DIFFEOMORPHISMS WITH MILDLY WILD FRAME OF SEPARATRICES

by Olga Pochinka

Abstract. In the paper there is constructed a structural stable diffeomorphism on sphere \mathbb{S}^3 whose nonwandering set consists of n + 1 sinks, n saddles of index 1, one source and the frame of one-dimensional separatrices is mildly wild.

Introduction. Let's consider a class $\Psi_n(\mathbb{S}^3), n \in \mathbb{N}$, of diffeomorphisms $f : \mathbb{S}^3 \to \mathbb{S}^3$ with the following properties:

1) the non-wandering set $\Omega(f)$ consists of 2n + 2 hyperbolic fixed points: $\omega_1, \ldots, \omega_n, \omega$ are sinks, $\sigma_1, \ldots, \sigma_n$ are saddles of index 1, α is a source;

2) one-dimensional unstable separatrices ℓ_{σ_i} and l_{σ_i} of saddle point $\sigma_i, i \in \{1, \ldots, n\}$ satisfy the conditions: $\bar{\ell}_{\sigma_i} = \{\omega\} \cup \ell_{\sigma_i} \cup \{\sigma_i\}$ and $\bar{l}_{\sigma_i} = \{\omega_i\} \cup l_{\sigma_i} \cup \{\sigma_i\}$ (here \bar{A} is closure of the set A).

In Figure 1 the phase portrait of diffeomorphism $f \in \Psi_n(\mathbb{S}^3)$ is represented. According to [5] (Theorem 2.3) the closure $\bar{\ell}_{\sigma_i}$ of separatrix ℓ_{σ_i} is everywhere smooth except, maybe, at ω . So the topological embedding of $\bar{\ell}_{\sigma_i}$ may be complicated in a neighborhood of the sink. According to [1], ℓ_{σ_i} is called *tame* (or *tamely embedded*) if there is a homeomorphism $\psi : W^s(\omega) \to \mathbb{R}^3$ such that $\psi(\omega) = O$, where O is the origin and $\psi(\bar{\ell}_{\sigma_i} \setminus \sigma_i)$ is a ray starting from O. In the opposite case ℓ_{σ_i} is called *wild*. Artin and Fox constructed an example of a wild arc in \mathbb{R}^3 which was not connected with dynamic. Using that example D. Pixton [4] constructed a diffeomorphism from the class $\Psi_1(\mathbb{S}^3)$ such that arc ℓ_{σ_1} is exactly Artin–Fox wild arc. In Figure 2 the phase portrait of this diffeomorphism is represented. Later, in [2] was established that the class $\Psi_1(\mathbb{S}^3)$ is

Key words and phrases. Wild embedding, structural stable diffeomorphism.

The author thanks grant RFBR No $08\mathchar`-00547$ of the Russian Academy for partial financial support.

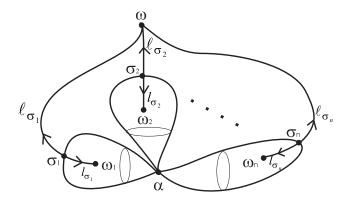


FIGURE 1. The phase portrait of diffeomorphism $f \in \Psi_n(\mathbb{S}^3)$

divided into infinitely many classes of topological conjugacy and the complete topological invariant in each class is the type of embedding of separatrix ℓ_{σ_1} . Moreover, in that paper the construction of a model diffeomorphism in each class of topological conjugacy was described.

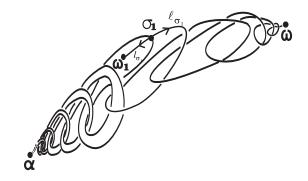


FIGURE 2. Pixton's example

Set $L_n(\omega) = \bigcup_{i=1}^n \ell_{\sigma_i} \cup \omega$. For n > 1 the set $L_n(\omega)$ is a frame of arcs that is a union of arcs with exactly one common point. According to [1] the set $L_n(\omega)$ is called *tame* if there is a homeomorphism $\psi : W^s(\omega) \to \mathbb{R}^3$ such that $\psi(\omega) = O$ and $\psi(\bar{\ell}_{\sigma_i} \setminus \sigma_i)$ is a ray starting from O for each $i = 1, \ldots, n$. In the opposite case $L_n(\omega)$ is called *wild*. It is clear that a frame is wild if at least one its arc is wild. However, in [3] there is an example of wild frame of arcs in

150

 \mathbb{R}^3 for which each arc is tame. Moreover, if we delete any arc from such frame then residuary frame is tame. Such a frame is called *mildly wild*. Using this example we construct for $n \geq 2$ a diffeomorphism $f \in \Psi_n(\mathbb{S}^3)$ with mildly wild frame of separatrices $L_n(\omega)$.

1. Debruner–Fox example. Let's consider in \mathbb{R}^3 a three-dimensional ring V^0 given in spherical coordinates as follows: $\frac{1}{2} \leq \rho \leq 1$ and homothety $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ given by the formula $\phi(\rho, \varphi, \theta) = (\frac{1}{2}\rho, \varphi, \theta)$. Let $\ell_1^0, \ldots, \ell_n^0$ be simple pairwise disjoint arcs in V^0 satisfying to the following conditions:

- (1) ℓ_i^0 has the beginning at the point $(1, \frac{2\pi i}{n}, 0)$ and end at the point $(\frac{1}{2}, \frac{2\pi i}{n}, 0)$; (2) the rotation by angle $\frac{2\pi}{n}$ around of the axis OZ translates an arc ℓ_i^0 in an arc ℓ^0_{i+1} $(\ell^0_{n+1} = \ell^0_1);$
- (3) the arcs $\ell_1^0, \ldots, \ell_n^0$ are smooth and have a regular normal projection to the plane XOY (just as is shown in Fig. 3a) for case n = 6).

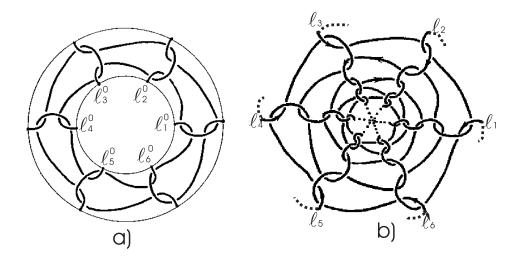


FIGURE 3. Debrunner–Fox example

Set $\ell_i = \bigcup_{k \in \mathbb{Z}} \phi^k(\ell_i^0)$ and $L_n = \bigcup_{i=1}^n \ell_i \cup O$. The projection of the frame L_n for the case n = 6 on the plane XOY is represented in Fig. 3b. According to [3], the frame L_n is mildly wild.

2. Inclusion of mildly wild frame in dynamic. Set $\mathbb{D}^2 = \{(y, z) \in \mathbb{R}^2 : y^2 + z^2 \leq 1\}$. Let's present solid torus $\mathbb{D}^2 \times \mathbb{S}^1$ as the space of orbits of an action of the group $G = \{g^n, n \in \mathbb{Z}\}$ on $\mathbb{D}^2 \times \mathbb{R}^1$ where $g : \mathbb{D}^2 \times \mathbb{R}^1 \to \mathbb{D}^2 \times \mathbb{R}^1$ is a diffeomorphism given by the formula g(x, y, z) = (x - 1, y, z). For

each arc $\ell_i \in L_n$ we choose a ϕ -invariant tubular neighborhood $V(\ell_i)$ and a diffeomorphism $\zeta_i : V(\ell_i) \to \mathbb{D}^2 \times \mathbb{R}^1$ conjugating the diffeomorphisms $\phi|_{V(\ell_i)}$ and g.

The required diffeomorphism f we will construct modifying the diffeomorphism ϕ in the style of classical Cherry-flow whose support is contained in a compact 3-ball inside $V(\ell_i)$. Let's describe details.

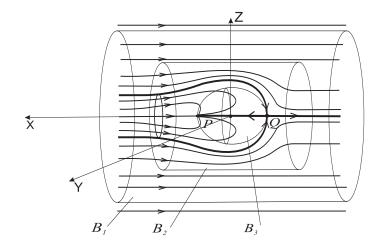


FIGURE 4. Cherry-flow

Let $\psi_1 \colon \mathbb{R}^3 \to \mathbb{R}$ be a smooth function such that:

- (a) $\psi_1(x, y, z) = -1$ for any points (x, y, z) outside of the cylinder $B_1 = \{(x, y, z) \in \mathbb{R}^3 : |x| \le 1, y^2 + z^2 \le \frac{1}{2}\};$ (b) $\psi_1(x, y, z) < 0$ for any points (x, y, z) outside of a 3-ball $B_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1/16)\};$
- (c) $\psi_1(x, y, z) > 0$ for any points $(x, y, z) \in int B_3$;
- (d) $\psi_1(x, y, z)$ is regular at points of 2-sphere ∂B_3 ;
- (e) $\left|\frac{\partial\psi_1}{\partial x}(\pm\frac{1}{4},0,0)\right| = 1.$

Let $\psi_2 : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function satisfying to the following conditions:

- (a) $\psi_2(x, y, z) = 0$ for any points (x, y, z) outside of the cylinder B_1 ;
- (b) $\psi_2(x, y, z) < 0$ for any points $(x, y, z) \in int B_1$;
- (c) $\psi_2(x, y, z) = -1$ for any points (x, y, z) belonging to the cylinder $B_2 = \{(x, y, z) \in \mathbb{R}^3 : |x| \le \frac{1}{2}, y^2 + z^2 \le \frac{1}{4}\}.$

152

Flow X we define by the following system of the equations:

$$\begin{cases} \dot{x} = \psi_1(x, y, z) \\ \dot{y} = y \cdot \psi_2(x, y, z) \\ \dot{z} = z \cdot \psi_2(x, y, z) \end{cases}$$

The flow X has exactly two fixed points: a saddle at the point Q =(-1/4, 0, 0) and a sink at the point P = (1/4, 0, 0), both points are hyperbolic (see Fig. 4). Unstable separatrices of the point Q are the interval

solution (see Fig. 1). Constant separatives of the point q are the interval $\{|x| < \frac{1}{4}, y = 0, z = 0\}$, (laying in the basin of the attracting point P) and the set $\{x < -\frac{1}{4}, y = 0, z = 0\}$. Let g_X be a shift of unit time of the flow X. By the construction g_X coincides with shift onf time unit of a flow $\frac{\partial}{\partial t}$ outside of the cylinder B_1 , belonging to the interior $\mathbb{D}^2 \times \mathbb{R}$. Let's define the diffeomorphism $\overline{f} : \mathbb{R}^3 \to \mathbb{R}^3$ as follows:

(a) *f̄* coincides with φ outside V(ℓ_i).
(b) *f̄* coincides with ζ_i⁻¹ ∘ g_X ∘ ζ_i inside V(ℓ_i).

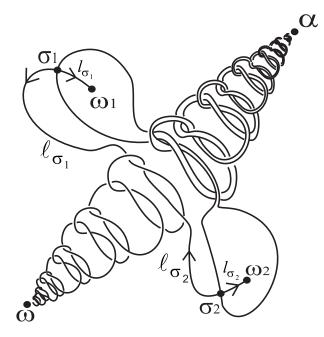


FIGURE 5. Phase portrait of the diffeomorphism $\Psi_2(\mathbb{S}^3)$ with mildly wild frame of separatrices

3. Projection on \mathbb{S}^3 . Let's define the stereographic projection $\vartheta : \mathbb{S}^3 \setminus (0,0,0,1) \to \mathbb{R}^3$ by the formula $\vartheta(x_1,x_2,x_3,x_4) = (\frac{x_1}{1-x_4},\frac{x_2}{1-x_4},\frac{x_3}{1-x_4}).$

Set
$$f(x) = \begin{cases} \vartheta^{-1}(f(\vartheta(x))), & x \in \mathbb{S}^3 \setminus \{0, 0, 0, 1\} \\ x, & x = (0, 0, 0, 1). \end{cases}$$

By construction the non-wandering set of the constructed diffeomorphism f is fixed, hyperbolic and consists of (n+1) sinks $\omega_1 = \vartheta^{-1}(\zeta_1^{-1}(P)), \ldots, \omega_n = \vartheta^{-1}(\zeta_n^{-1}(P)), \omega = \vartheta^{-1}(O), n$ saddles $\sigma_1 = \vartheta^{-1}(\zeta_1^{-1}(Q)), \ldots, \sigma_n = \vartheta^{-1}(\zeta_n^{-1}(Q))$ of index 1 and one source (0, 0, 0, 1). Thus, the diffeomorphism f belongs to the class $\Psi_n(\mathbb{S}^3)$ and has Debruner–Fox frame of separatrices. The phase portrait of the diffeomorphism for the case n = 2 is represented in Figure 5.

REMARK 1. Notice that the construction above can be used for any frame $L_n(\omega)$, not only Debruner-Fox. For instance, by this construction we can realize Pixton's example (see Fig. 2).

References

- Artin E., Fox R., Some wild cells and spheres in three-dimensional space, Annals of Math., 49 (1948), 979–990.
- Bonatti Ch., Grines V., Knots as topological invariant for gradient-like diffeomorphisms of the sphere S³, Journal of Dynamical and Control Systems, 6 (2000), 579–602.
- Debrunner H., Fox R., A mildly wild imbedding of an n-frame, Duke Math. Journal, 27 (1960), 425–429.
- 4. Pixton D., Wild unstable manifolds, Topology, 16 (1977), 167–172.
- 5. Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.

Received October 10, 2008

Nizhni Novgorod State University Gagarin 23 Nizhni Novgorod, 603950 Russia *e-mail*: olga-pochinka@yandex.ru

154