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Abstract. In this paper, we survey the general approach to Lichnerowicz–
Poisson cohomology, which was developed in [8, 2, 1], and detail the struc-
ture of this cohomology. Further, we depict an advantageous alternative
cohomological method and apply this new device to the quadratic Poisson
tensor Λ3 of the Dufour–Haraki classification.

1. Introduction. Poisson Geometry was initiated by André Lichnero-
wicz, who wrote the definition of a Poisson manifold by means of a bivector
field: a Poisson manifold is a smooth manifold M endowed with a Poisson
tensor, i.e. with a skew-symmetric contravariant 2-tensor field Λ satisfying
[Λ,Λ] = 0, where [·, ·] is the Schouten–Nijenhuis bracket. An antisymmetric
contravariant 2-tensor Λ of a manifold M induces an operator ∂Λ := [Λ, ·] on
the contravariant Grassmann algebra of M (that is on the associative graded
commutative algebra of multivector fields of M). If Λ is a Poisson tensor,
the operator ∂Λ is a differential, i.e. ∂2

Λ = 0, called the Lichnerowicz–Poisson
differential (or simply LP-differential) and the corresponding cohomology is
the Lichnerowicz–Poisson cohomology (or LP-cohomology) of the considered
Poisson manifold M .

LP-cohomology is a useful tool in Poisson Geometry, it plays an important
role in Deformation and Quantization Theory, and attracts more and more
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interest among algebraists. For symplectic manifolds, the LP-cohomology is
naturally isomorphic to the usual de Rham cohomology. Generally, computa-
tion of the LP-cohomology is quite demanding: in the Euclidean setting, while
the de Rham cohomology is trivial, the LP-cohomology spaces of nonsymplec-
tic Poisson structures are rather large.

It is well known that in some neighborhood of each point a Poisson manifold
can be viewed as the product of a part of the usual symplectic manifold and
a Poisson manifold, whose tensor vanishes at the considered point. As regards
local classification, we thus deal with Poisson tensors in Rn that vanish at the
origin. If we denote the coordinates by (x1, . . . , xn), such a tensor, say Λ, reads

Λ(x) =
∑

1≤i<j≤n

Λij(x)∂i∧∂j =
∑

1≤i<j≤n

 ∑
1≤k≤n

ckijxk +
∑

1≤k,`≤n

ck`
ij xkx` + . . .

 ∂i∧∂j ,

where ∂i = ∂
∂xi

. If the terms of order ≥ 2 all vanish, the considered Poisson
tensors are in one-to-one correspondence with the Lie algebra structures on
(Rn)∗; the features of these Poisson structures were investigated by many au-
thors during the last decades, see [18] for a historical survey. Having studied
these linear Poisson structures, it is natural to take an interest in quadratic
tensors:

Λ(x) =
∑

1≤i<j≤n

∑
1≤k,`≤n

ck`
ij xkx` ∂i ∧ ∂j .

Quadratic Poisson structures were classified by Dufour and Haraki [4] in the
three-dimensional Euclidian setting; apart from some partial results in R4, the
classification in higher dimension is still an open question. The cohomology
of quadratic structures was computed in the Euclidian plane [9] or for specific
cases [7, 11]. Recently, we suggested in [8, 2] a cohomological approach that
allows to deal with the formal Poisson cohomology of all Poisson tensors of the
Dufour–Haraki classification (DHC), and in [1] we proposed a generic coho-
mological technic for a large class of quadratic Poisson structures in arbitrary
dimension.

The present note is organized as follows. In Section 2, we summarize
the cohomological methods devised in the aforementioned papers [8, 2, 1];
in Section 3, we present a new, quite “user-friendly,” cohomological modus
operandi, and apply it to the tensor Λ3 of the DHC.

2. Cohomological techniques and structure of Poisson cohomol-
ogy. Masmoudi and Poncin developed in [8] a general approach to the formal
Poisson cohomology of a broad set of isomorphism classes of the DHC, namely
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those that can be written as a linear combination of wedge products of mutu-
ally commuting linear vector fields. In the three-dimensional Euclidean context
this means that

(1) Λ = aY2 ∧ Y3 + bY3 ∧ Y1 + cY1 ∧ Y2, a, b, c ∈ R,
where the vector fields Y1, Y2, Y3 are linear and satisfy the condition [Yi, Yj ] = 0,
for all i, j ∈ {1, 2, 3}. One of the most important features of such quadratic
Poisson tensors is that they are induced by classical r-matrices, and so they
can be quantized according to Gerstenhaber and Drinfeld without any use of
Kontsevich’s formula. More precisely, a quadratic Poisson tensor Λ of type (1)
is implemented by a classical r-matrix that belongs to its stabilizer gΛ ∧ gΛ

for the canonical matrix action, see [1] for more details. Below, such Poisson
structures will be called “strongly r-matrix induced structures” (SRMI).

As for cohomology computations, the main advantage of SRMI Poisson
tensors is related with the following observations. If we substitute the Yi-
vector fields for the standard basic vector fields ∂i, the LP-cochains (multivec-
tor fields) read C =

∑
fY, where f is a function and where Y is a wedge

product of some Yi. As Λ is a linear combination Λ =
∑
cY, c ∈ R, and since

the vector fields Yi are mutually commuting, the LP-differential then assumes
a simplified shape:

(2) ∂Λ(fY) = [Λ, fY] = [Λ, f ] ∧Y =
3∑

i=1

Xi(f)Yi ∧Y,

where
X1 = aY2 − cY3, X2 = bY3 − aY1, X3 = cY1 − bY2

and where the sums have been omitted.
If we take an interest in the formal cohomology, i.e. if we substitute the

space R := R[[x, y, z]] ⊗ ∧R3 of multivector fields with coefficients in the for-
mal series in the coordinates x, y, z for the usual LP-cochain space X (R3) =
C∞(R3)⊗ ∧R3, the LP-cochains are actually of the form

(3) C =
∑ p

D
Y,

where p belongs to R[[x, y, z]] and D is a fixed degree 3 homogenous polynomial
in x, y, z. Of course a sum as in (3) is a cochain in space R if and only if precise
divisibility conditions are satisfied. Hence, a canonical injection

(4) R ↪→ P
of the space R into the space P that is constituted by all the sums of type
(3). The elements of the space R are the real cochains, those of the space P
are called the potential cochains. The LP-differential ∂Λ extends in a natural
way, as in the simplified version (2), to the potential cochain space P, thus
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making it a differential space – whose cohomology is less intricate than the
R-cohomology. The remaining task is then to deduce the R-cohomology from
the P-cohomology. This was done in the following way:

Let pR and pS be the projections that correspond to a splitting P = R⊕S.
Define a differential on S by ∂S = pS∂Λ, and a homomorphism φ : S → R
of differential spaces by φ = pR∂Λ. Eventually, we deal with a short exact
sequence

(R, ∂Λ)
i
↪→ (P, ∂Λ)

pS
� (S, ∂S)

of differential spaces and an exact triangle in cohomology (where the connect-
ing homomorphism is the linear map φ] induced by φ). The triangle allows
thus to compute the highly intricate LP-cohomology H(R, ∂Λ) via the more
accessible cohomologies H(P, ∂Λ) and H(S, ∂S). This cohomological method
was applied in [8] to explicitly compute the cohomology of the structures Λ2

and Λ7 of the DHC.

In [2] we established a cohomological modus operandi for the isomorphism
classes of the DHC that are not SRMI. We showed that any structure Λ of
the DHC decomposes into the sum of a major SRMI structure and a small
compatible Poisson tensor:

(5) Λ = ΛI + ΛII = aY2 ∧ Y3 + bY3 ∧ Y1 + cY1 ∧ Y2 + ΛII , [ΛI ,ΛII ] = 0.

This splitting differs from the decomposition suggested in [6] in the sense
that we incorporate the biggest possible part of the structure into the strongly
induced term. We privilege decomposition (5), since ΛII vanishes in many cases
and the computing technique of [8] then allows to deal with the cohomology
of ΛI . If Λ is a SRMI tensor twisted by a small Poisson structure as in (5), the
decomposition

∂Λ =[Λ, ·]=[ΛI , ·] + [ΛII , ·]=∂ΛI
+ ∂ΛII

, ∂2
ΛI

= ∂2
ΛII

= ∂ΛI
∂ΛII

+ ∂ΛII
∂ΛI

= 0,

where the last anticommutation relation corresponds to the compatibility con-
dition [ΛI ,ΛII ] = 0, is nothing but the germ of a double complex. Of course,
in order to get a double complex, we must define a bidegree on cochains. As
a real formal Poisson cochain of order c, c ∈ {0, 1, 2, 3}, can be written in the
form C =

∑
p ∂c, where p belongs to R[[x, y, z]] and ∂c is a wedge product of c

factors ∂i, the degrees j1, j2, j3 of x, y, z in the monomials of p and the cochain
degree c induce a bigrading r = j1 + j2 + c, s = j3 of the formal LP-cochain
space R. Of course, depending on the investigated Poisson tensor, different
combinations of the natural degrees j1, j2, j3, c are possible, but the preceding
model encompasses (almost) all the twisted structures of the DHC. This “al-
gebraic” bidegree differs from the “geometric” bigrading defined by Vaisman
[15] for a regular Poisson manifold by means of the choice of a transversal
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distribution to the symplectic foliation. It turns out that the differentials ∂I

and ∂II have the weights (1, 0) and (−1, 2) respectively, so that we obtain a
vertically positive double complex. Such double complexes were partially stud-
ied in [13] and are graded filtered differential spaces; the associated spectral
sequence (SpecSeq) provides the cohomology of Λ via computation of the “im-
pact” of the small twist ΛII on the second term of the SpecSeq, i.e. on the
cohomology of the SRMI part ΛI of Λ – which is accessible by the method of
[8]. However, richness of Poisson cohomology requires computation through
the whole SpecSeq, so that we had to construct a complete model of that se-
quence. Furthermore, we depicted in full detail all the isomorphisms involved
in the theory of SpecSeq, because the quest for true upshots coerces us into
reading our results through all these isomorphisms. Finally, the work [2] also
provides quite useful practical insight into the operating mode of spectral se-
quences.

An extension of the computing technique of [8] to SRMI tensors of arbitrary
dimensional vector spaces could eventually be given in [1]. More precisely,
we investigated the formal Poisson cohomology associated with the quadratic
Poisson tensors of Rn that read as real linear combination

(6) Λ =
∑
i<j

αijYi ∧ Yj , αij ∈ R,

of wedge products of n commuting linear vector fields Y1, . . . , Yn, such that
Y1 ∧ . . . ∧ Yn 6= 0.

Using some nontrivial combinatorics, we were able to inject the space R :=
R[[x1, . . . , xn]] ⊗ ∧Rn of real LP-cochains into the larger space P of potential
cochains

(7) C =
∑ p

D
Y,

where p belongs to R[[x1, . . . , xn]] and D is the determinant det(Y1, . . . , Yn).
This injection generalizes the abovementioned much more obvious injection in
the 3-dimensional setting. The LP-differential extends in a natural way from
R to P; this extension turns out to be a Koszul differential, which is defined by
means of n commuting endomorphisms Xi− (divXi) id, Xi =

∑
j α

ijYj , αji =
−αij , of the spaces Pr made up by the potential cochains (7), whose numerators
p are homogeneous polynomials of degree r. We choose then again a space S
that is supplementary to R in P and we show that the LP-differential induces
a relative differential on S. This allows decomposing the LP-cohomology into,
basically, a Koszul cohomology and a relative cohomology:

The Lichnerowicz–Poisson cohomology of arbitrary dimensional SRMI Pois-
son tensors splits into a Koszul cohomology and a relative cohomology.
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Furthermore, by means of a quite universal homotopy formula and the re-
cent characterization of the joint spectrum of commuting operators established
in [3], we could show that the Koszul cohomology – in our finite-dimensional
setting Pr – is made up by “weak” joint eigenvectors. This upshot is subliminal
in Spectral Theory and could so far not be made precise in the general infinite-
dimensional context. For SRMI tensors, it is possible to supply a convergent
algorithm that computes these joint eigenvectors and reduces the correspond-
ing Koszul cohomology, i.e. the main building block of Poisson cohomology, to
a problem of linear algebra.

Finally, these upshots and the previous works [8] and [2] deepen our insight
into the structure of the LP-cohomology, in particular as concerns Casimir
functions, i.e. functions that are constant along the symplectic leaves, and the
cohomological impact of the singularities and the stabilizer of the considered
Poisson tensor. Let us also mention that two relevant concepts of exactness are
involved in the interpretation of three-dimensional Poisson cohomology. More
precisely, on the one hand, a Poisson tensor is said to be Koszul exact, if it is
a cycle and a boundary for the homology operator, which we obtain by just
pulling the usual de Rham differential back to skew-symmetric contravariant
tensor fields by means of a volume form (the image of a Poisson tensor Λ by
this homology operator is the so-called curl of Λ, which is a Poisson 1-cocycle
and whose class is the well-known modular class). On the other hand a Poisson
tensor is of course a 2-cocycle for the Poisson cohomology operator and may
thus be Poisson exact.

Richness of Poisson cohomology is proportional to the “distance” of the
considered Poisson tensor to Poisson exactness and inversely proportional to
its “distance” to Koszul exactness.

3. Advantageous approach to the cohomology of tensor Λ3 of the
DHC. As explained above, the computation of the LP-cohomology of SRMI
tensors of the DHC is deduced from the more accessible, potential and relative
cohomologies, i.e. the P- and S-cohomologies. In this Section, we provide a
new cohomological method that allows, roughly speaking, to deduce the LP-
cohomology directly from the P-cohomology, i.e. without computing the S-
cohomology. We apply this new devise to compute the formal LP-cohomology
of the structure

Λ3 = (2x− ay)z∂2 ∧ ∂3 + axz∂3 ∧ ∂1 + x2∂1 ∧ ∂2, a ∈ R,

of the DHC. In the following, we assume that a 6= 0 and denote the structure Λ3

simply by Λ, if no confusion can arise. Some of the aforementioned notations
and facts will be shortly and appropriately recalled or further developed to
make this Section self-contained and to increase its readability.
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3.1. Geometric description of potential cochains. Let us recall that
zero-, one-, two-, and three-cochains may be written

C0 = q, C1 = q1∂1 + q2∂2 + q3∂3, C2 = q1∂23 + q2∂31 + q3∂12, C3 = q∂123,

where q, q1, q2, q3 ∈ R[[x, y, z]] are formal series in x, y, z, and where ∂ij = ∂i∧∂j

for i, j ∈ {1, 2, 3} and ∂123 = ∂1 ∧ ∂2 ∧ ∂3. We will call such cochains real
cochains.

If we set the family of commuting vector fields

(8) Y1 = x∂1 + y∂2, Y2 = x∂2, Y3 = z∂3,

the tensor Λ reads
Λ = 2Y23 + aY31 + Y12,

where Yij = Yi∧Yj for i, j ∈ {1, 2, 3}. Obviously, the LP-differential ∂Λ = [Λ,−]
simplifies if we also write the real cochains in terms of the Yi-vector fields (8)
since these fields are mutually commuting. As it is easily seen that

∂1 =
xz

D
Y1 −

yz

D
Y2, ∂2 =

xz

D
Y2, ∂3 =

x2

D
Y3,

where D = x2z, the real cochains may be written as

C0 =
p

D
, C1 =

p

D
Y1 +

p′

D
Y2 +

p′′

D
Y3, C2 =

p

D
Y23 +

p′

D
Y31 +

p′′

D
Y12, C3 =

p

D
Y123,

where p, p′, p′′ ∈ R[[x, y, z]]. Any such expression will be called a potential
cochain.

For a fixed r ∈ N, we identify any potential cochain coefficient
p

D
=

1
D

∑
k+`≤r

pk,lx
r−k−lykz`, pk,` ∈ R,

with the point (k, `) ∈ R2. Thus such coefficients may be represented as
elements of the space generated by points of a first quadrant triangle in the
(k, `)-plane:

1
D

∑
k+`≤r

pk,lx
r−k−lykzl ↔ (pk,`) ∈ ⊕k+`≤rRk`,

where Rk` = 〈(k, `)〉 is the space generated by the point (k, `). In order to
simplify explanations, we introduce the following geometrically motivated no-
tations. We denote by 4r the space ⊕k+`≤rRk` of r-triangles, by 4r

s for all
s ≤ r the space ⊕k+`≤sRk` of lower triangles, by Dr

s the diagonals subspaces
⊕k+`=sRk`, by Lr

s the lines subspace ⊕r−s
k=0Rks, and by Cr

s the columns subspace
⊕r−s

`=0Rs`. Finally, to simplify notation, we denote ♦k`
r the quotient xr−k−lykz`

D
for any (k, `).
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Lemma 1. For a fixed r ∈ N, let

(9) C0 =π, C1 =π1Y1+π2Y2+π3Y3, C2 =π1Y23+π2Y31+π3Y12, C3 =πY123,

be potential cochains of degree r, and

π1 ↔ (pk,`) ∈ 〈4r〉, π2 ↔ (p′k,`) ∈ 〈4r〉, π3 ↔ (p′′k,`) ∈ 〈4r〉.

The real coefficients pk,`, p
′
k,` and p′′k,` are assumed to be zero if at least one

index is strictly negative.
1. The 0-cochain C0 is real if and only if r ≥ 3 and π ∈ 〈4r

r−2 − Lr
0〉.

2. The 1-cochain C1 is real if and only if r ≥ 2 and

π1 ∈ 〈4r
r−1 − Lr

0〉, π2 ∈ 〈4r − Lr
0 − {(0, r)}〉, π3 ∈ 〈4r

r−2〉

p′k,` = −pk−1,` if k + ` = r.

3. The 2-cochain C2 is real if and only if r ≥ 1 and

π1 ∈ 〈4r − {(0, r)}〉, π2 ∈ 〈4r
r−1〉, π3 ∈ 〈4r − Lr

0〉

p′k,` = pk+1,` if k + ` = r − 1.

4. The 3-cochain C3 is always real.

Proof. The 0-cochain C0 writes

C0 =
∑

k+`≤r

pk,`♦
k` =

∑
k+`≤r

pk,`x
r−k−l−2ykz`−1,

so it is real if and only if r ≥ 3 and pk,` = 0 if k + ` > r − 2 or ` = 0.

The 1-cochain C1 writes C1 = xπ1∂1 + (yπ1 + π2x)∂2 + zπ3∂3, so it
is real if and only if xπ1, yπ1 + π2x, zπ3 are polynomials. Clearly xπ1 =∑

k+`≤r pk,`x
r−k−l−1ykz`−1 is polynomial if and only if pk,` = 0 if k + ` = r or

` = 0. In that case we have

yπ1 + xπ2 =
∑

k+`≤r

(pk−1,` + p′k,`)x
r−k−l−1ykz`−1,

so yπ1 + xπ2 is polynomial if and only if p′k,` + pk−1,` = 0 if k + ` = r or
` = 0, that is p′k,` = 0 if ` = 0 and p′k,` +pk−1,` = 0 if k+ ` = r (in particular,
p′0r = 0). Eventually, zπ3 =

∑
k+`≤r p

′′
k,`x

r−k−l−2ykz` is polynomial if and only
if k + ` ≥ r − 2.

The proof of point 3 is based upon similar arguments.
The 3-cochain C3 writes x2zπ∂123, so it is real if and only if x2zπ is poly-

nomial, which is always the case.
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3.2. Fundamental operators. It is easily seen that the coboundaries of
zero-, one-, two-potential cochains are respectively given by

[Λ, π] = X1(π)Y1 +X2(π)Y2 +X3(π)Y3,

[Λ, π1Y1 + π2Y2 + π3Y3] = (X2(π3)−X3(π2))Y23 + (X3(π1)−X1(π3))Y31

+ (X1(π2)−X2(π1))Y12,

[Λ, π1Y23 + π2Y31 + π3Y12] = (X1(π1) +X2(π2) +X3(π3))Y123,

where
X1 = Y2 − aY3, X2 = −Y1 + 2Y3, X3 = aY1 − 2Y2.

These operators are called the fundamental operators. For a fixed r ∈ N, they
satisfy the following relations

X1

 ∑
k+`≤r

pk,`♦
k`
r

 =
∑

k+`≤r−1

((k + 1)pk+1,` − a(`− 1)pk,`)♦k`
r

−
∑

k+`=r

a(`− 1)pk,`♦
k`
r ,

X2

 ∑
k+`≤r

pk,`♦
k`
r

 =
∑

k+`≤r

(3`− r)pk,`♦
k`
r ,

X3

 ∑
k+`≤r

pk,`♦
k`
r

 =
∑

k+`≤r−1

(a(r − `− 2)pk,` − 2(k + 1)pk+1,`)♦k`
r

+
∑

k+`=r

a(r − `− 2)pk,`♦
k`
r .

(10)

These Equations show that the LP-differential preserves the total degree, i.e.
the sum of the just defined individual degrees in x, y, z. Hence the cohomology
can be computed part by part and the numerators p, p′, p′′ of the cochain
coefficients, see (9), can be viewed as homogeneous polynomials of total degree
r ∈ N. Let us remark that the LP-differential conserves not only the space of
r-triangles 4r but also every lines subspace Lr

s.
From Equation (10) we easily deduce the following

Lemma 2. Let r ∈ N.

1. X1 is an automorphism of every lines subspace 〈Lr
s〉 with s 6= 1. For

r ≥ 1 we have

ker(X1) = 〈(0, 1)〉, Im(X1) = 〈4r − {(r − 1, 1)}〉.
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2. If r /∈ 3N, X2 is an automorphism of the space 4r.
If r = 3n with n ∈ N, X1 is an automorphism of every lines subspace
〈L3s

s 〉 with s 6= n; furthermore

ker(X2) = 〈L3n
n 〉, Im(X2) = 〈43n − L3n

n 〉.
3. X3 is an automorphism of every lines subspace 〈Lr

s〉 with s 6= 2. For
r ≥ 2 we have

ker(X3) = 〈(0, r − 2)〉, Im(X3) = 〈4r − {(2, r − 2)}〉.
3.3. 0-Cohomology group. Let C = π = p

D be a real 0-cochain of
degree r: r ≥ 3 and π ∈ 〈4r

r−2 − Lr
0〉. The cocycle condition [Λ, π] = 0 is

π ∈ ∩3
i=1 ker(Xi). For r 6= 3, we have ker(X1) ∩ ker(X3) = {0}, and for r = 3,

∩3
i=1 ker(Xi) = R, so we get the 0-cohomology space.

Proposition 1. The 0-cohomology space of the Poisson structure Λ3 is

H0(Λ3) = R.

3.4. 1-Cohomology group. A real 1-cocycle C = π1Y1 +π2Y2 +π3Y3 of
degree r, r ≥ 1, is a 1-cochain that satisfies both, the divisibility condition

π1 ↔ (pk,`) ∈ 〈4r
r−1 − Lr

0〉, π2 ↔ (p′k,`) ∈ 〈4r − Lr
0 − {(0, r)}〉,

π3 ↔ (p′′k,`) ∈ 〈4r
r−2〉, p′k,` = −pk−1,` if k + ` = r,

and the cocycle condition

(11) X2(π3) = X3(π2), X3(π1) = X1(π3), X1(π2) = X2(π1).

A real 1-coboundary of degree r, r ≥ 3, is a real 1-cocycle that reads

(12) X1($)Y1 +X2($)Y2 +X3($)Y3, $ ∈ 〈4r
r−2 − Lr

0〉.
Let C = π1Y1 + π2Y2 + π3Y3 be a real 1-cocycle of degree r.
Assume that r = 2. Then π1 ∈ 〈(0, 1)〉, π2 ∈ 〈(0, 1), (1, 1)〉, π3 ∈ 〈(0, 0)〉.

The cocycle condition X3(π1) = X1(π3) implies that X3(π1) = X1(π3) = 0, so
π1 = π3 = 0. By using the condition X1(π2) = X2(π1) = 0, we get π2 = 0. So
there is no real nontrivial 1-cocycle of degree 2.

Assume that r ≥ 3. The cocycle condition X3(π1) = X1(π3) implies that
π3 ∈ 〈4r

r−2 − Lr
0〉. By subtracting from the cocycle C every coboundary of

the form (12), the remaining real 1-cocycles are C ′ = π1Y1 + π2Y2 + π3Y3

with π3 ∈ 〈(0, r − 2)〉. Clearly X1(π3) and X2(π3) belong to 〈(0, r − 2)〉, and
the cocycle conditions X3(π1) = X1(π3) and X2(π3) = X3(π2) imply that
π1 and π2 belong to 〈{(0, r − 2), (1, r − 2)}〉. Consequently, we get from the
divisibility condition p′k,` = −pk−1,` (for any k + ` = r) that π1 belongs to
〈(0, r − 2)〉, and from the condition X1(π2) = X2(π1) ∈ 〈(0, r − 2)〉 that π2

belongs also to 〈(0, r − 2)〉. Hence, the remaining real 1-cocycles are therefore
C ′ = π1Y1 + π2Y2 + π3Y3 with π1, π2, π3 ∈ 〈(0, r − 2)〉.
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If r ≥ 4, the condition X1(π3) = X3(π1) implies that X1(π3) = 0, so
π3 = 0. By subtracting from the cocycle C ′ every coboundary of the form
X1($)Y1 + X2($)Y2 with $ ∈ 〈(0, r − 2)〉, the remaining cocycles are π2Y2

with π2 ∈ 〈(0, r − 2)〉. Finally, as the cocycle condition X1(π2) = X2(π1) = 0
implies that π2 = 0, then every real 1-cocycle of degree r ≥ 4 is a real 1-
coboundary.

If r = 3, then the remaining real 1-cocycles are C ′ = π1Y1+π2Y2+π3Y3 with
π1, π2, π3 ∈ 〈(0, 1)〉. Obviously, the cocycles C ′ are real 1-cochains of the space
RY1 ⊕ RY2 ⊕ RY3. Note that real 1-coboundaries of the form (12) are trivial
because, in this case, $ lies in the space 〈(0, 1)〉 which is the intersection of
the kernels of the operators X1, X2, X3. We conclude therefore that the space
RY1 ⊕ RY2 ⊕ RY3 constitutes the 1-cohomology space.

Proposition 2. The 1-cohomology space of the Poisson structure Λ3 is

H1(Λ3) = RY1 ⊕ RY2 ⊕ RY3.

3.5. 2-Cohomology group. A real 2-cocycle C = π1Y23 +π2Y31 +π3Y12

of degree r, r ≥ 1, is a 2-cochain C that satisfies both, the divisibility condition

π1 ↔ (pk,`) ∈ 〈4r − {(0, r)}〉, π2 ↔ (p′k,`) ∈ 〈4r
r−1〉,

π3 ↔ (p′′k,`) ∈ 〈4r − Lr
0〉, p′k,` = pk+1,` if k + ` = r − 1,

and the cocycle condition

(13) X1(π1) +X2(π2) +X3(π3) = 0.

A real 2-coboundary of degree r, r ≥ 2, is a real 2-cocycle that reads

(14) (X2($3)−X3($2))Y23+(X3($1)−X1($3))Y31+(X1($2)−X2($1))Y12,

where $1Y1 +$2Y2 +$3Y3 is a real 1-cochain of degree r, i.e.

$1 ↔ ($k,`) ∈ 〈4r
r−1 − Lr

0〉, $2 ↔ ($′k,`) ∈ 〈4r − Lr
0 − {(0, r)}〉,

$3 ↔ ($′′k,`) ∈ 〈4r
r−2〉, $′k,` = −$k−1,` if k + ` = r.

Let C = π1Y23 + π2Y31 + π3Y12 be a real 1-cocycle of degree r.
Assume that r = 1. Then π1 ∈ 〈{(0, 0), (1, 0)}〉, π2 ∈ 〈(0, 0)〉 and π3 ∈

〈(0, 1)〉. Obviously, the cocycle condition X1(π1) +X2(π2) +X3(π3) = 0 shows
that π1 ∈ 〈(0, 0)〉, and the divisibility condition implies that π2 = 0. By using
again the cocycle condition, we have π1 = 0 and π3 = 0. So there is no
nontrivial real 2-cocycle of degree 1.

Assume that r ≥ 2. As π3 does not belong to Lr
0, and as p′r,0 = 0, the

cocycle condition implies that pr,0 = 0. The divisibility condition entails then
that p′r−1,0 = 0, and so, by using again the cocycle condition, we have pr−1,0 =
0. By subtracting from the cocycle C every coboundary of the form

X2($3)Y23 −X1($3)Y31, $3 ∈ 〈Lr
0 − {(r, 0), (r − 1, 0)}〉,
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the remaining cocycles are C ′ = π1Y23 +π2Y31 +π3Y12 with π2 ∈ 〈4r
r−1−Lr

0〉.
Now the cocycle condition shows that π1 vanishes on Lr

0, so the remanning
cocycles are C ′ = π1Y23 + π2Y31 + π3Y12 with

π1 ∈ 〈4r − Lr
0 − {(0, r)}〉, π2 ∈ 〈4r

r−1 − Lr
0〉, π3 ∈ 〈4r − Lr

0〉,
p′k,` = pk+1,` if k + ` = r − 1.

We now subtract from the cocycle C ′ every 2-coboundary of the form

−X3($2)Y23 +X3($1)Y31 + (X1($2)−X2($1))Y12,

where

$1 ↔ ($k,`) ∈ 〈4r
r−1 − Lr

0〉, $2 ↔ ($′k,`) ∈ 〈4r − Lr
0 − {(0, r)}〉,

$′k,` = −$k−1,` if k + ` = r.

The remaining cocycles are C ′′ = π1Y23+π2Y31+π3Y12 with π1 ∈ 〈(2, r−2)〉.
Observe that the divisibility condition p′k,` = pk+1,` (for any k + ` = r − 1)
entails then that π2 belongs to 〈{4r

r−2, (1, r − 2)} − Lr
0〉. If we now subtract

from the cocycle C ′′ every coboundary of the form

X3($1)Y31 −X2($1)Y12, $1 ∈ 〈4r
r−2 − Lr

0〉,

then the remanning cocycles are C ′′′ = π1Y23+π2Y31+π3Y12 with π2 ∈ 〈{(0, r−
2), (1, r − 2)}〉. Obviously, X1(π1) ∈ 〈{(1, r − 2), (2, r − 2)}〉 and X2(π2) ∈
〈{(0, r−2), (1, r−2)}〉, and the cocycle condition X1(π1)+X2(π2)+X3(π3) = 0
shows that π3 ∈ 〈Lr

r−2〉.
We conclude that the remaining cocycles are C ′′ = π1Y23 + π2Y31 + π3Y12

with π1 ∈ 〈(2, r − 2)〉, π2 ∈ 〈Lr
r−2 − {(2, r − 2)}〉 and π3 ∈ 〈Lr

r−2〉.

If r ≥ 2 and r 6= 3, the cocycle condition implies thatX1(π1) = 0, so π1 = 0.
Consequently, the divisibility condition shows that π2 belongs to 〈(0, r − 2)〉,
and the cocycle condition entails that π3 ∈ 〈Lr

r−2 − {(2, r − 2)}〉. As X1 is
an automorphism of 〈Lr

r−2〉, then there exist $2 ∈ 〈Lr
r−2 − {(2, r − 2)}〉 and

$3 ∈ 〈(0, r − 2)〉 such that X1($2) = π3 and X1($3) = π2. Now the cocycle
condition X2(π2) +X3(π3) = 0 implies that X2($3)−X3($2) = 0, so the real
2-coboundary

0 Y23 −X1($3)Y31 +X1($2)Y12

is equal to the cocycle C ′′′. Consequently, every real 1-cocycle of degree r ≥ 2
and r 6= 3 is a real 2-coboundary.

If r = 3 we have

π1 ∈ 〈(2, 1)〉, π2 ∈ 〈{(0, 1), (1, 1)}〉, π3 ∈ 〈{(0, 1), (1, 1), (2, 1)}〉 = L3
1,

p′11 = p2,1.
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The cocycle condition X1(π1) + X2(π2) + X3(π3) = 0 implies that π3 ∈
〈{(0, 1), (2, 1)}〉 and p21 = 2p′′2,1. Hence, the remanning cocycles C ′′′ read

C ′′′ = π1Y23 + π2Y31 + π3Y12

= 2p′′21

y2z

D
Y23 +

(
p′01

x2z

D
+ 2p′′21

xyz

D

)
Y31 +

(
p′′01

x2z

D
+ p′′21

y2z

D

)
Y12

= p′01Y31 + p′′01Y12 + p′′21(2yz∂31 + y2∂12).

As the operators X1, X2, and X3 preserve each line subspace of ∆3, and in
particular L3

1, the coboundary condition for the cocycles C ′′′ is given by

X2($3)−X3($2) = π1, X3($1)−X1($3) = π2, X1($2)−X2($1) = π3,

where

$1 ∈ 〈L3
1 − {(2, 1)}〉, $2 ∈ 〈L3

1〉, $3 ∈ 〈{(0, 1)}〉, $11 = −$′21.

But, as X2 = 0 on 〈L3
1〉, and as the kernels of the operators X1 and X3 are

equal to 〈(0, 1)〉, then the coboundary condition is actually given by

(15) −X3($2) = π1, X3($1) = π2, X1($2) = π3,

where
$1 ∈ 〈(1, 1)〉, $2 ∈ 〈{(1, 1), (2, 1)}〉, $11 = −$′21.

Observe that the unique solution of the first equality of (15) is given by $2 = 0
because π1 belongs to 〈(2, 1)〉 whereas X3($2) belongs to 〈{(0, 1), (1, 1)}〉. Now
the divisibility condition implies then that $1 = 0, so cocycles C ′′′ belong to
the cohomology.

Proposition 3. The 2-cohomology space of the Poisson structure Λ3 is

H2(Λ3) = RY31 ⊕ RY12 ⊕ R(2yz∂31 + y2∂12).

3.6. 3-Cohomology group. Let C = πY123, with π = p
D , be a poten-

tial 3-cochain of degree r. Then C is real and satisfies the cocycle condition
[Λ, C] = 0.

Assume that r = 0. The remaining cocycles are πY123 with π ∈ 〈(0, 0)〉. As
there is no real 2-coboundary of degree 0, the cocycles πY123 = p∂123, p ∈ R,
belong to the 3-cohomology space.

Assume that r ≥ 1. The coboundary condition is

π = X1($1) +X2($2) +X3($3),

where $1Y23 +$2Y31 +$3Y12 is a real 2-cochain of degree r. By subtracting
from C every coboundary of the form X3($3)Y123 with $3 ∈ 〈∆r − Lr

0〉 we
get the remaining cocycles C ′ = πY123, where π ∈ 〈{Lr

0, (2, r − 2)}〉. We now
subtract from C ′ every coboundary of the form X1($1)Y123 with $1 ∈ 〈Lr

0 −
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{(r, 0)}〉. The remaining cocycles are C ′′ = πY123 with π ∈ 〈{(r, 0), (2, r−2)}〉.
When considering the real 2-cochain

B :=
pr,0

a

(
yr

D
Y23 +

xyr−1

D
Y31

)
,

it is easy to check that C ′′ = π̃Y123 + [Λ, B] with π̃ ↔ (p̃) ∈ 〈(2, r − 2)〉.
If r 6= 3, it is easily seen that there exists a real 2-cochain B′ such that

C ′′ = [Λ, B + B′], i.e. C ′′ is a coboundary. In fact the real 2-cochain B′ is
given by

B′ :=
(
α
x2zr−2

D
+ β

xyzr−2

D
+

p̃

a(3− r)
y2zr−2

D

)
Y23 +

p̃

a(3− r)
xyzr−2

D
Y31,

where

α = aβ(r − 3), β =
2(2− r)p̃
a2(r − 3)2

.

If r = 3, then π̃ ∈ 〈(2, 1)〉. As 〈(2, 1)〉 does not belong to the any of the
image spaces of the operators Xi, then cocycles πY123 are not coboundaries.
So the cocycles p̃y2z

D Y123 = p̃y2z∂123 belong to the 3-cohomology space.

Proposition 4. The 3-cohomology space of the Poisson structure Λ3 is

H3(Λ3) = R ∂123 ⊕ R y2z ∂123.

References

1. Ammar M., Kass G., Masmoudi M., Poncin N., Strongly r-matrix induced tensors, Koszul
cohomology, and arbitrary-dimensional quadratic Poisson cohomology, ESI and ArXiv
preprints.

2. Ammar M., Poncin N., Formal Poisson cohomology of twisted r-matrix induced structures,
Israel J. Math., 165 (2008), 381–411.

3. Bolotnikov V., Rodman R., Finite-dimensional backward shift invariant subspaces of
Arveson spaces, Lin. Alg. and its Applic., 349 (2002), 265–282.

4. Dufour J. P., Haraki A., Rotationnels et structures de Poisson quadratiques, C.R.A.S
Paris, 312, No. 1 (1991), 137–140.

5. Lichnerowicz A., Les variétés de Poisson et leurs algèbres de Lie associees, J. Diff. Geom.,
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