
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII
2005

ON SOME TWO-STEP DENSITY ESTIMATION METHOD

by Jolanta Jarnicka

Abstract. We introduce a new two-step kernel density estimation method,
based on the EM algorithm and the generalized kernel density estimator.
The accuracy obtained is better in particular, in the case of multimodal or
skewed densities.

1. Introduction. Density estimation has been investigated in many pa-
pers. In particular, the kernel estimation method, introduced in [11], has
received much attention.

Let us recall some problems connected with the kernel density estimation.

Let Xi : Ω −→ R, i = 1, . . . , n, be a sequence of random variables defined
on a probability space (Ω,F, P ). Suppose that they are identically and inde-
pendently distributed with an unknown density f , and that {xi} is a sequence
of corresponding observations.

The kernel density estimator is characterized by two components: the band-
width h(n) and the kernel K.

Definition 1.1. Let {h(n)}∞n=1 ⊂ (0,+∞) with h(n) −→ 0. Let K :
R −→ R be a measurable nonnegative function. The kernel density estimator
is given by the formula

(1.1) f̂h(x) =
1

nh(n)

n∑
i=1

K
(x− xi

h(n)

)
.

We call h the bandwidth (window width or smoothing parameter). We call K
the kernel.

Statistical properties of this estimator, like biasedness, asymptotical unbi-
asedness and efficiency, were presented in [11], [10], and [13].
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The kernel determines the regularity, symmetry about zero and shape of
the estimator, while the bandwidth – the amount of smoothing. In particular,
f̂h is a density, provided that K ≥ 0 and

∫
R K(t) dt = 1.

Considerable research has been carried out on the question of how one
should select K in order to optimize properties of the kernel density estimator
f̂h (see e.g. [5], [14], and [3]) and numerous examples have been discussed.
Suggested choice is a density, symmetric about zero, with finite variance, like
e.g. the Gaussian kernel K(t) = 1√

2π
e−

1
2
x2

, the Epanechnikov kernel K(t) =
3

4
√

5
(1 − 1

5x2) for |x| <
√

5 or the rectangular kernel K(t) = 1
2 for |x| < 1

(see e.g. [13] or [4] for more examples). But in some situations nonsymmetric
kernels (e.g. the exponential kernel K(t) = e−x for x > 0) guarantee better
results. A comparative study of this problem was carried out in [7].

The main problem of the kernel density estimation is still the choice of the
bandwidth h(n). Various measures of accuracy of the estimator f̂h have been
used to obtain the optimal bandwidth (see e.g. [3], [13]). We will here focus
on the mean integrated squared error given by

MISE(f̂h) = E

∫
R
(f̂h(x)− f(x))2 dx,

and its asymptotic version for h(n) → 0 and nh(n) → ∞ as n → ∞, often
abbreviated by AMISE(f̂h) (see [5], [8]). The mean integrated squared error
can be written as a sum of integrated squared bias and integrated variance of
f̂h:

MISE(f̂h) =
∫

R
(E(f̂h(x))− f(x))2 dx +

∫
R

V (f̂h(x)) dx.

We want to keep both the bias and the variance possibly small, so the optimal
bandwidth h(n) should be chosen so that MISE is minimal.

Under additional assumptions on the density f (we assume that f is twice

differentiable and that
∫

R

(
f ′′(x)

)2

dx < ∞) and for a kernel being a symmetric
density with a finite variance, we can provide asymptotic approximations for
the bias and the variance of f̂h (see [13]). Having obtained the formula for the
asymptotic mean integrated squared error, we get the optimal bandwidth h(n)
in the following form:

hopt(n) =

 ∫
R K2(t) dt( ∫

R t2K(t) dt
)2 ∫

R

(
f ′′(x)

)2
dx


1
5

n−
1
5 .(1.2)
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Although the integrals
∫

R K2(t) dt and
∫

R t2K(t) dt can be calculated if K is
known, formula (1.2) depends on an unknown density f and hence, in prac-
tice, the ability to calculate hopt(n) depends on obtaining an estimate for∫

R

(
f ′′(x)

)2
dx.

Several ways to solve this problem have appeared in the literature. One
of the simplest methods, suggested in [13] (often called the Silverman’s rule
of thumb), is to assume that f is known. For example assuming that f is
the density of a normal distribution with parameters µ and σ2, and using the
Gaussian kernel, we obtain hopt(n) = 1.06σn−

1
5 , where σ can be estimated

by the standard deviation. Other best known methods (beside those giving
automatic procedures for selecting the bandwidth, like the cross-validation (see
e.g. [13])) are based on the idea of constructing a pilot function and then using
it in actual estimation (see e.g. [13], [9], [1], [12], [15], and [6]). The problem is
that none of these methods guarantees good results for a wide class of estimated
density functions.

In this paper we propose a new two-step kernel density estimation method,
which generalizes methods considered in [13] and [6]. Its practical application
is in fact based on a solution of some optimization problem.

In Section 2 we present the idea of the two-step method and prove some
basic properties of the proposed generalized kernel density estimator. Section 3
is dedicated to the problem of the choice of optimal bandwidths {hj(n)}m

j=1. In
Section 4 we propose an algorithm which enables us to construct a pilot. The
last section contains a discussion of an example, which presents possibilities of
our method.

We emphasize that we have carried a lot of experiments and computer
simulations in order to check the efficiency of the new method in comparison
with the methods mentioned. According to the statistical analysis, we can
state that in some cases (e.g. when estimating bimodal or skewed densities)
our method gives better results than other known methods and in numerous
cases its efficiency is comparable to the one of the methods mentioned (see [7]).

2. The idea of the two-step method. Let (Ω,F, P ) be a probability
space, Xi : Ω −→ R (i = 1, 2, . . . , n) – a sequence of random variables and
suppose they are independently and identically distributed. We assume that f
is an unknown density function of Xi and {xi}n

i=1 is the sequence of observations
on Xi. Consider a family of functions {φj(x)}m

j=1, such that

0 ≤ φj(x) ≤ 1,

m∑
j=1

φj(x) = 1, x ∈ R,
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and a sequence of corresponding bandwidths {hj(n)}m
j=1, such that hj(n) > 0

and hj(n) → 0, j = 1, . . . ,m.
Assume also that the kernel K : R → R is a nonnegative measurable

function.

Definition 2.1. We define the generalized kernel density estimator as a
function given by

f̂φ(x) =
1
n

n∑
i=1

m∑
j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

)
.(2.1)

The proposed method consists of two steps:

(1) We choose a pilot function f0, by parametric estimation, using the EM
algorithm (see Section 4.1), under the assumption that f0 is given as follows

f0(x) =
∑

j

αjfj(x), where fj(x) =
1√

2πσj

e
− 1

2

(
x−µj

σj

)2

, j = 1, . . . ,m.

(2) Considering the generalized kernel density estimator (nonparametric esti-
mation) we choose a sequence of bandwidths hj(n) > 0, hj(n) → 0, for
n →∞, j = 1, . . . ,m, using the pilot calculated in step (1), by taking

φj(x) =
αjfj(x)
f0(x)

=
αjfj(x)∑m

k=1 αkfk(x)
.(2.2)

Remark 2.2. The first modification with respect to the traditional ker-
nel estimation method is the fact that we choose a sequence of bandwidths
hj(n) for j = 1, . . . ,m instead of the single value h(n). This may cause some
complication in calculations but guarantees a better accuracy of the estimator.

Remark 2.3. Formula (2.1) corresponds to the methods described in [1],
[13] and in [15]. The idea of the construction of the pilot function by parametric
estimation comes from [6].

Remark 2.4. Note that for m = 1, taking φ1(x) ≡ 1, we get the kernel
density estimator (1.1), with the bandwidth h1(n).

Remark 2.5. As in the case of the kernel density estimator (1.1), the kernel
K has an essential effect on the properties of f̂φ. In particular, if K is a density,
and so K(x) ≥ 0 and

∫
R K(x) dx = 1, then also f̂φ(x) ≥ 0 and
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∫
R

f̂φ(x) dx =
∫

R

1
n

n∑
i=1

m∑
j=1

φj(y)
hj(n)

K
(x− y

hj(n)

)
dx

=
1
n

n∑
i=1

m∑
j=1

φj(y)
∫

R

1
hj(n)

K
(x− y

hj(n)

)
dx.

Putting x−y
hj(n) = t, for a fixed j, gives

∫
R f̂φ(x) dx =

∫
R K(t) dt = 1.

2.1. Properties of the generalized kernel density estimator. We will now
present some statistical properties of f̂φ and then use its asymptotic behaviour
in a criterion for the choice of hj(n), j = 1, . . . ,m.

Under the above assumptions and notation, the following lemma is true.

Lemma 2.6. Assume that E
(
φj(xi)K

(
x−xi
hj(n)

))
< ∞ and

E
(
φj(xi)φk(xi)K

(x− xi

hj(n)

)
K
(x− xi

hk(n)

))
< ∞, j, k = 1, . . . ,m.

Then

E(f̂φ(x)) =
m∑

j=1

∫
R

K(y)φj(x + hj(n)y)f(x + hj(n)y) dy,

(2.3)

V (f̂φ(x)) =
1
n

n∑
j,k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy

(2.4)

− 1
n

( m∑
j=1

∫
R

K(y)φj(x + hj(n)y)f(x + hj(n)y) dy
)2

.

Proof. Fix an n ∈ N. Since K is a measurable nonnegative function and
{Xi}n

i=1 is a sequence of identically and independently distributed random vari-
ables,

{
φj(xi)
hj(n) K

(
x−xi
hj(n)

)}n

i=1
forms a sequence of identically and independently

distributed random variables. Thus

E(f̂φ(x)) =
1
n

n∑
i=1

m∑
j=1

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))
=

m∑
j=1

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))
.
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Observe that, for every j = 1, . . . ,m

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))
= (hj(n))−1

∫
R

K
( x− t

hj(n)

)
φj(t)f(t) dt.

Letting y = x−t
hj(n) , we have

∣∣∣dy
dt

∣∣∣ = 1
hj(n) and

1
hj(n)

∫
R

K(y)φj(x + hj(n)y)f(x + hj(n)y)hj(n) dy

=
∫

R
K(y)φj(x + hj(n)y)f(x + hj(n)y) dy.

Hence, summing both sides over j = 1, . . . ,m, we get the expected value of the
generalized kernel estimator

E(f̂φ(x)) =
m∑

j=1

∫
R

K(y)φj(x + hj(n)y)f(x + hj(n)y) dy.

To prove (2.4), we use the following equation

V (f̂φ(x)) = E(f̂ 2
φ (x))− (E(f̂φ(x))2.

There is

V (f̂φ(x)) =
1
n2

n∑
i=1

(
E(

m∑
j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

))2

−
[
E
( m∑

j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

))]2)
=

1
n2

n∑
i=1

(
E
( m∑

j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

))( m∑
k=1

φk(xi)
hk(n)

K
(x− xi

hk(n)

))
−
[ m∑

j=1

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))]2)
.
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Thanks to the independence of xi, i = 1, . . . , n, the first term can be
written as:

1
n2

n∑
i=1

(
E
( m∑

j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

))( m∑
k=1

φk(xi)
hk(n)

K
(x− xi

hk(n)

))
=

1
n

∫
R

( m∑
j=1

φj(y)
hj(n)

K
(x− y

hj(n)

))( m∑
k=1

φk(y)
hk(n)

K
(x− y

hk(n)

))
f(y) dy

=
1
n

∫
R

m∑
j=1

m∑
k=1

φj(y)φk(y)
hj(n)hk(n)

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
f(y) dy

=
1
n

m∑
j=1

m∑
k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy.

Hence the variance of the generalized kernel estimator is given by

V (f̂φ(x)) =
1
n

n∑
j,k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy

− 1
n

( m∑
j=1

∫
R

K(y)φj(x + hj(n)y)f(x + hj(n)y) dy
)2

,

which completes the proof.

Remark 2.7. Taking m = 1 and φ1(x) ≡ 1 in Theorem 2.6, we obtain the
formulae for the expected value and variance of the traditional kernel estimator
f̂h. They can be found for example in [13].

In order to show some statistical properties of f̂φ, we use the following
lemma (see [10] for a similar result for the traditional kernel estimator).

Lemma 2.8. Under the above assumptions, let K be a bounded and inte-
grable function such that lim|t|→∞ tK(t) = 0, and let hj(n) > 0, hj(n) → 0,
for n → ∞ and j = 1, . . . ,m. Then for every point x of continuity of f there
is

m∑
j=1

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))
−→ f(x)

∫
R

K(t) dt, n →∞.

Proof. Our goal is to show that for every j = 1, . . . ,m

lim
n→∞

∫
R
(f(x + hj(n)z)φj(x + hj(n)z)− f(x)φj(x + hj(n)z))K(z) dz = 0.
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For a fixed j, there is∣∣∣ ∫
R
(f(x + hj(n)z)φj(x + hj(n)z)− f(x)φj(x + hj(n)z))K(z) dz

∣∣∣
≤
∫

R
|(f(x + hj(n)z)φj(x + hj(n)z)− f(x)φj(x + hj(n)z))K(z)| dz.

Letting −ζ = hj(n)z, we obtain
∣∣∣dz
dζ

∣∣∣ = 1
hj(n) , and

∫
R

∣∣∣(f(x− ζ)φj(x− ζ)− f(x)φj(x− ζ))K
(
− ζ

hj(n)

)∣∣∣ 1
hj(n)

dζ

=
1

hj(n)

∫
R

∣∣∣(f(x− ζ)φj(x− ζ)− f(x)φj(x− ζ))K
(
− ζ

hj(n)

)∣∣∣ dζ,

where∣∣∣(f(x− ζ)φj(x− ζ)− f(x)φj(x− ζ))K
(
− ζ

hj(n)

)∣∣∣
=
∣∣∣f(x− ζ)− f(x)

∣∣∣∣∣∣φj(x− ζ)
∣∣∣K(− ζ

hj(n)

)
,

for K is nonnegative. Observe that |φj(x − ζ)| ≤ 1, whenever x− ζ ∈ R.
Therefore,

1
hj(n)

∫
R

∣∣∣f(x− ζ)− f(x)
∣∣∣∣∣∣φj(x− ζ)

∣∣∣K(− ζ

hj(n)

)
dζ

≤ 1
hj(n)

∫
R

∣∣∣f(x− ζ)− f(x)
∣∣∣K(− ζ

hj(n)

)
dζ.

Take an arbitrary δ > 0. Splitting the integration interval into two parts:
{ζ : |ζ| ≥ δ} and {ζ : |ζ| < δ} and applying the triangle inequality to the first
term, we get

1
hj(n)

∫
{ζ: |ζ|≥δ}

∣∣∣f(x− ζ)− f(x)
∣∣∣K(− ζ

hj(n)

)
dζ

≤ 1
hj(n)

∫
{ζ: |ζ|≥δ}

∣∣∣f(x− ζ)
∣∣∣K(− ζ

hj(n)

)
dζ

+
1

hj(n)

∫
{ζ: |ζ|≥δ}

∣∣∣f(x)
∣∣∣K(− ζ

hj(n)

)
dζ.
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Since K is bounded and f is a density, we get

1
hj(n)

∫
{ζ: |ζ|≥δ}

f(x− ζ)
ζ

ζK
(
− ζ

hj(n)

)
dζ

≤ sup
|y|≥ δ

hj(n)

yK(y)
∫
{ζ: |ζ|≥δ}

f(x− ζ) dζ

and
1

hj(n)

∫
{ζ: |ζ|≥δ}

f(x)K
(
− ζ

hj(n)

)
dζ =

1
hj(n)

f(x)
∫
{ζ: |ζ|≥δ}

K
(
− ζ

hj(n)

)
dζ

= f(x)
∫
|z|≥ δ

hj(n)

K(z) dz.

Hence, for n →∞, the first term tend to 0:

1
hj(n)

∫
{ζ: |ζ|≥δ}

∣∣∣f(x− ζ)− f(x)
∣∣∣K(− ζ

hj(n)

)
dζ

≤ sup
|y|≥ δ

hj(n)

yK(y)
∫
{ζ: |ζ|≥δ}

f(x− ζ) dζ + f(x)
∫
|z|≥ δ

hj(n)

K(z) dz −→ 0.

From the continuity of f at x, the second integral may be estimated as
follows

1
hj(n)

∫
{ζ: |ζ|<δ}

∣∣∣f(x− ζ)− f(x)
∣∣∣K(− ζ

hj(n)

)
dζ

≤ εδ

hj(n)

∫
{ζ: |ζ|<δ}

K
(
− ζ

hj(n)

)
dζ = εδ

∫
{y:|y|< δ

hj(n)
}
K(y) dy

and converges to zero as n →∞.
Thus, for every j = 1, . . . ,m,

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))
−→ f(x)φj(x)

∫
R

K(t) dt, for n →∞.

After summing both sides over j the proof is completed.

Remark 2.9. By the additional assumption that
∫

R K(t) dt = 1,

E(f̂φ(x))− f(x) → 0, n →∞,

and hence the generalized kernel estimator is asymptotically unbiased. Pro-
vided that for every j = 1, . . . ,m, nhj(n) → ∞ for n → ∞, we obtain
V (f̂φ) → 0 for n →∞.
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3. Criterion for the bandwidth choice. Like in the case of the tradi-
tional kernel estimator (1.1), we will use asymptotic mean integrated squared
error AMISE(f̂φ) as a criterion for the choice of hj(n) > 0, hj(n) → 0, for
n → ∞, j = 1, . . . ,m. We obtain the formula for AMISE(f̂φ) by asymp-
totic approximations of E(f̂φ(x))− f(x) and V (f̂φ). We will use a well known
corollary of Taylor’s formula:

Corollary 3.1. Suppose that g(x) is an arbitrary function, (n− 1)-times
differentiable in a neighbourhood of x0 and that g(n)(x0) at x0 exists. Then

∀ε>0 ∃δ>0, 0<θ<δ :
∣∣∣g(x0 + θ)− g(x0)− θg′(x0)− · · · − θn

n!
g(n)(x0)

∣∣∣ < θn

n!
ε.

Under the assumption from the last section we will formulate the criterion
for the choice of the sequence of bandwidths. From now on, we assume that K
is a measurable nonnegative function such that∫

R
t2K(t) dt < ∞ and

∫
R

K(t) dt = 1.

We will consider two cases: for a symmetric and nonsymmetric kernel, starting
with the symmetric case.

Theorem 3.2. Under the assumptions from the last section, suppose that
functions φjf, j = 1, . . . ,m are differentiable in a neighbourhood of x and there
exist derivatives (φj(x)f(x))′′, j = 1, . . . ,m at x, and a kernel K satisfies∫

R tK(t) dt = 0. Then

E(f̂φ(x)) = f(x) +
1
2

m∑
j=1

hj(n)2(φj(x)f(x))′′
∫

R
t2K(t) dt + o

(∑
j

hj(n)2
)
,

V (f̂φ(x)) =
1
n

m∑
j,k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy

+ o
( 1

n
∑

j hj(n)

)
.

Proof. Let ε > 0. By Corollary 3.1, for every j = 1, . . . ,m, there exists a
δ > 0 such that 0 < hj(n)t < δ and

|φj(x + hj(n)t)f(x + hj(n)t)− φj(x)f(x)

− hj(n)t(φj(x)f(x))′ − 1
2
hj(n)2t2(φj(x)f(x))′′| < hj(n)2t2

2!
ε.
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Multiplying inequalities

− hj(n)2t2

2!
ε < φj(x+hj(n)t)f(x+hj(n)t)−φj(x)f(x)−hj(n)t(φj(x)f(x))′

− 1
2
hj(n)2t2(φj(x)f(x))′′ <

hj(n)2t2

2!
ε

by K(t), and integrating with respect to t, we obtain

− hj(n)2

2!
ε

∫
R

t2K(t) dt <

∫
R

φj(x + hj(n)t)f(x + hj(n)t)K(t) dt−φj(x)f(x)

− 1
2
hj(n)2(φj(x)f(x))′′

∫
R

t2K(t) dt <
hj(n)2

2!
ε

∫
R

t2K(t) dt,

provided that K is a symmetric density. Summing over j = 1, . . . ,m, by (2.3),
we get

− 1
4

m∑
j=1

hj(n)2ε
∫

R
t2K(t) dt

< E(f̂φ(x))− f(x)− 1
2

m∑
j=1

hj(n)2(φj(x)f(x))′′
∫

R
t2K(t) dt

<
1
4

m∑
j=1

hj(n)2ε
∫

R
t2K(t) dt.

Therefore,∣∣∣E(f̂φ(x))− f(x)− 1
2

m∑
j=1

hj(n)2(φj(x)f(x))′′
∫

R
t2K(t) dt

∣∣∣
<

1
4

m∑
j=1

hj(n)2ε
∫

R
t2K(t) dt.

Since hj(n) > 0, j = 1, . . . ,m, denoting µ2 =
∫

R t2K(t) dt, we obtain∣∣∣∣∣E(f̂φ(x))− f(x)∑m
j=1 hj(n)2

−1
2
(φj(x)f(x))′′µ2

∣∣∣∣∣ < 1
4
εµ2.

Observe that ∀k hk(n)2 ≤
∑m

j=1 hj(n)2 and hj(n) → 0, n → ∞ for j =
1, . . . ,m. Since ε > 0 is arbitrary, we get

E(f̂φ(x))− f(x)−1
2
(φj(x)f(x))′′µ2 = o

( m∑
j=1

hj(n)2
)
.
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Now, since

V (f̂φ(x)) =
1
n2

n∑
i=1

(
E
( m∑

j=1

φj(xi)
hj(n)

K
(x− xi

hj(n)

))( m∑
k=1

φk(xi)
hk(n)

K
(x− xi

hk(n)

))
−
[ m∑

j=1

1
hj(n)

E
(
φj(xi)K

(x− xi

hj(n)

))]2)
,

applying Lemma 2.8 and Remark 2.9, we conclude that the second term is
o( 1

n
∑

j hj(n)). By (2.4), the first term equals

1
n

m∑
j,k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy,

which completes the proof.

In the nonsymmetric case, we proceed in the following way.

Theorem 3.3. Under the assumptions from the last section, if the functions
fφj are differentiable at x, for j = 1, . . . ,m and∫

R
tK(t) dt 6= 0, and

∣∣∣∣∫
R

tK(t) dt

∣∣∣∣ < ∞,

then

E(f̂φ(x)) = f(x) +
m∑

j=1

hj(n)(φj(x)f(x))′
∫

R
tK(t) dt + o

(∑
j

hj(n)
)
,

V (f̂φ(x)) =
1
n

m∑
j,k=1

1
hj(n)hk(n)

∫
R

K
(x− y

hj(n)

)
K
(x− y

hk(n)

)
φj(y)φk(y)f(y) dy

+o
( 1

n
∑

j hj(n)

)
.

Proof. Let ε > 0 be arbitrary. By the Peano formula, for every j =
1, . . . ,m, there exists a δ > 0, 0 < hj(n)t < δ such that:

|φj(x + hj(n)t)f(x + hj(n)t)− φj(x)f(x)− hj(n)t(φj(x)f(x))′| < hj(n)tε.

Multiplying by K(t), and integrating with respect to t, we get by assump-
tions on K,∣∣∣ ∫

R
φj(x + hj(n)t)f(x + hj(n)t)K(t) dt− φj(x)f(x)− hj(n)(φj(x)f(x))′µ1

∣∣∣
< hj(n)εµ1,

where µ1 =
∫

R tK(t) dt.
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Summing over j = 1, . . . ,m, by (2.3), we obtain

∣∣∣E(f̂φ(x))− f(x)−
m∑

j=1

hj(n)(φj(x)f(x))′µ1

∣∣∣ < m∑
j=1

hj(n)εµ1.

Therefore, ∣∣∣∣∣E(f̂φ(x))− f(x)∑m
j=1 hj(n)

− (φj(x)f(x))′µ1

∣∣∣∣∣ < εµ1,

since for every j, hj(n) → 0, n →∞ and hence
∑

j hj(n) is bounded, so

E(f̂φ(x))− f(x) =
m∑

j=1

hj(n)µ1(φj(x)f(x))′ = o
(∑

j

hj(n)
)
.

In the second part of the proof we can proceed as in the symmetric case (see
the proof of Theorem 3.2).

Under the above assumptions, the following corollaries are true.

Corollary 3.4. By Theorem 3.2, if K is symmetric and∫
R

(φj(x)f(x))′′(φk(x)f(x))′′ dx < ∞,

for every j, k = 1, . . . ,m, then the asymptotic mean integrated squared error is
given by:

(3.1) AMISE(f̂φ) =
m∑

j=1

m∑
k=1

1
4
h2

j (n)h2
k(n)µ2

2

∫
R

(φj(x)f(x))′′(φk(x)f(x))′′ dx

+
1
n

m∑
j=1

m∑
k=1

1
hj(n)hk(n)

(∫
R

K
( t

hj(n)

)
K
( t

hk(n)

)
dt
)∫

R
φj(y)φk(y)f(y) dy,

where µ2 =
∫

R t2K(t) dt.

Corollary 3.5. By Theorem 3.3, if K is nonsymmetric and∫
R

(φj(x)f(x))′(φk(x)f(x))′ dx < ∞,
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for every j, k = 1, . . . ,m, then the asymptotic mean integrated squared error is
given by

(3.2) AMISE(f̂φ) =
m∑

j=1

m∑
k=1

hj(n)hk(n)µ2
1

∫
R

(φj(x)f(x))′(φk(x)f(x))′ dx

+
1
n

m∑
j=1

m∑
k=1

1
hj(n)hk(n)

(∫
R

K
( t

hj(n)

)
K
( t

hk(n)

)
dt
)∫

R
φj(y)φk(y)f(y) dy,

where µ1 =
∫

R tK(t) dt.

Unfortunately the complexity of formulae (3.1) and (3.2) prevent the deriva-
tion of the explicit formulae for hj(n), j = 1, . . . ,m, hence the choice of the se-
quence of bandwidths should be done numerically, by minimization of AMISE,
for a symmetric and nonsymmetric kernel, respectively.

Obviously the above formulae get simpler if we know the kernel. For ex-
ample, in the case of the Gaussian kernel and for fixed j, k, we get µ2 =∫

R t2Kg(t) dt = 1 and∫
R

Kg

( t

hj(n)

)
Kg

( t

hk(n)

)
dt =

1√
2π

∫
R

e
− t2

2

(
1

hj(n)2
+ 1

hk(n)2

)
dt

=
1√
2π

hj(n)hk(n)√
hj(n)2 + hk(n)2

.

Therefore,

AMISE(f̂φ) =
m∑

j=1

m∑
k=1

(1
4
h2

j (n)h2
k(n)

∫
R

(φj(x)f(x))′′(φk(x)f(x))′′ dx

+
1√
2πn

1√
hj(n)2 + hk(n)2

∫
R

φj(x)φk(x)f(x) dx
)
.

In case of the rectangular kernel, for fixed j, k, µ2 =
∫

R t2Kp(t) dt = 1
3 and∫

R
Kp

( t

hj(n)

)
Kp

( t

hk(n)

)
dt =

1
2

min {hj(n), hk(n)},

and hence

AMISE(f̂φ) =
m∑

j=1

m∑
k=1

( 1
36

h2
j (n)h2

k(n)
∫

R
(φj(x)f(x))′′(φk(x)f(x))′′ dx

+
min {hj(n), hk(n)}

2nhj(n)hk(n)

∫
R

φj(x)φk(x)f(x) dx
)
.
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Using the nonsymmetric exponential kernel, we obtain

AMISE(f̂φ) =
m∑

j=1

m∑
k=1

(
hj(n)hk(n)

∫
R

(φj(x)f(x))′(φk(x)f(x))′ dx

+
hj(n)hk(n)

n(hj(n) + hk(n))

∫
R

φj(x)φk(x)f(x) dx
)
,

since for fixed j, k, there is µ1 =
∫

R tKw(t) dt = 1∫
R

Kw

( t

hj(n)

)
Kw

( t

hk(n)

)
dt =

∫ +∞

0
e
−t

(
1

hj(n)2
+ 1

hk(n)2

)
dt =

hj(n)hk(n)
hj(n) + hk(n)

.

Remark 3.6. If K is symmetric, taking m = 1 and φ1(x) ≡ 1 (see Remark
2.4), by (3.1), we obtain:

AMISE(f̂φ) =
h1(n)4

4

(∫
R

t2K(t) dt

)2 ∫
R
((φ1(x)f(x))′′)2 dx

+
1

nh1(n)

∫
R

K2(t) dt

∫
R

φ1(x)2f(x) dx

=
h1(n)4

4

(∫
R

t2K(t) dt

)2 ∫
R
((f(x))′′)2 dx +

1
nh1(n)

∫
R

K2(t) dt,

which gives the formula for AMISE for the traditional kernel estimator (1.1).

Remark 3.7. Using nonsymmetric kernel, for m = 1, and φ1(x) ≡ 1, by
(3.2), we get the formula for AMISE for estimator (1.1):

AMISE(f̂φ) = h1(n)2
(∫

R
tK(t) dt

)2 ∫
R
((φ1(x)f(x))′)2 dx

+
1

nh1(n)

∫
R

K2(t) dt

∫
R

φ1(x)2f(x) dx

= h1(n)2
(∫

R
tK(t) dt

)2 ∫
R
((f(x))′)2 dx +

1
nh1(n)

∫
R

K2(t) dt

(see [7] for results on the nonsymmetric case in the traditional kernel estima-
tion).

In Section 4 we will construct the pilot function by parametric estimation.
The main problem is the choice of number of components in the model

α1f1(x|θ1) + α2f2(x|θ2) + · · ·+ αmfm(x|θm).

This is a known and much investigated problem in many methods of parametric
estimation. However, in our case, it is not so important, since the pilot is just
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a tool for further estimation. So we suggest the choice of m = 2, because it
does not decrease the efficiency of the method considered.

Remark 3.8. In the case m = 2, we choose two bandwidths h1(n) and
h2(n), minimizing:

• for the Gaussian kernel:

AMISE(f̂φ) =
1
2
h2

1(n)h2
2(n)

∫
R
(φ1(x)f(x))′′(φ2(x)f(x))′′ dx

(3.3)

+
1
4
h4

1(n)
∫

R
((φ1(x)f(x))′′)2 dx +

1
4
h4

2(n)
∫

R
((φ2(x)f(x))′′)2 dx

+
1

2nh1(n)
√

π

∫
R

φ2
1(x)f(x) dx +

1
2nh2(n)

√
π

∫
R

φ2
2(x)f(x) dx

+
√

2
n
√

π(h2
1(n) + h2

2(n))

∫
R

φ1(x)φ2(x)f(x) dx,

• for the rectangular kernel:

AMISE(f̂φ) =
1
18

h2
1(n)h2

2(n)
∫

R
(φ1(x)f(x))′′(φ2(x)f(x))′′ dx

+
1
36

h4
1(n)

∫
R
((φ1(x)f(x))′′)2 dx +

1
36

h4
2(n)

∫
R
((φ2(x)f(x))′′)2 dx

+
1

2nh1(n)

∫
R

φ2
1(x)f(x) dx +

1
2nh2(n)

∫
R

φ2
2(x)f(x) dx

+
min {h1(n), h2(n)}

nh1(n)h2(n)

∫
R

φ1(x)φ2(x)f(x) dx,

• for the exponential kernel:

AMISE(f̂φ) = h2
1(n)

∫
R
((φ1(x)f(x))′)2 dx + h2

2(n)
∫

R
((φ2(x)f(x))′)2 dx

+
h1(n)
2n

∫
R

φ2
1(x)f(x) dx +

h2(n)
2n

∫
R

φ2
2(x)f(x) dx

+2h1(n)h2(n)
∫

R
(φ1(x)f(x))′(φ2(x)f(x))′ dx

+2
h1(n)h2(n)

n(h1(n) + h2(n))

∫
R

φ1(x)φ2(x)f(x) dx.

4. Construction of the pilot function – parametric estimation. In
this section we present some way of construction of the pilot function, based on
a modification of the well-known maximum likelihood method. We apply the
Expectation Maximization Algorithm, introduced in [2] and used to estimate
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the parameters in stochastic models, to hidden Markov models, to estimate a
hazard function, as well as to estimate the parameters in mixture models. The
last of these applications is the matter of our interest and will be used in the
normal mixture model

α1N(µ1, σ
2
1) + α2N(µ2, σ

2
2) + · · ·+ αmN(µm, σ2

m).

4.1. The EM Algorithm. Let x = (x1, x2, . . . , xn) be a sample of indepen-
dent observations from an absolutely continuous distribution with a density
function fX(x|θ), where θ denotes the parameters of the distribution.

Definition 4.1. We define the likelihood function and the log-likelihood
function

Lx(θ|x) :=
n∏

i=1

fX(xi|θ),

lx(θ|x) := lnLx(θ|x) =
n∑

i=1

ln fX(xi|θ).

The maximum likelihood estimator of θ is given by

θ̂ = argmax
θ∈Θ

Lx(θ|x) = argmax
θ∈Θ

lx(θ|x).

To present the EM algorithm we consider data model

{(xi, yi), i = 1, . . . , n},(4.1)

from the distribution of the random variable (X, Y ), where x = (x1, . . . , xn) is a
sample of independent observations from the absolutely continuous distribution
of X, with the density fX (treated as a marginal density of (X, Y )), and y =
(y1, . . . , yn) denotes the latent or missing data. Sample x, together with y is
called the complete data.

Definition 4.2. For data model (4.1), the likelihood and log-likelihood
functions are defined as follows:

L(θ|x,y) =
n∏

i=1

f(xi, yi|θ),(4.2)

l(θ|x,y) = lnL(θ|x,y) =
n∑

i=1

ln f(xi, yi|θ).(4.3)
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From now on we will use the following notation

fX(x|θ) =
n∏

i=1

fX(xi|θ),(4.4)

f(x,y|θ) =
n∏

i=1

f(xi, yi|θ),(4.5)

fY |X(y|x,θ) =
n∏

i=1

fY |X(yi|xi, θ).(4.6)

Corollary 4.3. For the considered data model, the maximum likelihood
estimator of θ is given by

θ̂ = argmax
θ∈Θ

(lx(θ|x,y)− ln fY |X(y|x,θ)),

where fY |X(y|x,θ) denotes the conditional density of Y , given X = x and θ.

Proof. By the definition of conditional density,

fX(x|θ) =
f(x,y|θ)

fY |X(y|x,θ)
,

and hence, by Definition 4.1,

θ̂ = argmax
θ∈Θ

lx(θ|x) = argmax
θ∈Θ

(ln f(x,y|θ)− ln fY |X(y|x,θ))

= argmax
θ∈Θ

(l(θ|x,y)− ln fY |X(y|x,θ)).

Now, let

Q(θ,θt) := E (ln f(x,y|θ)|x,θt),(4.7)
H(θ,θt) := E (ln fY |X(y|x,θ)|x,θt),(4.8)

where E(·|x,θ) denotes the conditional expected value, given X = x and fixed
θ = θt, where θt is the value of parameter θ in the iteration t.

The EM algorithm gives an iterative procedure that maximizes Q(θ,θt), for
every t = 0, 1, 2, . . . giving θt+1 = argmaxθ Q(θ,θt). After sufficient number
of iterations, argmaxθ lx(θ|x) will be found with a high probability (see [2],
[16]).

Theorem 4.4. Under the above assumptions the procedure of

θt+1 = argmax
θ∈Θ

Q(θ,θt),
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guarantees that

lx(θt+1|x) ≥ lx(θt|x),

with equality iff

Q(θt+1|x,θt) = Q(θt|x,θt),

for t = 0, 1, 2, . . .

Proof. Consider the expression

Q(θt+1|x,θt)−H(θt+1|x,θt).

From formulae (4.7) and (4.8), there follows

Q(θt+1|x,θt)−H(θt+1|x,θt)

= E (ln f(x,y|θt+1)|x,θt)− E (ln fY |X(y|x,θt+1)|x,θt)

= E
(

ln
f(x,y|θt+1)

fY |X(y|x,θt+1)

∣∣∣x,θt

)
,

and by the definition of conditional density and (4.4)

lx(θt+1|x) = ln
f(x,y|θt+1)

fY |X(y|x,θt+1)
.

Thus

Q(θt+1|x,θt)−H(θt+1|x,θt) = E(lx(θt+1|x)|x,θt).

By the monotonicity of the conditional expected value, lx(θt+1|x)− lx(θt|x) ≥
0, provided that

(Q(θt+1|x,θt)−Q(θt|x,θt)) + (H(θt|x,θt)−H(θt+1|x,θt)) ≥ 0.

Note that the first term Q(θt+1|x,θt) − Q(θt|x,θt) ≥ 0, by (4.4). The
second one, by (4.8) and the definition of the conditional expected value, can
be written as

H(θt|x,θt)−H(θt+1|x,θt)

= E (ln fY |X(y|x,θt)|x,θt)− E (ln fY |X(y|x,θt+1)|x,θt)

= E
(

ln
fY |X(y|x,θt)

fY |X(y|x,θt+1)

∣∣∣x,θt

)
=
∫

ln
fY |X(y|x,θt)

fY |X(y|x,θt+1)
fY |X(y|x,θt) dy.

As

ln
fY |X(y|x,θt)

fY |X(y|x,θt+1)
= − ln

(
1 +

fY |X(y|x,θt+1)− fY |X(y|x,θt)
fY |X(y|x,θt)

)
and ln (1 + t) < t, for every t > −1, t 6= 0, the proof is completed.
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The EM algorithm can be stated as follows:

Start: Set the initial value θ0.
Each step consists of two substeps. For every t = 0, 1, 2, . . . we proceed as

follows:
Expectation step:

Let θt be the current estimates of the unknown parameters θ. By (4.7), we
calculate

Q(θ,θt) =E (ln f(x,y|θ)|x,θt) =
∫

ln f(x, y|θ)fY |X(y|x,θt) dy

=
∫

ln f(x, y|θ)
f(x, y|θt)
fX(x|θt)

dy.

Maximization step:
Since fX(x|θt) is independent of θ, we get

θt+1 = argmax
θ

Q(θ,θt) = argmax
θ

∫
ln f(x, y|θ)f(x, y|θt) dy.

By iterating EM steps, the algorithm converges to the parameters that should

be the maximum likelihood parameters, but the convergence speed is rather low
(see e.g. [16]). There is some research to accelerate the convergence speed of
the EM algorithm, but the procedure is usually not easy and difficult to carry
out. In this paper we will focus on the traditional form of the EM algorithm
and apply it to the estimation of a mixture of the normal densities.

4.2. Fitting the mixture of the normal densities. As previously, consider
x = (x1, x2, . . . , xn) – a sample of independent observations from a density
fX(x|θ), where θ = (θ1, . . . , θm) denotes the parameters of the distribution
and consider the following model:

Suppose that fX is given by the mixture density

fX(x|θ) =
m∑

j=1

αjfj(x|θj),

where

αj > 0, j = 1, . . . ,m,
m∑

j=1

αj = 1,

fj(x|θj) =
1√

2πσj

e
− 1

2

(
x−µj

σj

)2

, θj = (µj , σ
2
j ).

We call αj the prior probability of the j-th mixture component, for j =
1, . . . ,m.
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Suppose also, as in (4.1), that y = (y1, y2, . . . , yn) denotes latent data from
the distribution of random variable Y = (Y1, Y2, . . . , Yn), such that P (Yi =
j) = αj , j = 1, . . . ,m, i = 1, . . . , n.

Calculate Q(θ,θt) for the above model. The conditional density of Y , given
X = x and θt, is given by

fY |X(y|x,θt) =
n∏

i=1

fY |X(yi|xi, θt),(4.9)

and the joint density of X and Y

f(x,y|θ) =
n∏

i=1

f(xi, yi|θyi),(4.10)

which by the definition of the conditional density gives

f(x,y|θ) =
n∏

i=1

αyifyi(xi|θyi).(4.11)

From formulae (4.9), (4.11) and (4.7), we obtain

Q(θ,θt) =E(ln f(x,y|θ)|x,θt) = E(ln (
n∏

i=1

αyifyi(xi|θyi))|x,θt)(4.12)

=
m∑

j=1

n∑
i=1

ln (αyifyi(xi|θyi))P (Yi = j|x,θt)

=
m∑

j=1

n∑
i=1

ln (αjfj(xi|θj))P (j|xi,θt).

Thus, in each iteration t of the EM algorithm, the expectation step, calculates
qt
ij = P (j|xi,θt). From now on, we will denote by α̂t

j , µ̂t
j and (σ̂t

j)
2 estimators

of the parameters αj , µj , σ2
j in iteration t.

Lemma 4.5. Under the above assumptions,

α̂t
j =

1
n

n∑
i=1

qt
ij ,(4.13)

µ̂t
j =

∑n
i=1 qt

ijxi∑n
i=1 qt

ij

,(4.14)

(σ̂t
j)

2 =

∑n
i=1(xi − µ̂t

j)
2qt

ij∑n
i=1 qt

ij

.(4.15)
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Proof. To find αj , we use the Lagrange multiplier λ, with the constraint
of
∑m

j=1 αj = 1. For j = 1, . . . ,m, we calculate

∂

∂αj

(
Q(θ,θt) + λ

( m∑
j=1

αj − 1
))

= 0.

By formula (4.12),

∂

∂αj

( m∑
j=1

n∑
i=1

ln (αjfj(xi|θj))qt
ij + λ

( m∑
j=1

αj − 1
))

= 0, j = 1, . . . ,m,

and hence
n∑

i=1

qt
ij = −λαj , j = 1, . . . ,m.

Summing both sides over j, we get λ = −n, and thus (4.13).
To prove (4.14) and (4.15), we maximize the function

Q(θ,θt) =
m∑

j=1

n∑
i=1

ln (αjfj(xi|θj))qt
ij .

By the assumptions of the model,

fj(x|θj) =
1√

2πσj

e
− 1

2

(
x−µj

σj

)2

, θj = (µj , σ
2
j ).

We get the function given by

Q̃(µj , σj) =
m∑

j=1

n∑
i=1

(
ln(αj)−

1
2

ln(2π)− ln(σj)−
1
2

(xi − µj

σ

)2)
qt
ij .(4.16)

By differentiating (4.16) with respect to µ and σ, for j = 1, . . . ,m, we
obtain

∂Q̃

∂µj
=

n∑
i=1

(xi − µj)qt
ij ,

∂Q̃

∂σj
=

n∑
i=1

( 1
σj

+
(xi − µj)2

σ3
j

)
qt
ij .

Solving the equations
∑n

i=1(xi − µj)qt
ij = 0 and

∑n
i=1

(
1
σj

+ (xi−µj)
2

σ3
j

)
qt
ij = 0,

we get (4.14) and (4.15).
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The scheme of the EM algorithm, for the mixture of normal densities can be
stated as follows:

Start: We set α0
j , µ0

j i (σ0
j )

2.
For j = 1, 2, . . . ,m, we iterate (t = 1, 2, . . .):

E-step: We calculate qt
ij ,

M-step: We calculate

α̂t
j =

1
n

n∑
i=1

qt
ij ,

µ̂t
j =

∑n
i=1 qt

ijxi∑n
i=1 qt

ij

,

(σ̂t
j)

2 =

∑n
i=1(xi − µ̂t

j)
2qt

ij∑n
i=1 qt

ij

.

The above scheme with the exact formulae can easily be used to construct
the pilot function.

5. Example. In this section we present an example of how to apply the
two-step method in practice. Suppose that we are given a sample of 200 in-
dependent observations from an absolutely continuous distribution with an
unknown density f .

In this example we consider the mixture of two Weibull densities, with
parameters: α1 = 0.25, a1 = 2.9, b1 = 3.5 and α2 = 0.75, a2 = 1.6, b2 = 0.6,
which is nonsymmetric and bimodal.

At first we construct a pilot function as a mixture of m = 2 normal densities

f0(x) = α1f1(x|µ1, σ
2
1) + α2f2(x|µ2, σ

2
2),

where

fj(x|µ1, σ
2
1) =

1√
2πσj

e
− 1

2

(x−µj)2

σ2
j , j = 1, 2,

using the EM algorithm. We set the initial values of the estimates of the
parameters:

α̂0
1 = 0.5, α̂0

2 = 0.5, µ̂0
1 = −0.5, µ̂0

2 = 0.5, (σ̂0
1)

2 = 0.5, (σ̂0
2)

2 = 0.5,

and after 30 iterations of the EM algorithm we get

α̂1 = 0.315, µ̂1 = 2.698, (σ̂1)2 = 1.560,

α̂2 = 0.685, µ̂2 = 0.489, (σ̂2)2 = 0.079.
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Therefore, the pilot is given by the formula

f0(x) =
α̂1√

2π(σ̂1)2
e
− 1

2
(x−µ̂1)2

(σ̂1)2 +
α̂2√

2π(σ̂2)2
e
− 1

2
(x−µ̂2)2

(σ̂2)2 .

In the second step we use the generalized kernel density estimator (2.1)
with the Gaussian kernel. In this case

φ1(x) =

α̂1√
2π(σ̂1)2

e
− 1

2
(x−µ̂1)2

(σ̂1)2

f0(x)
, φ2(x) =

α̂2√
2π(σ̂2)2

e
− 1

2
(x−µ̂2)2

(σ̂2)2

f0(x)
.

We obtain the bandwidths h1 and h2 minimizing the AMISE(f̂φ) given by
formula (3.3). By numerical minimization, we get h1 = 0.543 and h2 = 0.110.

Hence, we have the density estimator given by the formula

f̂φ(x) =
1

200

200∑
i=1

(φ1(x)
h1

K
(x− xi

h1

)
+

φ2(x)
h2

K
(x− xi

h2

))
,

where x1, . . . , x200 denote the sample given, and φ1(x), φ2(x), h1, h2 are cal-
culated above.

To show the results of the estimation, we present the graphs of the estimator
f̂φ and the estimated density in the picture below.

0.2

0.4

0.6

0.8

–2 2 4 6 8

x

One can see that the estimator f̂φ (solid line) is very close to the estimated
density f (dotted line), which gives evidence to a high efficiency of the method
proposed.
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