a KR
pseudo-normal form (X,Y) of any representative D of the KR class C. Choose
for simplicity any fixed tangential (see Def. 6) germ D in C. Then, by Obs. 1,
all constants in (X,Y) are zero. In the first place, a linear-algebra formula for

1 Having already appeared in [19].
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the nilpotency order OC of LR(X, Y) = LR(C) will be obtained, after which
the desired answer dr will be identified in that algebraic formula.
We are going to propose certain – very natural for KR presentations of tan-
gential germs – weights w(xl) and w(∂l) = −w(xl), l = 1, 2, . . . , r + 2 (the
notation coincides with that of Def. 1, because these coordinates are linearly
adapted for (X,Y) at 0; they are even adapted – see the previous proof in [19]).

When any weights are thus attached to both variables and versors, different
terms in expansions of arbitrary vector fields are also given their weights by
the classical formula (2). Our proposal is such that X and all terms in Y are
of constant weight −1, which we write down as

(3) w(X) = w(Y) = −1.

This claimed homogeneity of the polynomial (and involved) field Y =
r+1
Y ,

along with that of all fields
r
Y ,

r−1
Y , . . . ,

1
Y , is the key ingredient of the proof.

The definition of weights is recursive from r + 2 backwards to 1. At the

beginning we declare w
( r+1

Y
)

= w(∂r+2) = −1, hence also declare w(xr+2) = 1.

Assume now, for 1 ≤ m ≤ r, that w
(m+1

Y
)

< 0 and w(xm+2) > 0 are already
defined. The recursive definition depends on the positions of ∗ and S’s in C,
determining the way of prolonging the sequence of vector fields in question.

(•) If
m+1
Y =

m
Y + xm+2∂m+1 (i. e., the m-th place in C is ∗), then we put

w
(m
Y
)

= w
(m+1

Y
)
, w(∂m+1) = w

(m+1
Y
)
− w(xm+2).

(••) If
m+1
Y = xm+2

m
Y + ∂m+1 (the m-th place in C is S), then we put

w
(m
Y
)

= w
(m+1

Y
)
− w(xm+2), w(∂m+1) = w

(m+1
Y
)
.

At the last step (m = 1), w
( 2
Y
)

= w(∂1 + x3∂2) < 0 and w(x3) > 0 are

assumed known, making w(∂1) = w
( 1
Y
)

= w
( 2
Y
)

and w(∂2) = w
( 2
Y
)
−

w(x3) known.

In the outcome, w(xr+2), w(xr+1), . . . , w(x3), and w(x2) = −w(∂2), w(x1) =
−w(∂1) are all defined in such a way that (3) is guaranteed. Observe that
two variables, xr+2 and xj s. t. Y(0) = ∂j

2 (when C = GG . . .G – model (C)

2 The absence of constants in the field Y plays off, for the first time, here.
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– it is just x1), have weight 1, and all the remaining coordinates have weights
larger than 1. Moreover,

Lemma 1. These r weights exceeding 1 are all different. Moreover still,
w(x2) is the largest one of them.

Proof. We will prove that all versors but ∂r+2, ∂j have different weights
smaller than −1. To this end, write the alternatives (•) and (••) in a different
way as

(•′)

(
w
(m
Y
)

w(∂m+1)

)
=
(

1 0
1 1

)(
w
(m+1

Y
)

w(∂m+2)

)
and

(••′)

(
w
(m
Y
)

w(∂m+1)

)
=
(

1 1
1 0

)(
w
(m+1

Y
)

w(∂m+2)

)
.

Now observe that each vector field
m
Y from among

r
Y ,

r−1
Y , . . . ,

1
Y , has one bare

versor, say ∂l, as a component, and, by our definitions, w
(m
Y
)

= w(∂l). Thus
the components of all vectors standing in (•′) and (••′) are the weights of
certain versors. Also, either of the operators

(4) ←−∗ =
(

1 0
1 1

)
,

←−
S =

(
1 1
1 0

)
applied to a vector with both negative components a, b yields a new vector
with one component smaller than min(a, b). Therefore, in the sequence of r
linear transformations

(5)
(
−1
−1

)
=

(
w
( r+1

Y
)

w(∂r+2)

)
→

(
w
( r
Y
)

w(∂r+1)

)
→ · · · →

(
w
( 1
Y
)

w(∂2)

)
,

at each step a new weight of a versor is produced (in the upper or lower compo-
nent of vectors – in function of the alternative taking effect), and that weight
is smaller, hence different from all previously produced weights. Altogether
one gets r different weights smaller than −1.
Because the code C starts with an ∗ (even with at least two ∗’s, as we know

from Thm. 1), it is the alternative (•′) that is used in passing from

(
w
( 2
Y
)

w(∂3)

)

to

(
w
( 1
Y
)

w(∂2)

)
. Consequently, w(∂2) is the lowest negative weight of a versor,

and w(x2) is the highest positive weight of a coordinate.
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Consider now the small flag {Vj} of D, V1 = D, and the small growth
vector {nj} of D at the reference point 0 ∈ Rr+2. Think about the (possibly
rare) moments when the jumps of dimensions nj−1 < nj take place, and try
to say more about those jumps. The pure products of precisely j factors
from among {X, Y} that fall in Vj(0) \ Vj−1(0) are – by our constructions
– homogeneous of weight −j. This is the key moment in the proof. Due to
the absence of constants, they are combinations of certain bare versors ∂l of
that weight −j. Hence there are versors of weight −j. On the other hand, by
Lem. 1, w(∂l) = −j implies that there is just one such ∂l. Consequently,

(6) nj = 1 + nj−1

(the jumps in dimensions are only, from time to time, by 1). Specializing the
general notation of Sec. 1 to the Goursat case, d = 2 and the integers wi can
be neatly characterized.

Indeed, let us write the dimensions simpler as nj = i. Then the defining
formula dimVj(0) = nj , when remembering about (1) in which now (6) holds,
takes the form

dim Vwi(0) = i

for i = 3, 4, . . . , r + 2. The integer wi indicates the first time when the small
flag of D at 0 attains the dimension i (because j was declared the first time of
its attaining the dimension nj):

Vwi−1(0) = Vwi−1(0)  Vwi(0).

And these times wi = j are precisely the weights of KR coordinates used in the
local description of D: j = w(xl) in the above discussion. This interpretation
includes w1 = w2 = 1 (remember that V1(0) is two-dimensional) because such
are the weights w(xr+2) = w(xj) = 1 that start our construction. Observe also
that w3 = 2 and w4 = 3 independently of the germ D under consideration,
and that, by Lem. 1, the highest wr+2 equals w(x2).

It is now easy to show that, for the permutation k3, . . . , kr+2 of indices
from 1 through r + 1 save j, taken according to the growing weights w(·) of
the KR coordinates (cf. Lem. 1),

(7) Vwi(0) =
(
∂r+2, ∂j , ∂k3 , . . . , ∂ki

)
for i = 2, 3, . . . , r + 2. The beginning of induction is, naturally, V1(0) =
(X, Y)(0) =

(
∂r+2, ∂j

)
. Then, assuming for certain i− 1 ≥ 2 that

(8) Vwi−1(0) =
(
∂r+2, ∂j , ∂k3 , . . . , ∂ki−1

)
,

let the unique versor ∂l,

∂l ∈ Vwi(0) \ Vwi−1(0) = Vwi(0) \ Vwi−1(0)
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be as in the discussion of Vj(0) \ Vj−1(0) above (it is the only versor of
weight −wi, to be precise). Clearly, ∂l is different from the versors appearing
on the RHS of (8), and Vwi(0) =

(
Vwi−1(0), ∂l

)
=
(
∂r+2, ∂j , . . . , ∂ki−1

, ∂l

)
.

Clearly also, |w(∂l)| is larger than |w(∂k3)|, . . . , |w(∂ki−1
)|, because the versors

∂k3 , . . . , ∂ki−1
entered the small flag of (X,Y) at 0 earlier than ∂l. We put,

then, ki = l, terminating the induction step. For i = r + 2, (7) reads

(9) Vwr+2(0) =
(
∂r+2, ∂j , ∂k3 , . . . , ∂kr+1 , ∂2

)
= T0Rr+2.

That is, the pure products of precisely wr+2 = w(x2) factors from among
{X, Y} have caused the last increment, in the small flag at 0, to the full tangent
space. In particular, certain products of this length in the algebra LR(X, Y)
are non-zero. On the other hand, any pure product of more than w(x2) fac-
tors from among {X, Y} is homogeneous of our negative weight smaller than
w(∂2) = −w(x2), hence is necessarily zero. Consequently, this algebra is nilpo-
tent of order

OC = w(x2).

Recapitulating, we know by now that if the code of C is ∗ ∗ L3L4 . . . Lr

(L3, . . . , Lr are taken from {∗, S}), then the nilpotency order OC of LR(C) is,
in the shorthand notation (4), the lower component of the vector

(10) ←−∗ ←−∗
←−
L3
←−
L4 · · ·

←−
Lr

(
1
1

)
– because it is equal to w(x2) (cf. (5)).

Why does the sequence { dj } appear in the answer ? It comes in via an
induction argument based on a series of simple (in themselves) observations.

Observation 2.

←−∗
(

1
1

)
=
(

1
2

)
=
(

1
d1

)
, ←−∗ ←−∗

(
1
1

)
=
(

1
3

)
=
(

1
d2

)
.

Observation 3.

←−∗ ←−∗
(

1
1

)
= 2←−∗

(
1
1

)
− id

(
1
1

)
,
←−
S ←−∗

(
1
1

)
= 2
←−
S
(

1
1

)
− id

(
1
1

)
.

Observation 4.

←−∗
←−
S
(

1
1

)
= ←−∗

(
1
1

)
+ id

(
1
1

)
,
←−
S
←−
S
(

1
1

)
=
←−
S
(

1
1

)
+ id

(
1
1

)
.

At the beginning of an induction on r starting from 1 and 2, think about
computing the vector (10) with short sequences of operators appearing in that
formula: ←−∗ and ←−∗ ←−∗ only. Then the first two entries in {dj} are obtained
accordingly in the lower positions; this is explicitly noted in Obs. 2.



27

In the induction step (r − 1, r) ⇒ r + 1, think about prolonging a string of r
operators by one more operator on the right (i. e., to be applied directly to(

1
1

)
before the other operators). If this (r + 1)-th operator is ←−∗ , then, by

Obs. 3 and the inductive assumption for r−1 and r, w(x2) = 2 dr−dr−1. If the
(r + 1)-th operator is

←−
S , then, by Obs. 4 and again the inductive assumption,

w(x2) = dr + dr−1.
So, by induction, the sequences {dj} do compute the nilpotency orders of KR
algebras. Theorem 2 is proved. �

Remark 2. In the above proof, dealing with arbitrary tangential germ D
in C, it is explained in its course that OC = w(x2) = the nonholonomy degree
of D. Therefore, taking in Thm. 2 the eventual recursive formulas for OC ,
one obtains at no price recursive formulas for the nonholonomy degrees of the
tangential Goursat germs. And those formulas happen to coincide with Jean’s
formulas [12], recalled in the present work in Thm. 3. (Yet, let us repeat,
this approach works only for the nonholonomy degrees of tangential Goursat
germs!)
That is to say, we now re-prove a part of classical Jean’s results, something
like ‘two-thirds’ of Thm. 3, when any G cannot go after a T.

5. Proof of Theorem 4, part A. Any Goursat germ D from GGSG,
living on a 6–dimensional manifold (M, p), can be visualised (Thm. 1) as the
germ at 0 ∈ R6 of (X, Y) = (∂6, x5∂1 + x3x5∂2 + x4x5∂3 + ∂4 + (c + x6)∂5)
with certain c 6= 0 (which can be normalized to 1). A short computation in
these coordinates shows that the small growth vector of D at the reference
point p (visualised as 0) is [2, 3, 4, 5, 5, 6]. Therefore, the members V2, V3, V4

of the small flag of D coincide with the relevant members of the big flag of
consecutive Lie squares of D,

D = D(0) ⊂ D(1) ⊂ D(2) ⊂ D(3) ⊂ D(4) = TR6

‖ ‖ ‖ ‖
V1 V2 V3 V4

(they are included, and have the same ranks 3, 4, and 5, respectively). So

(11) V4 + [V4, V4] = TM.

Now suppose that D possesses in a neighbourhood of p a nilpotent basis B of
nilpotency order 6 (i. e., all Lie products of at least 7 factors from B vanish).
We are going to use this basis just in one computation whose outcome will
eventually lead to a contradiction. Namely, computing the LHS of (11) in
the basis B, it is equal to V4 + [V2, V4] + [V3, V3] which, in turn, is equal to
V4 + [V2, V4], because [V3, V3] = [D(2), D(2)] = D(3) = V4. Identity (11) thus
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assumes the form

(12) V4 + [V2, V4] = TM in a neighbourhood of p ∈M.

Let us forget now about B, come back to the basis (X,Y) written in the chosen
KR coordinates (our ‘glasses’ through which we see best), and compute the
LHS of (12). Another short computation shows that

(13) V2 = ( ∂6, ∂5, x5∂1 + x3x5∂2 + x4x5∂3 + ∂4 ),

V3 = ( ∂6, ∂5, ∂4, ∂1 + x3∂2 + x4∂3 ),

(14) V4 = ( ∂6, ∂5, ∂4, ∂3, ∂1 + x3∂2 ).

Having (13), (14) and computing the LHS of (12) at p, that is, at 0 ∈ R6, in
these terms we obtain but (∂1, ∂3, ∂4, ∂5, ∂6). This contradicts (12). Hence B
does not exist. Part A of Theorem 4 is proved. �

Remark 3. Note that, in (12), the summand [V2, V4] alone is not defined
invariantly; it depends on the basis being used in the computation. Yet the
(local) module of vector fields V2 + V4 + [V2, V4] = V4 + [V2, V4] already is, so
that the LHS of (12) has a geometric sense regardless of a basis in use.

Note also that the nilpotent algebra LR(∗ ∗ S ∗) of nilpotency order 7 that
underlies the part A of Thm. 4, has dimension 8. From the Lie-algebraic point
of view it might be interesting to develop an approach allowing to compute
the dimensions of all KR algebras LR(C).
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