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Abstract. The aim of this paper is to construct two functors, called the
derived functors of anchored modules which allow linear connections. Some
applications are given in the cases of vector bundles with differentials and
Lie algebras. It is also shown that a linear connection and a skew-symmetric
form on a preinfinitesimal module lift on the derived Lie pseudoalgebra to
a null curvature connection and to a closed skew-symmetric form, respec-
tively.

The basic algebraic properties of the category of vector bundles are sys-
tematically presented in [4]. Using this point of view, the algebraic properties
of Lie algebroids are studied in [5]. The abstract versions of Lie algebroids are
Lie pseudoalgebras and Lie–Rinehart algebras, which are studied in [8] and
[6] respectively. Using the same point of view, the first author studied in [11]
the categories of vector bundles with differentials and their abstract versions,
the modules with differentials, as extensions of Lie algebroids and Lie pseu-
doalgebras, respectively. As explained in [8] or [11], there are two categories
of vector bundles and two categories of modules. Similarly, there are also two
kinds of functors from the categories of vector bundles with differentials to the
corresponding categories of modules with differentials. The aim of this paper
is to construct two functors, called the derived functors of anchored modules
which allow linear connections. At the level of objects, these two functors as-
sociate the same Lie pseudoalgebra with an anchored module which allows a
linear connection. The isomorphism class of the Lie pseudoalgebra does not
depend on the linear connection or on the bracket. Concerning the morphisms,
the two functors are compatible with the covariant and the contravariat class
of modules. Some applications concerning vector bundles with differentials
and Lie algebras are given. It is also proved that a linear connection and
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a skew-symmetric form on a preinfinitesimal module lift on the derived Lie
pseudoalgebra to a null curvature connection and to a closed skew-symmetric
form, respectively.

1. The derived Lie pseudoalgebra of an anchored module.
A module is a couple (A,L), where A is a commutative and associative

k-algebra, and L is an A-module, where k is a commutative ring. An anchored
module (or a module with arrows in [15, 11]) is a module (A,L) which has
an anchor (or an arrow), i.e. an A-linear map D : L −→ Der(A); we denote
D(X)(a) = [X, a]L. A preinfinitesimal module is an anchored module (A,L)
with the anchor D and a bracket [·, ·], i.e. a k-bilinear map [·, ·]L : L×L −→ L
which is skew symmetric and enjoys the property [X, a · Y ]L = [X, a]L · Y +
a · [X,Y ]L , (∀)X,Y ∈ L, a ∈ A. A preinfinitesimal module (A,L) is an
infinitesimal module if the condition [D(X), D(Y )] = D ([X,Y ]L)holds. An in-
finitesimal module (A,L) is a Lie pseudoalgebra (or a Lie–Rinehart algebra in
[6]) if J = 0, where J (X,Y, Z) = [[X,Y ]L , Z]L + [[Y, Z]L , X]L + [[Z,X]L, Y ]L
is the Jacobiator of the bracket. Notice that if (A,L) is a preinfinitesimal mod-
ule, then D : L ∧ L −→ Der(A), D(X ∧ Y ) = [D(X), D(Y )] − D ([X,Y ]L)is
an anchor map for L ∧ L, i.e. (A,L ∧ L) is an anchored module (the wedge
product is the skew-symmetrization of L as an A-module). Consider the mor-
phism f : L −→ L′ of A-modules. Then f is a morphism of anchored mod-
ule if D = D′ ◦ f and a morphism of preinfinitesimal module, respectively if
[f(X), f(Y )]L′ = f([X,Y ]L). A morphism of infinitesimal modules or of Lie
pseudoalgebras over A is a morphism of preinfinitesimal modules over A. A lin-
ear connection ∇ on a module (A,M), related to an anchored module (A,L),
or a linear L-connection, is a map ∇ : L×M −→ M , ∇(X,u) not.= ∇Xu, such
that the Koszul conditions hold. If (A,L) is a preinfinitesimal module, the
curvature of ∇ is ∇X∧Y = ∇X∇Y −∇Y∇X −∇[X,Y ]L . In particular, a linear
L-connection on a preinfinitesimal module (A,L) can be defined. Its torsion is
T (X,Y ) = ∇XY −∇YX − [X,Y ]L. The formula [X,Y ]L = ∇XY −∇YX de-
fines a bracket, thus (A,L) becomes a preinfinitesimal module, through which
∇ becomes torsion free. Notice that an anchored module which allows a lin-
ear connection is the same thing as a preinfinitesimal module which allows a
torsion free linear connection. Using the Koszul arguments (according to [6,
Proposition 2.13]), we can prove that for a given anchored module (A,L) and a
projective module (A,M), there is a linear L-connection on M . As a Corollary,
we obtain that an anchored module (A,L), which is projective as a module,
allows linear connections and brackets.

Notice that the curvature of a linear connection ∇ on L is a linear
connection on the anchored module on L ∧ L defined above. The formula
[X ∧ Y, U ∧ V ]L∧L = ∇X∧Y (U ∧ V ) − ∇U∧V (X ∧ Y ) defines a bracket on
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L ∧ L, thus (A,L ∧ L) becomes a preinfinitesimal module. The formulas
[X,Y ]L(1) = L(X,Y ) + X ∧ Y , [X ∧ Y, Z]L(1) = ∇X∧Y Z − ∇Z (X ∧ Y ) and
[X ∧ Y, Z ∧ T ]L(1) = ∇X∧Y (Z ∧ T )−∇Z∧T (X ∧ Y ) define a bracket on L(1) =
L⊕(L∧L), where the anchor is given by D(1)(X+(Y ∧Z)) = D(X)+D(Y ∧Z).
We call the preinfinitesimal module (A,L(1)) the (first) derived preinfinitesi-
mal module of (A,L), given by ∇. The following result can be proved by a
straightforward computation.

Proposition 1.1. The following properties hold true:
1. [D(1)(X), D(1)(Y )] = D(1)([X,Y ]L(1)), (∀)X,Y ∈ L.
2. If the linear connection ∇ has no torsion, then J (1)(X,Y, Z) = 0,

(∀)X,Y, Z ∈ L, where J (1) denotes the Jacobiator of [·, ·]L(1).

The preinfinitesimal module (A,L(1)), with the anchor D(1), the bracket
[·, ·]L(1) and the linear connection ∇ on L, defines a torsion free linear con-
nection ∇(1) on L(1), according to the formulas ∇(1)

X Y = ∇XY + 1
2X ∧ Y ,

∇(1)
X (Y∧Z) = ∇X (Y∧Z),∇(1)

X∧Y Z = ∇X∧Y Z,∇(1)
X∧Y (Z∧ T ) = ∇X∧Y (Z∧ T ).

This linear connection can be used to define the second derived preinfinitesimal
module of (A,L) as the derived ALS (A,L(2)) of the (first) derived preinfinitesi-
mal module (A,L(1)). The order p ∈ IN derived preinfinitesimal module (or the
p-derived preinfinitesimal module), denoted as (A,L(p)), is obtained inductively
for p ≥ 2. These p-derived preinfinitesimal modules define inductively the mod-
ule (A,L(∞)

0 ). We denote as L(∞) the A-submodule of L(∞)
0 , which consists of

X(∞) = X0+X1+ · · · which has the property that there is an n ∈ IN such that
D(p)(Xp) = 0, (∀)p > n; the minimum of such n is called the degree ofX(∞) and

it is denoted by degX(∞). The anchor of X(∞) is D(∞)(X(∞)) =
n∑
i=0

D(i)(Xi),

where n = degX(∞). Considering also Y(∞) = Y0 + Y1 + · · · ∈ L(∞), it follows
that

[
X(∞), Y(∞)

]
L(∞) =

∑
p,q∈IN [Xp, Yq]L(∞) .

Theorem 1.1. The couple (A,L(∞)) is a Lie pseudoalgebra.

Notice that a Lie pseudoalgebra (A,L) is not isomorphic to (A,L(∞)).
In order to construct a natural functor from the category of preinfinitesimal
modules to the category of Lie pseudoalgebra, the above construction must be
improved.

Consider now a preinfinitesimal module (A,L′), which allows a linear con-
nection ∇, a Lie pseudoalgebra (A,L) and an anchored module morphism
f : L′ −→ L (i.e. a′ = a ◦ f , where a′ and a are the anchors on L′ and
L respectively). Consider the derived modules L′(1) = L′ ⊕ (L′ ∧ L′) , . . .,
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L′(k+1) = L′(k) ⊕
(
L′(k) ∧ L′(k)

)
, . . . Denote f = f0 and define f1 : L′(1) −→ L,

f1|L′ = f0 and f1(X∧Y ) = [f0(X), f0(Y )]L− f0([X,Y ]L′), (∀)X,Y ∈ L′. Thus
a◦f1(X ∧Y ) = a([f0(X), f0(Y )]L)− a◦f0([X,Y ]L′) = [a◦f0(X), a◦f0(Y )]L−
a ◦ f0([X,Y ]L′) = [a′(X), a′(Y )]L− a′([X,Y ]L′) = D(1)(X ∧ Y ). It follows
that f1 is an anchored module morphism. Inductively, assume that fk is con-
structed, then let fk+1 : L′(k+1) −→ L, fk+1|L′(k) = fk and fk+1(X ∧ Y ) =
[fk(X), fk(Y )]L − fk([X,Y ]L′(k)), (∀)X,Y ∈ L′(k), which is an anchored mod-
ule morphism. The maps (fk)k∈IN define a map f(∞) : L′(∞) −→ L.

Proposition 1.2. a) The map f(∞) : L′(∞) −→ L is a Lie pseudoalgebra
morphism.

b) Let f : L′ −→ L be an anchored module morphism of two preinfinites-
imal modules over the same algebra, which allow linear connections and lead
to the derived modules L′(∞) and L(∞), respectively. Then f induces a Lie
pseudoalgebra morphism f(∞) : L′(∞) −→ L(∞).

It can be proved that if i : L −→ L is the identity morphism of a prein-
finitesimal module which allows a linear connection, then i(∞) : L(∞) −→ L(∞)

is a projector, i.e. i2(∞) = i(∞). Thus we have not got a functor yet. It follows

that L(∞) splits as L(∞) = im(i(∞))⊕ker(i(∞)). We denote im(i(∞)) as L∞ and
we call it the derived Lie pseudoalgebra of L which corresponds to the linear
connection ∇. The following result follows using the above constructions.

Theorem 1.2. If (A,L) is an anchored module which allows linear con-
nections, then L∞ belongs to an isomorphism class of Lie pseudoalgebras over
A, which depend neither on the linear connections nor on the brackets. The
correspondences L −→ L∞ and f −→ f∞ define a covariant functor from
the category of anchored modules over a commutative algebra A which allow
linear connections to the category of Lie pseudoalgebras over A. It induces
also a functor from the category of preinfinitesimal modules which allow linear
connections to the category of Lie pseudoalgebras.

Notice that the Lie pseudoalgebra (A,L) is a Lie pseudoalgebra quotient of
(A,L∞). Notice also that the inclusion j : L −→ L∞ is not a Lie pseudoalgebra
morphism. The Lie pseudoalgebra L∞ has the following universal property,
which can be proved using its definition and Proposition 1.2.

Proposition 1.3. If (A,L′) is a Lie pseudoalgebra and f : L → L′ is
an anchored module morphism, then there is a unique infinitesimal module
morphism f(∞) : L(∞) → L′ induced as in Proposition 1.2 such that f = f(∞)◦i,
where i : L→ L(∞) is the inclusion.

Now we extend the functor to both the categories of anchored modules
(covariant and contravariant ones). Let us denote by A a subcategory of the
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category of commutative k-algebras or k-rings. The contravariant category of
modules, which we denote by ModA, is considered in [8] and [11]. It has as

morphisms the con-morphisms (A′, L′)
(ϕ,ψ)−→ (A,L), where ϕ : A −→ A′ is a

morphism of commutative rings (or algebras) and ψ : L′ −→ A′ ⊗A L is an

A′-module morphism. If (A′′, L′′)
(ϕ′,ψ′)−→ (A′, L′)

(ϕ,ψ)−→ (A,L) are morphisms
of modules, then (ϕ,ψ) ◦ (ϕ′, ψ′) = (ϕ ◦ ϕ′, ψ̄ ◦ ψ′), where ψ̄ is the natural
A′′-module morphism ψ̄ : A′′ ⊗A′ L′ −→ A′′ ⊗A L induced by the A′-module
morphism ψ : L′ −→ A′⊗AL; explicitly, if ψ(X ′) =

∑
i
a′i⊗AXi, then ψ̄(a′′⊗A′

X ′) =
∑
i
a′′ϕ′(a′i)⊗AXi. We have used the name contravariant for the category

of modules used above in order to make a distinction from the usual category of
modules ModA, which is called covariant. A covariant category of modules is

defined to have as morphisms the cov-morphisms denoted also by (A′, L′)
(ϕ,ψ)−→

(A,L), where ϕ : A′ −→ A is a morphism of commutative rings (or algebras)
and ψ : L′ −→ L is an A′-module morphism. Notice that a co(ntra)variant
category of modules need not to contain all the modules. It can be defined
using functors as in [11].

Let C be a category and CM be a contravariant or a covariant category of
modules. A covariant pseudofunctor on C to CM is a couple F ′ = (F ′

0, F
′
1),

where F ′
0 : Ob(C) −→ Ob(CM) and F ′

1 : HomC −→ HomCM are maps such
that if f ∈ HomC(U, V ) and g ∈ HomC(V,W ), then F ′

1(f) : F ′
0(U) −→ F ′

0(V ),
F ′

1(g) : F ′
0(V ) −→ F ′

0(W ) and F ′
1(g ◦ f) = F ′

1(g) ◦F ′
1(f). For every U ∈ Ob(C),

denote by iU ∈ HomC(U,U) the identity morphism. A pseudofunctor misses
to be a functor because the condition F ′

1(iU ) = idF ′0(U) is not fulfilled. This
obstacle can be very easy removed. From F ′

1(iU ) ◦ F ′
1(iU ) = F ′

1(iU ) it follows
that F ′

1(iU ) : F ′
0(U) −→ F ′

0(U) is a projector; denote by F0(U) the module
which is its image and by IU : F0(U) −→ F ′

0(U) the inclusion morphism. For
every morphism f ∈ HomC(U, V ), put F1(f) = F ′

1(iV ) ◦ F ′
1(f) ◦ IU . It follows

that the couple F = (F0, F1) is a covariant functor on the category C to the
category of modules CM . We call F the canonical functor associated with
the pseudofunctor F ′. Notice that the above construction can be adapted by
duality to the contravariant case.

Now we return to anchored modules (or modules with arrows of [11]). Let
(A′, L′) and (A,L) be two anchored modules. A con-morphism of anchored

module is a couple (ϕ,ψ), denoted (A′, L′)
(ϕ,ψ)−→ (A,L), where ϕ : A −→ A′

is an algebra morphism and ψ : L′ −→ A′ ⊗A L is an A′-module morphism,
such that for every X ′ ∈ L′ which has the ψ-decomposition ψ(X ′) =

∑
i
a′i⊗Xi,

[X ′, ϕ(a)]L′ =
∑
i
a′iϕ([Xi, a]L). (We have used the notation [X, a]L = D(X)(a),
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whereD is the anchor of the anchored module (A,L) andX ∈ L, a ∈ A.) A cov-
morphism of anchored modules is a couple (ϕ,ψ), denoted also (A′, L′) →

(ϕ,ψ)

(A,L), where ϕ : A′ −→ A is an algebra morphism and ψ : L′ −→ L is an A′-
module morphism, such that for every X ′ ∈ L′ and a′ ∈ A′, [ψ(X ′), ϕ(a′)]L =
ϕ([X ′, a′]L′).

Now consider two preinfinitesimal modules (A′, L′) and (A,L). A con-
morphism of preinfinitesimal module (defined in [11]) is a con-morphism of

anchored modules (A′, L′)
(ϕ,ψ)−→ (A,L) such that for every X ′, Y ′ ∈ L′ with

the ψ-decompositions ψ(X ′) =
∑
i
a′i ⊗ Xi and ψ(Y ′) =

∑
α

b′α ⊗ Yα respec-

tively, ψ([X ′, Y ′]L′) =
∑
i
a′ib

′
α⊗ [Xi, Yα]+

∑
α

[X ′, b′α]L′⊗Yα−
∑
i

[Y ′, a′i]L′⊗Xi.

A cov-morphism of preinfinitesimal module [11] is a cov-morphism of anchored
module (A′, L′) →

(ϕ,ψ)
(A,L) such that for every X ′, Y ′ ∈ L′ the condition

ψ([X ′, Y ′]L′) = [ψ(X ′), ψ(Y ′)]L is fulfilled. Morphisms of infinitesimal mod-
ules and Lie pseudoalgebras are the very morphisms of preinfinitesimal mod-
ule structures, forgetting the restrictive conditions for the brackets. In the
sequel we call a cov-morphism or a con-morphism of modules with differentials
(i.e. AM–anchored modules, PM–preinfinitesimal modules or IM–infinitesimal
modules) simply a morphism of modules with differentials. We can prove the
following result, which extends Theorem 1.2:

Theorem 1.3. If (A,L) is an anchored module which allows linear con-
nections, then L∞ belongs to an isomorphism class of Lie pseudoalgebras,
which do not depend on the linear connections or the brackets. The corre-
spondence (A,L) −→ (A,L∞), (ϕ,ψ) −→ (ϕ,ψ∞) and (A,L) −→ (A,L∞),
(ϕ,ψ) −→ (ϕ,ψ∞) defines two covariant functors from the covariant and con-
travariant categories of anchored modules over commutative algebras which
allow linear connections to the corresponding categories of Lie pseudoalgebras
(the covariant and the contravariant one, respectively). It induces also func-
tors from the covariant and contravariant categories of preinfinitesimal modules
which allow linear connections to the categories of Lie pseudoalgebras.

A particular case is when the anchor on L is null. In this case one has an
infinitesimal module structure given by a skew-symmetric map b : L∧L −→ L.
Moreover, the Lie pseudoalgebra L∞ is a Lie algebra and it does not depend
on b. As in the case of modules over the same base, the module (A,L(∞)) has
the following universal property:

Proposition 1.4. If (A′, L′) is a Lie pseudoalgebra and (A,L)
(ϕ,ψ)−→ (A′, L′)

(or (A,L) →
(ϕ,ψ)

(A′, L′)) is an anchored module con-morphism (cov-morphism),
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then there is a unique Lie pseudoalgebra con-morphism (A,L)
(ϕ,ψ∞)−→ (A′, L′)

(or cov-morphism (A,L) →
(ϕ,ψ∞)

(A′, L′)), such that (ϕ,ψ) = (ϕ,ψ∞) ◦ (idA, i)

(or (ϕ,ψ) = (ϕ,ψ∞) ◦ (idA, i)), where (idA, i) : (A,L) → (A,L(∞)) is the
inclusion.

If (A,L′) is an anchored submodule of (A,L), then it is natural to ask if
there is a similar relation between the derived (Lie) algebroids.

Theorem 1.4. If (A,L′) is an anchored submodule of (A,L) and L allows
a linear connection ∇ such that ∇X′Y ′ ∈ L′, (∀)X ′, Y ′ ∈ L′, then (A,L′(∞)) is
a Lie sub-pseudoalgebra of (A,L(∞)) and (A,L′∞) is a Lie sub-pseudoalgebra
of (A,L∞). In particular, if (A,L′) is an anchored submodule of (A,L) such
that the inclusion i : L′ → L splits and L allows a linear connection ∇, then
the same conclusion holds.

2. Vector bundles with differentials.
An anchored vector bundle (AVB), (or a relative tangent space of [9,

10, 11]) is a couple (θ,D), where θ = (R, q,M) is a vector bundle and
D : θ −→ τM is a vector bundle morphism, called an anchor. A triple
(θ,D, [·, ·]θ) is an almost Lie structure (ALS) if (θ,D) is an AVB and [·, ·]θ :
Γ(θ) × Γ(θ) −→ Γ(θ) is an almost Lie map (or a bracket), i.e. an IR-linear
and skew symmetric map which enjoys the property [X, f · Y ]θ = (DX)(f) ·
Y + f · [X,Y ]L, (∀)X,Y ∈ Γ(θ) and f ∈ F(M) (cf. [9]). We denote as
J (X,Y, Z) = [[X,Y ]θ, Z]θ + [[Y, Z]θ, X]θ + [[Z,X]θ, Y ]θ, which we call the Ja-
cobiator of the bracket. If (θ,D, [·, ·]θ) is an ALS, then D : Γ(θ∧ θ) −→ X (M),
D(X∧Y ) = [D(X), D(Y )]−D ([X,Y ]θ) is an anchor map for θ∧θ, i.e. (θ∧θ,D)
is an AVB. An algebroid is an ALS for which D = 0 and a Lie algebroid is an
algebroid for which J = 0.

We give now two examples which motivate the reason to enlarge the study
of (Lie) algebroids. The following example was originally considered by Suss-
mann in [17]. Consider the subalgebra A0 ⊂ F(IR) of real smooth function
which are null for the negative reals and increase for the positive reals. Denote
byM0 ⊂ X (IR2) the submodule of vector fields X = f(x, y) ∂∂x+ϕ(x)g(x, y) ∂∂y ,
where ϕ ∈ A0. Then M0 is neither integrable, nor finitely generated. The fol-
lowing example shows that there are integrable (thus involutive) distributions
which are not finitely generated. For a smooth real function ψ which is null to-
gether with all its derivatives, only in 0, consider the submodule Mψ ⊂ X (IR2)
constructed as in the previous example, where ϕ is ψ or a derivative ψ(n),
n ≥ 0. Neither M0, nor Mψ can be isomorphic with a module D(Γ(θ)), where
(D, θ, [·, ·]θ) is a (Lie) algebroid.
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For an AVB (θ,D), the couple (F(M),Γ(θ)) is an anchored module. If
(θ,D, [·, ·]θ) is an ALS, then the couple (F(M),Γ(θ)) is a preinfinitesimal mod-
ule. If (θ,D, [·, ·]θ) is an algebroid or a Lie algebroid, then (F(M),Γ(θ)) is an
infinitesimal module or a Lie pseudoalgebra, respectively. These correspon-
dences are functorial (see [11]). All the previous constructions can be adapted
for vector bundles with differentials (AVB, ALS, algebroids and Lie algebroids).
For example, given an AVB (θ,D) and a vector bundle ξ over the same base as
θ, a linear R-connection on ξ, related to the AVB (θ,D), is a linear connection
on (F(M),Γ(ξ)), related to the anchored module (F(M),Γ(θ)).

In the case when (θ,D, [·, ·]θ) is a Lie algebroid, then (F(M),Γ(θ)) is a Lie
pseudoalgebra, the cohomology of this Lie pseudoalgebra is the cohomology of
the Lie algebroid. In the case when θ = τM is the tangent bundle of the differ-
entiable manifold M , the cohomology of the Lie pseudoalgebra (F(M), τM)
is the de Rham cohomology of M . The cohomology of the Lie pseudoalgebra
(F(M),X (M)∞) can be viewed as the generalized de Rham cohomology of the
manifold M .

There are two categories which have as objects the vector bundles, but
different morphisms. One of these categories of vector bundles is the usual

one, when the morphisms are the usual morphisms of vector bundles ξ′
(g,f)−→ ξ:

if ξ′ = (E′, π′,M ′) and ξ = (E, π,M), g : M ′ −→ M are the vector bundles
and f : E′ −→ E are such that g ◦ π′ = π ◦ f and f restricted to fibres,
f|π−1(x′) : π′−1(x′) −→ π−1(g(x′)), is linear. The other category of vector
bundles has as morphisms the comorphisms of vector bundles ξ′ →

(g,f)
ξ, g :

M ′ −→ M and f : E −→ E′ are such that g ◦ π′ ◦ f = π and f restricted
to fibres, f|π−1(g(x′)) : π−1(g(x′)) −→ π′−1(x′), is linear. Notice that for the
vector bundles over the same base, where g is the identity of the base, the
two categories of vector bundles have the same morphisms. One can also use
the module morphisms of sections. (See [4] and [7] for more details.) If ξ =
(E, π,M) is a vector bundle, then (F(M),Γ(ξ)) is a module. A morphism of

vector bundles ξ′
(g,f)−→ ξ defines and it is defined by a con-morphism of modules

(F(M ′),Γ(ξ′))
(g∗,f∗)−→ (F(M),Γ(ξ)), i.e. g∗ : F(M) −→ F(M ′), g∗(u) = u ◦ g

and f∗ : Γ(ξ′) −→ F(M ′)⊗F(M) Γ(ξ), which is a morphism of F(M ′)-modules.
Notice that there is an isomorphism of modules F(M ′)⊗F(M) Γ(ξ) ∼= Γ(f∗ξ).
A comorphism of vector bundles ξ′ →

(g,f)
ξ defines and it is defined by a cov-

morphism of modules (F(M ′),Γ(ξ′)) →
(g∗,f∗)

(F(M),Γ(ξ)), i.e. g∗ : F(M) −→

F(M ′), g∗(u) = u ◦ f0 and f∗ : Γ(ξ) −→ Γ(ξ′), which is a morphism of F(M)-
modules.
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Let (θ′, D′) and (θ,D) be two anchored vector bundles over the bases M ′

and M , respectively. A comorphism of anchored vector bundles (θ′, D′) →
(g,f)

(θ,D) is a comorphism of vector bundles θ′ →
(g,f)

θ (or the cov-morphism of

modules (F(M ′),Γ(θ′)) →
(g∗,f∗)

(F(M),Γ(θ))) such that if X ∈ Γ(θ) and u ∈

F(M), then D(X)(u) = D′(f∗(X))(g∗(u)), or g∗ ([X,u]θ) = [f∗(X), g∗(u)]θ′ .

A morphism of anchored vector bundles (θ′, D′)
(g,f)−→ (θ,D) is a morphism of

vector bundles θ′
(g,f)−→ θ (or a con-morphism of modules (F(M ′),Γ(θ′))

(g,f∗)−→
(F(M),Γ(θ))) such that if u ∈ F(M) and X ′ ∈ Γ(θ′) allows the decomposition

(1) f∗(X ′) =
∑
i

a′i ⊗F(M) Xi ∈ F(M ′)⊗F(M) Γ(θ),

then [X ′, g∗(u)]θ′ =
∑
i
a′i · g∗([Xi, u]θ).

If (θ′, D′, [·, ·]θ′) and (θ,D, [·, ·]θ) are ALS’s, then a comorphism of almost
Lie structure is a comorphism of the anchored vector bundles, such that [f∗(X),
f∗(Y )]θ′ = f∗ ([X,Y ]θ), (∀)X,Y ∈ Γ(θ). A morphism of almost Lie structure
is a morphism of anchored vector bundles, such that (∀)X ′, Y ′ ∈ Γ(θ′) which
allow the decompositions (1) and f∗(Y ′) =

∑
α
a′α⊗F(M)Yα ∈ F(M ′)⊗F(M)Γ(θ),

respectively, then f∗([X ′, Y ′]θ′) =
∑
α

[X ′, b′α]θ′ ⊗F(M) Yα−
∑
i

[Y ′, a′i]θ′ ⊗F(M)

Xi,+
∑
i,α
a′ib

′
α⊗F(M) [Xi, Yα]. Morphisms of algebroids and (Lie) algebroids are

the very morphisms of almost Lie structure, forgetting the restrictive conditions
for brackets. In the sequel, we consider comorphisms and morphisms of vector
bundles with differentials (i.e. anchored vector bundle, almost Lie structure,
algebroid or Lie algebroid), simply called (co)morphisms. Since every AVB
allows linear connections (see [9]), it follows that we can compose the AVB-
functors with the corresponding functors ∞ and ∞, respectively. Thus the
following result follows.

Theorem 2.1. There are two covariant functors from the two categories
of anchored vector bundles to the two categories of Lie pseudoalgebras.

Let (M,D) be a regular distribution (particularly, in the integrable case, it
can be the tangent bundle τF of a foliation F) on a manifold M , and denote
by νD =τM/D its normal bundle. Consider an AVB structure (νD, D) given
in the following way: take a Riemannian metric on τM , denote as D⊥ the
orthogonal complenent of D with respect this metric, as φ : νD −→ D⊥ the
canonical vector bundle isomorphism and as ι : D⊥ −→ τM the inclusion
vector bundle morphism, then take D = ι ◦ φ, D : νD −→ τM . Not all the
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AVB’s obtained in this way are isomorphic, so consider the isomorphic class D⊥

of such AVB’s. Applying the derived functor toD⊥, we get a Lie pseudoalgebra,
which depends only on the isomorphic class D⊥. It can be called a transversal
Lie pseudoalgebra of the distribution. A tangent Lie pseudoalgebra can be
obtained using the AVB defined by the distribution D itself.

3. Constructions related to the derived Lie pseudoalgebra of an
anchored module.

This section contains two applications of the derived Lie pseudoalgebra of
an anchored module. The first application shows the existence of an universal
Lie algebra L∞∞, such that every at most countable (in particularly finitely)
generated Lie algebra over a commutative algebra A is a quotient Lie algebra
of L∞∞. The second application is dealing with lifts of linear connections and
differential forms to curvature free connections and closed forms, respectively.

3.1. An application to Lie algebras. A Lie algebra is a particular Lie pseu-
doalgebra, which has a null anchor. In this section we consider an application
for Lie algebras over a commutative algebra A. Every module is an anchored
module, taking a null anchor, and allows a null linear connection. Thus the
results obtained for anchored modules which allow linear connections can be
adapted for arbitrary modules. In this paper we give only an application using
the universal property of the derived Lie pseudoalgebra of an anchored module.
All the modules in this subsection are over a commutative algebra A.

Let us suppose that a Lie algebra L′n has a finite number a generators
Gn = {ei}i=1,n. Let Ln be the free module generated by Gn, f : Ln → L′n be
the canonical morphism and L∞n be the derived Lie algebra of Ln, viewed as
an A-module. Using Proposition 1.3, a morphism f∞ : L∞n → L′n is induced.
This morphism is surjective, since Gn are generators. It follows that L′n is a
quotient of L∞n . In the same way it follows that every Lie algebra which has n
generators is a quotient Lie algebra of L∞n . If L′n+1 is a Lie algebra which has
n + 1 generators, then let us consider as before Gn+1 = {ei}i=1,n+1 a system
of generators, let Ln+1 be the free module generated by Gn+1 and L∞n+1 be
the derived Lie algebra of Ln+1. Then Ln is a submodule of Ln+1, thus using
Theorem 1.4, it follows that L∞n is a Lie subalgebra of L∞n+1. Since Gn+1 is also
a system of generators for Ln, it follows that L′n is also a Lie algebra quotient
of L∞n+1. Let us denote as L∞∞ the derived Lie algebra of a module generated
by a countable set G∞ = {ei}i∈IN . In the same way as above it follows that L′n
is also a Lie algebra quotient of L∞∞.

We can summarize this construction in the following result:

Theorem 3.1. Given a commutative algebra A, there is an ascending se-
quence of Lie algebras over A : L∞1 ⊂ L∞2 ⊂ · · · ⊂ L∞n ⊂ · · · ⊂ L∞∞, such that
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every Lie algebra L′n which has n generators is a quotient of every Lie algebra
L∞k with k ≥ n.

Every Lie algebra over A which has a most countable number of generators
is a quotient Lie algebra of the Lie algebra L∞∞.

3.2. Lifts of linear connections and skew symmetric forms. In this sub-
section all the modules are defined over a commutative algebra A and L is a
preinfinitesimal module over A, which allows a linear connection.

Proposition 3.1. Let L′ be a module, ∇ : L × L′ −→ L′ be a linear
L-connection.

Then there are linear connections ∇(∞) : L(∞) × L′ −→ L′ and ∇∞ :
L∞ × L′ −→ L′ which are curvature free and extend ∇.

We say that the linear connections ∇(∞) and ∇∞ are the lifts of ∇. It is
possible to interpret the result obtained above in terms of representations of
anchored modules and Lie pseudoalgebras. In fact, if (A,L) is an anchored
module and (A,L′) is another module, then a pre-representation of L on L′ is
a linear connection on L′ related to L. If (A,L) is a Lie pseudoalgebra, then
a representation of L on L′ is a pre-representation which is defined by a linear
connection which is curvature free. Using the terminology of [6], (A,L) is a Lie–
Rinehart algebra and (A,L′) is an (A,L)-module (or a Lie–Rinehart module).
Proposition 3.1 can be reformulated as follows: Every pre-representation of an
anchored module (A,L) on a module (A,L′) lifts to representations of the Lie
pseudoalgebras L(∞) and L∞ on the module L′ (i.e. L′ is an (A,L(∞))-module,
as well as an (A,L∞)-module).

Let (A,L) be a preinfinitesimal module. For k ≥ 0, let Ωk(L) be the mod-
ule of skew symmetric and A-linear maps ω : Lk −→ A. Define dL : Ωk(L) −→
Ωk+1(L): (dLω)(X0, . . . , Xk) =

∑
i(−1)i[Xi, ω(X1, . . . , X̂i, . . . , Xk)]L +∑

i<j(−1)i+jω([Xi, Xj ]L, X0, . . . , X̂i, . . . , X̂j , . . . , Xk). It is well-defined and
satisfies d2

L = 0 iff L is a Lie pseudoalgebra. If it is the case, then the coho-
mology of (Ω•(L), dL) is called the Lie pseudoalgebra cohomology of L (with
trivial coefficients), and it is denoted by H•(L).

Let (A,L) be a preinfinitesimal module, (A,M) be a module and ∇ be a
curvature free linear L-connection on M . Let Ωk(L,M) be the module of skew
symmetric and A-linear maps ω : Lk −→M , called the space of “k-forms” on
L with values in M . Define dL,M : Ωk(L,M) −→ Ωk+1(L,M),

(dL,Mω)(X0, . . . , Xk) =
k∑
i=0

(−1)i∇Xi

(
ω

(
X0, . . . X̂i, . . . Xk

))
+

∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)
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for k ≥ 0. If (A,L) is a Lie pseudoalgebra, then d2
L,M = 0. In this case the

cohomology of (Ω∗(L,M), dL,M ) is called the cohomology of L with coefficients
in M .

Let (A,L) be an anchored module which allows a linear connection, (A,M)
be a module and ∇ be a linear L-connection on M . According to Proposition
3.1, the linear L-connection ∇ lifts to a linear L∞-connection ∇∞, which is
curvature free. It follows that we can consider the cohomology of L∞ with
coefficients in M , related to ∇∞.

A special case is when M = A, considered as a module over A, ∇Xa =
[X, a]L, (∀)X∈L and a ∈A. Then the curvature of ∇ is ∇X∧Y a = D(X,Y )(a);
it is null only if L is an infinitesimal module. The lifted connection ∇∞ is
∇∞
X∞

a = D∞(X∞)(a), (∀)X∞ ∈ L∞ and a ∈ A. It follows that the cohomol-
ogy of L∞ with coefficients in A, related to this connection, is just the Lie
pseudoalgebra cohomology of L∞. Another special case is when (A,L) is an
arbitrary module and the anchor on L is null. In this case there is the null
linear connection on L. It follows that L∞ is a Lie algebra over A and any
pre-representation of L on an other module (A,M) (i.e. an A-bilinear map
∇ : L×M →M) lifts to a representation of the Lie algebra L∞ on M .

Now (A,L) is an anchored module which allows a linear connection. Con-
sider a module (A,M) and let ∇ be a linear L-connection on M . Let ω ∈
Ω1(L,M) be a 1-form on L, which takes values in M . Denote ω = ω(0) and
define ω(1) ∈ Λ1(L(1)) by ω(1)(X) = ω(0)(X), ω(1)(X ∧1 Y ) = dL(0)ω(0)(X,Y ),
(∀)X,Y ∈ L = L(0). Inductively, assume that ω(k) is defined for k ≥ 1, then
define ω(k+1) ∈ Ω1(L(k+1),M) by ω(k+1)(X) = ω(k)(X), ω(k+1)(X ∧k+1 Y ) =
dL(k)ω(k)(X,Y ), (∀)X,Y ∈ L(k). These forms define ω(∞) ∈ Ω1(L(∞),M)
which in its turn defines ω∞ ∈ Ω1(L∞,M) by restriction. It can be shown
that the forms ω(∞) and ω∞ are closed, i.e. d(∞)ω(∞) = 0 and d∞ω∞ = 0.
This construction can be extended to any p-form. It can be proved that for
p ≥ 1 any p-form ω ∈ Ωp(L,M) can be extended canonically to closed p-forms
ω(∞) ∈ Ωp(L(∞),M) and ω∞ ∈ Ωp(L∞,M). We say that the p-forms ω(∞) and
ω∞ are the lifts of the p-form ω.

Now consider on A, viewed as an A-module, the linear L-connection∇Xa =
[X, a]L, (∀)X ∈ L, a ∈ A. Every p-form ω ∈ Ωp(L,A) defines the p-forms
ω̃ ∈ Ωp(L∞, A) and ω̃′ ∈ Ωp(L(∞), A), ω̃ = π∗ω and ω̃′ = π∗0ω, where π :
L∞ −→ L and π0 : L(∞) −→ L are the canonical projections viewed as module
morphisms. It is easy to see that ω̃ = ω∞ or ω̃′ = ω(∞) iff dω = 0. Consistent
examples can be obtained in the case of an ALS (θ,D, [·, ·]). In this case, the
lift of a form ω ∈ Λtop(θ∗) = Ωtop(Γ(θ),F(M)) is ω̃ since dθω = 0.
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In the case when (A,L) is a Lie pseudoalgebra, the lifts induce some nat-
ural morphisms of additive groups H∗(L,A) → H∗(L(∞), A) and H∗(L,A) →
H∗(L∞, A), whereH∗(L,A) is the cohomology of the Lie pseudoalgebra (A,L).
When (A,L)=(F(M),X (M)), these morphisms relate the de Rham groups of
the manifoldM to the cohomologies of the Lie pseudoalgebras (F(M),X (M)(∞))
and (F(M),X (M)∞), respectively.

Notice also that in the case when (A,L) is a Lie algebra defined by a null
anchor, then also the lifts induce some natural morphisms of additive groups
H∗(L,L) → H∗(L(∞), L) and H∗(L,L) → H∗(L∞, L), where H∗(L,L) is the
cohomology of the Lie algebra (A,L). The case p = 1 is quite different from
the case p > 1. It can be proved that an exact 1-form ω ∈ Ω1(L∞,M) has an
exact lift ω∞ (i.e. ω∞ = d∞f iff ω = dLf). Notice that an analogous result
for a p-form ω ∈ Ωp(L∞,M), p ≥ 2, seems to fail.
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