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by Dávid Szeghy

Abstract. Let G×M →M be an isometric action of a Lie group G on a
semi-Riemannian manifold (M, g). If M is Riemannian, or M is Lorentzian
but the action is normalizable, then there is a unique infinitesimal orbit
type, such that the orbits belonging to this type build an open and dense
set in M . Moreover in the Lorentzian case a non-normalizable orbit G (x)
has lightlike tangent spaces and for every point p ∈ G (x) there is a 1-
parameter subgroup in G such that its orbit at p yield a lightlike geodesic
segment through p, which is contained in G (x).

1. Introduction. The celebrated principal orbit type theorem due to D.
Montgomery, H. Samelson and C. T. Yang [2] says, that if we have a compact
Lie group G and a differentiable action of this group on a connected differ-
entiable manifold M , then among the orbit types there is a unique one, the
so called principal type, for which the orbits belonging to this type build an
open, dense and connected set in M . In particular orbits of maximal dimen-
sion have principal orbit type. Now this theorem doesn’t hold in general if the
Lie group is not compact. For example if we take the pseudo-orthogonal group
SO (2, 1) and its action on the 3-dimensional Minkowski space, then the orbits
in the interior of the lightcone and the orbits in the exterior of the lightcone
will belong to different orbit types, since the stabilizer Gv of a timelike vector
v in the interior of the lightcone is conjugated to the compact group O (2)
and the stabilizer Gw of a spacelike vector w in the exterior of the lightcone
is conjugated to the non-compact group SO (1, 1). In this example the action
is isometric. So it is not true in general that for an isometric action of an
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arbitrary Lie group on a semi-Riemannian manifold the principal orbit type
theorem holds. But if we use the concept of proper action introduced by R. S.
Palais then it can be shown, that for a proper isometric action of an arbitrary
connected Lie group on a connected Riemannian manifold, the principal orbit
type theorem holds.

Recently, J. Szenthe [4] gave an analogue of the principal orbit type the-
orem using the definition of infinitesimal orbit type, where the concept of the
orbit type was modified the slightliest way, namely Szenthe didn’t use in the
definition the isometry subgroup Gx of a point but its Lie algebra gx, see Def-
inition 1. below. In the paper of Szenthe [4] the concept of the stable and
unstable infinitesimal types are introduced, and the objective of his paper is
to show that the union of orbits of stable infinitesimal types build an open
and dense set. Szenthe gave criteria under which this will be true. Now our
point of view will be different. We will make the assumption that the action
is normalizable; this means that for every orbit G (x) we have a G-invariant
bundle ÑG (x) ⊂ TM over the orbit G (x) , the so called normalizer bundle,
such that for every x′ ∈ G (x) the fiber of this bunle at x′, the normal space
Ñx′G (x) , yields a decomposition Ñx′G (x) ⊕ Tx′G (x) = Tx′M of the tangent
space at x′, see Definition 3. This assumption obviously holds in the Rie-
mannian case and also in the Lorentzian case if there are no lightlike orbits.
However, there are normalizable isometric actions on Lorentz manifolds which
have lightlike orbits, such is the Schwarzschild space-time [2]. The main result
of the paper is the theorem which asserts that if the isometric action of an
arbitrary Lie group on a Lorentz manifold is normalizable, then there is an
infinitesimal principal type such that the orbits belonging to this type build
an open and dense set. The Riemannian case will be only a starting point
for us to examine the Lorentzian case. Since we assume that the isometric
action in the Lorentzian case is normalizable, therefore, we will investigate
the non-normalizable orbits in the last section and prove the following. If
G (x) is a non-normalizable orbit of an isometric action of a Lie group on a
Lorentzian manifold, then G (x) is a lightlike submanifold, such that for every
point p ∈ G (x) there is a 1-parameter subgroup such that its orbit at p yield
a lightlike geodesic segment through p, which is contained in G (x).

2. The Riemannian case.

Definition 1. Let α : G×M →M be an isometric action of a Lie group
G on a semi-Riemannian manifold (M, g) . The infinitesimal orbit type of an
orbit G (x) is the whole conjugacy class of the identity component G0

x of the
isotropy subgroup (also called stabilizer) Gx of x, i.e. the infinitesimal orbit
type of G (x) is

{
gG0

xg
−1 | g ∈ G

}
. This type will be denoted by inftypG (x).
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It is clear that in the above definition we could take the conjugacy class
of the Lie algebra gx of the stabilizer Gx instead of the identity component of
Gx. This explains the notation infinitesimal orbit type. This definition gives
rise to a partial ordering in the set of the orbits:

Definition 2. The infinitesimal orbit type of the orbit G (x) is greater
than or equal to that of G (y) if

G0
x′ ⊆ G0

y′ for some x′ ∈ G (x) and y′ ∈ G (y)

or equivalently

gx′ ⊆ gy′ for some x′ ∈ G (x) and y′ ∈ G (y) .

This fact will be denoted by inftypG (x) ≥ inftypG (y) .

We will need later the following definition.

Definition 3. Let α : G×M →M be an isometric action of a Lie group
G on a semi-Riemannian manifold (M, g) . The orbit G (x) is normalizable if
there is a subspace ÑxG (x) ⊂ TxM for which the following holds:

• ÑxG (x)⊕ TxG (x) = TxM is a decomposition (not necessarily orthogo-
nal);
• ÑxG (x) is invariant under the action of Gx.

Moreover the action α is called normalizable, if every orbit is normaliz-
able.

Note that we could use the weaker condition in the definition, that ÑxG (x)
is invariant under the action of G0

x, since we can work in the proofs only
with the local Lie group action, that is we can consider an arbitrary small
neighbourhood U of the identity element in G and the local orbit of x by U .
We used the above definition to make the proofs easier to follow, and to be
able to speak about the normal bundle ÑG (x) which is the bundle over G (x)
obtained from the normal space ÑxG (x) by the action of Tα : TM → TM ,
i.e. the normal bundle is given by

ÑG (x) = ∪g∈GTαg
(
ÑxG (x)

)
.

It is clear that thus a bundle is obtained which is invariant under Tα.
It is important to note that the concept of the normal bundle and the

orthogonal bundle are not the same. The fiber ÑzG (x) over z ∈ G (x) of
the normal bundle ÑG (x) is not necessarily orthogonal to the tangent space
TzG (x). In the Lorentzian case the orthogonal space (TzG (x))⊥ does not give
a decomposition of TzM by (TzG (x))⊥ ⊕ TzG (x) in general. Also the normal
space ÑxG (x) is not necessarily the same as the orthogonal space (TxG (x))⊥,
since the normal space gives a decomposition ÑxG (x)⊕ TxG (x) = TxM .
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Lemma 4. Let α : G ×M → M be an isometric action of a Lie group G
on a semi-Riemannian manifold (M, g) and G (x) a normalizable orbit. Then
the zero section in the normal bundle ÑG (x) has a neighbourhood U for which
the following assertions hold:

1. U is invariant under the action Tα;
2. For a sufficiently small neighbourhood V ⊂ G (x) of x ∈ G (x) , if U |V

is the restricted normal bundle of U over V , i.e. U |V = π−1 (V ) ∩ U ,
where π : ÑG (x) → G (x) is the projection, the restricted exponential
mapping exp : U |V →M is a diffeomorphism;

3. The mapping exp : U → M is G-equivariant, with respect to the action
Tα of G restricted to U and the action α of G on M .

Proof. Let P ⊂ ÑxG (x) be a starlike open neighbourhood of 0x where
the tangent linear maps of the exponential map exp |

ÑG(x)
are non-degenerate.

Put
U

def
= ∪{Tαg (P ) | g ∈ G} ,

where αg : M → M is the isometry corresponding to the element g by the
action α. Then the first property is obviously satisfied by U , and if P is
chosen to be suitably small, then the second property holds also. The third
one can be proved by the properties of the exponential map.

Now, if we use in Definition 2 the Lie algebra to define the infinitesimal
types, it is clear by the above lemma, that if we take a vector v ∈ U then the
infinitesimal type of the orbit of v by the action Tα : G × U → U and the
infinitesimal type of the orbit of exp (v) is the same. That is U appears as a
model for the action α near to the orbit G (x).

Lemma 5. Let G (x) be a normalizable orbit and U ⊂ ÑG (x) a neigh-
bourhood such as in the above lemma. If v ∈ ÑxG (x) ∩ U then inftypG (v) ≥
inftypG (0x) for the action Tα|U .

Proof. By the invariance of the normal bundle we have that for every g ∈
G either αg (x) = x and then Tαg

(
ÑxG (x) ∩ U

)
= ÑxG (x)∩U, i.e. ÑxG (x)∩

U is invariant, or αg (x) 6= x and then Tαg
(
ÑxG (x) ∩ U

)
= Ñαg(x)G (x)∩U,

but then
(
ÑxG (x) ∩ U

)
∩
(
Ñαg(x)G (x) ∩ U

)
= ∅. So we have that if g ∈ Gv

then
(
ÑxG (x) ∩ U

)
∩
(
Ñαg(x)G (x) ∩ U

)
6= ∅, thus ÑxG (x) ∩ U must be

invariant and αg (x) = x. So we proved that Gv ⊆ Gx. Since Gx = G0x we
have Gv ⊆ G0x . But then G0

v ⊆ G0
0x

, i.e. inftypG (v) ≥ inftypG (0x).

Using our remark preceding this lemma we have that:
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Corollary 6. Let G (x) be a normalizable orbit and U ⊂ ÑG (x) a neigh-
bourhood such as in Lemma 4 then for every point y ∈ exp (U)

inftypG (y) ≥ inftypG (x)

holds.

The following useful definition was introduced by J. Szenthe.

Definition 7. Let α : G×M →M be an isometric action of a Lie group
G on a semi-Riemannian manifold (M, g) . The orbit G (x) is locally stable, if
it has a G-invariant neighbourhood Ũ such that for every y ∈ Ũ the equality
inftypG (x) = inftypG (y) holds.

Corollary 8. Let α : G×M →M be an isometric action of a Lie group
G on a semi-Riemannian manifold (M, g) which is normalizable. Then the
locally stable orbits build an open and dense set in M .

Proof. Assume that the orbit G (x) is not locally stable. Corollary 6

yields that there is a G-invariant neighbourhood V
def
= exp (U) of G (x) such

that inftypG (x) ≤ inftypG (y) holds for every y ∈ V, where U is the neigh-
bourhood in Corollary 6. Since G (x) is not locally stable there is an orbit
G (x1) ⊂ V arbitrary close to G (x) for which inftypG (x) < inftypG (x1) . If
G (x1) is not locally stable then the above argument yields that there is an
orbit G (x2) arbitrary close to G (x1) for which inftypG (x1) < inftypG (x2) .
Thus we get a sequence inftypG (x) < inftypG (x1) < inftypG (x2) < . . . , i.e.
gx % gx1 % gx2 % . . . if x, x1, . . . are suitably points of the orbits. But such
a sequence must be finite, thus there is an orbit G (xn) which must be locally
stable and which can be chosen arbitrary close G (x). So the locally stable
orbits build a dense set, which is open by their definition.

Let us consider now the Riemannian case. Note that if (M, g) is Riemann-
ian, then every orbit is normalizable, since the orthogonal complement T⊥x G (x)
of TxG (x) is invariant under the action of Tα.

Theorem 9. If α : G ×M → M is an isometric action of a Lie group
on a connected Riemannian manifold (M, g) then there is a unique maximal
infinitesimal orbit type, called infinitesimal principal, and the union of the
infinitesimal principal orbits is an open, dense and connected set in M .

Proof. Proof by induction on the dimension of the manifold. If dimM =
1 then either there is only one orbit which is M, or for every point x ∈ M
the unit component of its stabilizer G0

x is the same, which will be the unit
component of the Lie group G0. Let us assume that the lemma is true for
every isometric action where the dimension of the Riemannian manifold is less
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than or equal to k. Consider an isometric action α : G × M → M on a
Riemannian manifold, where dimM = k + 1, and an orbit G (x).

First we describe below some properties (A), (B), (C), of the induced
action Tα|

ÑG(x)
: G × ÑG (x) → ÑG (x). Note that in the proof of the

properties (A), (B), (C) we won’t need that the metric is Riemannian, so
the properties (A), (B), (C) hold also in the case when (M, g) is a semi-
Riemannian manifold and the action is isometric which we will need later.

(A) If we consider the restricted action Tα|
Gx,ÑxG(x)

: Gx × ÑxG (x) →
ÑxG (x) then it is a linear action on the vector space ÑxG (x). So the
infinitesimal orbit type of two vectors v, w ∈ ÑxG (x) are the same if
v = c · w for some non-zero constant c, i.e. if we take a line through
the origin then every point on this line, except of the origin, has the
same infinitesimal orbit type. (It is also true that their orbit type is the
same).

(B) Moreover, as we have shown it in the proof of Lemma 5, the isotropy
subgroup Gv of v by the action Tα|

ÑG(x)
is contained in Gx so it is the

same as the isotropy subgroup of v by the restricted action Tα|
Gx,ÑG(x)

.

(C) If we take an open set V in ÑxG (x) then the set

G (V ) def= {Tαg (v) | v ∈ V, g ∈ G}

is an open set in ÑG (x) by a simple obvious argument.
Now since the action α is isometric Tα|

Gx,ÑxG(x)
acts on the unit-sphere

S̃xG (x) of ÑxG (x), which has a dimension ≤ k, so by the induction, if we
assume that dim S̃xG (x) 6= 0, then there is a unique minimal infinitesimal
orbit type (infinitesimal principal type) by the restricted action Tα|

Gx,S̃xG(x)

which build an open, dense and connected set in S̃xG (x). But since the action
is linear by (A) on ÑxG (x) this yields that by the action Tα|

Gx,ÑxG(x)
the

lemma holds and we have a principal infinitesimal type on ÑxG (x) such that
the orbits of this type build an open, dense and connected set in ÑxG (x).
Note that if dim S̃xG (x) = 0 then dim ÑxG (x) = 1 so by induction the lemma
holds by the action Tα|

Gx,ÑxG(x)
. Since every orbit by the action Tα|

ÑG(x)

intersects ÑxG (x) by (B) we have that if v ∈ ÑxG (x) belongs to the unique
minimal infinitesimal type κ by the action Tα|

GxÑxG(x)
, then the type of v by

Tα|
ÑG(x)

is the same. Using (C) it yields that the orbits belonging to the

type κ by the action Tα|
ÑG(x)

build an open set in ÑG (x), and since this set
is G-invariant, the proof of (C) yields that this set is dense and connected.
Moreover the above yield that κ is a unique minimal infinitesimal orbit type.
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Now consider a neighbourhood U ⊂ ÑG (x) and a connected neighbour-
hood V ⊂ G (x) of x such as in Lemma 4. Then that lemma yields that in
the connected open set exp (U |V ) there is a minimal infinitesimal type and the
points belonging to this type build an open, dense and connected set.

So we proved that for every x ∈M there is a connected open neighbourhood
Fx, where our lemma holds. If two such neighbourhoods intersect, then in the
open intersection Fx ∩Fy the set of points of the unique minimal infinitesimal
type belonging to the set Fx and the set of points of the unique minimal
infinitesimal type belonging to the set Fy are both open and dense. Hence
these two types must be the same, so on Fx ∪ Fy there is a unique minimal
infinitesimal type which build an open dense and connected set. As the sets
Fx cover M we have that our lemma holds on M .

A similar proof by induction can be found in K. Jänich [1] for the principal
orbit type theorem.

3. The Lorentzian case. Note that as the example of the action SO(2, 1)
on the 3-dimensional Minkowski space shows, the infinitesimal principal orbit
type theorem does not hold in general in the Lorentzian case. In the Lorentzian
case, we will reshape the above Riemannian proof, where some essential mod-
ifications will be made. We will need the following definition.

Definition 10. Let (M, g) be a Lorentz manifold, P ⊂M a submanifold,
and U ⊂M an arbitrary open submanifold. Let us restrict the metric tensor to
U , and consider the Lorentz manifold (U, g), then the union of the chronological
future and past of P ∩ U in (U, g) will be denoted by I (P,U), which will be
considered as a subset in M .

In what follows (G (x) ∩A)x will denote the path connected component of
G (x) ∩A containing x, in case of any set A ⊂ L and orbit G (x).

Lemma 11. Let (M, g) be a Lorentz manifold and α : G ×M → M an
isometric action of a Lie group G on M which is normalizable. Then for every
orbit G (x) there is an open neighbourhood U ⊂ M of x such that there is a
unique infinitesimal type in I ((G (x) ∩ U)x , U) for which the orbits belonging
to this type build an open and dense set in I ((G (x) ∩ U)x , U).

Proof. Let us consider the normal space ÑxG (x) and the normal bundle
ÑG (x) which is G-invariant. Recall our remark in the proof of Theorem 9
that the properties (A), (B), (C) hold also in the semi-Riemannian case for
the action Tα|

ÑG(x)
: G × ÑG (x) → ÑG (x). Now let us consider first the

reduced action Tα|
Gx,ÑxG(x)

: Gx × ÑxG (x) → ÑxG (x). This action leaves
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the metric g|
ÑxG(x)

invariant on the vector space ÑxG (x). There are 3 cases

according as the space ÑxG (x) is spacelike, timelike or lightlike.
(s) If ÑxG (x) is spacelike consider the submanifold

Ss
def=
{
v ∈ ÑxG (x) | g (v, v) = 1

}
⊂ ÑxG (x)

which is a Riemannian manifold, since the metric g|
ÑxG(x)

is Riemannian.
Since the metric g|

ÑxG(x)
is invariant under the action Tα|

Gx,ÑxG(x)
the set Ss

is also invariant, moreover if we restrict this action to Ss we get an isometric
action Tα|Gx,Ss : Gx × Ss → Ss on a compact Riemannian manifold. Using
Theorem 9 we obtain that there is a unique maximal infinitesimal type under
this restricted action, and the orbits of this type build an open and dense set
in Ss. As the action Tα|

Gx,ÑxG(x)
is linear on ÑxG (x), this was property (A),

we obtain that this type is a unique maximal infinitesimal type on ÑxG (x)
for the action Tα|

Gx,ÑxG(x)
and the orbits belonging to this type build an

open and dense set. As in Theorem 9 using properties (B), (C) we see that
this is a unique maximal infinitesimal type on the normal bundle ÑG (x) of
the action Tα and the orbits belonging to this type build an open and dense
set in ÑG (x). Let Ũ ⊂ ÑG (x) be an open neighbourhood of 0x such that
the exponential map is a diffeomorphism on Ũ . Since exp is G-equivariant
and the orbits belonging to the unique maximal infinitesimal type build an
open and dense set in Ũ , we have that on the set exp

(
Ũ
)

there is a unique
maximal infinitesimal type, for the action α, and the points belonging to this
type build an open and dense set in U

def
= exp

(
Ũ
)

. So the assertion holds also
on I ((U ∩G (x))x , U) ⊂ U .

(t) If ÑxG (x) is timelike, then consider

St
def=
{
v ∈ ÑxG (x) | g (v, v) = −1

}
.

Now if g|
ÑxG(x)

is negative definite, and then ÑxG (x) is 1-dimensional, then we
can repeat essentially the same argument as above in case (s), since −g|

ÑxG(x)

is positive definite. If g|
ÑxG(x)

is non-degenerate and indefinite, then ÑxG (x) is
at least 2-dimensional and (St, g̃) is a Riemannian submanifold in(
ÑxG (x) , g|

ÑxG(x)

)
, where the Riemannian metric g̃ is the one induced by

g|
ÑxG(x)

on St. As in the case (s) , here also the invariance of g|
ÑxG(x)

by the
action Tα|

Gx,ÑxG(x)
gives that St is invariant under the action of Tα|

Gx,ÑxG(x)
,

moreover Tα|Gx,St : Gx × St → St is an isometric action on the Riemannian
manifold St. Thus by Lemma 9 there is a unique maximal infinitesimal type
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and the points of this type build an open and dense set in St. Now if we define
the Gx-invariant set

I
(
ÑxG (x)

)
def=
{
v ∈ ÑxG (x) | g (v, v) < 0

}
,

then by property (A) we have that there is a unique maximal infinitesimal
type in I

(
ÑxG (x)

)
by the action Tα|

Gx,ÑxG(x)
. Since the set

I
(
ÑG (x)

)
= ∪g∈GTαg

(
I
(
ÑxG (x)

))
is G-invariant, by the properties (B) and (C) we have that there is a unique
maximal infinitesimal type in I

(
ÑG (x)

)
by the action

Tα|
I(ÑG(x)) : G× I

(
ÑG (x)

)
→ I

(
ÑG (x)

)
and the points belonging to this type build an open and dense set in I

(
ÑG (x)

)
.

As in case (s) let us take a suitable small neighbourhood Ũ ⊂ ÑG (x) of 0x
such that the exponential map is a diffeomorphism on Ũ then we have that
there is a unique maximal infinitesimal type in exp

(
I
(
ÑG (x)

)
∩ Ũ

)
by the

action α and the points belonging to this type build an open and dense set in

exp
(
I
(
ÑG (x)

)
∩ Ũ

)
.

Now if Ũ is suitably small and U
def= exp

(
Ũ
)
, then it can be shown that

exp
(
I
(
ÑG (x)

)
∩ Ũ

)
= I ((G (x) ∩ U)x , U) .

(l) If there is only lightlike normal space NxG (x) then TxG (x) has to
be lightlike. Then let F

ÑxG(x)
and FTxG(x) denote the unique 1-dimensional

lightlike subspaces of ÑxG (x) and TxG (x). Since TxG (x) and ÑxG (x) are
Gx-invariant the lightlike spaces F

ÑxG(x)
and FTxG(x) are also Gx-invariant,

moreover the 2-dimensional timelike subspace N2
x spanned by F

ÑxG(x)
and

FTxG(x) is also Gx-invariant. So the (n− 2)-dimensional spacelike subspace(
N2
x

)⊥ ⊂ TxM is also Gx-invariant. The intersection of Gx-invariant subspaces

R
def= ÑxG (x) ∩

(
N2
x

)⊥
is Gx-invariant and it is easy to see that this is a 1-codimensional subspace
in ÑxG (x) which is spacelike, since the following is true. For the lightlike
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subspaces ÑxG (x) ⊂ F⊥
ÑxG(x)

holds, moreover
(
N2
x

)⊥ ⊂ F⊥
ÑxG(x)

is true. Now
a simple calculation shows that

dim
(
ÑxG (x) ∩

(
N2
x

)⊥) ≥ dim
(
ÑxG (x)

)
+ dim

(
N2
x

)⊥ − dim
(
F⊥
ÑxG(x)

)
(1)

= dim
(
ÑxG (x)

)
+ (dimM − 2)− (dimM − 1)

= dim
(
ÑxG (x)

)
− 1.

Since R = ÑxG (x)∩
(
N2
x

)⊥ is spacelike and ÑxG (x) is lightlike R $ ÑxG (x),
thus

dim
(
ÑxG (x)

)
> dimR,

and this by the above inequality (1) gives that R must be 1-codimensional in
ÑxG (x) .

We can assume that dim ÑxG(x) > 1, because if dim ÑxG(x) = 1 then the
following holds. The action of Gx on the one dimensional lightlike subspace
is trivial, i.e. every vector in ÑxG(x) is fixed, or the action is non-trivial and
there are three orbits, the vector 0x and the two half lines. In both cases
there is a unique infinitesimal type, such that the orbits belonging to that
infinitesimal type in ÑG(x) by Tα|Gx,ÑxG(x) build an open and dense set. But
then the properties (A), (B), (C) yield that there is a unique infinitesimal type
by Tα|ÑG(x) such that the orbits of this infinitesimal type build an open and

dense set in ÑG(x), thus by the exponential map, we get that the orbit G(x)
has a G-invariant neighbourhood, for which the orbits of the above infinitesimal
type build an open and dense set, so the lemme is true. Now we can assume
that dim ÑxG(x) > 1 and let us consider the spacelike subspace R, which can
be considered as a Riemannian manifold. So by Theorem 9 we have a unique
maximal infinitesimal type in R by the restricted action Tα|Gx,R : Gx×R→ R
and the points belonging to this type build an open and dense set in R. Now
since

ÑxG (x) = F
ÑxG(x)

⊕R

is a Gx-invariant decomposition, every vector v ∈ ÑxG (x) can be written in
the form v = vl +vR, where vl is a lightlike vector and vR is a spacelike vector.

First we prove the following:
If v, w ∈ ÑxG (x) and v = vl + vR, w = wl + wR and vl 6= 0, wl 6= 0

moreover vR, wR belong to the unique maximal infinitesimal type by Tα|Gx,R

then v and w belong to the same type by Tα|
Gx,ÑxG(x)

.
Let u ∈ F

ÑxG(x)
, u 6= 0 be a non-zero element in the 1-dimensional lightlike

subspace and (Gx)u its isotropy subgroup by Tα|
Gx,ÑxG(x)

. It is clear that
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(Gx)u does not depend on the choice of u ∈ F
ÑxG(x)

\ {0x} only on the action

Tα|
Gx,ÑxG(x)

, moreoverH
def
= (Gx)u is a normal subgroup ofGx. So the isotropy

subgroup of vl and wl for Tα|
Gx,ÑxG(x)

is H. Since vR and wR belong to the
same infinitesimal type for Tα|Gx,R, there is an element g ∈ Gx such that
g−1 (Gx)0vR

g = (Gx)0wR
holds for the isotropy subgroups for the action Tα|Gx,R.

Note that the isotropy subgroup of every vector in R is the same for Tα|Gx,R

and Tα|
Gx,ÑxG(x)

. By the Gx-invariant decomposition ÑxG (x) = F
ÑxG(x)

⊕R
we have that

(Gx)0v =
(

(Gx)vl
∩ (Gx)0vR

)0
=
(
H ∩ (Gx)0vR

)0
,

where the zeros denote the identity components of the groups. But then

g−1 (Gx)0v g =
(
g−1Hg ∩ g−1 (Gx)0vR

g
)0

=
(
H ∩ (Gx)0wR

)0
= (Gx)0wR

,

thus v and w have the same infinitesimal type.
So we have proved that if κ is the unique maximal infinitesimal type of

the action Tα|Gx,R and we take the vectors v ∈ ÑxG (x) for which vl 6= 0
and inftyp (vR) = κ, then these vectors in ÑxG (x) have the same infinitesimal
type for Tα|

Gx,ÑxG(x)
. Let ω denote this infinitesimal type. The vectors of

infinitesimal type ω build a dense set, since the points of type κ build a dense
and open set in R. We will prove that this set in ÑxG (x) is also open.

Let us consider first:
Case (I): When (Gx)0vR

⊂ H for a vector vR ∈ R which belongs to the
type κ in R by Tα|Gx,R. Since H is a normal subgroup in Gx we have that
g−1 (Gx)0vR

g ⊂ H for every g ∈ Gx and since

(Gx)0v =
(

(Gx)vl
∩ (Gx)0vR

)0
=
(
H ∩ (Gx)0vR

)0
= (Gx)0vR

we have that v ∈ ÑxG (x) belongs to the above mentioned infinitesimal type ω
if and only if vR belongs to the infinitesimal type κ, thus the infinitesimal type
of v depends only on the infinitesimal type of vR. Since the points belonging to
the type κ build an open and dense set in R we have that the points belonging
to the type ω in Sl build an open and dense set in Sl. Of course in case (I)
ω = κ holds also.

Case (II): When the above case (I) does not hold. Then we have the
following:

Consider a vector v ∈ ÑxG (x) for which vl 6= 0, inftyp (vR) = κ holds,
thus inftyp (v) = ω. Since all the vectors in a suitable small neighbourhood
of vR in R have the same infinitesimal type κ, see Corollary 6, we can take
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a suitable small neighbourhood A ⊂ ÑxG (x) of v such that for every vector
w ∈ A, we have wl 6= 0 and inftyp (wR) = κ. Thus every vector in A will
belong to the infinitesimal type ω, i.e. v is in the interior of the set of vectors
of infinitesimal type ω.

So it remains to prove the following two subcases. If a vector v ∈ ÑxG (x)
belongs to the infinitesimal type ω but

(IIa) inftyp (vR) 6= κ or
(IIb) inftyp (vR) = κ but vl = 0,

then in both subcases there is a suitable small neighbourhood A of v in ÑxG (x)
such that all the vectors in A have infinitesimal type ω.

Since case (I) does not hold, there is a vector zR ∈ R for inftyp (zR) = κ but
(Gx)0zR

" H. Then the points of infinitesimal type κ inR of the restricted action
Tα|Gx,R can not belong to the infinitesimal type ω of the action Tα|

Gx,ÑxG(x)
,

thus (IIb) cannot occur since the following is true. If inftyp (vR) = κ then we
have that (Gx)0vR

= g−1 (Gx)0zR
g for some g ∈ Gx and that

(2) (Gx)0vR
= g−1 (Gx)0zR

g " g−1Hg = H

so for a vector v = vR + vl, vl 6= 0 the following holds:

(Gx)0v =
(
H ∩ (Gx)0vR

)0
=
(
H ∩ g−1 (Gx)zR

g
)0

=

g−1
(
H ∩ (Gx)0zR

)0
g $ g−1 (Gx)0zR

g = (Gx)0vR
,

thus inftyp (v) 	 inftyp (vR). So κ and ω are of different infinitesimal types,
which gives that the subcase (IIb) can not occur.

Thus the remaining subcase to prove is (IIa). Since we are in case (II) , for
any vector z ∈ R for which inftyp (zR) = κ is true, (Gx)0zR

" H holds, this was
inequality (2) . Now let us take a vector z ∈ ÑxG (x) , zl 6= 0, inftyp (zR) = κ,
then inftyp (z) = ω. As we are in subcase (IIa) we consider a vector v ∈
ÑxG (x), inftyp (vR) 6= κ for which inftyp (v) = ω. Then since κ is the unique
maximal infinitesimal type in R we have that inftyp (zR) > inftyp (vR) . Since

(Gx)0zR
" H we have that (Gx)0z =

(
H ∩ (Gx)0zR

)0
$ (Gx)0zR

by the defini-
tion of the infinitesimal type this means that inftyp (z) > inftyp (zR) . Thus
ω = inftyp (z) > inftyp (vR) , so vl 6= 0. Since inftyp (v) = inftyp (z) = κ = ω

there is a g ∈ Gx for which (Gx)0z = g−1 (Gx)0v g. Moreover as inftyp (zR) is
maximal, for every wR ∈ R there is a ĝ ∈ Gx for which

(3) (Gx)0zR
$ ĝ−1 (Gx)0wR

ĝ.

Now since R is a Riemannian-manifold and Gx acts on it isometrically there is
a neighbourhood P ⊂ R of vR such that for every vector wR ∈ P , inftyp (wR) ≥
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inftyp (vR), see Corollary 6, i.e. for every wR ∈ P there are elements f ∈ Gx
for which

(4) f−1 (Gx)0wR
f ⊆ (Gx)0vR

.

Now if A ⊂ ÑxG (x) is a neighbourhood of v such that for every w ∈ A, wl 6= 0
and wR ∈ P then the above inequalities (3) and (4) give that

(Gx)0zR
⊆ f̂−1 (Gx)0wR

f̂ ⊆ ĵ−1 (Gx)0vR
ĵ for some f̂ , ĵ ∈ Gx,

since inftyp (zR) ≥ inftyp (wR) ≥ inftyp (vR) , so

(Gx)0z =
(
H ∩ (Gx)0zR

)0
⊆
(
H ∩ f̂−1 (Gx)0wR

f̂
)0

= f̂−1
(
H ∩ (Gx)0wR

)0
f̂ =

f̂−1 (Gx)0w f̂ ⊆
(
H ∩ ĵ−1 (Gx)0vR

ĵ
)0

= ĵ−1
(
H ∩ (Gx)0vR

)0
ĵ = ĵ−1 (Gx)0v ĵ.

Therefore we get (Gx)0z ⊆ ĵ−1 (Gx)0v ĵ. Since inftyp (v) = inftyp (z) = ω we
have that (Gx)0z = ĵ−1 (Gx)0v ĵ, so in the above inequality the equality holds.
Thus in the first line of the above inequality

(Gx)0z = f̂−1 (Gx)0w f̂

is true. By the definition of the infinitesimal orbit type this means that
ω = inftyp (z) = inftyp (w) for every w ∈ A. So the points in the open
neighbourhood A of v belong to the infinitesimal type ω, thus v is an interior
point in the set of points in ÑxG (x) belonging to the type ω.

So far we have proved that there is an infinitesimal type for the action
Tα|

Gx,ÑxG(x)
such that all the points belonging to this type in ÑxG (x) build an

open and dense set. Now using properties (B) and (C) as before we have that
there is an infinitesimal type for the action Tα|

ÑG(x)
such that all the points in

the normal bundle ÑG (x) belonging to this type build an open and dense set.
Taking an open neighbourhood Ũ ⊂ ÑG (x) of 0x such that the exponential
map is a diffeomorphism on Ũ , we get that there is an infinitesimal type for
the action α such that all the points belonging to this type in U

def
= exp

(
Ũ
)

build an open and dense set. Now the same will be true on the open set
I ((U ∩G (x))x , U).

So in each case, in (s) , (t) , (l) , we proved that there is an infinitesimal
type such that the points in I ((U ∩G (x))x , U) belonging to this type build an
open and dense set. It is clear that this type is unique in I ((U ∩G (x))x , U),
since there can not be two disjoint, open and dense sets in the open set
I ((U ∩G (x))x , U).
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Theorem 12. Let (M, g) be a connected Lorentz-manifold and α : G×M →
M an isometric action of a Lie group G. Assume that the action is normal-
izable, then there is a unique maximal infinitesimal type, called infinitesimal
principal, such that all the points belonging to this type build an open and dense
set.

Proof. First note that if we take two open sets as in the above Lemma 11,
and the intersection of these two open sets is non-empty, then the unique maxi-
mal infinitesimal type of this two open sets is the same, since in the open inter-
section there can not be two different maximal infinitesimal types. Moreover
the union of the above sets, the set ∪x∈MI ((Ux ∩G (x))x , Ux) builds an open
and dense set. So we have to prove first that for every x, y ∈ M the unique
maximal infinitesimal type in I ((Ux ∩G (x))x, Ux) and in I

(
(Uy ∩G (y))y , Uy

)
is the same.

There is a piecewise smooth curve

ϕ : [0 = τ0, τ1, . . . , τn = 1]→M ,ϕ (0) = x, ϕ (1) = y

such that ϕ ([τi, τi+1]) is a timelike geodesic. Now consider for every t ∈ [0, 1]
a set I

(
(G (ϕ (t)) ∩ Ut)ϕ(t) , Ut

)
such as given in the above lemma, where we

can assume that Ut is geodesically convex, see B. O’Neil [3] p. 129, Defini-
tion 5 and p. 130, Proposition 7. With this assumption, since ϕ is timelike,
we can choose parameters at, bt ∈ [0, 1] , at < t < bt such that ϕ ((at, t)) ⊂
I
(

(G (ϕ (t)) ∩ Ut)ϕ(t) , Ut

)
and ϕ ((t, bt)) ⊂ I

(
(G (ϕ (t)) ∩ Ut)ϕ(t) , Ut

)
, where

if at = 0 or bt = 1 then we take the relative open set [0, bt) or (at, 1]. Since [0, 1]
is compact we get that there are parameters t0, t1, . . . , tk such that the relative
open intervals (ati , bti) belonging to this parameters cover the whole [0, 1] in-
terval. We can assume that the set t0, . . . , tk also contains the points τ0, . . . , τn.
Since (ati , bti) and

(
ati+1 , bti+1

)
intersects for every i = 0, 1, . . . , k− 1, we have

that I
(

(G (ϕ (ti)) ∩ Uti)ϕ(ti)
, Uti

)
∩ I

((
G (ϕ (ti+1)) ∩ Uti+1

)
ϕ(ti+1)

, Uti+1

)
is

non-empty, so as we mentioned at the beginning of the proof, the unique maxi-
mal infinitesimal type in I

(
(G (ϕ (ti)) ∩ Uti)ϕ(ti)

, Uti

)
and in

I
((
G (ϕ (ti+1)) ∩ Uti+1

)
ϕ(ti+1)

, Uti+1

)
is the same. As ϕ (t0) = x and ϕ (tk) = y

we have that in I ((Ux ∩G (x))x , Ux) and in I
(

(Uy ∩G (y))y , Uy
)

the unique
maximal infinitesimal type is the same. So we have that there is an infinites-
imal type κ such that the points belonging to this type build a dense set in
M . The orbits of infinitesimal type κ build also an open set, since every orbit
of infinitesimal type κ must be locally stable or else according to Corollaries
6, 8 the orbits of infinitesimal type κ does not build a dense set. The same
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corollaries yield that the infinitesimal type is also maximal. Since there can
not be two different disjoint, open and dense sets in M we have that this type
is unique.

The above theorem can be proved for the semi-Riemannian case or in a
more general setting, this proof will be presented elsewhere.

Note that connectedness is not true in general as the following example
shows.

Example 13. Consider the special orthogonal group SO (1, 1) on the two
dimensional Minkowski space. Let v be a lightlike vector and Tv be the one
parameter group generated by the translations in the direction of v. If we take
the group of isometries generated by SO (1, 1) and Tv then by the action of
this group there will be only 3 orbits. One is the lightlike line through the
origin in the direction of v. This line cuts the plane into two half-planes and
each half-plane will be an orbit. The two half-plane orbit will be infinitesimal
principal, they build an open, dense but not connected set.

The normalizability is a sufficient condition but it is not necessary as the
following example shows. So the natural question arouse, can we give an other
condition which is weaker then normalizability? In the following example there
is an infinitesimal type which is maximal, the orbits of this infinitesimal type
build an open and dense set, but not every orbit is normalizable.

Example 14. Let v be a lightlike vector in the three dimensional Minkow-
ski spaceM3. Let H ⊂ SO (2, 1) be the subgroup of those elements, which leave
the lightlike line R · v invariant. Moreover let Tv be the group of translations
in the direction v. Consider the isometry group generated by H and Tv. The
orbits will be the lightlike lines in the orthogonal space v⊥ and the two half
spaces will give two other orbits, which will have infinitesimal maximal type,
so they build an open and dense set in M3. But the orbits which are lightlike
lines will be non-normalizable.

4. Non-normalizable orbits. The above theorem implies that if there
is no infinitesimal type such that the points belonging to this type build an
open and dense set, then there must be a non-normalizable orbit. For a non-
normalizable orbit in the Lorentzian-case we can prove the following.

Theorem 15. If (M, g) is a Lorentz-manifold and α : G ×M → M an
isometric action of a Lie group G and the orbit G (x) is non-normalizable, then
it is a lightlike orbit such that for every p ∈ G (x) there there is a 1-parameter
subgroup in G such that its orbit at p yield a lightlike geodesic segment through
p, which is contained in G (x).

Proof. The proof will be presented elsewhere.
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