
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLVII

2009

WEAK FUNDAMENTAL SOLUTION OF THE FIRST ORDER

EVOLUTION EQUATION

by Mariusz Jużyniec

Abstract. The purpose of this paper is to present some theorems on exis-
tence, uniqueness, continuity and differentiability with respect to a parame-
ter h of a weak solution of the evolution equation u̇(t) = A(h, t)u(t)+f(h, t)
in case when operators A(h, t) have domains depending on a parameter h.

Introduction. We consider the abstract first-order initial value problem

(1)
d

dt
u(t) = A(h, t)u(t) + f(h, t) for t ∈ [0, T ],

(2) u(0) = x0
h.

It is known that under some assumption on the family of the operators A(h, t)
and the function f, the problem (1)–(2) has the unique classical solution given
by

(3) u(h, t) = U(h, t, 0)x0
h +

∫ t

0
U(h, t, s)f(h, s)ds,

where, for each h ∈ Ω, U is the fundamental solution for the problem (1)–(2).
In this paper we investigate the continuity and differentiability of the mapping

Ω× [0, T ] 3 (h, t) −→ u(h, t) ∈ X,

where u(h, ·) is a suitable defined weak solution of the problem (1)–(2).

1. Preliminaries. Now we consider a family {A(t)}t∈[0,T ] ⊂ C(X) of
densely defined operators. Assume that the domains D(A(t)∗) = D∗ are inde-
pendent of t ∈ [0, T ] and suppose that ∀t ∈ [0, T ] : 0 ∈ ρ(A(t)). By Theorem
5, paper [6], for any t, s ∈ [0, T ] : A−1(t)A(s) ∈ Aut(X).
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Let
B(t, s) := A−1(t)A(s).

Theorem 1. Let the family {A(t)}t∈[0,T ] be strongly continuously differen-
tiable and suppose that for each t ∈ [0, T ]:
(a) A(t) ∈ C(X) and D(A(t)) = X,
(b) 0 ∈ ρ(A(t)),
(c) a mapping [0, T ] 3 s→ B(s, t) ∈ Aut(X) is continuous in s = t,

then
(i) operators A−1(t)A

′
(s) are bounded,

(ii) there exists K ≥ 0 that

‖A−1(t)A
′
(s)‖ ≤ K for t, s ∈ [0, T ].

Proof. By Theorem 7, paper [6], the family {A∗(t)}t∈[0,T ] is w∗-differen-
tiable. It easy to see that

[A
′
(t)]∗ = [A∗(t)]

′
.

It follows that [A−1(t)A
′
(s)]∗ = [A

′
(s)]∗[A−1(t)]∗. This operator is closed and

with domain X∗, therefore the operator A−1(t)A
′
(s) is bounded.

To prove (ii), first note that for any x ∈ X and v ∈ X∗〈
A−1(0)A′(s)x, v

〉
=
〈
∂

∂s
A−1(0)A(s)x, v

〉
,

where
∂

∂s
A−1(0)A(s) is a weak derivative of the family {A−1(0)A(s)}.

Indeed, for x ∈ D〈
∂

∂s
A−1(0)A(s)x, v

〉
= lim

h→0

〈
A−1(0)A(s+ h)x−A−1(0)A(s)x

h
, v

〉
= lim

h→0

〈
A(s+ h)x−A(s)x

h
,
(
A−1(0)

)∗
v

〉
=
〈
A

′
(s)x,

(
A−1(0)

)∗
v
〉

=
〈
A−1(0)A

′
(s)x, v

〉
and by density of D in X and Theorem 7, paper [6], it holds for each x ∈ X.

By Theorem 7 (iv), paper [6], the mapping A−1(0)A
′
(·) is weakly contin-

uous, so it is uniformly bounded, i.e.

‖A−1(0)A
′
(s)‖ ≤M for s ∈ [0, T ].

This implies, by Theorem 5 (i), paper [6], that

‖A−1(t)A
′
(s)‖ ≤ ‖A−1(t)A(0)‖‖A−1(0)A

′
(s)‖ ≤ K <∞.

This ends proof.
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2. Existence and uniqueness of the weak solution. In this section
we consider a family of operators {A(t)} ⊂ C(X), t ∈ [0, T ], where for every
t ∈ [0, T ] : D(A(t)) = D, D = X and 0 ∈ %(A(t)).

We investigate the Cauchy problem

(4)
du

dt
= A(t)u, u(s) = x, 0 ≤ s ≤ t ≤ T,

where x ∈ X.

Definition 1. An operator valued function

U : ∆T := {(t, s) : 0 ≤ s ≤ t ≤ T} 3 (t, s) −→ U(t, s) ∈ B(X)

is called the fundamental solution of the problem (4) if
(i) the family {U(t, s)} is strongly continuous with respect to (t, s) ∈ ∆T ,
(ii) for each (t, s) ∈ 4T : ‖U(t, s)‖ ≤Meβ(t−s),
(iii) for 0 ≤ s ≤ r ≤ t ≤ T : U(t, t) = I, U(t, r)U(r, s) = U(t, s),
(iv) for each x ∈ D : U(t, s)x ∈ D,
(v) for each x ∈ D and (t, s) ∈ ∆T :

∂

∂t
U(t, s)x = A(t)U(t, s)x,

∂

∂s
U(t, s)x = −U(t, s)A(s)x,

(vi) the mappings ∆T 3 (t, s) → ∂
∂tU(t, s) and ∆T 3 (t, s) → ∂

∂sU(t, s) are
strongly continuous on D.

In [8] is proved that

Theorem 2. If the family {A(t)} ⊂ B(X) is strongly continuous, then
there exists exactly one fundamental solution of the problem (4).

Definition 2. If there exists a sequence of bounded operators An(t), t ∈
[0, T ], such that

∀n ∈ N : a function t −→ An(t) is strongly continuous

and
∀x ∈ X : lim

n→∞
sup

0≤t≤T
‖[A(t)−An(t)]A−1(t)x‖ = 0

and the fundamental solutions of the problems

(5)
du

dt
(t) = An(t)u(t), u(s) = x

are uniformly bounded, i.e.

(6) ‖Un(t, s)‖ ≤M,
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where M does not depend on n ∈ N and (t, s) ∈ ∆T , then we say that the
family {A(t)}, t ∈ [0, T ], is stably approximated by the sequence {An(t)}.

Definition 3. A family {A(t)}t∈[0,T ] is called stable if there are constants
M ≥ 1 and β ≥ 0 such that

(7) ∀t ∈ [0, T ] : (β,∞) ⊂ %(A(t))

and

(8)
∥∥ n∏
j=1

R(λ,A(tj))
∥∥ ≤M(λ− β)−n for λ > β

and for every finite sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, n ∈ N.

Now we give sufficient conditions for the family {A(t)}t∈[0,T ] to be stably
approximated.

Theorem 3. (see [2]) Assume that
(i) the family {A(t)}t∈[0,T ] is stable,

(ii) for each t ∈ [0, T ], the domain D(A(t)) = D does not depend on t,
(iii) ∀x ∈ D, the mapping [0, T ] 3 t −→ A(t)x ∈ X is of class C1,
(iv) for each t ∈ [0, T ] : 0 ∈ %(A(t)).

Then the family {A(t)}t∈[0,T ] is stable approximated by the sequence {An(t)}
defined by

(9) An(t) := −nA(t)R(n,A(t)).

The sequence (Un(t, s)) of the fundamental solutions corresponding to
{An(t)} is strongly and uniformly convergent to U(t, s) in ∆T .

Assumption At. Now suppose that
(i) ∀t ∈ [0, T ] : A(t) ⊂ C(X) with D(A(t)) = D and D = X,

(ii) ∀t ∈ [0, T ] : D(A∗(t)) = D∗,
(iii) ∃M ≥ 1, β ≥ 0 ∀t ∈ [0, T ] : A(t) ∈ G(M,β),
(iv) ∀t ∈ [0, T ] : 0 ∈ %(A(t)),
(v) ∀s ∈ [0, T ] : [0, T ] 3 t→ A−1(s)A(t) ∈ Aut(X) is continuous in t = s,

(vi) ∀s ∈ [0, T ] the family {A−1(s)A(t)}t∈[0,T ] has weakly continuous weak
derivative.

Example. Let A ba a generator of a strongly continuous semigroup and
let 0 ∈ ρ(A). Suppose that ∀t ∈ [0, T ] : Φt ∈ Aut(X) ∩ Aut(D(A)). If a
mapping t → Φt is suitable regular, then a family {At}t∈[0,T ], At := Φt ◦ A,
satisfies Assumption At.
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Theorem 4. If the family {A(t)} is stable and strongly continuously dif-
ferentiable and satisfies Assumption At, then the fundamental solution of the
problem (4) has following properties:

(i) ∀x ∈ X ∀s ∈ [0, T ) ∀t ∈ [s, T ] ∀v ∈ D∗ :

(10)
∂

∂t
〈U(t, s)x, v〉 = 〈U(t, s)x,A∗(t)v〉 ,

(ii) U∗(t, s)(D∗) ⊂ D∗,
(iii) ∀x ∈ X ∀t ∈ (0, T ] ∀s ∈ [0, t] ∀v ∈ D∗ :

(11)
∂

∂s
〈U(t, s)x, v〉 = −〈x,A∗(s)U∗(t, s)v〉 .

(iv) ∆T 3 (t, s) → ∂
∂t 〈U(t, s)x, v〉 and ∆T 3 (t, s) → ∂

∂s 〈U(t, s)x, v〉 are
continuous.

Proof. Equation (10) holds for x ∈ D. By w∗-differentiability of the
function A∗(·)v, ‖A∗(·)v‖ is uniformly bounded. Now, in view of the Banach–
Steinhaus Theorem, (10) holds for each x ∈ X.

To prove (ii) we show that

∀x ∈ D : |〈A(s)x, U∗(t, s)v〉| ≤ C‖x‖,

where a constant C does not depend on x. Since

|〈A(s)x, U∗n(t, s)v〉| = |〈A−1(t)Un(t, s)A(s)x,A∗(t)v〉|(12)

≤ ‖A∗(t)v‖‖A−1(t)Un(t, s)A(s)x‖,

where Un(t, s) is the fundamental solution of the problem (5) with
An(t) = −nA(t)R(n,A(t)), it is enough, by Theorem 5, paper [6], to show
that the sequence (Wn(t, s)), where

(13) Wn(t, s) := A−1(t)Un(t, s)A(s), D(Wn(t, s)) = D

has following properties:
a) ∀n ∀t, s ∈ 4T , operators Wn(t, s) are densely defined and bounded,
b) the family (Wn(t, s)) is uniformly bounded, i.e.

∃K > 0 ∀n ∈ N ∀(t, s) ∈ 4T : ‖Wn(t, s)‖ ≤ K.

Functions t −→ A−1(t) and (t, s) −→ Un(t, s) are strongly continuously
differentiable, so by (13) the function t −→Wn(t, s)x is of class C1 and

∂Wn(t, s)
∂t

x = −A−1(t)A
′
(t)A−1(t)Un(t, s)A(s)x+A−1(t)An(t)Un(t, s)A(s)x

= [−A−1(t)A
′
(t) +An(t)]A−1(t)Un(t, s)A(s)x.
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So

(14)
∂Wn(t, s)

∂t
x = An(t)Wn(t, s)x−A−1(t)A

′
(t)Wn(t, s)x.

It follows from (14) that

(15) Wn(t, s)x = Un(t, s)x−
∫ t

s
Un(t, r)A−1(r)A

′
(r)Wn(r, s)xdr,

where

(16) Wn(s, s)x = Un(s, s)x = x.

Let

(17) W (0)
n (t, s)x := Un(t, s)x, for x ∈ X

and

(18) W (k)
n (t, s)x := −

∫ t

s
Un(t, r)A−1(r)A

′
(r)W (k−1)

n (r, s)xdr for x ∈ D.

Then one can verify, by induction, that W (k)
n (t, s)(D) ⊂ D, and the operators

W
(k)
n (t, s) can be extended, by continuity, to bounded, everywhere defined

operators. From (16) it follows that

(19) ‖W (0)
n (t, s)x‖ = ‖Un(t, s)x‖ ≤M‖x‖.

By (9), (18) and (19)

(20) ‖W (k)
n (t, s)‖ ≤Mk+1Kk (t− s)k

k!
, k = 0, 1, 2, . . .

The estimates (20) imply that the series Wn(t, s) :=
∑∞

k=0W
(k)
n (t, s) converges

uniformly, in the uniform operator topology, for (t, s) ∈ ∆T . As a consequence
Wn(t, s) is uniformly continuous in B(X) for (t, s) ∈ ∆T . The continuity of

W
(k)
n (t, s), n ∈ N and (20) imply that one can interchange the summation and

integration in

Wn(t, s) =
∞∑
k=0

W
(k)
n (t, s) = Un(t, s)−

∞∑
k=1

∫ t

s
Un(t, r)A−1(r)A

′
(r)W (k−1)

n (r, s)dr

and thus see that Wn(t, s) is a solution of the integral equation (15). Moreover
there exists constant K1 such that

∀(t, s) ∈ ∆T ∀n ∈ N : ‖Wn(t, s)‖ ≤ K1.

So
|〈A(s)x, U∗n(t, s)v〉| ≤ K1‖A∗(t)v‖‖x‖
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and passing with n to ∞ we have

|〈A(s)x, U∗(t, s)v〉| ≤ K1‖A∗(t)v‖‖x‖, ∀x ∈ D.
This implies that

U∗(t, s)v ∈ D(A∗(s)) = D∗.

Moreover

(21) sup{‖A∗(s)U∗(t, s)v‖ : (t, s) ∈ 4T } ≤ K2,

where K2 := K1 · sup{‖A∗(t)v‖ : t ∈ [0, T ]} <∞.

Equation (11) holds for x ∈ D and by (21), it holds for x ∈ X.

We now investigate the Cauchy problem

(22)
du

dt
= A(t)u+ f(t), u(0) = x 0 ≤ t ≤ T,

where f ∈ L1(0, T ;X), {A(t)}t∈[0,T ] ⊂ C(X) and ∀t ∈ [0, T ] : D(A(t)) = X
and D(A∗(t)) = D∗.

Definition 4. A function u ∈ C([0, T ];X) is a weak solution of (22) if
for each v ∈ D∗

(i) the function [0, T ] 3 t −→ 〈u(t), v〉 ∈ R is absolutely continuous and
differentiable almost everywhere in [0, T ],

(ii) ∀v ∈ D∗ : d
dt〈u(t), v〉 = 〈u(t), A∗(t)v〉+ 〈f(t), v〉 a.e. in [0, T ],

(iii) u(0) = x.

Theorem 5. If the family {A(t)}t∈[0,T ] satisfies the assumptions of Theo-
rem 4 and f ∈ L1(0, T ;X), then for each x ∈ X there exists exactly one weak
solution of the problem (22) and it is given by

(23) u(t) = U(t, 0)x+
∫ t

0
U(t, s)f(s)ds t ∈ [0, T ],

where {U(t, s)}(t,s)∈∆T
is the fundamental solution of the problem (4).

Proof. By Theorem 3, there exists the fundamental solution of the prob-
lem (4) and the function u, given by (23), is continuous.

Fix v ∈ D∗. First assume that f ∈ C([0, T ];X). By (10) and continuity of
the function ∆T ×X 3 (t, s, x)→ U(t, s)x ∈ X we see that

d

dt

∫ t

0
〈U(t, s)f(s), v〉ds = 〈f(t), v〉+

∫ t

0
〈U(t, s)f(s), A∗(t)v〉ds.

This implies that

(24)
d

dt
〈u(t), v〉 = 〈u(t), A∗(t)v〉+ 〈f(t), v〉.
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Now suppose that f is Bochner integrable, i.e. f ∈ L1(0, T ;X). Let φn be an
approximate identity. Then f ∗ φn is of class C∞ and f ∗ φn → f in L1 norm.
Let a sequence (fn) ⊂ C([0, T ];X) converg to f in L1(0, T ;X) norm. Let

(25) un(t) := U(t, 0)x+
∫ t

0
U(t, s)fn(s)ds for t ∈ [0, T ].

Function un is a weak solution of the problem

d

dt
〈un(t), v〉 = 〈un(t), A∗(t)v〉+ 〈fn(t), v〉, un(0) = x

and by integrating this equation over [0, t], we have

(26) 〈un(t), v〉 = 〈x, v〉+
∫ t

0
[〈un(s), A∗(s)v〉+ 〈fn(s), v〉]ds.

From

‖un(t)− u(t)‖ ≤MeβT
∫ T

0
‖fn(s)− f(s)‖ds

it follows that un → u in C([0, T ], X) norm. Thus, by the Lebesgue Theorem,
u, given by (23), satisfies equation

〈u(t), v〉 = 〈x, v〉+
∫ t

0
[〈u(s), A∗(s)v〉+ 〈f(s), v〉]ds.

Existence of the weak solution is proved.
To prove uniqueness suppose that there exists u another weak solution of

the problem (22) and set w = u − u. Then the function w is a weak solution
of the problem

d

dt
w(t) = A(t)w(t), w(0) = 0.

Fix v ∈ D∗ and t ∈ (0, T ]. By Theorem 4,

d

ds
〈U(t, s)w(s), v〉 =

d

ds
〈w(s), U∗(t, s)v〉

= 〈w(s), A∗(s)U∗(t, s)v〉 − 〈w(s), A∗(s)U∗(t, s)v〉 = 0.

From continuity of the function 〈U(t, ·)w(·), v〉 it follows that

〈U(t, s)w(s), v〉 = const.

If s1, s2 ∈ [0, t], then 〈U(t, s1)w(s1), v〉 = 〈U(t, s2)w(s2), v〉 for each v ∈ D∗.
By w∗-density of D∗, U(t, s1)w(s1) = U(t, s2)w(s2) for s1, s2 ∈ [0, t]. Taking
s1 = 0 and s2 = t we get w(t) = 0.
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3. Dependence of the weak solution on a parameter. Let Ω be a
compact subset of Rm. We shell consider the following initial value problem
with a parameter h ∈ Ω:

(27)
d

dt
u(t) = A(h, t)u(t) + fh(t), u(0) = u0

h,

where A : Ω× [0, T ] 3 (h, t) −→ A(h, t) ∈ C(X), u0
h ∈ X, fh ∈ L1(0, T ;X).

Definition 5. A family {A(h, t)}(h,t)∈Ω×[0,T ] is said to be uniformly stable
with respect to h ∈ Ω, when there exist constants M and β such that for any
h ∈ Ω the family {A(h, t)}t∈[0,T ] is stable with constants M and β.

In this section we adopt the following:
Assumption Ah,t.

(i) ∀t ∈ [0, T ] ∀h ∈ Ω : D(A(h, t)) = Dh,
(ii) ∀t ∈ [0, T ] ∀h ∈ Ω : D(A∗(h, t)) = D∗,

(iii) ∀t ∈ [0, T ] ∀h ∈ Ω : 0 ∈ %(A(h, t)),
(iv) ∀h, k ∈ Ω ∀s ∈ [0, T ], the mapping

[0, T ] 3 t −→ A−1(k, s)A(h, t) ∈ Aut(X)

is continuous in t = s,
(v) ∀h, k ∈ Ω ∀s ∈ [0, t], the family

{
A−1(h, s)A(h, t)

}
t∈[0,T ]

has weakly

continuous weak derivative,
(vi) ∀k ∈ Ω ∀t ∈ [0, T ], a mapping

Ω 3 h −→ A−1(k, t)A(h, t) ∈ Aut(X)

is continuous, uniformly in t ∈ [0, T ].

One can easily verify (see Theorems 5 and 6, paper [6]) that this operators
are well-defined.

Corollary 1. From Assumption Ah,t it follows that mappings
• [0, T ] 3 t −→ A−1(k, s)A(h, t) ∈ Aut(X),
• [0, T ] 3 t −→ A−1(h, t)A(k, s) ∈ Aut(X),
• [0, T ] 3 t −→ A−1(k, t)A(h, t) ∈ Aut(X),
are continuous.

Proof. One can easily verify that [0, T ] 3 t −→A−1(k, s)A(h, t) ∈ Aut(X)
is continuous.

It is known that if a mapping [0, T ] 3 t −→ B(t) ∈ Aut(X) is continuous
and ∀t ∈ [0, T ] : 0 ∈ %(B(t)), then the mapping [0, T ] 3 t −→ B−1(t) ∈ Aut(X)
is continuous. Continuity of the mapping [0, T ] 3 t −→ A−1(h, t)A(k, s) ∈
Aut(X) follows from the above.
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Theorem 6. If the family {A(h, t)}(h,t)∈Ω×[0,T ] is uniformly stable with
respect to h ∈ Ω, satisfies Assumption Ah,t and ∀h ∈ Ω ∀x ∈ Dh : [0, T ] 3
t −→ A(h, t)x ∈ X is of class C1, then there exists for each h ∈ Ω, one
fundamental solution {U(h, t, s)}(t,s)∈∆T

⊂ B(X). Moreover for each v ∈ D∗
and x ∈ X

(i)
∂

∂t
〈U(h, t, s)x, v〉 = 〈U(h, t, s)x,A∗(h, t)v〉,

(ii) U∗(h, t, s)(D∗) ⊂ D∗,

(iii)
∂

∂s
〈U(h, t, s)x, v〉 = −〈x,A∗(h, s)U∗(h, t, s)v〉,

(iv) limh→h0〈U(h, t, s)x, v〉 = 〈U(h0, t, s)x, v〉 uniformly in (t, s, x) ∈ 4T ×K,
where K is a compact subset of X.

Proof. (i), (ii) and (iii) follow from Theorems 3 and 4.
Fix x ∈ X and v ∈ D∗.

(28)
d

dτ
〈U(h, τ, s)x, U∗(h0, t, τ)v〉

= 〈U(h, τ, s)x, [A∗(h, τ)−A∗(h0, τ)]U∗(h0, t, τ)v〉.
By integrating (28) over [s, t] we have

(29) 〈U(h, t, s)x− U(h0, t, s)x, v〉

=
∫ t

s
〈U(h, τ, s)x, [A∗(h, τ)−A∗(h0, τ)]U∗(h0, t, τ)v〉 dτ,

so
〈U(h, t, s)x− U(h0, t, s)x, v〉

=
∫ t

s

〈
U(h, τ, s)x,

{[
A−1(h0, τ)A(h, τ)

]∗
− I∗

}
A∗(h0, τ)U∗(h0, t, τ)v

〉
dτ.

By (21), Assumption Ah,t and the Lebesgue Theorem

(30) lim
h→h0

〈U(h, t, s)x, v〉 = 〈U(h0, t, s)x, v〉

uniformly in (t, s) ∈ 4T .
Let Bh(t, s) : X −→ R, h ∈ Ω, (t, s) ∈ 4T be a family of linear functionals

given by
Bh(t, s)x := 〈U(h, t, s)x, v〉 for x ∈ X

for fixed v ∈ D∗.
This family is uniformly bounded: ‖Bh(t, s)‖ ≤ ‖v‖‖U(h, t, s)‖ ≤MeβT ‖v‖

and by (30)

lim
h→h0

〈U(h, t, s)x, v〉 = lim
h→h0

Bh(t, s)x = Bh0(t, s)x = 〈U(h0, t, s)x, v〉

uniformly in (t, s, x) ∈ 4T ×K.
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Theorem 7. Let X be a reflexive Banach space and suppose that the family
{A(h, t)}(h,t)∈Ω×[0,T ] satisfies the assumptions of Theorem 6, then ∀v ∈ X∗ :

lim
h→h0

〈U(h, t, s)x, v〉 = 〈U(h0, t, s)x, v〉

uniformly in (t, s, x) ∈ 4T ×K, where K is a compact subset of X.

Proof. By reflexivity of X, D∗ is dense in X∗, so by Theorem 6 the
assertion follows.

Theorem 8. If the family {A(h, t)}(h,t)∈Ω×[0,T ] satisfies the assumptions of
Theorem 7 and mappings Ω 3 h −→ u0

h ∈ X, h −→ fh ∈ L1(0, T ;X) are
continuous, then for each h ∈ Ω there exists exactly one weak solution of the
problem (27) given by

(31) uh(t) = U(h, t, 0)u0
h +

∫ t

0
U(h, t, s)fh(s)ds

and for any v ∈ D∗
lim
h→h0

〈uh(t), v〉 = 〈uh0(t), v〉,

uniformly in t ∈ [0, T ].

Proof. By Theorem 5, function given by (31) is a weak solution of a
problem (27) and

uh(t)− uh0(t) = [U(h, t, 0)− U(h0, t, 0)]u0
h + U(h0, t, 0)[u0

h − u0
h0

]

+
∫ t

0
[U(h, t, s)− U(h0, t, s)]fh0(s)ds+

∫ t

0
U(h, t, s)[fh(s)− fh0(s)]ds.

Fix v ∈ D∗. By Theorem 6 (iv), for K := {u0
h ; h ∈ Ω}:

lim
h→h0

〈[U(h, t, 0)− U(h0, t, 0)]u0
h, v〉 = 0,

uniformly in t ∈ [0, T ].
From ‖U(h, t, s)‖ ≤MeβT it follows that limh→h0 U(h0, t, 0)[u0

h−u0
h0

] = 0,
uniformly in t ∈ [0, T ] and moreover by continuity of the mapping h→ fh,

lim
h→h0

∫ t

0
U(h, t, s)[fh(s)− fh0(s)]ds = 0,

uniformly in t ∈ [0, T ].
To complete the proof we note that there exists a sequence (ϕn) ⊂ C([0, T ];

X) such that limn→∞ ϕn = fh0 in L1-norm. For fixed ε > 0 there exists such
n0 ∈ N that

(32) ‖fh0 − ϕn0‖L1 ≤ ε(4MeβT ‖v‖)−1.
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From compactness of K1 := {ϕn0(s); s ∈ [0, T ]}, the inequality ‖U(h, t, s)‖ ≤
MeβT , (32) and Theorem 6 (iv) there exists δ > 0 for which∣∣∣∣ 〈∫ t

0
[U(h, t, s)− U(h0, t, s)]fh0(s)ds, v

〉 ∣∣∣∣ ≤ 2MeβT ‖v‖
∫ t

0
‖fh0(s)−ϕn0(s)‖ds

+
∫ t

0
| 〈[U(h, t, s)− U(h0, t, s)]ϕn0(s), v〉 |ds < ε

for |h− h0| < δ and t ∈ [0, T ]. The assertion is proved.

From Theorems 7 and 8 it follows that

Theorem 9. If the assumptions of Theorem 8 hold in a reflexive Banach
space X, then for any v ∈ X∗ :

lim
h→h0

〈uh(t), v〉 = 〈uh0(t), v〉,

uniformly in t ∈ [0, T ].

We will now present theorems on differentiability of the weak solution with
respect to a parameter h. To do this assume

Assumption Zh. For each v ∈ D∗ a mapping

Ω 3 h −→ A∗(h, t)v ∈ X∗

is of class C1 and
∂

∂h
(A∗(h, t)v) is continuous with respect to (h, t) ∈ Ω×[0, T ].

It is not difficult to show that

Corollary 2. For each t ∈ [0, T ] and k ∈ Ω the family
{
A−1(k, t)A(h, t)

}
is weakly differentiable with respect to h and ∀x ∈ X, ∀v ∈ X∗ :

∂

∂h

〈
A−1(k, t)A(h, t)x, v

〉
=
〈
x,

∂

∂h

[
A∗(h, t) (A∗(k, t))−1 v

]〉
.

Moreover above partial derivative is a continuous function with respect to (h, t).

Corollary 3. There exists a constant M1 independent of h and s such
that

(33)

∥∥∥∥∥A−1(k, s)A(h, s)− I
h− k

∥∥∥∥∥ ≤M1.

Proof. By Assumption Zh and Corollary 2, for each v ∈ X∗ we obtain

(34) lim
h→k

〈
A−1(k, s)A(h, s)− I

h− k
x, v

〉
=
〈
x,

∂

∂h

(
A−1(k, s)A(h, s)

)∗
|h=k

v

〉
,
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uniformly in s ∈ [0, T ]. Setting

f(h, s) :=
〈
A−1(k, s)A(h, s)x, v

〉
,

for fixed k ∈ Ω, we will show that

(35)
f(k +4h, s)− f(k, s)

4h
→ f

′
h(k, s), 4h→ 0,

uniformly in s.
The mapping (h, t) −→ f

′
h(h, s) is uniformly continuous, so for any ε > 0

there exists δ > 0 such that

(36) (|h1 − h2| < δ ∧ |s1 − s2| < δ)⇒ (|f ′
h(h2, s2)− f ′

h(h1, s1)| < ε).

By the Lagrange Theorem there exists θ ∈ (0, 1) such that

(37) f
′
h(k + θ4h, s) =

f(k +4h, s)− f(k, s)
4h

.

Setting s1 = s2 = s, h1 = k and h2 = k + θ4h for |4h| < δ we have, by (36)
and (37), ∣∣∣∣f(k +4h, s)− f(k, s)

4h
− f ′

h(k, s)
∣∣∣∣ < ε.

Next, let us consider the mapping Bx(h, s) ∈ B(X∗,R) defined by

Bx(h, s)v :=

〈
A−1(k, s)A(h, s)− I

h− k
x, v

〉
.

The family H := {Bx(h, s) ∈ X∗∗ ; (h, s) ∈ Ω×[0, T ]} satisfies the assumptions
of the Banach–Steinhaus Theorem, so

(38) ‖Bx(h, s)‖ =

∥∥∥∥∥A−1(k, s)A(h, s)− I
h− k

x

∥∥∥∥∥ ≤M(x, k),

with a constant M independent of h and s. By inequality (38) and the Banach–
Steinhaus Theorem we have

(39)

∥∥∥∥∥A−1(k, s)A(h, s)− I
h− k

∥∥∥∥∥ ≤M1(k),

where a constant M1 is independent of h and s.

Let X be a reflexive Banach space.

Theorem 10. If the family {A(h, t)}(h,t)∈Ω×[0,T ] satisfies the assumptions
of Theorem 6 and Assumption Zh, mappings Ω 3 h −→ u0

h ∈ X and f : Ω 3
h −→ fh ∈ L1(0, T ;X) are of class C1, then for each v ∈ D∗ a mapping

Ω× [0, T ] 3 (h, t) −→ 〈uh(t), v〉 ∈ R
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is differentiable with respect to a parameter h and

∂

∂h
〈uh(t), v〉|h=h0

=
〈
U(h0, t, 0)(u0

h0
)
′
, v
〉

+
∫ t

0
〈U(h0, t, s)f

′
h0

(s), v〉ds

+
∫ t

0

〈
uh0(s),

∂

∂h
A∗(h, s)|h=h0

U∗(h0, t, s)v
〉
ds.

Proof. Let uh be a weak solution of the problem (27). This function
is continuous and almost everywhere weakly differentiable. Fix v ∈ D∗. A
function s −→ U∗(h0, t, s)v is w∗−differentiable, so

d

ds
〈uh(s),U∗(h0, t, s)v〉 = 〈uh(s), A∗(h, s)U∗(h0, t, s)v〉

+ 〈f(h, s), U∗(h0, t, s)v〉 − 〈uh(s), A∗(h, s)U∗(h0, t, s)v〉.
(40)

Integrating (40) over [0, t] and applying this formula to
〈
uh(t)−uh0

(t)

h−h0
, v
〉

we get〈
uh(t)− uh0(t)

h− h0
, v

〉
=

〈
U(h0, t, 0)

u0
h − u0

h0

h− h0
, v

〉

+
∫ t

0

〈
U(h0, t, s)

f(h, s)− f(h0, s)
h− h0

, v

〉
ds(41)

+
∫ t

0

〈
uh(s),

A∗(h, s)−A∗(h0, s)
h− h0

U∗(h0, t, s)v
〉
ds h 6= h0.

Denote

zh(t) := U(h0, t, 0)
u0
h − u0

h0

h− h0
+
∫ t

0
U(h0, t, s)

fh(s)− fh0(s)
h− h0

ds.

The function zh is a weak solution of the Cauchy problem
d

dt
zh(t) = A(h0, t)zh(t) + F (h, t)

zh(0) = z0
h,

where

F (h, t) =

{
f(h,t)−f(h0,t)

h−h0
for h 6= h0

f
′
(h0, t) for h = h0

and

z0
h =

{
uh−uh0
h−h0

for h 6= h0

(u0
h0

)
′

for h = h0.

By Theorem 8,
lim
h→h0

〈zh(t), v〉 = 〈zh0(t), v〉
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uniformly in t ∈ [0, T ], where

zh0(t) = U(h0, t, 0)(u0
h0

)
′
+
∫ t

0
U(h0, t, s)f

′
h0

(s)ds.

Now we consider third term of the right side of the formula (41).∫ t

0

〈
uh(s),

A∗(h, s)−A∗(h0, s)
h− h0

U∗(h0, t, s)v
〉
ds

=
∫ t

0

〈
uh(s)− uh0(s),

A∗(h, s)−A∗(h0, s)
h− h0

U∗(h0, t, s)v
〉
ds

+
∫ t

0

〈
uh0(s),

(
A−1(h0, s)A(h, s)− I

h− h0

)∗
A∗(h0, s)U∗(h0, t, s)v

〉
ds.

For any (t, s) ∈ 4T

lim
h→h0

〈
uh(s)− uh0(s),

A∗(h, s)−A∗(h0, s)
h− h0

U∗(h0, t, s)v
〉

= 0.

Indeed, the mapping Ω 3 h → uh(s) ∈ X is weakly continuous and the map-
ping Ω 3 h→ A∗(h, s)w ∈ X∗ is differentiable for w ∈ D∗.

Moreover,
‖uh(s)‖ ≤ C for (h, s) ∈ Ω× [0, T ].

By the Assumption Zh, (39), (21) and the Lebesgue Theorem we get∫ t

0

〈
uh(s),

A∗(h, s)−A∗(h0, s)
h− h0

U∗(h0, t, s)v
〉
ds

−→
∫ t

0

〈
uh0(s),

∂

∂h
A∗(h, s)|h=h0

U∗(h0, t, s)v
〉
ds,

when h→ h0. This ends proof.
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