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WEAK FUNDAMENTAL SOLUTION OF THE FIRST ORDER
EVOLUTION EQUATION

BY MARIUSZ JUZYNIEC

Abstract. The purpose of this paper is to present some theorems on exis-
tence, uniqueness, continuity and differentiability with respect to a parame-
ter h of a weak solution of the evolution equation u(t) = A(h, t)u(t)+ f(h,t)
in case when operators A(h,t) have domains depending on a parameter h.

Introduction. We consider the abstract first-order initial value problem
d

(1) %u(t) = A(h,t)u(t) + f(h,t) for te€]0,T7,
(2) u(0) = 9.

It is known that under some assumption on the family of the operators A(h,t)
and the function f, the problem f has the unique classical solution given
by

t
3 u(h,t) = Ul t0)af,+ [ Ullit.5)5(hs)ds,
0
where, for each h € Q, U is the fundamental solution for the problem 7.
In this paper we investigate the continuity and differentiability of the mapping
Qx1[0,T]> (h,t) — u(h,t) € X,
where u(h,-) is a suitable defined weak solution of the problem (I)—(2).

1. Preliminaries. Now we consider a family {A(t)}cjo,rp € C(X) of
densely defined operators. Assume that the domains D(A(t)*) = D* are inde-
pendent of ¢ € [0,7] and suppose that vVt € [0,7] : 0 € p(A(t)). By Theorem
5, paper [6], for any t,s € [0,7]: A~L(¢)A(s) € Aut(X).
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Let
B(t,s) := A~L(t)A(s).
THEOREM 1. Let the family {A(t) }.ejo,r) be strongly continuously differen-
tiable and suppose that for each t € [0,T]:
(a) A(t) € C(X) and D(A(t)) = X,
(b) 0 € p(A(t)),

(¢) a mapping [0,T) > s — B(s,t) € Aut(X) is continuous in s = t,
then
(i) operators A= (t)A'(s) are bounded,
(ii) there exists K > 0 that
JATH (1) A (s)|| < K fort,s € [0,T].

PRrOOF. By Theorem 7, paper [6], the family {A*()},c(o,7) is w*-differen-
tiable. It easy to see that

/

[A @] = [A"(0)] .
It follows that [A~1(t)A"(s)]* = [A(s)]*[A~ 1(15)] This operator is closed and

with domain X*, therefore the operator A~!(¢)A’(s) is bounded.
To prove (i7), first note that for any x € X and v € X*

o
-1 ' Ay
<A (0)A (s)x,v> - < A (O)A(s)x,v> :
where gA_l(O)A(s) is a weak derivative of the family {A~1(0)A(s)}.
s
Indeed, for x € D

(AT AGIn o) = i (A2 020 )

= lim <A(S +h)e = A(s)x, (A_l(O))* v> = <A/(s)x, (A_l(()))* v>

h—0 h
= <A71(O)A/(s)m, v>

and by density of D in X and Theorem 7, paper [6], it holds for each x € X.
By Theorem 7 (iv), paper [6], the mapping Ail(O)A/(-) is weakly contin-
uous, so it is uniformly bounded, i.e.

JA=1(0)A'(s)|| < M for s € [0,T.
This implies, by Theorem 5 (i), paper [6], that
AT (DA (s)]| < AT O AO)[|ATH0)A (s)]| < K < oo,
This ends proof. O
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2. Existence and uniqueness of the weak solution. In this section
we consider a family of operators {A(t)} C C(X), t € [0,T], where for every
t€[0,T]: D(A(t)) =D, D= X and 0 € o(A(t)).

We investigate the Cauchy problem

du

(4) i Alt)u, u(s)=z, 0<s<t<T,

where z € X.
DEFINITION 1. An operator valued function
U:Ar:={(t,s):0<s<t<T}>(t,s) — Ult,s) € B(X)
is called the fundamental solution of the problem if
(i) the family {U(¢,s)} is strongly continuous with respect to (¢,s) € Ap,

(ii) for each (t,s) € Ap: |U(t,s)| < MePt=5),

(iii) for 0< s <r <t <T:U(t,t)=1, U(t,r)U(r,s) =U(t,s),
(iv) for each x € D : U(t,s)x € D,

(v) for each x € D and (t,s) € Ap:

0
aU(t, s)x = At)U(t, s)z,

E?SU(t’ s)x = =Ul(t,s)A(s)x,
(vi) the mappings Ar 3 (¢,s) — %U(t, s) and Ar 3 (t,s) — %U(t, s) are
strongly continuous on D.
In [8] is proved that

THEOREM 2. If the family {A(t)} C B(X) is strongly continuous, then
there exists exactly one fundamental solution of the problem .

DEFINITION 2. If there exists a sequence of bounded operators A, (t), t €
[0, 77, such that

Vn e N: a function t — A,(¢) is strongly continuous

and

Vre X: lim sup [[[A(t) — A, (t)]A7 (t)z] =0

n—=00 0<t<T
and the fundamental solutions of the problems

du
(5) 5 (B = An()u(?), ul(s) =w
are uniformly bounded, i.e.

(6) |Un(t,s)|| < M,
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where M does not depend on n € N and (¢,s) € Ap, then we say that the
family {A(t)}, t € [0,T7, is stably approximated by the sequence {A,(t)}.

DEFINITION 3. A family {A(t)},c[o,7] is called stable if there are constants
M > 1 and § > 0 such that

(7) vt e [0,T]: (B,00) C o(A(t))

and

(8) I T] RO A@)) || < M(A=8)""  for A>3
j=1

and for every finite sequence 0 <t; <t3 <...<t, <71, mneN.

Now we give sufficient conditions for the family {A(t)},c0,7] to be stably
approximated.

THEOREM 3. (see [2]) Assume that
(i) the family {A(t) }1epo,r) is stable,
(17) for each t € [0,T], the domain D(A(t)) = D does not depend on t,
(iii) Vx € D, the mapping [0,T] >t — A(t)x € X is of class C!,
(1) for each t € [0,T]: 0 € o(A(t)).
Then the family { A(t) }1c(0,1) is stable approzimated by the sequence { A, (t)}
defined by

9) An(t) == —nA)R(n, A(%)).

The sequence (Up(t,s)) of the fundamental solutions corresponding to
{A,(t)} is strongly and uniformly convergent to U(t,s) in Ar.

ASSUMPTION A;. Now suppose that

(i) Vvt € [0,T]: A(t) C C(X) with D(A(t)) =D and D = X,
(i) Vt € [0,T):  D(A*(t)) = D*,
(i) AIM > 1, B3>0 [0,T]: A(t) € G(M, ),
(iv) Vt € [0,T]: 0 € o(A(t)),
(v) Vs €10,T]: [0,T] 2t — A~1(s)A(t) € Aut(X) is continuous in t = s,
(vi) Vs € [0,T] the family {A~(s)A(t)}eo) has weakly continuous weak

derivative.

ExXAMPLE. Let A ba a generator of a strongly continuous semigroup and
let 0 € p(A). Suppose that V&t € [0,7] : &, € Aut(X) N Aut(D(A)). If a
mapping ¢t — ®; is suitable regular, then a family {A;}ico 1), At = @10 4,
satisfies Assumption
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THEOREM 4. If the family {A(t)} is stable and strongly continuously dif-
ferentiable and satisfies Assumption then the fundamental solution of the
problem has following properties:

(i) Vx € X Vs € [0,T) Vt € [s,T] Vv € D* :
9
ot
(i) U*(t,s)(D*) C D*,
(iii) Yz € X Vt € (0,T] Vs € [0,t] Yv € D*:

(10) (U(t,s)x,v) = (U(t,s)z, A*(t)v),

(11) ;9 (Ul(t,s)x,v) = —(x, A*(s)U*(t, s)v) .
(iv) Ar > (t,s) — %(U(t,s)az,v) and Ar > (t,s) — %(U(t,s)x,v) are

continuous.

PRrROOF. Equation holds for x € D. By w*-differentiability of the
function A*(-)v, ||A*(-)v| is uniformly bounded. Now, in view of the Banach—
Steinhaus Theorem, holds for each z € X.

To prove (ii) we show that

Ve e D: [(A(s)z, U'(t,s)v)| < Cllz|l,
where a constant C' does not depend on z. Since
(12) [(A(s)a, Uy (t, s)v)| = [(A7H()Un(t, 5) A(s)ar, A*(t)0)]

< [ A*@)oll[| AT (O Un(t, s) As)]],

where U,(t,s) is the fundamental solution of the problem () with
Ap(t) = —nA(t)R(n, A(t)), it is enough, by Theorem 5, paper [6], to show
that the sequence (W, (¢, s)), where
(13) Wa(t,s) = A ()Un(t, 5)A(s), D(Walt,s)) = D
has following properties:

a) Vn Vt,s € Ap, operators W, (t, s) are densely defined and bounded,
b) the family (W, (¢, s)) is uniformly bounded, i.e.

JK >0 VYneN V(t,s) € Ar: |Walt,s)| < K.

Functions ¢t — A~Y(¢) and (t,s) — Up,(t,s) are strongly continuously
differentiable, so by the function ¢t — W,,(t, s)x is of class C! and
OWy(t, s)

= AL A (AT ) UL, 5)A(s)z + A7) An(8)Un(t, 5) A(s)

=AY D)A(@) + A ()]AH O Un(t, 5) A(s) .
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So
(14) 8W’§’S)x = Ap(OWy(t,8)z — AN A (&) Wa(t, s)z.

It follows from that

/

(15) Wi(t,s)x = Up(t, s)x — / Un(t,r) AN () A (1YW, (r, 8)xdr,

where

(16) Whi(s,s)x = Up(s,s)x = x.

Let

(17) WO L, )z := Up(t, s)z, for € X
and

/

t
(18) m@m@wzi/uﬁmmlmAwmﬁlmwmw for z € D.

Then one can verify, by induction, that Wk (t,s)(D) C D, and the operators

quk) (t,s) can be extended, by continuity, to bounded, everywhere defined
operators. From it follows that

0
(19) WO (t, )| = | Un(t, s)z|| < M|z
By (), (18) and
_ t— k
(20) HWﬁW@WSAﬁHK“};),kZQLZW

The estimates imply that the series Wy, (¢, s) := > po, W (t,s) converges
uniformly, in the uniform operator topology, for (¢,s) € Ap. As a consequence
Wi(t,s) is uniformly continuous in B(X) for (t,s) € Ap. The continuity of
W,E’“) (t,s), n € Nand imply that one can interchange the summation and
integration in

Wa(t,s) = iw,g@(t,s) = U,(t, s)—i /t Un(t,7) A1 (r) A (r) 75’“:”(7“, s)dr
k=0 k=1"*%

and thus see that W, (¢, s) is a solution of the integral equation . Moreover
there exists constant K7 such that

V(t,s) € Ar Yne N: |[Wy(t,s)| < K.

So
[(A(s)z, Up (L, s)v)| < Ki[|A*(t)v] |||
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and passing with n to co we have
[(A(s), U™ (¢, s)v)| < Kq[[A*()vllllz], Vo€ D.

This implies that
U*(t,s)v € D(A*(s)) = D*.

Moreover

(21) sup{[|A"(s)U" (¢, s)v[| = (¢, s) € Ar} < Ky,

where Ky := K - sup{||A*(t)v]| : t € [0,T]} < 0.

Equation holds for z € D and by , it holds for x € X. O
We now investigate the Cauchy problem

(22) ift‘ A+ fH),  u0) =z 0<t<T,

where f € L'(0,T; X), {A(t) }epor] € C(X) and VE € [0,T] : D(A(t)) = X
and D(A*(t)) = D*.
DEFINITION 4. A function u € C([0,T]; X) is a weak solution of if
for each v € D*
(i) the function [0,7] 3 ¢t — (u(t),v) €
differentiable almost everywhere in [0, 77,
(i) Yo e D* = f(u(t),v) = (u(t), A*(t)v) +
(iif) u(0) = 2.

R is absolutely continuous and

(f(t),v) a.e.in [0,T],

THEOREM 5. If the family {A(t)}iejo,r) satisfies the assumptions of Theo-
reml and f € L'(0,T; X) then for each x € X there exists exactly one weak
solution of the problem (22|) and it is given by

(23) u(t) =U(t,0)z —i—/o U(t,s)f(s)ds te]0,T],

where {U(t, 8)},s)ear 5 the fundamental solution of the problem .

PrOOF. By Theorem |3] there exists the fundamental solution of the prob-
lem and the function u, given by , is continuous.

Fix v € D*. First assume that f € C([0,T]; X). By and continuity of
the function Ar x X 5 (¢,s,z) — U(t,s)xr € X we see that

G [ s 0ds = .0+ [ 00 ). 4 00)s

This implies that

(24) —(u(t),v) = (u(t), A*(t)v) + (f(t), ).
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Now suppose that f is Bochner integrable, i.e. f € L'(0,T; X). Let ¢,, be an
approximate identity. Then f * ¢,, is of class C* and f * ¢, — f in L! norm.
Let a sequence (f,) C C([0,T]; X) converg to f in L'(0,T; X) norm. Let

(25) un(t) = U(t,0)z + /0 Ut 5) fu(s)ds for ¢ € [0.7].

Function u,, is a weak solution of the problem

jt< n(t),0) = (un(t), A*(t)v) + (fu(t),v), un(0) =2

and by integrating this equation over [0, ¢], we have

(26) (un(t),v) = (x,v) +/ [(un(s), A™(s)v) + (fu(s), v)]ds
0
From
T
[un(t) —u(®)]| < MeﬁT/ [fn(s) — f(s)llds
0

it follows that w, — w in C([0,7T], X) norm. Thus, by the Lebesgue Theorem,
u, given by , satisfies equation

(u(t), v) = (&, v) + /0 [(u(s), A (s)0) + (F(s), v)]ds.

Existence of the weak solution is proved.

To prove uniqueness suppose that there exists uw another weak solution of
the problem and set w = u — w. Then the function w is a weak solution
of the problem

d
%w(t) = A(t)w(t), w(0)=0.
Fix v € D* and t € (0,7]. By Theorem
d

——(U(t, s)w(s),v) = %(w(S),U*(t 5)v)
= (w(s), A*(s)U*(t, s)v) — (w(s), A*(s)U*(t, s)v) = 0.

From continuity of the function (U(t,-)w(:),v) it follows that

ds

(U(t, s)w(s),v) = const.
)

If 51,52 € [0,¢], then (U(t, s1)w(s1),v) = (U(t, s2)w(s2),v) for each v € D*.
By w*-density of D*, U(t,s1)w(s1) = U(t, s2)w(s2) for si,s2 € [0,¢]. Taking
sl—OandSQ—twegetw(): O
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3. Dependence of the weak solution on a parameter. Let ) be a
compact subset of R™. We shell consider the following initial value problem
with a parameter h € Q:

(27) %u(t) = Alh,tyu(t) + fu(t), u(0) = ul,
where A: Q x [0,T] > (h,t) — A(h,t) € C(X), u) € X, fn € L'(0,T; X).

DEFINITION 5. A family {A(h,1)}.¢)eqx(o,r is said to be uniformly stable
with respect to h € 2, when there exist constants M and ( such that for any
h € Q the family {A(h,?)};c(0,7] is stable with constants M and 3.

In this section we adopt the following:
ASSUMPTION Ay ¢.
(1) Vt € [0,T] YVh € Q: D(A(h,t)) = Dy,
(1) Yt € [0,T] Yh e Q: D(A*(h,t)) = D*,
(13i) Vt € [0,T] Yh € Q: 0 € o(A(h,t)),
(iv) Yh,k € Q Vs € [0,T], the mapping

[0,T] 5t — A~Y(k,s)A(h,t) € Aut(X)

18 continuous mt = s,

(v) Vh,k € Q Vs € [0,t], the family {A—l(h,s)A(h,t)}t o has weakly
€10,

continuous weak derivative,
(vi) Vk € Q Vt € [0,T], a mapping

Q>5h— A Yk, t)A(h,t) € Aut(X)

is continuous, uniformly in t € [0, T].

One can easily verify (see Theorems 5 and 6, paper [6]) that this operators
are well-defined.

COROLLARY 1. From Assumption [Ay4 it follows that mappings
e 0,75t — A71(k,s)A(h,t) € Aut(X),
e 0,T]>t— A~1(h,t)A(k,s) € Aut(X),
e 0,75t — A Yk, t)A(h,t) € Aut(X),

are continuous.

PROOF. One can easily verify that [0, 7] > t — A~1(k, s)A(h,t) € Aut(X)
is continuous.

It is known that if a mapping [0,7] > ¢ — B(t) € Aut(X) is continuous
and Vt € [0,7] : 0 € o(B(t)), then the mapping [0,T] > t — B~(t) € Aut(X)
is continuous. Continuity of the mapping [0,7] > t — A~1(h,t)A(k,s) €
Aut(X) follows from the above. O
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THEOREM 6. If the family {A(h,t)}mn.neax(or 5 uniformly stable with
respect to h € €1, satisfies Assumption and Vh € Q Vx € Dy : [0,T] >
t — A(h,t)r € X is of class C', then there exists for each h € €, one
fundamental solution {U(h,t,s)}q sea, C B(X). Moreover for each v € D*
and x € X

(i) (Ut 5)e,) = (U, ), A%, ).

(i) U*(h,t,s)(D*) C D*,

(i13) aa(U(h,t,s)a:,v) = —(x, A*(h, s)U*(h,t, s)v),

s
() limp_p, (U(h,t,s)z,v) = (U(ho,t,s)z,v) uniformly in (t,s,x) € A x K,

where K is a compact subset of X.

PROOF. (i), (i7) and (7i7) follow from Theorems (3| and
Fix x € X and v € D*.

(28) dilT (U (h, 7, $)z, U* (ho, £, 7)0)

= (U(h,1,s)x,[A"(h,T) — A*(ho, 7)|]U*(ho, t, T)v).
By integrating over [s,t] we have
(29) (U(h,t,s)x — Ul(hg,t,s)x,v)

= /t (U(h,1,s)z,[A*(h,T) — A*(ho, 7)]U*(ho, t, T)v) dT,

SO
<U(h7 t, S).Z' - U(ho, t, S).%', U>

- /: <U(h,7', s)z, { {A—l(ho,r)A(h,T)r B I*}A*(ho,T)U*(ho,t,T)v> dr

By , Assumption and the Lebesgue Theorem

(30) hlin}}o(U(h,t, s)x,v) = (U(hg,t, s)z,v)

uniformly in (¢,s) € Arp.
Let Bp(t,s) : X — R, h € Q, (t,s) € Ar be a family of linear functionals
given by
By(t,s)x := (U(h,t,s)x,v) forzeX
for fixed v € D*.
This family is uniformly bounded: || By (t,s)|| < ||v|||U (h,t,s)|| < MePT||v]|
and by

lim (U(h,t,s)x,v) = lim By(t,s)x = By, (t,s)z = (U(ho,t, s)x,v)
h—hg h—ho

uniformly in (¢,s,2) € Ar x K. O
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THEOREM 7. Let X be a reflexive Banach space and suppose that the family
{A(h, 1)} hpeax(or) satisfies the assumptions of Theorem@ then Yv € X™* :

i (U(ht,5),0) = (U(ho,t, 5)z,0)
—no

uniformly in (t,s,x) € Ap x K, where K is a compact subset of X.

PROOF. By reflexivity of X, D* is dense in X*, so by Theorem [6] the
assertion follows. O

THEOREM 8. If the family {A(h,t)}n.eaxo,1) Satisfies the assumptions of
Theoremlj and mappings 2 3 h — u% € X, h — fr € LY0,T;X) are
continuous, then for each h € € there exists exactly one weak solution of the
problem given by

(31) up(t) = U(h,t,0)ul) + /Ot U(h,t,s)fr(s)ds

and for any v € D*

hllrgl10<uh(t)7 v) = (upy (1), v),

uniformly in t € [0,T).

PRrROOF. By Theorem [5, function given by is a weak solution of a
problem and

up(t) — upy (t) = [U(h,t,0) — U(ho, t,0)]ul) + U(ho, t,0)[u) — ugo]

t

t
+/W@m@—wmnﬂm®%+/UWLM&@—M@W&
0 0
Fix v € D*. By Theorem|§| (iv), for K := {u) ; h € Q}:
Jim ([U(h, £,0) = U(ho, t,0)]up, v) =0,

uniformly in ¢t € [0, 7.
From ||U(h,t,s)|| < MePT it follows that limp,_p, U (ho, t,0)[ul) —u?lo] =0,
uniformly in ¢ € [0,7] and moreover by continuity of the mapping h — f,

t
lim U(hv t, S) [fh(s) - fho (S)]d‘s =0,
h—ho Jo
uniformly in ¢ € [0,7].
To complete the proof we note that there exists a sequence (p,) C C([0,T];
X) such that lim, o ¢n = fp, in L'-norm. For fixed € > 0 there exists such
no € N that

(32) 1fno = Puollr < e(4Me T ol)~".
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From compactness of K := {¢n,(s);s € [0,T]}, the inequality ||U(h,t,s)| <
MePT, and Theorem |§| (1v) there exists § > 0 for which

' </Ot[U(h,t, s) — U(ho, t, 8)]fh0(8)ds,v> ’ < 2MePT v /OtHfho(S)—tpno(s)\ds

t
[ t5) = Uttt 9 ong(5), 00 ds < 2
0
for |h — ho| < 0 and t € [0,T]. The assertion is proved. O
From Theorems [7 and [8 it follows that

THEOREM 9. If the assumptions of Theorem[§ hold in a reflexive Banach
space X, then for any v € X* :

hh—>ni:0 <uh (t), U) = <uh0 (t)7 v>7

uniformly in t € [0,T).

We will now present theorems on differentiability of the weak solution with
respect to a parameter h. To do this assume

ASSUMPTION Zy,. For each v € D* a mapping
Q>h— A*(h,t)v € X*

2 A*(h,t)v) is continuous with respect to (h,t) € Qx[0,T].
oh

It is not difficult to show that

is of class C* and

COROLLARY 2. For eacht € [0,T] and k € Q the family {Ail(k:,t)A(hjt)}
is weakly differentiable with respect to h and Vx € X, Vv € X* :
0 0
-~ —1 — -~ * * —1
o <A (k:,t)A(h,t)x,v> <g; o [A (h,t) (A*(k, 1)) v}>

Moreover above partial derivative is a continuous function with respect to (h,t).

COROLLARY 3. There exists a constant My independent of h and s such
that

A= (k,s)A(h,s) — I

(33) -

< M;.

PROOF. By Assumption and Corollary [2] for each v € X* we obtain
. A-1(k,s)A(h,s) — I 0 — %
(34) lim < ™ T,v ) = <x, o (A (k,s)A(h, 3)) v>,

h—k lh=r
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uniformly in s € [0, T]. Setting

F(h,s) = (AT, 5) Alh, 5),v)
for fixed k € 2, we will show that

f(k+ Ah,s) — f(k,s)
Ah

(35) — fr(k,s), Ah— 0,

uniformly in s.

The mapping (h,t) — f;l(h, s) is uniformly continuous, so for any € > 0
there exists 6 > 0 such that
(36) (I —ha| <8 A [s1— s <) = (|fyha, 52) = f(h,91)] < &),
By the Lagrange Theorem there exists 6 € (0,1) such that
f(k—f—Ah,S) _f(k78)

Ah '

Setting s1 = so = s, hy = k and he = k + 0Ah for |Ah| < § we have, by
and ,

(37) fu(k+0Ah, s) =

k+ Ah,s)— f(k /
b A0 = flhs) iy

Next, let us consider the mapping B, (h,s) € B(X*,R) defined by

By (h, s)v := <A_1(k’S)A(h’S) - [x,v> .

<e.

h—k
The family H := {By(h,s) € X**; (h,s) € Qx[0,T]} satisfies the assumptions
of the Banach—Steinhaus Theorem, so
A=Yk, s)A(h,s) — 1
h—k

with a constant M independent of h and s. By inequality and the Banach-
Steinhaus Theorem we have

(38) 1Bz (R, )| = z|| < M(z, k),

A=Yk, s)A(h,s) — I
h—k
where a constant M; is independent of h and s. O

Let X be a reflexive Banach space.

THEOREM 10. If the family {A(h,t)}neax(or) satisfies the assumptions
of Theorem |6 and Assumption mappings 2 > h — ug eXand f: Q>
h — fn € LY(0,T; X) are of class C*, then for each v € D* a mapping

Qx[0,T] 3 (h,t) — (up(t),v) €R
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is differentiable with respect to a parameter h and

i (000, = (Uthat.0)(08) ) + [ U, 9)f, (01,00

! 8 * *
—i—/o <uh°(s)’8hA (h, s)|h:h0U (ho,t,s)v> ds.

PROOF. Let u;, be a weak solution of the problem . This function
is continuous and almost everywhere weakly differentiable. Fix v € D*. A
function s — U*(ho, t, s)v is w*—differentiable, so

oy 5 B 5)0) = (un(5), A% s)U" (o . 5)0)
+ (f(h,s),U*(ho,t,s)v) — (un(s), A*(h, s)U*(ho, t, s)v).

Integrating over [0, t] and applying this formula to <%, v> we get

0
un(t) = ung 1 )l
N RN — ho.t o
< h—h(] y U U( 0 aO) h—ho , U

t h,s) — f(h
(41) +/ <U(h0,t,s)f( ’S})L i( O’S),v> ds
0 — ho
t A*(h,s) — A*(h
- <Uh<s>, (h3) — A O’S)U*<ho,t,s>v>ds h# ho
0 0
Denote
0 0 t
Up — U, fn(s) = fno(s)
t) :=U(hg,t,0)——2 U(hg,t,s)————"""ds.
24(t) = Ulho.£.0) =02 [ U, 1,9 el
The function zj is a weak solution of the Cauchy problem
d
%Zh(t) = A(ho, t)zh(t) + F(h, t)
2(0) = 2,
where () o)
Fhty=1, oo or fho
f (ho,t) for h = hg
and

0= “gj}jgo for h # ho
(ugo) for h = hy.
By Theorem

hli_>nhl0<zh (t)7 U> = <Zh0 (t)v ’U>
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uniformly in ¢ € [0, 7], where

t
en(t) = Ulho, t,0) () + /O Ulhost,5) s, ()ds.

Now we consider third term of the right side of the formula .

/Ot <uh(8)’ A*(h, s})L - Zx:(ho, ) o ho ¢, s)v> .

_ /01t <uh(s) ~ py (s), 2 S})L - ::(ho’ 0 (o t, s)v> ds

t A T(ho, $)A(h,s) — 1\
+/ <Uho(s>7< ( O’hs),g .¢) ) A*(ho,S)U*(ho,t,s)v> ds.
0 0
For any (¢,s) € Ap

lim <uh<s> ~ uno(s),

h—hg

A*(h,s) — A*(hg, s)
h — hg
Indeed, the mapping 2 5 h — up(s) € X is weakly continuous and the map-
ping Q 3 h — A*(h,s)w € X* is differentiable for w € D*.

Moreover,

U*(ho, t, s)v> =0.

lun(s)]] < C  for (h,s) € Qx[0,T].
By the Assumption , and the Lebesgue Theorem we get

/Ot <uh (s, A1 s}i = 21;‘(/10, ) o ho . 8)v> .

¢ a * *
_>/0 <uh0(s),6hA (h,s)|h=hOU (ho, t, s)v> ds,

when h — hg. This ends proof. U
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